spapr_iommu: Give unique QOM name to TCE table
[qemu/rayw.git] / translate-all.c
blob536008f52de7ef22a8cca1107eadf69a9aac15a9
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
31 #include "config.h"
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
60 #include "exec/cputlb.h"
61 #include "translate-all.h"
62 #include "qemu/bitmap.h"
63 #include "qemu/timer.h"
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
70 #if !defined(CONFIG_USER_ONLY)
71 /* TB consistency checks only implemented for usermode emulation. */
72 #undef DEBUG_TB_CHECK
73 #endif
75 #define SMC_BITMAP_USE_THRESHOLD 10
77 typedef struct PageDesc {
78 /* list of TBs intersecting this ram page */
79 TranslationBlock *first_tb;
80 /* in order to optimize self modifying code, we count the number
81 of lookups we do to a given page to use a bitmap */
82 unsigned int code_write_count;
83 unsigned long *code_bitmap;
84 #if defined(CONFIG_USER_ONLY)
85 unsigned long flags;
86 #endif
87 } PageDesc;
89 /* In system mode we want L1_MAP to be based on ram offsets,
90 while in user mode we want it to be based on virtual addresses. */
91 #if !defined(CONFIG_USER_ONLY)
92 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
93 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
94 #else
95 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
96 #endif
97 #else
98 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
99 #endif
101 /* Size of the L2 (and L3, etc) page tables. */
102 #define V_L2_BITS 10
103 #define V_L2_SIZE (1 << V_L2_BITS)
105 /* The bits remaining after N lower levels of page tables. */
106 #define V_L1_BITS_REM \
107 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109 #if V_L1_BITS_REM < 4
110 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
111 #else
112 #define V_L1_BITS V_L1_BITS_REM
113 #endif
115 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119 uintptr_t qemu_real_host_page_size;
120 uintptr_t qemu_host_page_size;
121 uintptr_t qemu_host_page_mask;
123 /* This is a multi-level map on the virtual address space.
124 The bottom level has pointers to PageDesc. */
125 static void *l1_map[V_L1_SIZE];
127 /* code generation context */
128 TCGContext tcg_ctx;
130 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
131 tb_page_addr_t phys_page2);
132 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
134 void cpu_gen_init(void)
136 tcg_context_init(&tcg_ctx);
139 /* return non zero if the very first instruction is invalid so that
140 the virtual CPU can trigger an exception.
142 '*gen_code_size_ptr' contains the size of the generated code (host
143 code).
145 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
147 TCGContext *s = &tcg_ctx;
148 tcg_insn_unit *gen_code_buf;
149 int gen_code_size;
150 #ifdef CONFIG_PROFILER
151 int64_t ti;
152 #endif
154 #ifdef CONFIG_PROFILER
155 s->tb_count1++; /* includes aborted translations because of
156 exceptions */
157 ti = profile_getclock();
158 #endif
159 tcg_func_start(s);
161 gen_intermediate_code(env, tb);
163 trace_translate_block(tb, tb->pc, tb->tc_ptr);
165 /* generate machine code */
166 gen_code_buf = tb->tc_ptr;
167 tb->tb_next_offset[0] = 0xffff;
168 tb->tb_next_offset[1] = 0xffff;
169 s->tb_next_offset = tb->tb_next_offset;
170 #ifdef USE_DIRECT_JUMP
171 s->tb_jmp_offset = tb->tb_jmp_offset;
172 s->tb_next = NULL;
173 #else
174 s->tb_jmp_offset = NULL;
175 s->tb_next = tb->tb_next;
176 #endif
178 #ifdef CONFIG_PROFILER
179 s->tb_count++;
180 s->interm_time += profile_getclock() - ti;
181 s->code_time -= profile_getclock();
182 #endif
183 gen_code_size = tcg_gen_code(s, gen_code_buf);
184 *gen_code_size_ptr = gen_code_size;
185 #ifdef CONFIG_PROFILER
186 s->code_time += profile_getclock();
187 s->code_in_len += tb->size;
188 s->code_out_len += gen_code_size;
189 #endif
191 #ifdef DEBUG_DISAS
192 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
193 qemu_log("OUT: [size=%d]\n", gen_code_size);
194 log_disas(tb->tc_ptr, gen_code_size);
195 qemu_log("\n");
196 qemu_log_flush();
198 #endif
199 return 0;
202 /* The cpu state corresponding to 'searched_pc' is restored.
204 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
205 uintptr_t searched_pc)
207 CPUArchState *env = cpu->env_ptr;
208 TCGContext *s = &tcg_ctx;
209 int j;
210 uintptr_t tc_ptr;
211 #ifdef CONFIG_PROFILER
212 int64_t ti;
213 #endif
215 #ifdef CONFIG_PROFILER
216 ti = profile_getclock();
217 #endif
218 tcg_func_start(s);
220 gen_intermediate_code_pc(env, tb);
222 if (tb->cflags & CF_USE_ICOUNT) {
223 /* Reset the cycle counter to the start of the block. */
224 cpu->icount_decr.u16.low += tb->icount;
225 /* Clear the IO flag. */
226 cpu->can_do_io = 0;
229 /* find opc index corresponding to search_pc */
230 tc_ptr = (uintptr_t)tb->tc_ptr;
231 if (searched_pc < tc_ptr)
232 return -1;
234 s->tb_next_offset = tb->tb_next_offset;
235 #ifdef USE_DIRECT_JUMP
236 s->tb_jmp_offset = tb->tb_jmp_offset;
237 s->tb_next = NULL;
238 #else
239 s->tb_jmp_offset = NULL;
240 s->tb_next = tb->tb_next;
241 #endif
242 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
243 searched_pc - tc_ptr);
244 if (j < 0)
245 return -1;
246 /* now find start of instruction before */
247 while (s->gen_opc_instr_start[j] == 0) {
248 j--;
250 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
252 restore_state_to_opc(env, tb, j);
254 #ifdef CONFIG_PROFILER
255 s->restore_time += profile_getclock() - ti;
256 s->restore_count++;
257 #endif
258 return 0;
261 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
263 TranslationBlock *tb;
265 tb = tb_find_pc(retaddr);
266 if (tb) {
267 cpu_restore_state_from_tb(cpu, tb, retaddr);
268 if (tb->cflags & CF_NOCACHE) {
269 /* one-shot translation, invalidate it immediately */
270 cpu->current_tb = NULL;
271 tb_phys_invalidate(tb, -1);
272 tb_free(tb);
274 return true;
276 return false;
279 #ifdef _WIN32
280 static __attribute__((unused)) void map_exec(void *addr, long size)
282 DWORD old_protect;
283 VirtualProtect(addr, size,
284 PAGE_EXECUTE_READWRITE, &old_protect);
286 #else
287 static __attribute__((unused)) void map_exec(void *addr, long size)
289 unsigned long start, end, page_size;
291 page_size = getpagesize();
292 start = (unsigned long)addr;
293 start &= ~(page_size - 1);
295 end = (unsigned long)addr + size;
296 end += page_size - 1;
297 end &= ~(page_size - 1);
299 mprotect((void *)start, end - start,
300 PROT_READ | PROT_WRITE | PROT_EXEC);
302 #endif
304 void page_size_init(void)
306 /* NOTE: we can always suppose that qemu_host_page_size >=
307 TARGET_PAGE_SIZE */
308 qemu_real_host_page_size = getpagesize();
309 if (qemu_host_page_size == 0) {
310 qemu_host_page_size = qemu_real_host_page_size;
312 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
313 qemu_host_page_size = TARGET_PAGE_SIZE;
315 qemu_host_page_mask = ~(qemu_host_page_size - 1);
318 static void page_init(void)
320 page_size_init();
321 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
323 #ifdef HAVE_KINFO_GETVMMAP
324 struct kinfo_vmentry *freep;
325 int i, cnt;
327 freep = kinfo_getvmmap(getpid(), &cnt);
328 if (freep) {
329 mmap_lock();
330 for (i = 0; i < cnt; i++) {
331 unsigned long startaddr, endaddr;
333 startaddr = freep[i].kve_start;
334 endaddr = freep[i].kve_end;
335 if (h2g_valid(startaddr)) {
336 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
338 if (h2g_valid(endaddr)) {
339 endaddr = h2g(endaddr);
340 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
341 } else {
342 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
343 endaddr = ~0ul;
344 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
345 #endif
349 free(freep);
350 mmap_unlock();
352 #else
353 FILE *f;
355 last_brk = (unsigned long)sbrk(0);
357 f = fopen("/compat/linux/proc/self/maps", "r");
358 if (f) {
359 mmap_lock();
361 do {
362 unsigned long startaddr, endaddr;
363 int n;
365 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
367 if (n == 2 && h2g_valid(startaddr)) {
368 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
370 if (h2g_valid(endaddr)) {
371 endaddr = h2g(endaddr);
372 } else {
373 endaddr = ~0ul;
375 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
377 } while (!feof(f));
379 fclose(f);
380 mmap_unlock();
382 #endif
384 #endif
387 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
389 PageDesc *pd;
390 void **lp;
391 int i;
393 /* Level 1. Always allocated. */
394 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
396 /* Level 2..N-1. */
397 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
398 void **p = *lp;
400 if (p == NULL) {
401 if (!alloc) {
402 return NULL;
404 p = g_new0(void *, V_L2_SIZE);
405 *lp = p;
408 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
411 pd = *lp;
412 if (pd == NULL) {
413 if (!alloc) {
414 return NULL;
416 pd = g_new0(PageDesc, V_L2_SIZE);
417 *lp = pd;
420 return pd + (index & (V_L2_SIZE - 1));
423 static inline PageDesc *page_find(tb_page_addr_t index)
425 return page_find_alloc(index, 0);
428 #if !defined(CONFIG_USER_ONLY)
429 #define mmap_lock() do { } while (0)
430 #define mmap_unlock() do { } while (0)
431 #endif
433 #if defined(CONFIG_USER_ONLY)
434 /* Currently it is not recommended to allocate big chunks of data in
435 user mode. It will change when a dedicated libc will be used. */
436 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
437 region in which the guest needs to run. Revisit this. */
438 #define USE_STATIC_CODE_GEN_BUFFER
439 #endif
441 /* ??? Should configure for this, not list operating systems here. */
442 #if (defined(__linux__) \
443 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
444 || defined(__DragonFly__) || defined(__OpenBSD__) \
445 || defined(__NetBSD__))
446 # define USE_MMAP
447 #endif
449 /* Minimum size of the code gen buffer. This number is randomly chosen,
450 but not so small that we can't have a fair number of TB's live. */
451 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
453 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
454 indicated, this is constrained by the range of direct branches on the
455 host cpu, as used by the TCG implementation of goto_tb. */
456 #if defined(__x86_64__)
457 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
458 #elif defined(__sparc__)
459 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
460 #elif defined(__aarch64__)
461 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
462 #elif defined(__arm__)
463 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
464 #elif defined(__s390x__)
465 /* We have a +- 4GB range on the branches; leave some slop. */
466 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
467 #elif defined(__mips__)
468 /* We have a 256MB branch region, but leave room to make sure the
469 main executable is also within that region. */
470 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
471 #else
472 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
473 #endif
475 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
477 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
478 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
479 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
481 static inline size_t size_code_gen_buffer(size_t tb_size)
483 /* Size the buffer. */
484 if (tb_size == 0) {
485 #ifdef USE_STATIC_CODE_GEN_BUFFER
486 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
487 #else
488 /* ??? Needs adjustments. */
489 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
490 static buffer, we could size this on RESERVED_VA, on the text
491 segment size of the executable, or continue to use the default. */
492 tb_size = (unsigned long)(ram_size / 4);
493 #endif
495 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
496 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
498 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
499 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
501 tcg_ctx.code_gen_buffer_size = tb_size;
502 return tb_size;
505 #ifdef __mips__
506 /* In order to use J and JAL within the code_gen_buffer, we require
507 that the buffer not cross a 256MB boundary. */
508 static inline bool cross_256mb(void *addr, size_t size)
510 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
513 /* We weren't able to allocate a buffer without crossing that boundary,
514 so make do with the larger portion of the buffer that doesn't cross.
515 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
516 static inline void *split_cross_256mb(void *buf1, size_t size1)
518 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
519 size_t size2 = buf1 + size1 - buf2;
521 size1 = buf2 - buf1;
522 if (size1 < size2) {
523 size1 = size2;
524 buf1 = buf2;
527 tcg_ctx.code_gen_buffer_size = size1;
528 return buf1;
530 #endif
532 #ifdef USE_STATIC_CODE_GEN_BUFFER
533 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
534 __attribute__((aligned(CODE_GEN_ALIGN)));
536 static inline void *alloc_code_gen_buffer(void)
538 void *buf = static_code_gen_buffer;
539 #ifdef __mips__
540 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
541 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
543 #endif
544 map_exec(buf, tcg_ctx.code_gen_buffer_size);
545 return buf;
547 #elif defined(USE_MMAP)
548 static inline void *alloc_code_gen_buffer(void)
550 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
551 uintptr_t start = 0;
552 void *buf;
554 /* Constrain the position of the buffer based on the host cpu.
555 Note that these addresses are chosen in concert with the
556 addresses assigned in the relevant linker script file. */
557 # if defined(__PIE__) || defined(__PIC__)
558 /* Don't bother setting a preferred location if we're building
559 a position-independent executable. We're more likely to get
560 an address near the main executable if we let the kernel
561 choose the address. */
562 # elif defined(__x86_64__) && defined(MAP_32BIT)
563 /* Force the memory down into low memory with the executable.
564 Leave the choice of exact location with the kernel. */
565 flags |= MAP_32BIT;
566 /* Cannot expect to map more than 800MB in low memory. */
567 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
568 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
570 # elif defined(__sparc__)
571 start = 0x40000000ul;
572 # elif defined(__s390x__)
573 start = 0x90000000ul;
574 # elif defined(__mips__)
575 /* ??? We ought to more explicitly manage layout for softmmu too. */
576 # ifdef CONFIG_USER_ONLY
577 start = 0x68000000ul;
578 # elif _MIPS_SIM == _ABI64
579 start = 0x128000000ul;
580 # else
581 start = 0x08000000ul;
582 # endif
583 # endif
585 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
586 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
587 if (buf == MAP_FAILED) {
588 return NULL;
591 #ifdef __mips__
592 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
593 /* Try again, with the original still mapped, to avoid re-acquiring
594 that 256mb crossing. This time don't specify an address. */
595 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
596 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
597 flags, -1, 0);
598 if (buf2 != MAP_FAILED) {
599 if (!cross_256mb(buf2, size1)) {
600 /* Success! Use the new buffer. */
601 munmap(buf, size1);
602 return buf2;
604 /* Failure. Work with what we had. */
605 munmap(buf2, size1);
608 /* Split the original buffer. Free the smaller half. */
609 buf2 = split_cross_256mb(buf, size1);
610 size2 = tcg_ctx.code_gen_buffer_size;
611 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
612 return buf2;
614 #endif
616 return buf;
618 #else
619 static inline void *alloc_code_gen_buffer(void)
621 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
623 if (buf == NULL) {
624 return NULL;
627 #ifdef __mips__
628 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
629 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
630 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
631 /* Success! Use the new buffer. */
632 free(buf);
633 buf = buf2;
634 } else {
635 /* Failure. Work with what we had. Since this is malloc
636 and not mmap, we can't free the other half. */
637 free(buf2);
638 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
641 #endif
643 map_exec(buf, tcg_ctx.code_gen_buffer_size);
644 return buf;
646 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
648 static inline void code_gen_alloc(size_t tb_size)
650 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
651 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
652 if (tcg_ctx.code_gen_buffer == NULL) {
653 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
654 exit(1);
657 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
658 QEMU_MADV_HUGEPAGE);
660 /* Steal room for the prologue at the end of the buffer. This ensures
661 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
662 from TB's to the prologue are going to be in range. It also means
663 that we don't need to mark (additional) portions of the data segment
664 as executable. */
665 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
666 tcg_ctx.code_gen_buffer_size - 1024;
667 tcg_ctx.code_gen_buffer_size -= 1024;
669 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
670 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
671 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
672 CODE_GEN_AVG_BLOCK_SIZE;
673 tcg_ctx.tb_ctx.tbs =
674 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
677 /* Must be called before using the QEMU cpus. 'tb_size' is the size
678 (in bytes) allocated to the translation buffer. Zero means default
679 size. */
680 void tcg_exec_init(unsigned long tb_size)
682 cpu_gen_init();
683 code_gen_alloc(tb_size);
684 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
685 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
686 page_init();
687 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
688 /* There's no guest base to take into account, so go ahead and
689 initialize the prologue now. */
690 tcg_prologue_init(&tcg_ctx);
691 #endif
694 bool tcg_enabled(void)
696 return tcg_ctx.code_gen_buffer != NULL;
699 /* Allocate a new translation block. Flush the translation buffer if
700 too many translation blocks or too much generated code. */
701 static TranslationBlock *tb_alloc(target_ulong pc)
703 TranslationBlock *tb;
705 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
706 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
707 tcg_ctx.code_gen_buffer_max_size) {
708 return NULL;
710 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
711 tb->pc = pc;
712 tb->cflags = 0;
713 return tb;
716 void tb_free(TranslationBlock *tb)
718 /* In practice this is mostly used for single use temporary TB
719 Ignore the hard cases and just back up if this TB happens to
720 be the last one generated. */
721 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
722 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
723 tcg_ctx.code_gen_ptr = tb->tc_ptr;
724 tcg_ctx.tb_ctx.nb_tbs--;
728 static inline void invalidate_page_bitmap(PageDesc *p)
730 if (p->code_bitmap) {
731 g_free(p->code_bitmap);
732 p->code_bitmap = NULL;
734 p->code_write_count = 0;
737 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
738 static void page_flush_tb_1(int level, void **lp)
740 int i;
742 if (*lp == NULL) {
743 return;
745 if (level == 0) {
746 PageDesc *pd = *lp;
748 for (i = 0; i < V_L2_SIZE; ++i) {
749 pd[i].first_tb = NULL;
750 invalidate_page_bitmap(pd + i);
752 } else {
753 void **pp = *lp;
755 for (i = 0; i < V_L2_SIZE; ++i) {
756 page_flush_tb_1(level - 1, pp + i);
761 static void page_flush_tb(void)
763 int i;
765 for (i = 0; i < V_L1_SIZE; i++) {
766 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
770 /* flush all the translation blocks */
771 /* XXX: tb_flush is currently not thread safe */
772 void tb_flush(CPUArchState *env1)
774 CPUState *cpu = ENV_GET_CPU(env1);
776 #if defined(DEBUG_FLUSH)
777 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
778 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
779 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
780 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
781 tcg_ctx.tb_ctx.nb_tbs : 0);
782 #endif
783 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
784 > tcg_ctx.code_gen_buffer_size) {
785 cpu_abort(cpu, "Internal error: code buffer overflow\n");
787 tcg_ctx.tb_ctx.nb_tbs = 0;
789 CPU_FOREACH(cpu) {
790 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
793 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
794 page_flush_tb();
796 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
797 /* XXX: flush processor icache at this point if cache flush is
798 expensive */
799 tcg_ctx.tb_ctx.tb_flush_count++;
802 #ifdef DEBUG_TB_CHECK
804 static void tb_invalidate_check(target_ulong address)
806 TranslationBlock *tb;
807 int i;
809 address &= TARGET_PAGE_MASK;
810 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
811 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
812 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
813 address >= tb->pc + tb->size)) {
814 printf("ERROR invalidate: address=" TARGET_FMT_lx
815 " PC=%08lx size=%04x\n",
816 address, (long)tb->pc, tb->size);
822 /* verify that all the pages have correct rights for code */
823 static void tb_page_check(void)
825 TranslationBlock *tb;
826 int i, flags1, flags2;
828 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
829 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
830 tb = tb->phys_hash_next) {
831 flags1 = page_get_flags(tb->pc);
832 flags2 = page_get_flags(tb->pc + tb->size - 1);
833 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
834 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
835 (long)tb->pc, tb->size, flags1, flags2);
841 #endif
843 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
845 TranslationBlock *tb1;
847 for (;;) {
848 tb1 = *ptb;
849 if (tb1 == tb) {
850 *ptb = tb1->phys_hash_next;
851 break;
853 ptb = &tb1->phys_hash_next;
857 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
859 TranslationBlock *tb1;
860 unsigned int n1;
862 for (;;) {
863 tb1 = *ptb;
864 n1 = (uintptr_t)tb1 & 3;
865 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
866 if (tb1 == tb) {
867 *ptb = tb1->page_next[n1];
868 break;
870 ptb = &tb1->page_next[n1];
874 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
876 TranslationBlock *tb1, **ptb;
877 unsigned int n1;
879 ptb = &tb->jmp_next[n];
880 tb1 = *ptb;
881 if (tb1) {
882 /* find tb(n) in circular list */
883 for (;;) {
884 tb1 = *ptb;
885 n1 = (uintptr_t)tb1 & 3;
886 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
887 if (n1 == n && tb1 == tb) {
888 break;
890 if (n1 == 2) {
891 ptb = &tb1->jmp_first;
892 } else {
893 ptb = &tb1->jmp_next[n1];
896 /* now we can suppress tb(n) from the list */
897 *ptb = tb->jmp_next[n];
899 tb->jmp_next[n] = NULL;
903 /* reset the jump entry 'n' of a TB so that it is not chained to
904 another TB */
905 static inline void tb_reset_jump(TranslationBlock *tb, int n)
907 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
910 /* invalidate one TB */
911 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
913 CPUState *cpu;
914 PageDesc *p;
915 unsigned int h, n1;
916 tb_page_addr_t phys_pc;
917 TranslationBlock *tb1, *tb2;
919 /* remove the TB from the hash list */
920 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
921 h = tb_phys_hash_func(phys_pc);
922 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
924 /* remove the TB from the page list */
925 if (tb->page_addr[0] != page_addr) {
926 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
927 tb_page_remove(&p->first_tb, tb);
928 invalidate_page_bitmap(p);
930 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
931 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
932 tb_page_remove(&p->first_tb, tb);
933 invalidate_page_bitmap(p);
936 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
938 /* remove the TB from the hash list */
939 h = tb_jmp_cache_hash_func(tb->pc);
940 CPU_FOREACH(cpu) {
941 if (cpu->tb_jmp_cache[h] == tb) {
942 cpu->tb_jmp_cache[h] = NULL;
946 /* suppress this TB from the two jump lists */
947 tb_jmp_remove(tb, 0);
948 tb_jmp_remove(tb, 1);
950 /* suppress any remaining jumps to this TB */
951 tb1 = tb->jmp_first;
952 for (;;) {
953 n1 = (uintptr_t)tb1 & 3;
954 if (n1 == 2) {
955 break;
957 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
958 tb2 = tb1->jmp_next[n1];
959 tb_reset_jump(tb1, n1);
960 tb1->jmp_next[n1] = NULL;
961 tb1 = tb2;
963 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
965 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
968 static void build_page_bitmap(PageDesc *p)
970 int n, tb_start, tb_end;
971 TranslationBlock *tb;
973 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
975 tb = p->first_tb;
976 while (tb != NULL) {
977 n = (uintptr_t)tb & 3;
978 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
979 /* NOTE: this is subtle as a TB may span two physical pages */
980 if (n == 0) {
981 /* NOTE: tb_end may be after the end of the page, but
982 it is not a problem */
983 tb_start = tb->pc & ~TARGET_PAGE_MASK;
984 tb_end = tb_start + tb->size;
985 if (tb_end > TARGET_PAGE_SIZE) {
986 tb_end = TARGET_PAGE_SIZE;
988 } else {
989 tb_start = 0;
990 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
992 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
993 tb = tb->page_next[n];
997 TranslationBlock *tb_gen_code(CPUState *cpu,
998 target_ulong pc, target_ulong cs_base,
999 int flags, int cflags)
1001 CPUArchState *env = cpu->env_ptr;
1002 TranslationBlock *tb;
1003 tb_page_addr_t phys_pc, phys_page2;
1004 target_ulong virt_page2;
1005 int code_gen_size;
1007 phys_pc = get_page_addr_code(env, pc);
1008 if (use_icount) {
1009 cflags |= CF_USE_ICOUNT;
1011 tb = tb_alloc(pc);
1012 if (!tb) {
1013 /* flush must be done */
1014 tb_flush(env);
1015 /* cannot fail at this point */
1016 tb = tb_alloc(pc);
1017 /* Don't forget to invalidate previous TB info. */
1018 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1020 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1021 tb->cs_base = cs_base;
1022 tb->flags = flags;
1023 tb->cflags = cflags;
1024 cpu_gen_code(env, tb, &code_gen_size);
1025 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1026 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1028 /* check next page if needed */
1029 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1030 phys_page2 = -1;
1031 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1032 phys_page2 = get_page_addr_code(env, virt_page2);
1034 tb_link_page(tb, phys_pc, phys_page2);
1035 return tb;
1039 * Invalidate all TBs which intersect with the target physical address range
1040 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1041 * 'is_cpu_write_access' should be true if called from a real cpu write
1042 * access: the virtual CPU will exit the current TB if code is modified inside
1043 * this TB.
1045 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1046 int is_cpu_write_access)
1048 while (start < end) {
1049 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1050 start &= TARGET_PAGE_MASK;
1051 start += TARGET_PAGE_SIZE;
1056 * Invalidate all TBs which intersect with the target physical address range
1057 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1058 * 'is_cpu_write_access' should be true if called from a real cpu write
1059 * access: the virtual CPU will exit the current TB if code is modified inside
1060 * this TB.
1062 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1063 int is_cpu_write_access)
1065 TranslationBlock *tb, *tb_next, *saved_tb;
1066 CPUState *cpu = current_cpu;
1067 #if defined(TARGET_HAS_PRECISE_SMC)
1068 CPUArchState *env = NULL;
1069 #endif
1070 tb_page_addr_t tb_start, tb_end;
1071 PageDesc *p;
1072 int n;
1073 #ifdef TARGET_HAS_PRECISE_SMC
1074 int current_tb_not_found = is_cpu_write_access;
1075 TranslationBlock *current_tb = NULL;
1076 int current_tb_modified = 0;
1077 target_ulong current_pc = 0;
1078 target_ulong current_cs_base = 0;
1079 int current_flags = 0;
1080 #endif /* TARGET_HAS_PRECISE_SMC */
1082 p = page_find(start >> TARGET_PAGE_BITS);
1083 if (!p) {
1084 return;
1086 if (!p->code_bitmap &&
1087 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1088 is_cpu_write_access) {
1089 /* build code bitmap */
1090 build_page_bitmap(p);
1092 #if defined(TARGET_HAS_PRECISE_SMC)
1093 if (cpu != NULL) {
1094 env = cpu->env_ptr;
1096 #endif
1098 /* we remove all the TBs in the range [start, end[ */
1099 /* XXX: see if in some cases it could be faster to invalidate all
1100 the code */
1101 tb = p->first_tb;
1102 while (tb != NULL) {
1103 n = (uintptr_t)tb & 3;
1104 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1105 tb_next = tb->page_next[n];
1106 /* NOTE: this is subtle as a TB may span two physical pages */
1107 if (n == 0) {
1108 /* NOTE: tb_end may be after the end of the page, but
1109 it is not a problem */
1110 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1111 tb_end = tb_start + tb->size;
1112 } else {
1113 tb_start = tb->page_addr[1];
1114 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1116 if (!(tb_end <= start || tb_start >= end)) {
1117 #ifdef TARGET_HAS_PRECISE_SMC
1118 if (current_tb_not_found) {
1119 current_tb_not_found = 0;
1120 current_tb = NULL;
1121 if (cpu->mem_io_pc) {
1122 /* now we have a real cpu fault */
1123 current_tb = tb_find_pc(cpu->mem_io_pc);
1126 if (current_tb == tb &&
1127 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1128 /* If we are modifying the current TB, we must stop
1129 its execution. We could be more precise by checking
1130 that the modification is after the current PC, but it
1131 would require a specialized function to partially
1132 restore the CPU state */
1134 current_tb_modified = 1;
1135 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1136 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1137 &current_flags);
1139 #endif /* TARGET_HAS_PRECISE_SMC */
1140 /* we need to do that to handle the case where a signal
1141 occurs while doing tb_phys_invalidate() */
1142 saved_tb = NULL;
1143 if (cpu != NULL) {
1144 saved_tb = cpu->current_tb;
1145 cpu->current_tb = NULL;
1147 tb_phys_invalidate(tb, -1);
1148 if (cpu != NULL) {
1149 cpu->current_tb = saved_tb;
1150 if (cpu->interrupt_request && cpu->current_tb) {
1151 cpu_interrupt(cpu, cpu->interrupt_request);
1155 tb = tb_next;
1157 #if !defined(CONFIG_USER_ONLY)
1158 /* if no code remaining, no need to continue to use slow writes */
1159 if (!p->first_tb) {
1160 invalidate_page_bitmap(p);
1161 if (is_cpu_write_access) {
1162 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
1165 #endif
1166 #ifdef TARGET_HAS_PRECISE_SMC
1167 if (current_tb_modified) {
1168 /* we generate a block containing just the instruction
1169 modifying the memory. It will ensure that it cannot modify
1170 itself */
1171 cpu->current_tb = NULL;
1172 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1173 cpu_resume_from_signal(cpu, NULL);
1175 #endif
1178 /* len must be <= 8 and start must be a multiple of len */
1179 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1181 PageDesc *p;
1183 #if 0
1184 if (1) {
1185 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1186 cpu_single_env->mem_io_vaddr, len,
1187 cpu_single_env->eip,
1188 cpu_single_env->eip +
1189 (intptr_t)cpu_single_env->segs[R_CS].base);
1191 #endif
1192 p = page_find(start >> TARGET_PAGE_BITS);
1193 if (!p) {
1194 return;
1196 if (p->code_bitmap) {
1197 unsigned int nr;
1198 unsigned long b;
1200 nr = start & ~TARGET_PAGE_MASK;
1201 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1202 if (b & ((1 << len) - 1)) {
1203 goto do_invalidate;
1205 } else {
1206 do_invalidate:
1207 tb_invalidate_phys_page_range(start, start + len, 1);
1211 #if !defined(CONFIG_SOFTMMU)
1212 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1213 uintptr_t pc, void *puc,
1214 bool locked)
1216 TranslationBlock *tb;
1217 PageDesc *p;
1218 int n;
1219 #ifdef TARGET_HAS_PRECISE_SMC
1220 TranslationBlock *current_tb = NULL;
1221 CPUState *cpu = current_cpu;
1222 CPUArchState *env = NULL;
1223 int current_tb_modified = 0;
1224 target_ulong current_pc = 0;
1225 target_ulong current_cs_base = 0;
1226 int current_flags = 0;
1227 #endif
1229 addr &= TARGET_PAGE_MASK;
1230 p = page_find(addr >> TARGET_PAGE_BITS);
1231 if (!p) {
1232 return;
1234 tb = p->first_tb;
1235 #ifdef TARGET_HAS_PRECISE_SMC
1236 if (tb && pc != 0) {
1237 current_tb = tb_find_pc(pc);
1239 if (cpu != NULL) {
1240 env = cpu->env_ptr;
1242 #endif
1243 while (tb != NULL) {
1244 n = (uintptr_t)tb & 3;
1245 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (current_tb == tb &&
1248 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1249 /* If we are modifying the current TB, we must stop
1250 its execution. We could be more precise by checking
1251 that the modification is after the current PC, but it
1252 would require a specialized function to partially
1253 restore the CPU state */
1255 current_tb_modified = 1;
1256 cpu_restore_state_from_tb(cpu, current_tb, pc);
1257 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1258 &current_flags);
1260 #endif /* TARGET_HAS_PRECISE_SMC */
1261 tb_phys_invalidate(tb, addr);
1262 tb = tb->page_next[n];
1264 p->first_tb = NULL;
1265 #ifdef TARGET_HAS_PRECISE_SMC
1266 if (current_tb_modified) {
1267 /* we generate a block containing just the instruction
1268 modifying the memory. It will ensure that it cannot modify
1269 itself */
1270 cpu->current_tb = NULL;
1271 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1272 if (locked) {
1273 mmap_unlock();
1275 cpu_resume_from_signal(cpu, puc);
1277 #endif
1279 #endif
1281 /* add the tb in the target page and protect it if necessary */
1282 static inline void tb_alloc_page(TranslationBlock *tb,
1283 unsigned int n, tb_page_addr_t page_addr)
1285 PageDesc *p;
1286 #ifndef CONFIG_USER_ONLY
1287 bool page_already_protected;
1288 #endif
1290 tb->page_addr[n] = page_addr;
1291 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1292 tb->page_next[n] = p->first_tb;
1293 #ifndef CONFIG_USER_ONLY
1294 page_already_protected = p->first_tb != NULL;
1295 #endif
1296 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1297 invalidate_page_bitmap(p);
1299 #if defined(CONFIG_USER_ONLY)
1300 if (p->flags & PAGE_WRITE) {
1301 target_ulong addr;
1302 PageDesc *p2;
1303 int prot;
1305 /* force the host page as non writable (writes will have a
1306 page fault + mprotect overhead) */
1307 page_addr &= qemu_host_page_mask;
1308 prot = 0;
1309 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1310 addr += TARGET_PAGE_SIZE) {
1312 p2 = page_find(addr >> TARGET_PAGE_BITS);
1313 if (!p2) {
1314 continue;
1316 prot |= p2->flags;
1317 p2->flags &= ~PAGE_WRITE;
1319 mprotect(g2h(page_addr), qemu_host_page_size,
1320 (prot & PAGE_BITS) & ~PAGE_WRITE);
1321 #ifdef DEBUG_TB_INVALIDATE
1322 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1323 page_addr);
1324 #endif
1326 #else
1327 /* if some code is already present, then the pages are already
1328 protected. So we handle the case where only the first TB is
1329 allocated in a physical page */
1330 if (!page_already_protected) {
1331 tlb_protect_code(page_addr);
1333 #endif
1336 /* add a new TB and link it to the physical page tables. phys_page2 is
1337 (-1) to indicate that only one page contains the TB. */
1338 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1339 tb_page_addr_t phys_page2)
1341 unsigned int h;
1342 TranslationBlock **ptb;
1344 /* Grab the mmap lock to stop another thread invalidating this TB
1345 before we are done. */
1346 mmap_lock();
1347 /* add in the physical hash table */
1348 h = tb_phys_hash_func(phys_pc);
1349 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1350 tb->phys_hash_next = *ptb;
1351 *ptb = tb;
1353 /* add in the page list */
1354 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1355 if (phys_page2 != -1) {
1356 tb_alloc_page(tb, 1, phys_page2);
1357 } else {
1358 tb->page_addr[1] = -1;
1361 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1362 tb->jmp_next[0] = NULL;
1363 tb->jmp_next[1] = NULL;
1365 /* init original jump addresses */
1366 if (tb->tb_next_offset[0] != 0xffff) {
1367 tb_reset_jump(tb, 0);
1369 if (tb->tb_next_offset[1] != 0xffff) {
1370 tb_reset_jump(tb, 1);
1373 #ifdef DEBUG_TB_CHECK
1374 tb_page_check();
1375 #endif
1376 mmap_unlock();
1379 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1380 tb[1].tc_ptr. Return NULL if not found */
1381 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1383 int m_min, m_max, m;
1384 uintptr_t v;
1385 TranslationBlock *tb;
1387 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1388 return NULL;
1390 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1391 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1392 return NULL;
1394 /* binary search (cf Knuth) */
1395 m_min = 0;
1396 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1397 while (m_min <= m_max) {
1398 m = (m_min + m_max) >> 1;
1399 tb = &tcg_ctx.tb_ctx.tbs[m];
1400 v = (uintptr_t)tb->tc_ptr;
1401 if (v == tc_ptr) {
1402 return tb;
1403 } else if (tc_ptr < v) {
1404 m_max = m - 1;
1405 } else {
1406 m_min = m + 1;
1409 return &tcg_ctx.tb_ctx.tbs[m_max];
1412 #if !defined(CONFIG_USER_ONLY)
1413 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1415 ram_addr_t ram_addr;
1416 MemoryRegion *mr;
1417 hwaddr l = 1;
1419 rcu_read_lock();
1420 mr = address_space_translate(as, addr, &addr, &l, false);
1421 if (!(memory_region_is_ram(mr)
1422 || memory_region_is_romd(mr))) {
1423 rcu_read_unlock();
1424 return;
1426 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1427 + addr;
1428 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1429 rcu_read_unlock();
1431 #endif /* !defined(CONFIG_USER_ONLY) */
1433 void tb_check_watchpoint(CPUState *cpu)
1435 TranslationBlock *tb;
1437 tb = tb_find_pc(cpu->mem_io_pc);
1438 if (!tb) {
1439 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
1440 (void *)cpu->mem_io_pc);
1442 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1443 tb_phys_invalidate(tb, -1);
1446 #ifndef CONFIG_USER_ONLY
1447 /* mask must never be zero, except for A20 change call */
1448 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1450 int old_mask;
1452 old_mask = cpu->interrupt_request;
1453 cpu->interrupt_request |= mask;
1456 * If called from iothread context, wake the target cpu in
1457 * case its halted.
1459 if (!qemu_cpu_is_self(cpu)) {
1460 qemu_cpu_kick(cpu);
1461 return;
1464 if (use_icount) {
1465 cpu->icount_decr.u16.high = 0xffff;
1466 if (!cpu_can_do_io(cpu)
1467 && (mask & ~old_mask) != 0) {
1468 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1470 } else {
1471 cpu->tcg_exit_req = 1;
1475 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1477 /* in deterministic execution mode, instructions doing device I/Os
1478 must be at the end of the TB */
1479 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1481 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1482 CPUArchState *env = cpu->env_ptr;
1483 #endif
1484 TranslationBlock *tb;
1485 uint32_t n, cflags;
1486 target_ulong pc, cs_base;
1487 uint64_t flags;
1489 tb = tb_find_pc(retaddr);
1490 if (!tb) {
1491 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1492 (void *)retaddr);
1494 n = cpu->icount_decr.u16.low + tb->icount;
1495 cpu_restore_state_from_tb(cpu, tb, retaddr);
1496 /* Calculate how many instructions had been executed before the fault
1497 occurred. */
1498 n = n - cpu->icount_decr.u16.low;
1499 /* Generate a new TB ending on the I/O insn. */
1500 n++;
1501 /* On MIPS and SH, delay slot instructions can only be restarted if
1502 they were already the first instruction in the TB. If this is not
1503 the first instruction in a TB then re-execute the preceding
1504 branch. */
1505 #if defined(TARGET_MIPS)
1506 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1507 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1508 cpu->icount_decr.u16.low++;
1509 env->hflags &= ~MIPS_HFLAG_BMASK;
1511 #elif defined(TARGET_SH4)
1512 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1513 && n > 1) {
1514 env->pc -= 2;
1515 cpu->icount_decr.u16.low++;
1516 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1518 #endif
1519 /* This should never happen. */
1520 if (n > CF_COUNT_MASK) {
1521 cpu_abort(cpu, "TB too big during recompile");
1524 cflags = n | CF_LAST_IO;
1525 pc = tb->pc;
1526 cs_base = tb->cs_base;
1527 flags = tb->flags;
1528 tb_phys_invalidate(tb, -1);
1529 /* FIXME: In theory this could raise an exception. In practice
1530 we have already translated the block once so it's probably ok. */
1531 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1532 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1533 the first in the TB) then we end up generating a whole new TB and
1534 repeating the fault, which is horribly inefficient.
1535 Better would be to execute just this insn uncached, or generate a
1536 second new TB. */
1537 cpu_resume_from_signal(cpu, NULL);
1540 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1542 unsigned int i;
1544 /* Discard jump cache entries for any tb which might potentially
1545 overlap the flushed page. */
1546 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1547 memset(&cpu->tb_jmp_cache[i], 0,
1548 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1550 i = tb_jmp_cache_hash_page(addr);
1551 memset(&cpu->tb_jmp_cache[i], 0,
1552 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1555 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1557 int i, target_code_size, max_target_code_size;
1558 int direct_jmp_count, direct_jmp2_count, cross_page;
1559 TranslationBlock *tb;
1561 target_code_size = 0;
1562 max_target_code_size = 0;
1563 cross_page = 0;
1564 direct_jmp_count = 0;
1565 direct_jmp2_count = 0;
1566 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1567 tb = &tcg_ctx.tb_ctx.tbs[i];
1568 target_code_size += tb->size;
1569 if (tb->size > max_target_code_size) {
1570 max_target_code_size = tb->size;
1572 if (tb->page_addr[1] != -1) {
1573 cross_page++;
1575 if (tb->tb_next_offset[0] != 0xffff) {
1576 direct_jmp_count++;
1577 if (tb->tb_next_offset[1] != 0xffff) {
1578 direct_jmp2_count++;
1582 /* XXX: avoid using doubles ? */
1583 cpu_fprintf(f, "Translation buffer state:\n");
1584 cpu_fprintf(f, "gen code size %td/%zd\n",
1585 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1586 tcg_ctx.code_gen_buffer_max_size);
1587 cpu_fprintf(f, "TB count %d/%d\n",
1588 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1589 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1590 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1591 tcg_ctx.tb_ctx.nb_tbs : 0,
1592 max_target_code_size);
1593 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1594 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1595 tcg_ctx.code_gen_buffer) /
1596 tcg_ctx.tb_ctx.nb_tbs : 0,
1597 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1598 tcg_ctx.code_gen_buffer) /
1599 target_code_size : 0);
1600 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1601 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1602 tcg_ctx.tb_ctx.nb_tbs : 0);
1603 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1604 direct_jmp_count,
1605 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1606 tcg_ctx.tb_ctx.nb_tbs : 0,
1607 direct_jmp2_count,
1608 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1609 tcg_ctx.tb_ctx.nb_tbs : 0);
1610 cpu_fprintf(f, "\nStatistics:\n");
1611 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1612 cpu_fprintf(f, "TB invalidate count %d\n",
1613 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1614 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1615 tcg_dump_info(f, cpu_fprintf);
1618 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1620 tcg_dump_op_count(f, cpu_fprintf);
1623 #else /* CONFIG_USER_ONLY */
1625 void cpu_interrupt(CPUState *cpu, int mask)
1627 cpu->interrupt_request |= mask;
1628 cpu->tcg_exit_req = 1;
1632 * Walks guest process memory "regions" one by one
1633 * and calls callback function 'fn' for each region.
1635 struct walk_memory_regions_data {
1636 walk_memory_regions_fn fn;
1637 void *priv;
1638 target_ulong start;
1639 int prot;
1642 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1643 target_ulong end, int new_prot)
1645 if (data->start != -1u) {
1646 int rc = data->fn(data->priv, data->start, end, data->prot);
1647 if (rc != 0) {
1648 return rc;
1652 data->start = (new_prot ? end : -1u);
1653 data->prot = new_prot;
1655 return 0;
1658 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1659 target_ulong base, int level, void **lp)
1661 target_ulong pa;
1662 int i, rc;
1664 if (*lp == NULL) {
1665 return walk_memory_regions_end(data, base, 0);
1668 if (level == 0) {
1669 PageDesc *pd = *lp;
1671 for (i = 0; i < V_L2_SIZE; ++i) {
1672 int prot = pd[i].flags;
1674 pa = base | (i << TARGET_PAGE_BITS);
1675 if (prot != data->prot) {
1676 rc = walk_memory_regions_end(data, pa, prot);
1677 if (rc != 0) {
1678 return rc;
1682 } else {
1683 void **pp = *lp;
1685 for (i = 0; i < V_L2_SIZE; ++i) {
1686 pa = base | ((target_ulong)i <<
1687 (TARGET_PAGE_BITS + V_L2_BITS * level));
1688 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1689 if (rc != 0) {
1690 return rc;
1695 return 0;
1698 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1700 struct walk_memory_regions_data data;
1701 uintptr_t i;
1703 data.fn = fn;
1704 data.priv = priv;
1705 data.start = -1u;
1706 data.prot = 0;
1708 for (i = 0; i < V_L1_SIZE; i++) {
1709 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1710 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1711 if (rc != 0) {
1712 return rc;
1716 return walk_memory_regions_end(&data, 0, 0);
1719 static int dump_region(void *priv, target_ulong start,
1720 target_ulong end, unsigned long prot)
1722 FILE *f = (FILE *)priv;
1724 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1725 " "TARGET_FMT_lx" %c%c%c\n",
1726 start, end, end - start,
1727 ((prot & PAGE_READ) ? 'r' : '-'),
1728 ((prot & PAGE_WRITE) ? 'w' : '-'),
1729 ((prot & PAGE_EXEC) ? 'x' : '-'));
1731 return 0;
1734 /* dump memory mappings */
1735 void page_dump(FILE *f)
1737 const int length = sizeof(target_ulong) * 2;
1738 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1739 length, "start", length, "end", length, "size", "prot");
1740 walk_memory_regions(f, dump_region);
1743 int page_get_flags(target_ulong address)
1745 PageDesc *p;
1747 p = page_find(address >> TARGET_PAGE_BITS);
1748 if (!p) {
1749 return 0;
1751 return p->flags;
1754 /* Modify the flags of a page and invalidate the code if necessary.
1755 The flag PAGE_WRITE_ORG is positioned automatically depending
1756 on PAGE_WRITE. The mmap_lock should already be held. */
1757 void page_set_flags(target_ulong start, target_ulong end, int flags)
1759 target_ulong addr, len;
1761 /* This function should never be called with addresses outside the
1762 guest address space. If this assert fires, it probably indicates
1763 a missing call to h2g_valid. */
1764 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1765 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1766 #endif
1767 assert(start < end);
1769 start = start & TARGET_PAGE_MASK;
1770 end = TARGET_PAGE_ALIGN(end);
1772 if (flags & PAGE_WRITE) {
1773 flags |= PAGE_WRITE_ORG;
1776 for (addr = start, len = end - start;
1777 len != 0;
1778 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1779 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1781 /* If the write protection bit is set, then we invalidate
1782 the code inside. */
1783 if (!(p->flags & PAGE_WRITE) &&
1784 (flags & PAGE_WRITE) &&
1785 p->first_tb) {
1786 tb_invalidate_phys_page(addr, 0, NULL, false);
1788 p->flags = flags;
1792 int page_check_range(target_ulong start, target_ulong len, int flags)
1794 PageDesc *p;
1795 target_ulong end;
1796 target_ulong addr;
1798 /* This function should never be called with addresses outside the
1799 guest address space. If this assert fires, it probably indicates
1800 a missing call to h2g_valid. */
1801 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1802 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1803 #endif
1805 if (len == 0) {
1806 return 0;
1808 if (start + len - 1 < start) {
1809 /* We've wrapped around. */
1810 return -1;
1813 /* must do before we loose bits in the next step */
1814 end = TARGET_PAGE_ALIGN(start + len);
1815 start = start & TARGET_PAGE_MASK;
1817 for (addr = start, len = end - start;
1818 len != 0;
1819 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1820 p = page_find(addr >> TARGET_PAGE_BITS);
1821 if (!p) {
1822 return -1;
1824 if (!(p->flags & PAGE_VALID)) {
1825 return -1;
1828 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1829 return -1;
1831 if (flags & PAGE_WRITE) {
1832 if (!(p->flags & PAGE_WRITE_ORG)) {
1833 return -1;
1835 /* unprotect the page if it was put read-only because it
1836 contains translated code */
1837 if (!(p->flags & PAGE_WRITE)) {
1838 if (!page_unprotect(addr, 0, NULL)) {
1839 return -1;
1844 return 0;
1847 /* called from signal handler: invalidate the code and unprotect the
1848 page. Return TRUE if the fault was successfully handled. */
1849 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1851 unsigned int prot;
1852 PageDesc *p;
1853 target_ulong host_start, host_end, addr;
1855 /* Technically this isn't safe inside a signal handler. However we
1856 know this only ever happens in a synchronous SEGV handler, so in
1857 practice it seems to be ok. */
1858 mmap_lock();
1860 p = page_find(address >> TARGET_PAGE_BITS);
1861 if (!p) {
1862 mmap_unlock();
1863 return 0;
1866 /* if the page was really writable, then we change its
1867 protection back to writable */
1868 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1869 host_start = address & qemu_host_page_mask;
1870 host_end = host_start + qemu_host_page_size;
1872 prot = 0;
1873 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1874 p = page_find(addr >> TARGET_PAGE_BITS);
1875 p->flags |= PAGE_WRITE;
1876 prot |= p->flags;
1878 /* and since the content will be modified, we must invalidate
1879 the corresponding translated code. */
1880 tb_invalidate_phys_page(addr, pc, puc, true);
1881 #ifdef DEBUG_TB_CHECK
1882 tb_invalidate_check(addr);
1883 #endif
1885 mprotect((void *)g2h(host_start), qemu_host_page_size,
1886 prot & PAGE_BITS);
1888 mmap_unlock();
1889 return 1;
1891 mmap_unlock();
1892 return 0;
1894 #endif /* CONFIG_USER_ONLY */