3 @command{qemu-img} @var{command} [@var{command} @var{options}]
7 @c man begin DESCRIPTION
8 qemu-img allows you to create, convert and modify images offline. It can handle
9 all image formats supported by QEMU.
11 @b{Warning:} Never use qemu-img to modify images in use by a running virtual
12 machine or any other process; this may destroy the image. Also, be aware that
13 querying an image that is being modified by another process may encounter
19 The following commands are supported:
21 @include qemu-img-cmds.texi
26 is a disk image filename
28 @item --object @var{objectdef}
30 is a QEMU user creatable object definition. See the @code{qemu(1)} manual
31 page for a description of the object properties. The most common object
32 type is a @code{secret}, which is used to supply passwords and/or encryption
37 Indicates that the @var{filename} parameter is to be interpreted as a
38 full option string, not a plain filename. This parameter is mutually
39 exclusive with the @var{-f} and @var{-F} parameters.
42 is the disk image format. It is guessed automatically in most cases. See below
43 for a description of the supported disk formats.
46 will enumerate information about backing files in a disk image chain. Refer
47 below for further description.
50 is the disk image size in bytes. Optional suffixes @code{k} or @code{K}
51 (kilobyte, 1024) @code{M} (megabyte, 1024k) and @code{G} (gigabyte, 1024M)
52 and T (terabyte, 1024G) are supported. @code{b} is ignored.
55 is the destination disk image filename
58 is the destination format
60 is a comma separated list of format specific options in a
61 name=value format. Use @code{-o ?} for an overview of the options supported
62 by the used format or see the format descriptions below for details.
64 is param used for internal snapshot, format is
65 'snapshot.id=[ID],snapshot.name=[NAME]' or '[ID_OR_NAME]'
66 @item snapshot_id_or_name
67 is deprecated, use snapshot_param instead
70 indicates that target image must be compressed (qcow format only)
72 with or without a command shows help and lists the supported formats
74 display progress bar (compare, convert and rebase commands only).
75 If the @var{-p} option is not used for a command that supports it, the
76 progress is reported when the process receives a @code{SIGUSR1} signal.
78 Quiet mode - do not print any output (except errors). There's no progress bar
79 in case both @var{-q} and @var{-p} options are used.
81 indicates the consecutive number of bytes that must contain only zeros
82 for qemu-img to create a sparse image during conversion. This value is rounded
83 down to the nearest 512 bytes. You may use the common size suffixes like
84 @code{k} for kilobytes.
86 specifies the cache mode that should be used with the (destination) file. See
87 the documentation of the emulator's @code{-drive cache=...} option for allowed
89 @item -T @var{src_cache}
90 specifies the cache mode that should be used with the source file(s). See
91 the documentation of the emulator's @code{-drive cache=...} option for allowed
95 Parameters to snapshot subcommand:
100 is the name of the snapshot to create, apply or delete
102 applies a snapshot (revert disk to saved state)
108 lists all snapshots in the given image
111 Parameters to compare subcommand:
120 Strict mode - fail on different image size or sector allocation
123 Parameters to convert subcommand:
128 Skip the creation of the target volume
134 @item check [-f @var{fmt}] [--output=@var{ofmt}] [-r [leaks | all]] [-T @var{src_cache}] @var{filename}
136 Perform a consistency check on the disk image @var{filename}. The command can
137 output in the format @var{ofmt} which is either @code{human} or @code{json}.
139 If @code{-r} is specified, qemu-img tries to repair any inconsistencies found
140 during the check. @code{-r leaks} repairs only cluster leaks, whereas
141 @code{-r all} fixes all kinds of errors, with a higher risk of choosing the
142 wrong fix or hiding corruption that has already occurred.
144 Only the formats @code{qcow2}, @code{qed} and @code{vdi} support
147 In case the image does not have any inconsistencies, check exits with @code{0}.
148 Other exit codes indicate the kind of inconsistency found or if another error
149 occurred. The following table summarizes all exit codes of the check subcommand:
154 Check completed, the image is (now) consistent
156 Check not completed because of internal errors
158 Check completed, image is corrupted
160 Check completed, image has leaked clusters, but is not corrupted
162 Checks are not supported by the image format
166 If @code{-r} is specified, exit codes representing the image state refer to the
167 state after (the attempt at) repairing it. That is, a successful @code{-r all}
168 will yield the exit code 0, independently of the image state before.
170 @item create [-f @var{fmt}] [-o @var{options}] @var{filename} [@var{size}]
172 Create the new disk image @var{filename} of size @var{size} and format
173 @var{fmt}. Depending on the file format, you can add one or more @var{options}
174 that enable additional features of this format.
176 If the option @var{backing_file} is specified, then the image will record
177 only the differences from @var{backing_file}. No size needs to be specified in
178 this case. @var{backing_file} will never be modified unless you use the
179 @code{commit} monitor command (or qemu-img commit).
181 The size can also be specified using the @var{size} option with @code{-o},
182 it doesn't need to be specified separately in this case.
184 @item commit [-q] [-f @var{fmt}] [-t @var{cache}] [-b @var{base}] [-d] [-p] @var{filename}
186 Commit the changes recorded in @var{filename} in its base image or backing file.
187 If the backing file is smaller than the snapshot, then the backing file will be
188 resized to be the same size as the snapshot. If the snapshot is smaller than
189 the backing file, the backing file will not be truncated. If you want the
190 backing file to match the size of the smaller snapshot, you can safely truncate
191 it yourself once the commit operation successfully completes.
193 The image @var{filename} is emptied after the operation has succeeded. If you do
194 not need @var{filename} afterwards and intend to drop it, you may skip emptying
195 @var{filename} by specifying the @code{-d} flag.
197 If the backing chain of the given image file @var{filename} has more than one
198 layer, the backing file into which the changes will be committed may be
199 specified as @var{base} (which has to be part of @var{filename}'s backing
200 chain). If @var{base} is not specified, the immediate backing file of the top
201 image (which is @var{filename}) will be used. For reasons of consistency,
202 explicitly specifying @var{base} will always imply @code{-d} (since emptying an
203 image after committing to an indirect backing file would lead to different data
204 being read from the image due to content in the intermediate backing chain
205 overruling the commit target).
207 @item compare [-f @var{fmt}] [-F @var{fmt}] [-T @var{src_cache}] [-p] [-s] [-q] @var{filename1} @var{filename2}
209 Check if two images have the same content. You can compare images with
210 different format or settings.
212 The format is probed unless you specify it by @var{-f} (used for
213 @var{filename1}) and/or @var{-F} (used for @var{filename2}) option.
215 By default, images with different size are considered identical if the larger
216 image contains only unallocated and/or zeroed sectors in the area after the end
217 of the other image. In addition, if any sector is not allocated in one image
218 and contains only zero bytes in the second one, it is evaluated as equal. You
219 can use Strict mode by specifying the @var{-s} option. When compare runs in
220 Strict mode, it fails in case image size differs or a sector is allocated in
221 one image and is not allocated in the second one.
223 By default, compare prints out a result message. This message displays
224 information that both images are same or the position of the first different
225 byte. In addition, result message can report different image size in case
228 Compare exits with @code{0} in case the images are equal and with @code{1}
229 in case the images differ. Other exit codes mean an error occurred during
230 execution and standard error output should contain an error message.
231 The following table sumarizes all exit codes of the compare subcommand:
240 Error on opening an image
242 Error on checking a sector allocation
244 Error on reading data
248 @item convert [-c] [-p] [-n] [-f @var{fmt}] [-t @var{cache}] [-T @var{src_cache}] [-O @var{output_fmt}] [-o @var{options}] [-s @var{snapshot_id_or_name}] [-l @var{snapshot_param}] [-S @var{sparse_size}] @var{filename} [@var{filename2} [...]] @var{output_filename}
250 Convert the disk image @var{filename} or a snapshot @var{snapshot_param}(@var{snapshot_id_or_name} is deprecated)
251 to disk image @var{output_filename} using format @var{output_fmt}. It can be optionally compressed (@code{-c}
252 option) or use any format specific options like encryption (@code{-o} option).
254 Only the formats @code{qcow} and @code{qcow2} support compression. The
255 compression is read-only. It means that if a compressed sector is
256 rewritten, then it is rewritten as uncompressed data.
258 Image conversion is also useful to get smaller image when using a
259 growable format such as @code{qcow}: the empty sectors are detected and
260 suppressed from the destination image.
262 @var{sparse_size} indicates the consecutive number of bytes (defaults to 4k)
263 that must contain only zeros for qemu-img to create a sparse image during
264 conversion. If @var{sparse_size} is 0, the source will not be scanned for
265 unallocated or zero sectors, and the destination image will always be
268 You can use the @var{backing_file} option to force the output image to be
269 created as a copy on write image of the specified base image; the
270 @var{backing_file} should have the same content as the input's base image,
271 however the path, image format, etc may differ.
273 If the @code{-n} option is specified, the target volume creation will be
274 skipped. This is useful for formats such as @code{rbd} if the target
275 volume has already been created with site specific options that cannot
276 be supplied through qemu-img.
278 @item info [-f @var{fmt}] [--output=@var{ofmt}] [--backing-chain] @var{filename}
280 Give information about the disk image @var{filename}. Use it in
281 particular to know the size reserved on disk which can be different
282 from the displayed size. If VM snapshots are stored in the disk image,
283 they are displayed too. The command can output in the format @var{ofmt}
284 which is either @code{human} or @code{json}.
286 If a disk image has a backing file chain, information about each disk image in
287 the chain can be recursively enumerated by using the option @code{--backing-chain}.
289 For instance, if you have an image chain like:
292 base.qcow2 <- snap1.qcow2 <- snap2.qcow2
295 To enumerate information about each disk image in the above chain, starting from top to base, do:
298 qemu-img info --backing-chain snap2.qcow2
301 @item map [-f @var{fmt}] [--output=@var{ofmt}] @var{filename}
303 Dump the metadata of image @var{filename} and its backing file chain.
304 In particular, this commands dumps the allocation state of every sector
305 of @var{filename}, together with the topmost file that allocates it in
306 the backing file chain.
308 Two option formats are possible. The default format (@code{human})
309 only dumps known-nonzero areas of the file. Known-zero parts of the
310 file are omitted altogether, and likewise for parts that are not allocated
311 throughout the chain. @command{qemu-img} output will identify a file
312 from where the data can be read, and the offset in the file. Each line
313 will include four fields, the first three of which are hexadecimal
314 numbers. For example the first line of:
316 Offset Length Mapped to File
317 0 0x20000 0x50000 /tmp/overlay.qcow2
318 0x100000 0x10000 0x95380000 /tmp/backing.qcow2
321 means that 0x20000 (131072) bytes starting at offset 0 in the image are
322 available in /tmp/overlay.qcow2 (opened in @code{raw} format) starting
323 at offset 0x50000 (327680). Data that is compressed, encrypted, or
324 otherwise not available in raw format will cause an error if @code{human}
325 format is in use. Note that file names can include newlines, thus it is
326 not safe to parse this output format in scripts.
328 The alternative format @code{json} will return an array of dictionaries
329 in JSON format. It will include similar information in
330 the @code{start}, @code{length}, @code{offset} fields;
331 it will also include other more specific information:
334 whether the sectors contain actual data or not (boolean field @code{data};
335 if false, the sectors are either unallocated or stored as optimized
339 whether the data is known to read as zero (boolean field @code{zero});
342 in order to make the output shorter, the target file is expressed as
343 a @code{depth}; for example, a depth of 2 refers to the backing file
344 of the backing file of @var{filename}.
347 In JSON format, the @code{offset} field is optional; it is absent in
348 cases where @code{human} format would omit the entry or exit with an error.
349 If @code{data} is false and the @code{offset} field is present, the
350 corresponding sectors in the file are not yet in use, but they are
353 For more information, consult @file{include/block/block.h} in QEMU's
356 @item snapshot [-l | -a @var{snapshot} | -c @var{snapshot} | -d @var{snapshot} ] @var{filename}
358 List, apply, create or delete snapshots in image @var{filename}.
360 @item rebase [-f @var{fmt}] [-t @var{cache}] [-T @var{src_cache}] [-p] [-u] -b @var{backing_file} [-F @var{backing_fmt}] @var{filename}
362 Changes the backing file of an image. Only the formats @code{qcow2} and
363 @code{qed} support changing the backing file.
365 The backing file is changed to @var{backing_file} and (if the image format of
366 @var{filename} supports this) the backing file format is changed to
367 @var{backing_fmt}. If @var{backing_file} is specified as ``'' (the empty
368 string), then the image is rebased onto no backing file (i.e. it will exist
369 independently of any backing file).
371 @var{cache} specifies the cache mode to be used for @var{filename}, whereas
372 @var{src_cache} specifies the cache mode for reading backing files.
374 There are two different modes in which @code{rebase} can operate:
377 This is the default mode and performs a real rebase operation. The new backing
378 file may differ from the old one and qemu-img rebase will take care of keeping
379 the guest-visible content of @var{filename} unchanged.
381 In order to achieve this, any clusters that differ between @var{backing_file}
382 and the old backing file of @var{filename} are merged into @var{filename}
383 before actually changing the backing file.
385 Note that the safe mode is an expensive operation, comparable to converting
386 an image. It only works if the old backing file still exists.
389 qemu-img uses the unsafe mode if @code{-u} is specified. In this mode, only the
390 backing file name and format of @var{filename} is changed without any checks
391 on the file contents. The user must take care of specifying the correct new
392 backing file, or the guest-visible content of the image will be corrupted.
394 This mode is useful for renaming or moving the backing file to somewhere else.
395 It can be used without an accessible old backing file, i.e. you can use it to
396 fix an image whose backing file has already been moved/renamed.
399 You can use @code{rebase} to perform a ``diff'' operation on two
400 disk images. This can be useful when you have copied or cloned
401 a guest, and you want to get back to a thin image on top of a
402 template or base image.
404 Say that @code{base.img} has been cloned as @code{modified.img} by
405 copying it, and that the @code{modified.img} guest has run so there
406 are now some changes compared to @code{base.img}. To construct a thin
407 image called @code{diff.qcow2} that contains just the differences, do:
410 qemu-img create -f qcow2 -b modified.img diff.qcow2
411 qemu-img rebase -b base.img diff.qcow2
414 At this point, @code{modified.img} can be discarded, since
415 @code{base.img + diff.qcow2} contains the same information.
417 @item resize @var{filename} [+ | -]@var{size}
419 Change the disk image as if it had been created with @var{size}.
421 Before using this command to shrink a disk image, you MUST use file system and
422 partitioning tools inside the VM to reduce allocated file systems and partition
423 sizes accordingly. Failure to do so will result in data loss!
425 After using this command to grow a disk image, you must use file system and
426 partitioning tools inside the VM to actually begin using the new space on the
429 @item amend [-p] [-f @var{fmt}] [-t @var{cache}] -o @var{options} @var{filename}
431 Amends the image format specific @var{options} for the image file
432 @var{filename}. Not all file formats support this operation.
438 Supported image file formats:
443 Raw disk image format (default). This format has the advantage of
444 being simple and easily exportable to all other emulators. If your
445 file system supports @emph{holes} (for example in ext2 or ext3 on
446 Linux or NTFS on Windows), then only the written sectors will reserve
447 space. Use @code{qemu-img info} to know the real size used by the
448 image or @code{ls -ls} on Unix/Linux.
453 Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
454 @code{falloc} mode preallocates space for image by calling posix_fallocate().
455 @code{full} mode preallocates space for image by writing zeros to underlying
460 QEMU image format, the most versatile format. Use it to have smaller
461 images (useful if your filesystem does not supports holes, for example
462 on Windows), optional AES encryption, zlib based compression and
463 support of multiple VM snapshots.
468 Determines the qcow2 version to use. @code{compat=0.10} uses the
469 traditional image format that can be read by any QEMU since 0.10.
470 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
471 newer understand (this is the default). Amongst others, this includes zero
472 clusters, which allow efficient copy-on-read for sparse images.
475 File name of a base image (see @option{create} subcommand)
477 Image format of the base image
479 If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
481 The use of encryption in qcow and qcow2 images is considered to be flawed by
482 modern cryptography standards, suffering from a number of design problems:
485 @item The AES-CBC cipher is used with predictable initialization vectors based
486 on the sector number. This makes it vulnerable to chosen plaintext attacks
487 which can reveal the existence of encrypted data.
488 @item The user passphrase is directly used as the encryption key. A poorly
489 chosen or short passphrase will compromise the security of the encryption.
490 @item In the event of the passphrase being compromised there is no way to
491 change the passphrase to protect data in any qcow images. The files must
492 be cloned, using a different encryption passphrase in the new file. The
493 original file must then be securely erased using a program like shred,
494 though even this is ineffective with many modern storage technologies.
497 Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
498 recommended to use an alternative encryption technology such as the
499 Linux dm-crypt / LUKS system.
502 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
503 sizes can improve the image file size whereas larger cluster sizes generally
504 provide better performance.
507 Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
508 @code{full}). An image with preallocated metadata is initially larger but can
509 improve performance when the image needs to grow. @code{falloc} and @code{full}
510 preallocations are like the same options of @code{raw} format, but sets up
514 If this option is set to @code{on}, reference count updates are postponed with
515 the goal of avoiding metadata I/O and improving performance. This is
516 particularly interesting with @option{cache=writethrough} which doesn't batch
517 metadata updates. The tradeoff is that after a host crash, the reference count
518 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
519 check -r all} is required, which may take some time.
521 This option can only be enabled if @code{compat=1.1} is specified.
524 If this option is set to @code{on}, it will turn off COW of the file. It's only
525 valid on btrfs, no effect on other file systems.
527 Btrfs has low performance when hosting a VM image file, even more when the guest
528 on the VM also using btrfs as file system. Turning off COW is a way to mitigate
529 this bad performance. Generally there are two ways to turn off COW on btrfs:
530 a) Disable it by mounting with nodatacow, then all newly created files will be
531 NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
534 Note: this option is only valid to new or empty files. If there is an existing
535 file which is COW and has data blocks already, it couldn't be changed to NOCOW
536 by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
537 the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
542 QEMU also supports various other image file formats for compatibility with
543 older QEMU versions or other hypervisors, including VMDK, VDI, VHD (vpc), VHDX,
544 qcow1 and QED. For a full list of supported formats see @code{qemu-img --help}.
545 For a more detailed description of these formats, see the QEMU Emulation User
548 The main purpose of the block drivers for these formats is image conversion.
549 For running VMs, it is recommended to convert the disk images to either raw or
550 qcow2 in order to achieve good performance.
556 @setfilename qemu-img
557 @settitle QEMU disk image utility
560 The HTML documentation of QEMU for more precise information and Linux
561 user mode emulator invocation.