2 * High Precision Event Timer emulation
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
7 * Authors: Beth Kon <bkon@us.ibm.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * *****************************************************************
24 * This driver attempts to emulate an HPET device in software.
27 #include "qemu/osdep.h"
29 #include "hw/i386/pc.h"
30 #include "ui/console.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "hw/timer/hpet.h"
35 #include "hw/sysbus.h"
36 #include "hw/timer/mc146818rtc.h"
37 #include "hw/timer/i8254.h"
41 #define DPRINTF printf
46 #define HPET_MSI_SUPPORT 0
48 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
51 typedef struct HPETTimer
{ /* timers */
52 uint8_t tn
; /*timer number*/
53 QEMUTimer
*qemu_timer
;
54 struct HPETState
*state
;
55 /* Memory-mapped, software visible timer registers */
56 uint64_t config
; /* configuration/cap */
57 uint64_t cmp
; /* comparator */
58 uint64_t fsb
; /* FSB route */
59 /* Hidden register state */
60 uint64_t period
; /* Last value written to comparator */
61 uint8_t wrap_flag
; /* timer pop will indicate wrap for one-shot 32-bit
62 * mode. Next pop will be actual timer expiration.
66 typedef struct HPETState
{
68 SysBusDevice parent_obj
;
73 qemu_irq irqs
[HPET_NUM_IRQ_ROUTES
];
75 uint8_t rtc_irq_level
;
79 HPETTimer timer
[HPET_MAX_TIMERS
];
81 /* Memory-mapped, software visible registers */
82 uint64_t capability
; /* capabilities */
83 uint64_t config
; /* configuration */
84 uint64_t isr
; /* interrupt status reg */
85 uint64_t hpet_counter
; /* main counter */
86 uint8_t hpet_id
; /* instance id */
89 static uint32_t hpet_in_legacy_mode(HPETState
*s
)
91 return s
->config
& HPET_CFG_LEGACY
;
94 static uint32_t timer_int_route(struct HPETTimer
*timer
)
96 return (timer
->config
& HPET_TN_INT_ROUTE_MASK
) >> HPET_TN_INT_ROUTE_SHIFT
;
99 static uint32_t timer_fsb_route(HPETTimer
*t
)
101 return t
->config
& HPET_TN_FSB_ENABLE
;
104 static uint32_t hpet_enabled(HPETState
*s
)
106 return s
->config
& HPET_CFG_ENABLE
;
109 static uint32_t timer_is_periodic(HPETTimer
*t
)
111 return t
->config
& HPET_TN_PERIODIC
;
114 static uint32_t timer_enabled(HPETTimer
*t
)
116 return t
->config
& HPET_TN_ENABLE
;
119 static uint32_t hpet_time_after(uint64_t a
, uint64_t b
)
121 return ((int32_t)(b
- a
) < 0);
124 static uint32_t hpet_time_after64(uint64_t a
, uint64_t b
)
126 return ((int64_t)(b
- a
) < 0);
129 static uint64_t ticks_to_ns(uint64_t value
)
131 return value
* HPET_CLK_PERIOD
;
134 static uint64_t ns_to_ticks(uint64_t value
)
136 return value
/ HPET_CLK_PERIOD
;
139 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old
, uint64_t mask
)
146 static int activating_bit(uint64_t old
, uint64_t new, uint64_t mask
)
148 return (!(old
& mask
) && (new & mask
));
151 static int deactivating_bit(uint64_t old
, uint64_t new, uint64_t mask
)
153 return ((old
& mask
) && !(new & mask
));
156 static uint64_t hpet_get_ticks(HPETState
*s
)
158 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + s
->hpet_offset
);
162 * calculate diff between comparator value and current ticks
164 static inline uint64_t hpet_calculate_diff(HPETTimer
*t
, uint64_t current
)
167 if (t
->config
& HPET_TN_32BIT
) {
170 cmp
= (uint32_t)t
->cmp
;
171 diff
= cmp
- (uint32_t)current
;
172 diff
= (int32_t)diff
> 0 ? diff
: (uint32_t)1;
173 return (uint64_t)diff
;
178 diff
= cmp
- current
;
179 diff
= (int64_t)diff
> 0 ? diff
: (uint64_t)1;
184 static void update_irq(struct HPETTimer
*timer
, int set
)
190 if (timer
->tn
<= 1 && hpet_in_legacy_mode(timer
->state
)) {
191 /* if LegacyReplacementRoute bit is set, HPET specification requires
192 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
193 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
195 route
= (timer
->tn
== 0) ? 0 : RTC_ISA_IRQ
;
197 route
= timer_int_route(timer
);
200 mask
= 1 << timer
->tn
;
201 if (!set
|| !timer_enabled(timer
) || !hpet_enabled(timer
->state
)) {
203 if (!timer_fsb_route(timer
)) {
204 qemu_irq_lower(s
->irqs
[route
]);
206 } else if (timer_fsb_route(timer
)) {
207 address_space_stl_le(&address_space_memory
, timer
->fsb
>> 32,
208 timer
->fsb
& 0xffffffff, MEMTXATTRS_UNSPECIFIED
,
210 } else if (timer
->config
& HPET_TN_TYPE_LEVEL
) {
212 qemu_irq_raise(s
->irqs
[route
]);
215 qemu_irq_pulse(s
->irqs
[route
]);
219 static void hpet_pre_save(void *opaque
)
221 HPETState
*s
= opaque
;
223 /* save current counter value */
224 s
->hpet_counter
= hpet_get_ticks(s
);
227 static int hpet_pre_load(void *opaque
)
229 HPETState
*s
= opaque
;
231 /* version 1 only supports 3, later versions will load the actual value */
232 s
->num_timers
= HPET_MIN_TIMERS
;
236 static bool hpet_validate_num_timers(void *opaque
, int version_id
)
238 HPETState
*s
= opaque
;
240 if (s
->num_timers
< HPET_MIN_TIMERS
) {
242 } else if (s
->num_timers
> HPET_MAX_TIMERS
) {
248 static int hpet_post_load(void *opaque
, int version_id
)
250 HPETState
*s
= opaque
;
252 /* Recalculate the offset between the main counter and guest time */
253 s
->hpet_offset
= ticks_to_ns(s
->hpet_counter
) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
255 /* Push number of timers into capability returned via HPET_ID */
256 s
->capability
&= ~HPET_ID_NUM_TIM_MASK
;
257 s
->capability
|= (s
->num_timers
- 1) << HPET_ID_NUM_TIM_SHIFT
;
258 hpet_cfg
.hpet
[s
->hpet_id
].event_timer_block_id
= (uint32_t)s
->capability
;
260 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
261 s
->flags
&= ~(1 << HPET_MSI_SUPPORT
);
262 if (s
->timer
[0].config
& HPET_TN_FSB_CAP
) {
263 s
->flags
|= 1 << HPET_MSI_SUPPORT
;
268 static bool hpet_rtc_irq_level_needed(void *opaque
)
270 HPETState
*s
= opaque
;
272 return s
->rtc_irq_level
!= 0;
275 static const VMStateDescription vmstate_hpet_rtc_irq_level
= {
276 .name
= "hpet/rtc_irq_level",
278 .minimum_version_id
= 1,
279 .needed
= hpet_rtc_irq_level_needed
,
280 .fields
= (VMStateField
[]) {
281 VMSTATE_UINT8(rtc_irq_level
, HPETState
),
282 VMSTATE_END_OF_LIST()
286 static const VMStateDescription vmstate_hpet_timer
= {
287 .name
= "hpet_timer",
289 .minimum_version_id
= 1,
290 .fields
= (VMStateField
[]) {
291 VMSTATE_UINT8(tn
, HPETTimer
),
292 VMSTATE_UINT64(config
, HPETTimer
),
293 VMSTATE_UINT64(cmp
, HPETTimer
),
294 VMSTATE_UINT64(fsb
, HPETTimer
),
295 VMSTATE_UINT64(period
, HPETTimer
),
296 VMSTATE_UINT8(wrap_flag
, HPETTimer
),
297 VMSTATE_TIMER_PTR(qemu_timer
, HPETTimer
),
298 VMSTATE_END_OF_LIST()
302 static const VMStateDescription vmstate_hpet
= {
305 .minimum_version_id
= 1,
306 .pre_save
= hpet_pre_save
,
307 .pre_load
= hpet_pre_load
,
308 .post_load
= hpet_post_load
,
309 .fields
= (VMStateField
[]) {
310 VMSTATE_UINT64(config
, HPETState
),
311 VMSTATE_UINT64(isr
, HPETState
),
312 VMSTATE_UINT64(hpet_counter
, HPETState
),
313 VMSTATE_UINT8_V(num_timers
, HPETState
, 2),
314 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers
),
315 VMSTATE_STRUCT_VARRAY_UINT8(timer
, HPETState
, num_timers
, 0,
316 vmstate_hpet_timer
, HPETTimer
),
317 VMSTATE_END_OF_LIST()
319 .subsections
= (const VMStateDescription
*[]) {
320 &vmstate_hpet_rtc_irq_level
,
326 * timer expiration callback
328 static void hpet_timer(void *opaque
)
330 HPETTimer
*t
= opaque
;
333 uint64_t period
= t
->period
;
334 uint64_t cur_tick
= hpet_get_ticks(t
->state
);
336 if (timer_is_periodic(t
) && period
!= 0) {
337 if (t
->config
& HPET_TN_32BIT
) {
338 while (hpet_time_after(cur_tick
, t
->cmp
)) {
339 t
->cmp
= (uint32_t)(t
->cmp
+ t
->period
);
342 while (hpet_time_after64(cur_tick
, t
->cmp
)) {
346 diff
= hpet_calculate_diff(t
, cur_tick
);
347 timer_mod(t
->qemu_timer
,
348 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + (int64_t)ticks_to_ns(diff
));
349 } else if (t
->config
& HPET_TN_32BIT
&& !timer_is_periodic(t
)) {
351 diff
= hpet_calculate_diff(t
, cur_tick
);
352 timer_mod(t
->qemu_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
353 (int64_t)ticks_to_ns(diff
));
360 static void hpet_set_timer(HPETTimer
*t
)
363 uint32_t wrap_diff
; /* how many ticks until we wrap? */
364 uint64_t cur_tick
= hpet_get_ticks(t
->state
);
366 /* whenever new timer is being set up, make sure wrap_flag is 0 */
368 diff
= hpet_calculate_diff(t
, cur_tick
);
370 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
371 * counter wraps in addition to an interrupt with comparator match.
373 if (t
->config
& HPET_TN_32BIT
&& !timer_is_periodic(t
)) {
374 wrap_diff
= 0xffffffff - (uint32_t)cur_tick
;
375 if (wrap_diff
< (uint32_t)diff
) {
380 timer_mod(t
->qemu_timer
,
381 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + (int64_t)ticks_to_ns(diff
));
384 static void hpet_del_timer(HPETTimer
*t
)
386 timer_del(t
->qemu_timer
);
391 static uint32_t hpet_ram_readb(void *opaque
, hwaddr addr
)
393 printf("qemu: hpet_read b at %" PRIx64
"\n", addr
);
397 static uint32_t hpet_ram_readw(void *opaque
, hwaddr addr
)
399 printf("qemu: hpet_read w at %" PRIx64
"\n", addr
);
404 static uint64_t hpet_ram_read(void *opaque
, hwaddr addr
,
407 HPETState
*s
= opaque
;
408 uint64_t cur_tick
, index
;
410 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64
"\n", addr
);
412 /*address range of all TN regs*/
413 if (index
>= 0x100 && index
<= 0x3ff) {
414 uint8_t timer_id
= (addr
- 0x100) / 0x20;
415 HPETTimer
*timer
= &s
->timer
[timer_id
];
417 if (timer_id
> s
->num_timers
) {
418 DPRINTF("qemu: timer id out of range\n");
422 switch ((addr
- 0x100) % 0x20) {
424 return timer
->config
;
425 case HPET_TN_CFG
+ 4: // Interrupt capabilities
426 return timer
->config
>> 32;
427 case HPET_TN_CMP
: // comparator register
429 case HPET_TN_CMP
+ 4:
430 return timer
->cmp
>> 32;
433 case HPET_TN_ROUTE
+ 4:
434 return timer
->fsb
>> 32;
436 DPRINTF("qemu: invalid hpet_ram_readl\n");
442 return s
->capability
;
444 return s
->capability
>> 32;
448 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
451 if (hpet_enabled(s
)) {
452 cur_tick
= hpet_get_ticks(s
);
454 cur_tick
= s
->hpet_counter
;
456 DPRINTF("qemu: reading counter = %" PRIx64
"\n", cur_tick
);
458 case HPET_COUNTER
+ 4:
459 if (hpet_enabled(s
)) {
460 cur_tick
= hpet_get_ticks(s
);
462 cur_tick
= s
->hpet_counter
;
464 DPRINTF("qemu: reading counter + 4 = %" PRIx64
"\n", cur_tick
);
465 return cur_tick
>> 32;
469 DPRINTF("qemu: invalid hpet_ram_readl\n");
476 static void hpet_ram_write(void *opaque
, hwaddr addr
,
477 uint64_t value
, unsigned size
)
480 HPETState
*s
= opaque
;
481 uint64_t old_val
, new_val
, val
, index
;
483 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64
" = %#x\n", addr
, value
);
485 old_val
= hpet_ram_read(opaque
, addr
, 4);
488 /*address range of all TN regs*/
489 if (index
>= 0x100 && index
<= 0x3ff) {
490 uint8_t timer_id
= (addr
- 0x100) / 0x20;
491 HPETTimer
*timer
= &s
->timer
[timer_id
];
493 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id
);
494 if (timer_id
> s
->num_timers
) {
495 DPRINTF("qemu: timer id out of range\n");
498 switch ((addr
- 0x100) % 0x20) {
500 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
501 if (activating_bit(old_val
, new_val
, HPET_TN_FSB_ENABLE
)) {
502 update_irq(timer
, 0);
504 val
= hpet_fixup_reg(new_val
, old_val
, HPET_TN_CFG_WRITE_MASK
);
505 timer
->config
= (timer
->config
& 0xffffffff00000000ULL
) | val
;
506 if (new_val
& HPET_TN_32BIT
) {
507 timer
->cmp
= (uint32_t)timer
->cmp
;
508 timer
->period
= (uint32_t)timer
->period
;
510 if (activating_bit(old_val
, new_val
, HPET_TN_ENABLE
) &&
512 hpet_set_timer(timer
);
513 } else if (deactivating_bit(old_val
, new_val
, HPET_TN_ENABLE
)) {
514 hpet_del_timer(timer
);
517 case HPET_TN_CFG
+ 4: // Interrupt capabilities
518 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
520 case HPET_TN_CMP
: // comparator register
521 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
522 if (timer
->config
& HPET_TN_32BIT
) {
523 new_val
= (uint32_t)new_val
;
525 if (!timer_is_periodic(timer
)
526 || (timer
->config
& HPET_TN_SETVAL
)) {
527 timer
->cmp
= (timer
->cmp
& 0xffffffff00000000ULL
) | new_val
;
529 if (timer_is_periodic(timer
)) {
531 * FIXME: Clamp period to reasonable min value?
532 * Clamp period to reasonable max value
534 new_val
&= (timer
->config
& HPET_TN_32BIT
? ~0u : ~0ull) >> 1;
536 (timer
->period
& 0xffffffff00000000ULL
) | new_val
;
538 timer
->config
&= ~HPET_TN_SETVAL
;
539 if (hpet_enabled(s
)) {
540 hpet_set_timer(timer
);
543 case HPET_TN_CMP
+ 4: // comparator register high order
544 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
545 if (!timer_is_periodic(timer
)
546 || (timer
->config
& HPET_TN_SETVAL
)) {
547 timer
->cmp
= (timer
->cmp
& 0xffffffffULL
) | new_val
<< 32;
550 * FIXME: Clamp period to reasonable min value?
551 * Clamp period to reasonable max value
553 new_val
&= (timer
->config
& HPET_TN_32BIT
? ~0u : ~0ull) >> 1;
555 (timer
->period
& 0xffffffffULL
) | new_val
<< 32;
557 timer
->config
&= ~HPET_TN_SETVAL
;
558 if (hpet_enabled(s
)) {
559 hpet_set_timer(timer
);
563 timer
->fsb
= (timer
->fsb
& 0xffffffff00000000ULL
) | new_val
;
565 case HPET_TN_ROUTE
+ 4:
566 timer
->fsb
= (new_val
<< 32) | (timer
->fsb
& 0xffffffff);
569 DPRINTF("qemu: invalid hpet_ram_writel\n");
578 val
= hpet_fixup_reg(new_val
, old_val
, HPET_CFG_WRITE_MASK
);
579 s
->config
= (s
->config
& 0xffffffff00000000ULL
) | val
;
580 if (activating_bit(old_val
, new_val
, HPET_CFG_ENABLE
)) {
581 /* Enable main counter and interrupt generation. */
583 ticks_to_ns(s
->hpet_counter
) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
584 for (i
= 0; i
< s
->num_timers
; i
++) {
585 if ((&s
->timer
[i
])->cmp
!= ~0ULL) {
586 hpet_set_timer(&s
->timer
[i
]);
589 } else if (deactivating_bit(old_val
, new_val
, HPET_CFG_ENABLE
)) {
590 /* Halt main counter and disable interrupt generation. */
591 s
->hpet_counter
= hpet_get_ticks(s
);
592 for (i
= 0; i
< s
->num_timers
; i
++) {
593 hpet_del_timer(&s
->timer
[i
]);
596 /* i8254 and RTC output pins are disabled
597 * when HPET is in legacy mode */
598 if (activating_bit(old_val
, new_val
, HPET_CFG_LEGACY
)) {
599 qemu_set_irq(s
->pit_enabled
, 0);
600 qemu_irq_lower(s
->irqs
[0]);
601 qemu_irq_lower(s
->irqs
[RTC_ISA_IRQ
]);
602 } else if (deactivating_bit(old_val
, new_val
, HPET_CFG_LEGACY
)) {
603 qemu_irq_lower(s
->irqs
[0]);
604 qemu_set_irq(s
->pit_enabled
, 1);
605 qemu_set_irq(s
->irqs
[RTC_ISA_IRQ
], s
->rtc_irq_level
);
609 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
612 val
= new_val
& s
->isr
;
613 for (i
= 0; i
< s
->num_timers
; i
++) {
614 if (val
& (1 << i
)) {
615 update_irq(&s
->timer
[i
], 0);
620 if (hpet_enabled(s
)) {
621 DPRINTF("qemu: Writing counter while HPET enabled!\n");
624 (s
->hpet_counter
& 0xffffffff00000000ULL
) | value
;
625 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64
"\n",
626 value
, s
->hpet_counter
);
628 case HPET_COUNTER
+ 4:
629 if (hpet_enabled(s
)) {
630 DPRINTF("qemu: Writing counter while HPET enabled!\n");
633 (s
->hpet_counter
& 0xffffffffULL
) | (((uint64_t)value
) << 32);
634 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64
"\n",
635 value
, s
->hpet_counter
);
638 DPRINTF("qemu: invalid hpet_ram_writel\n");
644 static const MemoryRegionOps hpet_ram_ops
= {
645 .read
= hpet_ram_read
,
646 .write
= hpet_ram_write
,
648 .min_access_size
= 4,
649 .max_access_size
= 4,
651 .endianness
= DEVICE_NATIVE_ENDIAN
,
654 static void hpet_reset(DeviceState
*d
)
656 HPETState
*s
= HPET(d
);
657 SysBusDevice
*sbd
= SYS_BUS_DEVICE(d
);
660 for (i
= 0; i
< s
->num_timers
; i
++) {
661 HPETTimer
*timer
= &s
->timer
[i
];
663 hpet_del_timer(timer
);
665 timer
->config
= HPET_TN_PERIODIC_CAP
| HPET_TN_SIZE_CAP
;
666 if (s
->flags
& (1 << HPET_MSI_SUPPORT
)) {
667 timer
->config
|= HPET_TN_FSB_CAP
;
669 /* advertise availability of ioapic int */
670 timer
->config
|= (uint64_t)s
->intcap
<< 32;
671 timer
->period
= 0ULL;
672 timer
->wrap_flag
= 0;
675 qemu_set_irq(s
->pit_enabled
, 1);
676 s
->hpet_counter
= 0ULL;
677 s
->hpet_offset
= 0ULL;
679 hpet_cfg
.hpet
[s
->hpet_id
].event_timer_block_id
= (uint32_t)s
->capability
;
680 hpet_cfg
.hpet
[s
->hpet_id
].address
= sbd
->mmio
[0].addr
;
682 /* to document that the RTC lowers its output on reset as well */
683 s
->rtc_irq_level
= 0;
686 static void hpet_handle_legacy_irq(void *opaque
, int n
, int level
)
688 HPETState
*s
= HPET(opaque
);
690 if (n
== HPET_LEGACY_PIT_INT
) {
691 if (!hpet_in_legacy_mode(s
)) {
692 qemu_set_irq(s
->irqs
[0], level
);
695 s
->rtc_irq_level
= level
;
696 if (!hpet_in_legacy_mode(s
)) {
697 qemu_set_irq(s
->irqs
[RTC_ISA_IRQ
], level
);
702 static void hpet_init(Object
*obj
)
704 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
705 HPETState
*s
= HPET(obj
);
708 memory_region_init_io(&s
->iomem
, obj
, &hpet_ram_ops
, s
, "hpet", HPET_LEN
);
709 sysbus_init_mmio(sbd
, &s
->iomem
);
712 static void hpet_realize(DeviceState
*dev
, Error
**errp
)
714 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
715 HPETState
*s
= HPET(dev
);
720 error_printf("Hpet's intcap not initialized.\n");
722 if (hpet_cfg
.count
== UINT8_MAX
) {
727 if (hpet_cfg
.count
== 8) {
728 error_setg(errp
, "Only 8 instances of HPET is allowed");
732 s
->hpet_id
= hpet_cfg
.count
++;
734 for (i
= 0; i
< HPET_NUM_IRQ_ROUTES
; i
++) {
735 sysbus_init_irq(sbd
, &s
->irqs
[i
]);
738 if (s
->num_timers
< HPET_MIN_TIMERS
) {
739 s
->num_timers
= HPET_MIN_TIMERS
;
740 } else if (s
->num_timers
> HPET_MAX_TIMERS
) {
741 s
->num_timers
= HPET_MAX_TIMERS
;
743 for (i
= 0; i
< HPET_MAX_TIMERS
; i
++) {
744 timer
= &s
->timer
[i
];
745 timer
->qemu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, hpet_timer
, timer
);
750 /* 64-bit main counter; LegacyReplacementRoute. */
751 s
->capability
= 0x8086a001ULL
;
752 s
->capability
|= (s
->num_timers
- 1) << HPET_ID_NUM_TIM_SHIFT
;
753 s
->capability
|= ((uint64_t)(HPET_CLK_PERIOD
* FS_PER_NS
) << 32);
755 qdev_init_gpio_in(dev
, hpet_handle_legacy_irq
, 2);
756 qdev_init_gpio_out(dev
, &s
->pit_enabled
, 1);
759 static Property hpet_device_properties
[] = {
760 DEFINE_PROP_UINT8("timers", HPETState
, num_timers
, HPET_MIN_TIMERS
),
761 DEFINE_PROP_BIT("msi", HPETState
, flags
, HPET_MSI_SUPPORT
, false),
762 DEFINE_PROP_UINT32(HPET_INTCAP
, HPETState
, intcap
, 0),
763 DEFINE_PROP_END_OF_LIST(),
766 static void hpet_device_class_init(ObjectClass
*klass
, void *data
)
768 DeviceClass
*dc
= DEVICE_CLASS(klass
);
770 dc
->realize
= hpet_realize
;
771 dc
->reset
= hpet_reset
;
772 dc
->vmsd
= &vmstate_hpet
;
773 dc
->props
= hpet_device_properties
;
776 static const TypeInfo hpet_device_info
= {
778 .parent
= TYPE_SYS_BUS_DEVICE
,
779 .instance_size
= sizeof(HPETState
),
780 .instance_init
= hpet_init
,
781 .class_init
= hpet_device_class_init
,
784 static void hpet_register_types(void)
786 type_register_static(&hpet_device_info
);
789 type_init(hpet_register_types
)