target/arm: Add SMCR_ELx
[qemu/rayw.git] / target / arm / cpu.h
blobdec52c6c3b962ecf27732a8c48ad3f04d7b8842c
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO (0)
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
37 #define EXCP_UDEF 1 /* undefined instruction */
38 #define EXCP_SWI 2 /* software interrupt */
39 #define EXCP_PREFETCH_ABORT 3
40 #define EXCP_DATA_ABORT 4
41 #define EXCP_IRQ 5
42 #define EXCP_FIQ 6
43 #define EXCP_BKPT 7
44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
46 #define EXCP_HVC 11 /* HyperVisor Call */
47 #define EXCP_HYP_TRAP 12
48 #define EXCP_SMC 13 /* Secure Monitor Call */
49 #define EXCP_VIRQ 14
50 #define EXCP_VFIQ 15
51 #define EXCP_SEMIHOST 16 /* semihosting call */
52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR 24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 #define ARMV7M_EXCP_RESET 1
63 #define ARMV7M_EXCP_NMI 2
64 #define ARMV7M_EXCP_HARD 3
65 #define ARMV7M_EXCP_MEM 4
66 #define ARMV7M_EXCP_BUS 5
67 #define ARMV7M_EXCP_USAGE 6
68 #define ARMV7M_EXCP_SECURE 7
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
74 /* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
83 enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
89 /* ARM-specific interrupt pending bits. */
90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
95 /* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
115 /* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
119 #define TARGET_INSN_START_EXTRA_WORDS 2
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
129 /* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
146 typedef struct DynamicGDBXMLInfo {
147 char *desc;
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
154 } DynamicGDBXMLInfo;
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
159 uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
162 #define GTIMER_PHYS 0
163 #define GTIMER_VIRT 1
164 #define GTIMER_HYP 2
165 #define GTIMER_SEC 3
166 #define GTIMER_HYPVIRT 4
167 #define NUM_GTIMERS 5
169 typedef struct {
170 uint64_t raw_tcr;
171 uint32_t mask;
172 uint32_t base_mask;
173 } TCR;
175 #define VTCR_NSW (1u << 29)
176 #define VTCR_NSA (1u << 30)
177 #define VSTCR_SW VTCR_NSW
178 #define VSTCR_SA VTCR_NSA
180 /* Define a maximum sized vector register.
181 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182 * For 64-bit, this is a 2048-bit SVE register.
184 * Note that the mapping between S, D, and Q views of the register bank
185 * differs between AArch64 and AArch32.
186 * In AArch32:
187 * Qn = regs[n].d[1]:regs[n].d[0]
188 * Dn = regs[n / 2].d[n & 1]
189 * Sn = regs[n / 4].d[n % 4 / 2],
190 * bits 31..0 for even n, and bits 63..32 for odd n
191 * (and regs[16] to regs[31] are inaccessible)
192 * In AArch64:
193 * Zn = regs[n].d[*]
194 * Qn = regs[n].d[1]:regs[n].d[0]
195 * Dn = regs[n].d[0]
196 * Sn = regs[n].d[0] bits 31..0
197 * Hn = regs[n].d[0] bits 15..0
199 * This corresponds to the architecturally defined mapping between
200 * the two execution states, and means we do not need to explicitly
201 * map these registers when changing states.
203 * Align the data for use with TCG host vector operations.
206 #ifdef TARGET_AARCH64
207 # define ARM_MAX_VQ 16
208 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
209 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
210 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
211 #else
212 # define ARM_MAX_VQ 1
213 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
214 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
215 static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
216 #endif
218 typedef struct ARMVectorReg {
219 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
220 } ARMVectorReg;
222 #ifdef TARGET_AARCH64
223 /* In AArch32 mode, predicate registers do not exist at all. */
224 typedef struct ARMPredicateReg {
225 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
226 } ARMPredicateReg;
228 /* In AArch32 mode, PAC keys do not exist at all. */
229 typedef struct ARMPACKey {
230 uint64_t lo, hi;
231 } ARMPACKey;
232 #endif
234 /* See the commentary above the TBFLAG field definitions. */
235 typedef struct CPUARMTBFlags {
236 uint32_t flags;
237 target_ulong flags2;
238 } CPUARMTBFlags;
240 typedef struct CPUArchState {
241 /* Regs for current mode. */
242 uint32_t regs[16];
244 /* 32/64 switch only happens when taking and returning from
245 * exceptions so the overlap semantics are taken care of then
246 * instead of having a complicated union.
248 /* Regs for A64 mode. */
249 uint64_t xregs[32];
250 uint64_t pc;
251 /* PSTATE isn't an architectural register for ARMv8. However, it is
252 * convenient for us to assemble the underlying state into a 32 bit format
253 * identical to the architectural format used for the SPSR. (This is also
254 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
255 * 'pstate' register are.) Of the PSTATE bits:
256 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
257 * semantics as for AArch32, as described in the comments on each field)
258 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
259 * DAIF (exception masks) are kept in env->daif
260 * BTYPE is kept in env->btype
261 * SM and ZA are kept in env->svcr
262 * all other bits are stored in their correct places in env->pstate
264 uint32_t pstate;
265 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
266 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
268 /* Cached TBFLAGS state. See below for which bits are included. */
269 CPUARMTBFlags hflags;
271 /* Frequently accessed CPSR bits are stored separately for efficiency.
272 This contains all the other bits. Use cpsr_{read,write} to access
273 the whole CPSR. */
274 uint32_t uncached_cpsr;
275 uint32_t spsr;
277 /* Banked registers. */
278 uint64_t banked_spsr[8];
279 uint32_t banked_r13[8];
280 uint32_t banked_r14[8];
282 /* These hold r8-r12. */
283 uint32_t usr_regs[5];
284 uint32_t fiq_regs[5];
286 /* cpsr flag cache for faster execution */
287 uint32_t CF; /* 0 or 1 */
288 uint32_t VF; /* V is the bit 31. All other bits are undefined */
289 uint32_t NF; /* N is bit 31. All other bits are undefined. */
290 uint32_t ZF; /* Z set if zero. */
291 uint32_t QF; /* 0 or 1 */
292 uint32_t GE; /* cpsr[19:16] */
293 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
294 uint32_t btype; /* BTI branch type. spsr[11:10]. */
295 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
296 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
298 uint64_t elr_el[4]; /* AArch64 exception link regs */
299 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
301 /* System control coprocessor (cp15) */
302 struct {
303 uint32_t c0_cpuid;
304 union { /* Cache size selection */
305 struct {
306 uint64_t _unused_csselr0;
307 uint64_t csselr_ns;
308 uint64_t _unused_csselr1;
309 uint64_t csselr_s;
311 uint64_t csselr_el[4];
313 union { /* System control register. */
314 struct {
315 uint64_t _unused_sctlr;
316 uint64_t sctlr_ns;
317 uint64_t hsctlr;
318 uint64_t sctlr_s;
320 uint64_t sctlr_el[4];
322 uint64_t cpacr_el1; /* Architectural feature access control register */
323 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
324 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
325 uint64_t sder; /* Secure debug enable register. */
326 uint32_t nsacr; /* Non-secure access control register. */
327 union { /* MMU translation table base 0. */
328 struct {
329 uint64_t _unused_ttbr0_0;
330 uint64_t ttbr0_ns;
331 uint64_t _unused_ttbr0_1;
332 uint64_t ttbr0_s;
334 uint64_t ttbr0_el[4];
336 union { /* MMU translation table base 1. */
337 struct {
338 uint64_t _unused_ttbr1_0;
339 uint64_t ttbr1_ns;
340 uint64_t _unused_ttbr1_1;
341 uint64_t ttbr1_s;
343 uint64_t ttbr1_el[4];
345 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
346 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
347 /* MMU translation table base control. */
348 TCR tcr_el[4];
349 TCR vtcr_el2; /* Virtualization Translation Control. */
350 TCR vstcr_el2; /* Secure Virtualization Translation Control. */
351 uint32_t c2_data; /* MPU data cacheable bits. */
352 uint32_t c2_insn; /* MPU instruction cacheable bits. */
353 union { /* MMU domain access control register
354 * MPU write buffer control.
356 struct {
357 uint64_t dacr_ns;
358 uint64_t dacr_s;
360 struct {
361 uint64_t dacr32_el2;
364 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
365 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
366 uint64_t hcr_el2; /* Hypervisor configuration register */
367 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
368 uint64_t scr_el3; /* Secure configuration register. */
369 union { /* Fault status registers. */
370 struct {
371 uint64_t ifsr_ns;
372 uint64_t ifsr_s;
374 struct {
375 uint64_t ifsr32_el2;
378 union {
379 struct {
380 uint64_t _unused_dfsr;
381 uint64_t dfsr_ns;
382 uint64_t hsr;
383 uint64_t dfsr_s;
385 uint64_t esr_el[4];
387 uint32_t c6_region[8]; /* MPU base/size registers. */
388 union { /* Fault address registers. */
389 struct {
390 uint64_t _unused_far0;
391 #if HOST_BIG_ENDIAN
392 uint32_t ifar_ns;
393 uint32_t dfar_ns;
394 uint32_t ifar_s;
395 uint32_t dfar_s;
396 #else
397 uint32_t dfar_ns;
398 uint32_t ifar_ns;
399 uint32_t dfar_s;
400 uint32_t ifar_s;
401 #endif
402 uint64_t _unused_far3;
404 uint64_t far_el[4];
406 uint64_t hpfar_el2;
407 uint64_t hstr_el2;
408 union { /* Translation result. */
409 struct {
410 uint64_t _unused_par_0;
411 uint64_t par_ns;
412 uint64_t _unused_par_1;
413 uint64_t par_s;
415 uint64_t par_el[4];
418 uint32_t c9_insn; /* Cache lockdown registers. */
419 uint32_t c9_data;
420 uint64_t c9_pmcr; /* performance monitor control register */
421 uint64_t c9_pmcnten; /* perf monitor counter enables */
422 uint64_t c9_pmovsr; /* perf monitor overflow status */
423 uint64_t c9_pmuserenr; /* perf monitor user enable */
424 uint64_t c9_pmselr; /* perf monitor counter selection register */
425 uint64_t c9_pminten; /* perf monitor interrupt enables */
426 union { /* Memory attribute redirection */
427 struct {
428 #if HOST_BIG_ENDIAN
429 uint64_t _unused_mair_0;
430 uint32_t mair1_ns;
431 uint32_t mair0_ns;
432 uint64_t _unused_mair_1;
433 uint32_t mair1_s;
434 uint32_t mair0_s;
435 #else
436 uint64_t _unused_mair_0;
437 uint32_t mair0_ns;
438 uint32_t mair1_ns;
439 uint64_t _unused_mair_1;
440 uint32_t mair0_s;
441 uint32_t mair1_s;
442 #endif
444 uint64_t mair_el[4];
446 union { /* vector base address register */
447 struct {
448 uint64_t _unused_vbar;
449 uint64_t vbar_ns;
450 uint64_t hvbar;
451 uint64_t vbar_s;
453 uint64_t vbar_el[4];
455 uint32_t mvbar; /* (monitor) vector base address register */
456 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
457 struct { /* FCSE PID. */
458 uint32_t fcseidr_ns;
459 uint32_t fcseidr_s;
461 union { /* Context ID. */
462 struct {
463 uint64_t _unused_contextidr_0;
464 uint64_t contextidr_ns;
465 uint64_t _unused_contextidr_1;
466 uint64_t contextidr_s;
468 uint64_t contextidr_el[4];
470 union { /* User RW Thread register. */
471 struct {
472 uint64_t tpidrurw_ns;
473 uint64_t tpidrprw_ns;
474 uint64_t htpidr;
475 uint64_t _tpidr_el3;
477 uint64_t tpidr_el[4];
479 uint64_t tpidr2_el0;
480 /* The secure banks of these registers don't map anywhere */
481 uint64_t tpidrurw_s;
482 uint64_t tpidrprw_s;
483 uint64_t tpidruro_s;
485 union { /* User RO Thread register. */
486 uint64_t tpidruro_ns;
487 uint64_t tpidrro_el[1];
489 uint64_t c14_cntfrq; /* Counter Frequency register */
490 uint64_t c14_cntkctl; /* Timer Control register */
491 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
492 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
493 ARMGenericTimer c14_timer[NUM_GTIMERS];
494 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
495 uint32_t c15_ticonfig; /* TI925T configuration byte. */
496 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
497 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
498 uint32_t c15_threadid; /* TI debugger thread-ID. */
499 uint32_t c15_config_base_address; /* SCU base address. */
500 uint32_t c15_diagnostic; /* diagnostic register */
501 uint32_t c15_power_diagnostic;
502 uint32_t c15_power_control; /* power control */
503 uint64_t dbgbvr[16]; /* breakpoint value registers */
504 uint64_t dbgbcr[16]; /* breakpoint control registers */
505 uint64_t dbgwvr[16]; /* watchpoint value registers */
506 uint64_t dbgwcr[16]; /* watchpoint control registers */
507 uint64_t mdscr_el1;
508 uint64_t oslsr_el1; /* OS Lock Status */
509 uint64_t mdcr_el2;
510 uint64_t mdcr_el3;
511 /* Stores the architectural value of the counter *the last time it was
512 * updated* by pmccntr_op_start. Accesses should always be surrounded
513 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
514 * architecturally-correct value is being read/set.
516 uint64_t c15_ccnt;
517 /* Stores the delta between the architectural value and the underlying
518 * cycle count during normal operation. It is used to update c15_ccnt
519 * to be the correct architectural value before accesses. During
520 * accesses, c15_ccnt_delta contains the underlying count being used
521 * for the access, after which it reverts to the delta value in
522 * pmccntr_op_finish.
524 uint64_t c15_ccnt_delta;
525 uint64_t c14_pmevcntr[31];
526 uint64_t c14_pmevcntr_delta[31];
527 uint64_t c14_pmevtyper[31];
528 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
529 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
530 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
531 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
532 uint64_t gcr_el1;
533 uint64_t rgsr_el1;
535 /* Minimal RAS registers */
536 uint64_t disr_el1;
537 uint64_t vdisr_el2;
538 uint64_t vsesr_el2;
539 } cp15;
541 struct {
542 /* M profile has up to 4 stack pointers:
543 * a Main Stack Pointer and a Process Stack Pointer for each
544 * of the Secure and Non-Secure states. (If the CPU doesn't support
545 * the security extension then it has only two SPs.)
546 * In QEMU we always store the currently active SP in regs[13],
547 * and the non-active SP for the current security state in
548 * v7m.other_sp. The stack pointers for the inactive security state
549 * are stored in other_ss_msp and other_ss_psp.
550 * switch_v7m_security_state() is responsible for rearranging them
551 * when we change security state.
553 uint32_t other_sp;
554 uint32_t other_ss_msp;
555 uint32_t other_ss_psp;
556 uint32_t vecbase[M_REG_NUM_BANKS];
557 uint32_t basepri[M_REG_NUM_BANKS];
558 uint32_t control[M_REG_NUM_BANKS];
559 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
560 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
561 uint32_t hfsr; /* HardFault Status */
562 uint32_t dfsr; /* Debug Fault Status Register */
563 uint32_t sfsr; /* Secure Fault Status Register */
564 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
565 uint32_t bfar; /* BusFault Address */
566 uint32_t sfar; /* Secure Fault Address Register */
567 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
568 int exception;
569 uint32_t primask[M_REG_NUM_BANKS];
570 uint32_t faultmask[M_REG_NUM_BANKS];
571 uint32_t aircr; /* only holds r/w state if security extn implemented */
572 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
573 uint32_t csselr[M_REG_NUM_BANKS];
574 uint32_t scr[M_REG_NUM_BANKS];
575 uint32_t msplim[M_REG_NUM_BANKS];
576 uint32_t psplim[M_REG_NUM_BANKS];
577 uint32_t fpcar[M_REG_NUM_BANKS];
578 uint32_t fpccr[M_REG_NUM_BANKS];
579 uint32_t fpdscr[M_REG_NUM_BANKS];
580 uint32_t cpacr[M_REG_NUM_BANKS];
581 uint32_t nsacr;
582 uint32_t ltpsize;
583 uint32_t vpr;
584 } v7m;
586 /* Information associated with an exception about to be taken:
587 * code which raises an exception must set cs->exception_index and
588 * the relevant parts of this structure; the cpu_do_interrupt function
589 * will then set the guest-visible registers as part of the exception
590 * entry process.
592 struct {
593 uint32_t syndrome; /* AArch64 format syndrome register */
594 uint32_t fsr; /* AArch32 format fault status register info */
595 uint64_t vaddress; /* virtual addr associated with exception, if any */
596 uint32_t target_el; /* EL the exception should be targeted for */
597 /* If we implement EL2 we will also need to store information
598 * about the intermediate physical address for stage 2 faults.
600 } exception;
602 /* Information associated with an SError */
603 struct {
604 uint8_t pending;
605 uint8_t has_esr;
606 uint64_t esr;
607 } serror;
609 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
611 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
612 uint32_t irq_line_state;
614 /* Thumb-2 EE state. */
615 uint32_t teecr;
616 uint32_t teehbr;
618 /* VFP coprocessor state. */
619 struct {
620 ARMVectorReg zregs[32];
622 #ifdef TARGET_AARCH64
623 /* Store FFR as pregs[16] to make it easier to treat as any other. */
624 #define FFR_PRED_NUM 16
625 ARMPredicateReg pregs[17];
626 /* Scratch space for aa64 sve predicate temporary. */
627 ARMPredicateReg preg_tmp;
628 #endif
630 /* We store these fpcsr fields separately for convenience. */
631 uint32_t qc[4] QEMU_ALIGNED(16);
632 int vec_len;
633 int vec_stride;
635 uint32_t xregs[16];
637 /* Scratch space for aa32 neon expansion. */
638 uint32_t scratch[8];
640 /* There are a number of distinct float control structures:
642 * fp_status: is the "normal" fp status.
643 * fp_status_fp16: used for half-precision calculations
644 * standard_fp_status : the ARM "Standard FPSCR Value"
645 * standard_fp_status_fp16 : used for half-precision
646 * calculations with the ARM "Standard FPSCR Value"
648 * Half-precision operations are governed by a separate
649 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
650 * status structure to control this.
652 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
653 * round-to-nearest and is used by any operations (generally
654 * Neon) which the architecture defines as controlled by the
655 * standard FPSCR value rather than the FPSCR.
657 * The "standard FPSCR but for fp16 ops" is needed because
658 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
659 * using a fixed value for it.
661 * To avoid having to transfer exception bits around, we simply
662 * say that the FPSCR cumulative exception flags are the logical
663 * OR of the flags in the four fp statuses. This relies on the
664 * only thing which needs to read the exception flags being
665 * an explicit FPSCR read.
667 float_status fp_status;
668 float_status fp_status_f16;
669 float_status standard_fp_status;
670 float_status standard_fp_status_f16;
672 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
673 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
674 } vfp;
675 uint64_t exclusive_addr;
676 uint64_t exclusive_val;
677 uint64_t exclusive_high;
679 /* iwMMXt coprocessor state. */
680 struct {
681 uint64_t regs[16];
682 uint64_t val;
684 uint32_t cregs[16];
685 } iwmmxt;
687 #ifdef TARGET_AARCH64
688 struct {
689 ARMPACKey apia;
690 ARMPACKey apib;
691 ARMPACKey apda;
692 ARMPACKey apdb;
693 ARMPACKey apga;
694 } keys;
696 uint64_t scxtnum_el[4];
697 #endif
699 #if defined(CONFIG_USER_ONLY)
700 /* For usermode syscall translation. */
701 int eabi;
702 #endif
704 struct CPUBreakpoint *cpu_breakpoint[16];
705 struct CPUWatchpoint *cpu_watchpoint[16];
707 /* Fields up to this point are cleared by a CPU reset */
708 struct {} end_reset_fields;
710 /* Fields after this point are preserved across CPU reset. */
712 /* Internal CPU feature flags. */
713 uint64_t features;
715 /* PMSAv7 MPU */
716 struct {
717 uint32_t *drbar;
718 uint32_t *drsr;
719 uint32_t *dracr;
720 uint32_t rnr[M_REG_NUM_BANKS];
721 } pmsav7;
723 /* PMSAv8 MPU */
724 struct {
725 /* The PMSAv8 implementation also shares some PMSAv7 config
726 * and state:
727 * pmsav7.rnr (region number register)
728 * pmsav7_dregion (number of configured regions)
730 uint32_t *rbar[M_REG_NUM_BANKS];
731 uint32_t *rlar[M_REG_NUM_BANKS];
732 uint32_t mair0[M_REG_NUM_BANKS];
733 uint32_t mair1[M_REG_NUM_BANKS];
734 } pmsav8;
736 /* v8M SAU */
737 struct {
738 uint32_t *rbar;
739 uint32_t *rlar;
740 uint32_t rnr;
741 uint32_t ctrl;
742 } sau;
744 void *nvic;
745 const struct arm_boot_info *boot_info;
746 /* Store GICv3CPUState to access from this struct */
747 void *gicv3state;
749 #ifdef TARGET_TAGGED_ADDRESSES
750 /* Linux syscall tagged address support */
751 bool tagged_addr_enable;
752 #endif
753 } CPUARMState;
755 static inline void set_feature(CPUARMState *env, int feature)
757 env->features |= 1ULL << feature;
760 static inline void unset_feature(CPUARMState *env, int feature)
762 env->features &= ~(1ULL << feature);
766 * ARMELChangeHookFn:
767 * type of a function which can be registered via arm_register_el_change_hook()
768 * to get callbacks when the CPU changes its exception level or mode.
770 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
771 typedef struct ARMELChangeHook ARMELChangeHook;
772 struct ARMELChangeHook {
773 ARMELChangeHookFn *hook;
774 void *opaque;
775 QLIST_ENTRY(ARMELChangeHook) node;
778 /* These values map onto the return values for
779 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
780 typedef enum ARMPSCIState {
781 PSCI_ON = 0,
782 PSCI_OFF = 1,
783 PSCI_ON_PENDING = 2
784 } ARMPSCIState;
786 typedef struct ARMISARegisters ARMISARegisters;
789 * ARMCPU:
790 * @env: #CPUARMState
792 * An ARM CPU core.
794 struct ArchCPU {
795 /*< private >*/
796 CPUState parent_obj;
797 /*< public >*/
799 CPUNegativeOffsetState neg;
800 CPUARMState env;
802 /* Coprocessor information */
803 GHashTable *cp_regs;
804 /* For marshalling (mostly coprocessor) register state between the
805 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
806 * we use these arrays.
808 /* List of register indexes managed via these arrays; (full KVM style
809 * 64 bit indexes, not CPRegInfo 32 bit indexes)
811 uint64_t *cpreg_indexes;
812 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
813 uint64_t *cpreg_values;
814 /* Length of the indexes, values, reset_values arrays */
815 int32_t cpreg_array_len;
816 /* These are used only for migration: incoming data arrives in
817 * these fields and is sanity checked in post_load before copying
818 * to the working data structures above.
820 uint64_t *cpreg_vmstate_indexes;
821 uint64_t *cpreg_vmstate_values;
822 int32_t cpreg_vmstate_array_len;
824 DynamicGDBXMLInfo dyn_sysreg_xml;
825 DynamicGDBXMLInfo dyn_svereg_xml;
827 /* Timers used by the generic (architected) timer */
828 QEMUTimer *gt_timer[NUM_GTIMERS];
830 * Timer used by the PMU. Its state is restored after migration by
831 * pmu_op_finish() - it does not need other handling during migration
833 QEMUTimer *pmu_timer;
834 /* GPIO outputs for generic timer */
835 qemu_irq gt_timer_outputs[NUM_GTIMERS];
836 /* GPIO output for GICv3 maintenance interrupt signal */
837 qemu_irq gicv3_maintenance_interrupt;
838 /* GPIO output for the PMU interrupt */
839 qemu_irq pmu_interrupt;
841 /* MemoryRegion to use for secure physical accesses */
842 MemoryRegion *secure_memory;
844 /* MemoryRegion to use for allocation tag accesses */
845 MemoryRegion *tag_memory;
846 MemoryRegion *secure_tag_memory;
848 /* For v8M, pointer to the IDAU interface provided by board/SoC */
849 Object *idau;
851 /* 'compatible' string for this CPU for Linux device trees */
852 const char *dtb_compatible;
854 /* PSCI version for this CPU
855 * Bits[31:16] = Major Version
856 * Bits[15:0] = Minor Version
858 uint32_t psci_version;
860 /* Current power state, access guarded by BQL */
861 ARMPSCIState power_state;
863 /* CPU has virtualization extension */
864 bool has_el2;
865 /* CPU has security extension */
866 bool has_el3;
867 /* CPU has PMU (Performance Monitor Unit) */
868 bool has_pmu;
869 /* CPU has VFP */
870 bool has_vfp;
871 /* CPU has Neon */
872 bool has_neon;
873 /* CPU has M-profile DSP extension */
874 bool has_dsp;
876 /* CPU has memory protection unit */
877 bool has_mpu;
878 /* PMSAv7 MPU number of supported regions */
879 uint32_t pmsav7_dregion;
880 /* v8M SAU number of supported regions */
881 uint32_t sau_sregion;
883 /* PSCI conduit used to invoke PSCI methods
884 * 0 - disabled, 1 - smc, 2 - hvc
886 uint32_t psci_conduit;
888 /* For v8M, initial value of the Secure VTOR */
889 uint32_t init_svtor;
890 /* For v8M, initial value of the Non-secure VTOR */
891 uint32_t init_nsvtor;
893 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
894 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
896 uint32_t kvm_target;
898 /* KVM init features for this CPU */
899 uint32_t kvm_init_features[7];
901 /* KVM CPU state */
903 /* KVM virtual time adjustment */
904 bool kvm_adjvtime;
905 bool kvm_vtime_dirty;
906 uint64_t kvm_vtime;
908 /* KVM steal time */
909 OnOffAuto kvm_steal_time;
911 /* Uniprocessor system with MP extensions */
912 bool mp_is_up;
914 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
915 * and the probe failed (so we need to report the error in realize)
917 bool host_cpu_probe_failed;
919 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
920 * register.
922 int32_t core_count;
924 /* The instance init functions for implementation-specific subclasses
925 * set these fields to specify the implementation-dependent values of
926 * various constant registers and reset values of non-constant
927 * registers.
928 * Some of these might become QOM properties eventually.
929 * Field names match the official register names as defined in the
930 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
931 * is used for reset values of non-constant registers; no reset_
932 * prefix means a constant register.
933 * Some of these registers are split out into a substructure that
934 * is shared with the translators to control the ISA.
936 * Note that if you add an ID register to the ARMISARegisters struct
937 * you need to also update the 32-bit and 64-bit versions of the
938 * kvm_arm_get_host_cpu_features() function to correctly populate the
939 * field by reading the value from the KVM vCPU.
941 struct ARMISARegisters {
942 uint32_t id_isar0;
943 uint32_t id_isar1;
944 uint32_t id_isar2;
945 uint32_t id_isar3;
946 uint32_t id_isar4;
947 uint32_t id_isar5;
948 uint32_t id_isar6;
949 uint32_t id_mmfr0;
950 uint32_t id_mmfr1;
951 uint32_t id_mmfr2;
952 uint32_t id_mmfr3;
953 uint32_t id_mmfr4;
954 uint32_t id_pfr0;
955 uint32_t id_pfr1;
956 uint32_t id_pfr2;
957 uint32_t mvfr0;
958 uint32_t mvfr1;
959 uint32_t mvfr2;
960 uint32_t id_dfr0;
961 uint32_t dbgdidr;
962 uint64_t id_aa64isar0;
963 uint64_t id_aa64isar1;
964 uint64_t id_aa64pfr0;
965 uint64_t id_aa64pfr1;
966 uint64_t id_aa64mmfr0;
967 uint64_t id_aa64mmfr1;
968 uint64_t id_aa64mmfr2;
969 uint64_t id_aa64dfr0;
970 uint64_t id_aa64dfr1;
971 uint64_t id_aa64zfr0;
972 uint64_t id_aa64smfr0;
973 uint64_t reset_pmcr_el0;
974 } isar;
975 uint64_t midr;
976 uint32_t revidr;
977 uint32_t reset_fpsid;
978 uint64_t ctr;
979 uint32_t reset_sctlr;
980 uint64_t pmceid0;
981 uint64_t pmceid1;
982 uint32_t id_afr0;
983 uint64_t id_aa64afr0;
984 uint64_t id_aa64afr1;
985 uint64_t clidr;
986 uint64_t mp_affinity; /* MP ID without feature bits */
987 /* The elements of this array are the CCSIDR values for each cache,
988 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
990 uint64_t ccsidr[16];
991 uint64_t reset_cbar;
992 uint32_t reset_auxcr;
993 bool reset_hivecs;
996 * Intermediate values used during property parsing.
997 * Once finalized, the values should be read from ID_AA64*.
999 bool prop_pauth;
1000 bool prop_pauth_impdef;
1001 bool prop_lpa2;
1003 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1004 uint32_t dcz_blocksize;
1005 uint64_t rvbar_prop; /* Property/input signals. */
1007 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1008 int gic_num_lrs; /* number of list registers */
1009 int gic_vpribits; /* number of virtual priority bits */
1010 int gic_vprebits; /* number of virtual preemption bits */
1011 int gic_pribits; /* number of physical priority bits */
1013 /* Whether the cfgend input is high (i.e. this CPU should reset into
1014 * big-endian mode). This setting isn't used directly: instead it modifies
1015 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1016 * architecture version.
1018 bool cfgend;
1020 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1021 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1023 int32_t node_id; /* NUMA node this CPU belongs to */
1025 /* Used to synchronize KVM and QEMU in-kernel device levels */
1026 uint8_t device_irq_level;
1028 /* Used to set the maximum vector length the cpu will support. */
1029 uint32_t sve_max_vq;
1031 #ifdef CONFIG_USER_ONLY
1032 /* Used to set the default vector length at process start. */
1033 uint32_t sve_default_vq;
1034 #endif
1037 * In sve_vq_map each set bit is a supported vector length of
1038 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1039 * length in quadwords.
1041 * While processing properties during initialization, corresponding
1042 * sve_vq_init bits are set for bits in sve_vq_map that have been
1043 * set by properties.
1045 * Bits set in sve_vq_supported represent valid vector lengths for
1046 * the CPU type.
1048 uint32_t sve_vq_map;
1049 uint32_t sve_vq_init;
1050 uint32_t sve_vq_supported;
1052 /* Generic timer counter frequency, in Hz */
1053 uint64_t gt_cntfrq_hz;
1056 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1058 void arm_cpu_post_init(Object *obj);
1060 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1062 #ifndef CONFIG_USER_ONLY
1063 extern const VMStateDescription vmstate_arm_cpu;
1065 void arm_cpu_do_interrupt(CPUState *cpu);
1066 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1067 #endif /* !CONFIG_USER_ONLY */
1069 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1070 MemTxAttrs *attrs);
1072 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1073 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1076 * Helpers to dynamically generates XML descriptions of the sysregs
1077 * and SVE registers. Returns the number of registers in each set.
1079 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1080 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1082 /* Returns the dynamically generated XML for the gdb stub.
1083 * Returns a pointer to the XML contents for the specified XML file or NULL
1084 * if the XML name doesn't match the predefined one.
1086 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1088 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1089 int cpuid, void *opaque);
1090 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1091 int cpuid, void *opaque);
1093 #ifdef TARGET_AARCH64
1094 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1095 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1096 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1097 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1098 int new_el, bool el0_a64);
1099 void aarch64_add_sve_properties(Object *obj);
1100 void aarch64_add_pauth_properties(Object *obj);
1103 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1104 * The byte at offset i from the start of the in-memory representation contains
1105 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1106 * lowest offsets are stored in the lowest memory addresses, then that nearly
1107 * matches QEMU's representation, which is to use an array of host-endian
1108 * uint64_t's, where the lower offsets are at the lower indices. To complete
1109 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1111 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1113 #if HOST_BIG_ENDIAN
1114 int i;
1116 for (i = 0; i < nr; ++i) {
1117 dst[i] = bswap64(src[i]);
1120 return dst;
1121 #else
1122 return src;
1123 #endif
1126 #else
1127 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1128 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1129 int n, bool a)
1131 static inline void aarch64_add_sve_properties(Object *obj) { }
1132 #endif
1134 void aarch64_sync_32_to_64(CPUARMState *env);
1135 void aarch64_sync_64_to_32(CPUARMState *env);
1137 int fp_exception_el(CPUARMState *env, int cur_el);
1138 int sve_exception_el(CPUARMState *env, int cur_el);
1139 int sme_exception_el(CPUARMState *env, int cur_el);
1142 * sve_vqm1_for_el:
1143 * @env: CPUARMState
1144 * @el: exception level
1146 * Compute the current SVE vector length for @el, in units of
1147 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1149 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1151 static inline bool is_a64(CPUARMState *env)
1153 return env->aarch64;
1157 * pmu_op_start/finish
1158 * @env: CPUARMState
1160 * Convert all PMU counters between their delta form (the typical mode when
1161 * they are enabled) and the guest-visible values. These two calls must
1162 * surround any action which might affect the counters.
1164 void pmu_op_start(CPUARMState *env);
1165 void pmu_op_finish(CPUARMState *env);
1168 * Called when a PMU counter is due to overflow
1170 void arm_pmu_timer_cb(void *opaque);
1173 * Functions to register as EL change hooks for PMU mode filtering
1175 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1176 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1179 * pmu_init
1180 * @cpu: ARMCPU
1182 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1183 * for the current configuration
1185 void pmu_init(ARMCPU *cpu);
1187 /* SCTLR bit meanings. Several bits have been reused in newer
1188 * versions of the architecture; in that case we define constants
1189 * for both old and new bit meanings. Code which tests against those
1190 * bits should probably check or otherwise arrange that the CPU
1191 * is the architectural version it expects.
1193 #define SCTLR_M (1U << 0)
1194 #define SCTLR_A (1U << 1)
1195 #define SCTLR_C (1U << 2)
1196 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1197 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1198 #define SCTLR_SA (1U << 3) /* AArch64 only */
1199 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1200 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1201 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1202 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1203 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1204 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1205 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1206 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1207 #define SCTLR_ITD (1U << 7) /* v8 onward */
1208 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1209 #define SCTLR_SED (1U << 8) /* v8 onward */
1210 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1211 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1212 #define SCTLR_F (1U << 10) /* up to v6 */
1213 #define SCTLR_SW (1U << 10) /* v7 */
1214 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1215 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1216 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1217 #define SCTLR_I (1U << 12)
1218 #define SCTLR_V (1U << 13) /* AArch32 only */
1219 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1220 #define SCTLR_RR (1U << 14) /* up to v7 */
1221 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1222 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1223 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1224 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1225 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1226 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1227 #define SCTLR_BR (1U << 17) /* PMSA only */
1228 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1229 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1230 #define SCTLR_WXN (1U << 19)
1231 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1232 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1233 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1234 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1235 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1236 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1237 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1238 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1239 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1240 #define SCTLR_VE (1U << 24) /* up to v7 */
1241 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1242 #define SCTLR_EE (1U << 25)
1243 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1244 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1245 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1246 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1247 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1248 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1249 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1250 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1251 #define SCTLR_TE (1U << 30) /* AArch32 only */
1252 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1253 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1254 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1255 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1256 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1257 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1258 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1259 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1260 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1261 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1262 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1263 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1264 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1265 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1266 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1267 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1268 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1269 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1270 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1271 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1272 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1273 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1274 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1275 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1276 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
1278 /* Bit definitions for CPACR (AArch32 only) */
1279 FIELD(CPACR, CP10, 20, 2)
1280 FIELD(CPACR, CP11, 22, 2)
1281 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1282 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1283 FIELD(CPACR, ASEDIS, 31, 1)
1285 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1286 FIELD(CPACR_EL1, ZEN, 16, 2)
1287 FIELD(CPACR_EL1, FPEN, 20, 2)
1288 FIELD(CPACR_EL1, SMEN, 24, 2)
1289 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1291 /* Bit definitions for HCPTR (AArch32 only) */
1292 FIELD(HCPTR, TCP10, 10, 1)
1293 FIELD(HCPTR, TCP11, 11, 1)
1294 FIELD(HCPTR, TASE, 15, 1)
1295 FIELD(HCPTR, TTA, 20, 1)
1296 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1297 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1299 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1300 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1301 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1302 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1303 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1304 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1305 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1306 FIELD(CPTR_EL2, TTA, 28, 1)
1307 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1308 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1310 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1311 FIELD(CPTR_EL3, EZ, 8, 1)
1312 FIELD(CPTR_EL3, TFP, 10, 1)
1313 FIELD(CPTR_EL3, ESM, 12, 1)
1314 FIELD(CPTR_EL3, TTA, 20, 1)
1315 FIELD(CPTR_EL3, TAM, 30, 1)
1316 FIELD(CPTR_EL3, TCPAC, 31, 1)
1318 #define MDCR_EPMAD (1U << 21)
1319 #define MDCR_EDAD (1U << 20)
1320 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1321 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1322 #define MDCR_SDD (1U << 16)
1323 #define MDCR_SPD (3U << 14)
1324 #define MDCR_TDRA (1U << 11)
1325 #define MDCR_TDOSA (1U << 10)
1326 #define MDCR_TDA (1U << 9)
1327 #define MDCR_TDE (1U << 8)
1328 #define MDCR_HPME (1U << 7)
1329 #define MDCR_TPM (1U << 6)
1330 #define MDCR_TPMCR (1U << 5)
1331 #define MDCR_HPMN (0x1fU)
1333 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1334 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1336 #define CPSR_M (0x1fU)
1337 #define CPSR_T (1U << 5)
1338 #define CPSR_F (1U << 6)
1339 #define CPSR_I (1U << 7)
1340 #define CPSR_A (1U << 8)
1341 #define CPSR_E (1U << 9)
1342 #define CPSR_IT_2_7 (0xfc00U)
1343 #define CPSR_GE (0xfU << 16)
1344 #define CPSR_IL (1U << 20)
1345 #define CPSR_DIT (1U << 21)
1346 #define CPSR_PAN (1U << 22)
1347 #define CPSR_SSBS (1U << 23)
1348 #define CPSR_J (1U << 24)
1349 #define CPSR_IT_0_1 (3U << 25)
1350 #define CPSR_Q (1U << 27)
1351 #define CPSR_V (1U << 28)
1352 #define CPSR_C (1U << 29)
1353 #define CPSR_Z (1U << 30)
1354 #define CPSR_N (1U << 31)
1355 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1356 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1358 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1359 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1360 | CPSR_NZCV)
1361 /* Bits writable in user mode. */
1362 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1363 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1364 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1366 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1367 #define XPSR_EXCP 0x1ffU
1368 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1369 #define XPSR_IT_2_7 CPSR_IT_2_7
1370 #define XPSR_GE CPSR_GE
1371 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1372 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1373 #define XPSR_IT_0_1 CPSR_IT_0_1
1374 #define XPSR_Q CPSR_Q
1375 #define XPSR_V CPSR_V
1376 #define XPSR_C CPSR_C
1377 #define XPSR_Z CPSR_Z
1378 #define XPSR_N CPSR_N
1379 #define XPSR_NZCV CPSR_NZCV
1380 #define XPSR_IT CPSR_IT
1382 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1383 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1384 #define TTBCR_PD0 (1U << 4)
1385 #define TTBCR_PD1 (1U << 5)
1386 #define TTBCR_EPD0 (1U << 7)
1387 #define TTBCR_IRGN0 (3U << 8)
1388 #define TTBCR_ORGN0 (3U << 10)
1389 #define TTBCR_SH0 (3U << 12)
1390 #define TTBCR_T1SZ (3U << 16)
1391 #define TTBCR_A1 (1U << 22)
1392 #define TTBCR_EPD1 (1U << 23)
1393 #define TTBCR_IRGN1 (3U << 24)
1394 #define TTBCR_ORGN1 (3U << 26)
1395 #define TTBCR_SH1 (1U << 28)
1396 #define TTBCR_EAE (1U << 31)
1398 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1399 * Only these are valid when in AArch64 mode; in
1400 * AArch32 mode SPSRs are basically CPSR-format.
1402 #define PSTATE_SP (1U)
1403 #define PSTATE_M (0xFU)
1404 #define PSTATE_nRW (1U << 4)
1405 #define PSTATE_F (1U << 6)
1406 #define PSTATE_I (1U << 7)
1407 #define PSTATE_A (1U << 8)
1408 #define PSTATE_D (1U << 9)
1409 #define PSTATE_BTYPE (3U << 10)
1410 #define PSTATE_SSBS (1U << 12)
1411 #define PSTATE_IL (1U << 20)
1412 #define PSTATE_SS (1U << 21)
1413 #define PSTATE_PAN (1U << 22)
1414 #define PSTATE_UAO (1U << 23)
1415 #define PSTATE_DIT (1U << 24)
1416 #define PSTATE_TCO (1U << 25)
1417 #define PSTATE_V (1U << 28)
1418 #define PSTATE_C (1U << 29)
1419 #define PSTATE_Z (1U << 30)
1420 #define PSTATE_N (1U << 31)
1421 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1422 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1423 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1424 /* Mode values for AArch64 */
1425 #define PSTATE_MODE_EL3h 13
1426 #define PSTATE_MODE_EL3t 12
1427 #define PSTATE_MODE_EL2h 9
1428 #define PSTATE_MODE_EL2t 8
1429 #define PSTATE_MODE_EL1h 5
1430 #define PSTATE_MODE_EL1t 4
1431 #define PSTATE_MODE_EL0t 0
1433 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1434 FIELD(SVCR, SM, 0, 1)
1435 FIELD(SVCR, ZA, 1, 1)
1437 /* Fields for SMCR_ELx. */
1438 FIELD(SMCR, LEN, 0, 4)
1439 FIELD(SMCR, FA64, 31, 1)
1441 /* Write a new value to v7m.exception, thus transitioning into or out
1442 * of Handler mode; this may result in a change of active stack pointer.
1444 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1446 /* Map EL and handler into a PSTATE_MODE. */
1447 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1449 return (el << 2) | handler;
1452 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1453 * interprocessing, so we don't attempt to sync with the cpsr state used by
1454 * the 32 bit decoder.
1456 static inline uint32_t pstate_read(CPUARMState *env)
1458 int ZF;
1460 ZF = (env->ZF == 0);
1461 return (env->NF & 0x80000000) | (ZF << 30)
1462 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1463 | env->pstate | env->daif | (env->btype << 10);
1466 static inline void pstate_write(CPUARMState *env, uint32_t val)
1468 env->ZF = (~val) & PSTATE_Z;
1469 env->NF = val;
1470 env->CF = (val >> 29) & 1;
1471 env->VF = (val << 3) & 0x80000000;
1472 env->daif = val & PSTATE_DAIF;
1473 env->btype = (val >> 10) & 3;
1474 env->pstate = val & ~CACHED_PSTATE_BITS;
1477 /* Return the current CPSR value. */
1478 uint32_t cpsr_read(CPUARMState *env);
1480 typedef enum CPSRWriteType {
1481 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1482 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1483 CPSRWriteRaw = 2,
1484 /* trust values, no reg bank switch, no hflags rebuild */
1485 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1486 } CPSRWriteType;
1489 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1490 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1491 * correspond to TB flags bits cached in the hflags, unless @write_type
1492 * is CPSRWriteRaw.
1494 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1495 CPSRWriteType write_type);
1497 /* Return the current xPSR value. */
1498 static inline uint32_t xpsr_read(CPUARMState *env)
1500 int ZF;
1501 ZF = (env->ZF == 0);
1502 return (env->NF & 0x80000000) | (ZF << 30)
1503 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1504 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1505 | ((env->condexec_bits & 0xfc) << 8)
1506 | (env->GE << 16)
1507 | env->v7m.exception;
1510 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1511 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1513 if (mask & XPSR_NZCV) {
1514 env->ZF = (~val) & XPSR_Z;
1515 env->NF = val;
1516 env->CF = (val >> 29) & 1;
1517 env->VF = (val << 3) & 0x80000000;
1519 if (mask & XPSR_Q) {
1520 env->QF = ((val & XPSR_Q) != 0);
1522 if (mask & XPSR_GE) {
1523 env->GE = (val & XPSR_GE) >> 16;
1525 #ifndef CONFIG_USER_ONLY
1526 if (mask & XPSR_T) {
1527 env->thumb = ((val & XPSR_T) != 0);
1529 if (mask & XPSR_IT_0_1) {
1530 env->condexec_bits &= ~3;
1531 env->condexec_bits |= (val >> 25) & 3;
1533 if (mask & XPSR_IT_2_7) {
1534 env->condexec_bits &= 3;
1535 env->condexec_bits |= (val >> 8) & 0xfc;
1537 if (mask & XPSR_EXCP) {
1538 /* Note that this only happens on exception exit */
1539 write_v7m_exception(env, val & XPSR_EXCP);
1541 #endif
1544 #define HCR_VM (1ULL << 0)
1545 #define HCR_SWIO (1ULL << 1)
1546 #define HCR_PTW (1ULL << 2)
1547 #define HCR_FMO (1ULL << 3)
1548 #define HCR_IMO (1ULL << 4)
1549 #define HCR_AMO (1ULL << 5)
1550 #define HCR_VF (1ULL << 6)
1551 #define HCR_VI (1ULL << 7)
1552 #define HCR_VSE (1ULL << 8)
1553 #define HCR_FB (1ULL << 9)
1554 #define HCR_BSU_MASK (3ULL << 10)
1555 #define HCR_DC (1ULL << 12)
1556 #define HCR_TWI (1ULL << 13)
1557 #define HCR_TWE (1ULL << 14)
1558 #define HCR_TID0 (1ULL << 15)
1559 #define HCR_TID1 (1ULL << 16)
1560 #define HCR_TID2 (1ULL << 17)
1561 #define HCR_TID3 (1ULL << 18)
1562 #define HCR_TSC (1ULL << 19)
1563 #define HCR_TIDCP (1ULL << 20)
1564 #define HCR_TACR (1ULL << 21)
1565 #define HCR_TSW (1ULL << 22)
1566 #define HCR_TPCP (1ULL << 23)
1567 #define HCR_TPU (1ULL << 24)
1568 #define HCR_TTLB (1ULL << 25)
1569 #define HCR_TVM (1ULL << 26)
1570 #define HCR_TGE (1ULL << 27)
1571 #define HCR_TDZ (1ULL << 28)
1572 #define HCR_HCD (1ULL << 29)
1573 #define HCR_TRVM (1ULL << 30)
1574 #define HCR_RW (1ULL << 31)
1575 #define HCR_CD (1ULL << 32)
1576 #define HCR_ID (1ULL << 33)
1577 #define HCR_E2H (1ULL << 34)
1578 #define HCR_TLOR (1ULL << 35)
1579 #define HCR_TERR (1ULL << 36)
1580 #define HCR_TEA (1ULL << 37)
1581 #define HCR_MIOCNCE (1ULL << 38)
1582 /* RES0 bit 39 */
1583 #define HCR_APK (1ULL << 40)
1584 #define HCR_API (1ULL << 41)
1585 #define HCR_NV (1ULL << 42)
1586 #define HCR_NV1 (1ULL << 43)
1587 #define HCR_AT (1ULL << 44)
1588 #define HCR_NV2 (1ULL << 45)
1589 #define HCR_FWB (1ULL << 46)
1590 #define HCR_FIEN (1ULL << 47)
1591 /* RES0 bit 48 */
1592 #define HCR_TID4 (1ULL << 49)
1593 #define HCR_TICAB (1ULL << 50)
1594 #define HCR_AMVOFFEN (1ULL << 51)
1595 #define HCR_TOCU (1ULL << 52)
1596 #define HCR_ENSCXT (1ULL << 53)
1597 #define HCR_TTLBIS (1ULL << 54)
1598 #define HCR_TTLBOS (1ULL << 55)
1599 #define HCR_ATA (1ULL << 56)
1600 #define HCR_DCT (1ULL << 57)
1601 #define HCR_TID5 (1ULL << 58)
1602 #define HCR_TWEDEN (1ULL << 59)
1603 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
1605 #define HCRX_ENAS0 (1ULL << 0)
1606 #define HCRX_ENALS (1ULL << 1)
1607 #define HCRX_ENASR (1ULL << 2)
1608 #define HCRX_FNXS (1ULL << 3)
1609 #define HCRX_FGTNXS (1ULL << 4)
1610 #define HCRX_SMPME (1ULL << 5)
1611 #define HCRX_TALLINT (1ULL << 6)
1612 #define HCRX_VINMI (1ULL << 7)
1613 #define HCRX_VFNMI (1ULL << 8)
1614 #define HCRX_CMOW (1ULL << 9)
1615 #define HCRX_MCE2 (1ULL << 10)
1616 #define HCRX_MSCEN (1ULL << 11)
1618 #define HPFAR_NS (1ULL << 63)
1620 #define SCR_NS (1U << 0)
1621 #define SCR_IRQ (1U << 1)
1622 #define SCR_FIQ (1U << 2)
1623 #define SCR_EA (1U << 3)
1624 #define SCR_FW (1U << 4)
1625 #define SCR_AW (1U << 5)
1626 #define SCR_NET (1U << 6)
1627 #define SCR_SMD (1U << 7)
1628 #define SCR_HCE (1U << 8)
1629 #define SCR_SIF (1U << 9)
1630 #define SCR_RW (1U << 10)
1631 #define SCR_ST (1U << 11)
1632 #define SCR_TWI (1U << 12)
1633 #define SCR_TWE (1U << 13)
1634 #define SCR_TLOR (1U << 14)
1635 #define SCR_TERR (1U << 15)
1636 #define SCR_APK (1U << 16)
1637 #define SCR_API (1U << 17)
1638 #define SCR_EEL2 (1U << 18)
1639 #define SCR_EASE (1U << 19)
1640 #define SCR_NMEA (1U << 20)
1641 #define SCR_FIEN (1U << 21)
1642 #define SCR_ENSCXT (1U << 25)
1643 #define SCR_ATA (1U << 26)
1644 #define SCR_FGTEN (1U << 27)
1645 #define SCR_ECVEN (1U << 28)
1646 #define SCR_TWEDEN (1U << 29)
1647 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1648 #define SCR_TME (1ULL << 34)
1649 #define SCR_AMVOFFEN (1ULL << 35)
1650 #define SCR_ENAS0 (1ULL << 36)
1651 #define SCR_ADEN (1ULL << 37)
1652 #define SCR_HXEN (1ULL << 38)
1653 #define SCR_TRNDR (1ULL << 40)
1654 #define SCR_ENTP2 (1ULL << 41)
1655 #define SCR_GPF (1ULL << 48)
1657 #define HSTR_TTEE (1 << 16)
1658 #define HSTR_TJDBX (1 << 17)
1660 /* Return the current FPSCR value. */
1661 uint32_t vfp_get_fpscr(CPUARMState *env);
1662 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1664 /* FPCR, Floating Point Control Register
1665 * FPSR, Floating Poiht Status Register
1667 * For A64 the FPSCR is split into two logically distinct registers,
1668 * FPCR and FPSR. However since they still use non-overlapping bits
1669 * we store the underlying state in fpscr and just mask on read/write.
1671 #define FPSR_MASK 0xf800009f
1672 #define FPCR_MASK 0x07ff9f00
1674 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1675 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1676 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1677 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1678 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1679 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1680 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1681 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1682 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1683 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1684 #define FPCR_AHP (1 << 26) /* Alternative half-precision */
1685 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1686 #define FPCR_V (1 << 28) /* FP overflow flag */
1687 #define FPCR_C (1 << 29) /* FP carry flag */
1688 #define FPCR_Z (1 << 30) /* FP zero flag */
1689 #define FPCR_N (1 << 31) /* FP negative flag */
1691 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1692 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1693 #define FPCR_LTPSIZE_LENGTH 3
1695 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1696 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1698 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1700 return vfp_get_fpscr(env) & FPSR_MASK;
1703 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1705 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1706 vfp_set_fpscr(env, new_fpscr);
1709 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1711 return vfp_get_fpscr(env) & FPCR_MASK;
1714 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1716 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1717 vfp_set_fpscr(env, new_fpscr);
1720 enum arm_cpu_mode {
1721 ARM_CPU_MODE_USR = 0x10,
1722 ARM_CPU_MODE_FIQ = 0x11,
1723 ARM_CPU_MODE_IRQ = 0x12,
1724 ARM_CPU_MODE_SVC = 0x13,
1725 ARM_CPU_MODE_MON = 0x16,
1726 ARM_CPU_MODE_ABT = 0x17,
1727 ARM_CPU_MODE_HYP = 0x1a,
1728 ARM_CPU_MODE_UND = 0x1b,
1729 ARM_CPU_MODE_SYS = 0x1f
1732 /* VFP system registers. */
1733 #define ARM_VFP_FPSID 0
1734 #define ARM_VFP_FPSCR 1
1735 #define ARM_VFP_MVFR2 5
1736 #define ARM_VFP_MVFR1 6
1737 #define ARM_VFP_MVFR0 7
1738 #define ARM_VFP_FPEXC 8
1739 #define ARM_VFP_FPINST 9
1740 #define ARM_VFP_FPINST2 10
1741 /* These ones are M-profile only */
1742 #define ARM_VFP_FPSCR_NZCVQC 2
1743 #define ARM_VFP_VPR 12
1744 #define ARM_VFP_P0 13
1745 #define ARM_VFP_FPCXT_NS 14
1746 #define ARM_VFP_FPCXT_S 15
1748 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1749 #define QEMU_VFP_FPSCR_NZCV 0xffff
1751 /* iwMMXt coprocessor control registers. */
1752 #define ARM_IWMMXT_wCID 0
1753 #define ARM_IWMMXT_wCon 1
1754 #define ARM_IWMMXT_wCSSF 2
1755 #define ARM_IWMMXT_wCASF 3
1756 #define ARM_IWMMXT_wCGR0 8
1757 #define ARM_IWMMXT_wCGR1 9
1758 #define ARM_IWMMXT_wCGR2 10
1759 #define ARM_IWMMXT_wCGR3 11
1761 /* V7M CCR bits */
1762 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1763 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1764 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1765 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1766 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1767 FIELD(V7M_CCR, STKALIGN, 9, 1)
1768 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1769 FIELD(V7M_CCR, DC, 16, 1)
1770 FIELD(V7M_CCR, IC, 17, 1)
1771 FIELD(V7M_CCR, BP, 18, 1)
1772 FIELD(V7M_CCR, LOB, 19, 1)
1773 FIELD(V7M_CCR, TRD, 20, 1)
1775 /* V7M SCR bits */
1776 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1777 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1778 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1779 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1781 /* V7M AIRCR bits */
1782 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1783 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1784 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1785 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1786 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1787 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1788 FIELD(V7M_AIRCR, PRIS, 14, 1)
1789 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1790 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1792 /* V7M CFSR bits for MMFSR */
1793 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1794 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1795 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1796 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1797 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1798 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1800 /* V7M CFSR bits for BFSR */
1801 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1802 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1803 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1804 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1805 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1806 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1807 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1809 /* V7M CFSR bits for UFSR */
1810 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1811 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1812 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1813 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1814 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1815 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1816 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1818 /* V7M CFSR bit masks covering all of the subregister bits */
1819 FIELD(V7M_CFSR, MMFSR, 0, 8)
1820 FIELD(V7M_CFSR, BFSR, 8, 8)
1821 FIELD(V7M_CFSR, UFSR, 16, 16)
1823 /* V7M HFSR bits */
1824 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1825 FIELD(V7M_HFSR, FORCED, 30, 1)
1826 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1828 /* V7M DFSR bits */
1829 FIELD(V7M_DFSR, HALTED, 0, 1)
1830 FIELD(V7M_DFSR, BKPT, 1, 1)
1831 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1832 FIELD(V7M_DFSR, VCATCH, 3, 1)
1833 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1835 /* V7M SFSR bits */
1836 FIELD(V7M_SFSR, INVEP, 0, 1)
1837 FIELD(V7M_SFSR, INVIS, 1, 1)
1838 FIELD(V7M_SFSR, INVER, 2, 1)
1839 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1840 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1841 FIELD(V7M_SFSR, LSPERR, 5, 1)
1842 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1843 FIELD(V7M_SFSR, LSERR, 7, 1)
1845 /* v7M MPU_CTRL bits */
1846 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1847 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1848 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1850 /* v7M CLIDR bits */
1851 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1852 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1853 FIELD(V7M_CLIDR, LOC, 24, 3)
1854 FIELD(V7M_CLIDR, LOUU, 27, 3)
1855 FIELD(V7M_CLIDR, ICB, 30, 2)
1857 FIELD(V7M_CSSELR, IND, 0, 1)
1858 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1859 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1860 * define a mask for this and check that it doesn't permit running off
1861 * the end of the array.
1863 FIELD(V7M_CSSELR, INDEX, 0, 4)
1865 /* v7M FPCCR bits */
1866 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1867 FIELD(V7M_FPCCR, USER, 1, 1)
1868 FIELD(V7M_FPCCR, S, 2, 1)
1869 FIELD(V7M_FPCCR, THREAD, 3, 1)
1870 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1871 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1872 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1873 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1874 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1875 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1876 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1877 FIELD(V7M_FPCCR, RES0, 11, 15)
1878 FIELD(V7M_FPCCR, TS, 26, 1)
1879 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1880 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1881 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1882 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1883 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1884 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1885 #define R_V7M_FPCCR_BANKED_MASK \
1886 (R_V7M_FPCCR_LSPACT_MASK | \
1887 R_V7M_FPCCR_USER_MASK | \
1888 R_V7M_FPCCR_THREAD_MASK | \
1889 R_V7M_FPCCR_MMRDY_MASK | \
1890 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1891 R_V7M_FPCCR_UFRDY_MASK | \
1892 R_V7M_FPCCR_ASPEN_MASK)
1894 /* v7M VPR bits */
1895 FIELD(V7M_VPR, P0, 0, 16)
1896 FIELD(V7M_VPR, MASK01, 16, 4)
1897 FIELD(V7M_VPR, MASK23, 20, 4)
1900 * System register ID fields.
1902 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1903 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1904 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1905 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1906 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1907 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1908 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1909 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1910 FIELD(CLIDR_EL1, LOC, 24, 3)
1911 FIELD(CLIDR_EL1, LOUU, 27, 3)
1912 FIELD(CLIDR_EL1, ICB, 30, 3)
1914 /* When FEAT_CCIDX is implemented */
1915 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1916 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1917 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1919 /* When FEAT_CCIDX is not implemented */
1920 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1921 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1922 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1924 FIELD(CTR_EL0, IMINLINE, 0, 4)
1925 FIELD(CTR_EL0, L1IP, 14, 2)
1926 FIELD(CTR_EL0, DMINLINE, 16, 4)
1927 FIELD(CTR_EL0, ERG, 20, 4)
1928 FIELD(CTR_EL0, CWG, 24, 4)
1929 FIELD(CTR_EL0, IDC, 28, 1)
1930 FIELD(CTR_EL0, DIC, 29, 1)
1931 FIELD(CTR_EL0, TMINLINE, 32, 6)
1933 FIELD(MIDR_EL1, REVISION, 0, 4)
1934 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1935 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1936 FIELD(MIDR_EL1, VARIANT, 20, 4)
1937 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1939 FIELD(ID_ISAR0, SWAP, 0, 4)
1940 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1941 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1942 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1943 FIELD(ID_ISAR0, COPROC, 16, 4)
1944 FIELD(ID_ISAR0, DEBUG, 20, 4)
1945 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1947 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1948 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1949 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1950 FIELD(ID_ISAR1, EXTEND, 12, 4)
1951 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1952 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1953 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1954 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1956 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1957 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1958 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1959 FIELD(ID_ISAR2, MULT, 12, 4)
1960 FIELD(ID_ISAR2, MULTS, 16, 4)
1961 FIELD(ID_ISAR2, MULTU, 20, 4)
1962 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1963 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1965 FIELD(ID_ISAR3, SATURATE, 0, 4)
1966 FIELD(ID_ISAR3, SIMD, 4, 4)
1967 FIELD(ID_ISAR3, SVC, 8, 4)
1968 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1969 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1970 FIELD(ID_ISAR3, T32COPY, 20, 4)
1971 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1972 FIELD(ID_ISAR3, T32EE, 28, 4)
1974 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1975 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1976 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1977 FIELD(ID_ISAR4, SMC, 12, 4)
1978 FIELD(ID_ISAR4, BARRIER, 16, 4)
1979 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1980 FIELD(ID_ISAR4, PSR_M, 24, 4)
1981 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1983 FIELD(ID_ISAR5, SEVL, 0, 4)
1984 FIELD(ID_ISAR5, AES, 4, 4)
1985 FIELD(ID_ISAR5, SHA1, 8, 4)
1986 FIELD(ID_ISAR5, SHA2, 12, 4)
1987 FIELD(ID_ISAR5, CRC32, 16, 4)
1988 FIELD(ID_ISAR5, RDM, 24, 4)
1989 FIELD(ID_ISAR5, VCMA, 28, 4)
1991 FIELD(ID_ISAR6, JSCVT, 0, 4)
1992 FIELD(ID_ISAR6, DP, 4, 4)
1993 FIELD(ID_ISAR6, FHM, 8, 4)
1994 FIELD(ID_ISAR6, SB, 12, 4)
1995 FIELD(ID_ISAR6, SPECRES, 16, 4)
1996 FIELD(ID_ISAR6, BF16, 20, 4)
1997 FIELD(ID_ISAR6, I8MM, 24, 4)
1999 FIELD(ID_MMFR0, VMSA, 0, 4)
2000 FIELD(ID_MMFR0, PMSA, 4, 4)
2001 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2002 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2003 FIELD(ID_MMFR0, TCM, 16, 4)
2004 FIELD(ID_MMFR0, AUXREG, 20, 4)
2005 FIELD(ID_MMFR0, FCSE, 24, 4)
2006 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2008 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2009 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2010 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2011 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2012 FIELD(ID_MMFR1, L1HVD, 16, 4)
2013 FIELD(ID_MMFR1, L1UNI, 20, 4)
2014 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2015 FIELD(ID_MMFR1, BPRED, 28, 4)
2017 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2018 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2019 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2020 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2021 FIELD(ID_MMFR2, UNITLB, 16, 4)
2022 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2023 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2024 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2026 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2027 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2028 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2029 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2030 FIELD(ID_MMFR3, PAN, 16, 4)
2031 FIELD(ID_MMFR3, COHWALK, 20, 4)
2032 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2033 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2035 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2036 FIELD(ID_MMFR4, AC2, 4, 4)
2037 FIELD(ID_MMFR4, XNX, 8, 4)
2038 FIELD(ID_MMFR4, CNP, 12, 4)
2039 FIELD(ID_MMFR4, HPDS, 16, 4)
2040 FIELD(ID_MMFR4, LSM, 20, 4)
2041 FIELD(ID_MMFR4, CCIDX, 24, 4)
2042 FIELD(ID_MMFR4, EVT, 28, 4)
2044 FIELD(ID_MMFR5, ETS, 0, 4)
2045 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2047 FIELD(ID_PFR0, STATE0, 0, 4)
2048 FIELD(ID_PFR0, STATE1, 4, 4)
2049 FIELD(ID_PFR0, STATE2, 8, 4)
2050 FIELD(ID_PFR0, STATE3, 12, 4)
2051 FIELD(ID_PFR0, CSV2, 16, 4)
2052 FIELD(ID_PFR0, AMU, 20, 4)
2053 FIELD(ID_PFR0, DIT, 24, 4)
2054 FIELD(ID_PFR0, RAS, 28, 4)
2056 FIELD(ID_PFR1, PROGMOD, 0, 4)
2057 FIELD(ID_PFR1, SECURITY, 4, 4)
2058 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2059 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2060 FIELD(ID_PFR1, GENTIMER, 16, 4)
2061 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2062 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2063 FIELD(ID_PFR1, GIC, 28, 4)
2065 FIELD(ID_PFR2, CSV3, 0, 4)
2066 FIELD(ID_PFR2, SSBS, 4, 4)
2067 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2069 FIELD(ID_AA64ISAR0, AES, 4, 4)
2070 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2071 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2072 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2073 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2074 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2075 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2076 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2077 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2078 FIELD(ID_AA64ISAR0, DP, 44, 4)
2079 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2080 FIELD(ID_AA64ISAR0, TS, 52, 4)
2081 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2082 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2084 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2085 FIELD(ID_AA64ISAR1, APA, 4, 4)
2086 FIELD(ID_AA64ISAR1, API, 8, 4)
2087 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2088 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2089 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2090 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2091 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2092 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2093 FIELD(ID_AA64ISAR1, SB, 36, 4)
2094 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2095 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2096 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2097 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2098 FIELD(ID_AA64ISAR1, XS, 56, 4)
2099 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2101 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2102 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2103 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2104 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2105 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2106 FIELD(ID_AA64ISAR2, BC, 20, 4)
2107 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2109 FIELD(ID_AA64PFR0, EL0, 0, 4)
2110 FIELD(ID_AA64PFR0, EL1, 4, 4)
2111 FIELD(ID_AA64PFR0, EL2, 8, 4)
2112 FIELD(ID_AA64PFR0, EL3, 12, 4)
2113 FIELD(ID_AA64PFR0, FP, 16, 4)
2114 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2115 FIELD(ID_AA64PFR0, GIC, 24, 4)
2116 FIELD(ID_AA64PFR0, RAS, 28, 4)
2117 FIELD(ID_AA64PFR0, SVE, 32, 4)
2118 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2119 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2120 FIELD(ID_AA64PFR0, AMU, 44, 4)
2121 FIELD(ID_AA64PFR0, DIT, 48, 4)
2122 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2123 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2125 FIELD(ID_AA64PFR1, BT, 0, 4)
2126 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2127 FIELD(ID_AA64PFR1, MTE, 8, 4)
2128 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2129 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2130 FIELD(ID_AA64PFR1, SME, 24, 4)
2131 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2132 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2133 FIELD(ID_AA64PFR1, NMI, 36, 4)
2135 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2136 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2137 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2138 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2139 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2140 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2141 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2142 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2143 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2144 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2145 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2146 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2147 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2148 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2150 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2151 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2152 FIELD(ID_AA64MMFR1, VH, 8, 4)
2153 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2154 FIELD(ID_AA64MMFR1, LO, 16, 4)
2155 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2156 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2157 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2158 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2159 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2160 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2161 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2162 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2163 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2164 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2166 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2167 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2168 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2169 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2170 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2171 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2172 FIELD(ID_AA64MMFR2, NV, 24, 4)
2173 FIELD(ID_AA64MMFR2, ST, 28, 4)
2174 FIELD(ID_AA64MMFR2, AT, 32, 4)
2175 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2176 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2177 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2178 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2179 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2180 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2182 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2183 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2184 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2185 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2186 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2187 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2188 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2189 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2190 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2191 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2192 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2193 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2194 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2196 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2197 FIELD(ID_AA64ZFR0, AES, 4, 4)
2198 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2199 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2200 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2201 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2202 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2203 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2204 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2206 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2207 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2208 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2209 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2210 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2211 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2212 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2213 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2215 FIELD(ID_DFR0, COPDBG, 0, 4)
2216 FIELD(ID_DFR0, COPSDBG, 4, 4)
2217 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2218 FIELD(ID_DFR0, COPTRC, 12, 4)
2219 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2220 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2221 FIELD(ID_DFR0, PERFMON, 24, 4)
2222 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2224 FIELD(ID_DFR1, MTPMU, 0, 4)
2225 FIELD(ID_DFR1, HPMN0, 4, 4)
2227 FIELD(DBGDIDR, SE_IMP, 12, 1)
2228 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2229 FIELD(DBGDIDR, VERSION, 16, 4)
2230 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2231 FIELD(DBGDIDR, BRPS, 24, 4)
2232 FIELD(DBGDIDR, WRPS, 28, 4)
2234 FIELD(MVFR0, SIMDREG, 0, 4)
2235 FIELD(MVFR0, FPSP, 4, 4)
2236 FIELD(MVFR0, FPDP, 8, 4)
2237 FIELD(MVFR0, FPTRAP, 12, 4)
2238 FIELD(MVFR0, FPDIVIDE, 16, 4)
2239 FIELD(MVFR0, FPSQRT, 20, 4)
2240 FIELD(MVFR0, FPSHVEC, 24, 4)
2241 FIELD(MVFR0, FPROUND, 28, 4)
2243 FIELD(MVFR1, FPFTZ, 0, 4)
2244 FIELD(MVFR1, FPDNAN, 4, 4)
2245 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2246 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2247 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2248 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2249 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2250 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2251 FIELD(MVFR1, FPHP, 24, 4)
2252 FIELD(MVFR1, SIMDFMAC, 28, 4)
2254 FIELD(MVFR2, SIMDMISC, 0, 4)
2255 FIELD(MVFR2, FPMISC, 4, 4)
2257 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2259 /* If adding a feature bit which corresponds to a Linux ELF
2260 * HWCAP bit, remember to update the feature-bit-to-hwcap
2261 * mapping in linux-user/elfload.c:get_elf_hwcap().
2263 enum arm_features {
2264 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2265 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
2266 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
2267 ARM_FEATURE_V6,
2268 ARM_FEATURE_V6K,
2269 ARM_FEATURE_V7,
2270 ARM_FEATURE_THUMB2,
2271 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
2272 ARM_FEATURE_NEON,
2273 ARM_FEATURE_M, /* Microcontroller profile. */
2274 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
2275 ARM_FEATURE_THUMB2EE,
2276 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
2277 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2278 ARM_FEATURE_V4T,
2279 ARM_FEATURE_V5,
2280 ARM_FEATURE_STRONGARM,
2281 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2282 ARM_FEATURE_GENERIC_TIMER,
2283 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2284 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2285 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2286 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2287 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2288 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2289 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2290 ARM_FEATURE_V8,
2291 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2292 ARM_FEATURE_CBAR, /* has cp15 CBAR */
2293 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2294 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2295 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2296 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2297 ARM_FEATURE_PMU, /* has PMU support */
2298 ARM_FEATURE_VBAR, /* has cp15 VBAR */
2299 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2300 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2301 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2304 static inline int arm_feature(CPUARMState *env, int feature)
2306 return (env->features & (1ULL << feature)) != 0;
2309 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2311 #if !defined(CONFIG_USER_ONLY)
2312 /* Return true if exception levels below EL3 are in secure state,
2313 * or would be following an exception return to that level.
2314 * Unlike arm_is_secure() (which is always a question about the
2315 * _current_ state of the CPU) this doesn't care about the current
2316 * EL or mode.
2318 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2320 if (arm_feature(env, ARM_FEATURE_EL3)) {
2321 return !(env->cp15.scr_el3 & SCR_NS);
2322 } else {
2323 /* If EL3 is not supported then the secure state is implementation
2324 * defined, in which case QEMU defaults to non-secure.
2326 return false;
2330 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2331 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2333 if (arm_feature(env, ARM_FEATURE_EL3)) {
2334 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2335 /* CPU currently in AArch64 state and EL3 */
2336 return true;
2337 } else if (!is_a64(env) &&
2338 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2339 /* CPU currently in AArch32 state and monitor mode */
2340 return true;
2343 return false;
2346 /* Return true if the processor is in secure state */
2347 static inline bool arm_is_secure(CPUARMState *env)
2349 if (arm_is_el3_or_mon(env)) {
2350 return true;
2352 return arm_is_secure_below_el3(env);
2356 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2357 * This corresponds to the pseudocode EL2Enabled()
2359 static inline bool arm_is_el2_enabled(CPUARMState *env)
2361 if (arm_feature(env, ARM_FEATURE_EL2)) {
2362 if (arm_is_secure_below_el3(env)) {
2363 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2365 return true;
2367 return false;
2370 #else
2371 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2373 return false;
2376 static inline bool arm_is_secure(CPUARMState *env)
2378 return false;
2381 static inline bool arm_is_el2_enabled(CPUARMState *env)
2383 return false;
2385 #endif
2388 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2389 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2390 * "for all purposes other than a direct read or write access of HCR_EL2."
2391 * Not included here is HCR_RW.
2393 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2394 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2396 /* Return true if the specified exception level is running in AArch64 state. */
2397 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2399 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2400 * and if we're not in EL0 then the state of EL0 isn't well defined.)
2402 assert(el >= 1 && el <= 3);
2403 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2405 /* The highest exception level is always at the maximum supported
2406 * register width, and then lower levels have a register width controlled
2407 * by bits in the SCR or HCR registers.
2409 if (el == 3) {
2410 return aa64;
2413 if (arm_feature(env, ARM_FEATURE_EL3) &&
2414 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2415 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2418 if (el == 2) {
2419 return aa64;
2422 if (arm_is_el2_enabled(env)) {
2423 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2426 return aa64;
2429 /* Function for determing whether guest cp register reads and writes should
2430 * access the secure or non-secure bank of a cp register. When EL3 is
2431 * operating in AArch32 state, the NS-bit determines whether the secure
2432 * instance of a cp register should be used. When EL3 is AArch64 (or if
2433 * it doesn't exist at all) then there is no register banking, and all
2434 * accesses are to the non-secure version.
2436 static inline bool access_secure_reg(CPUARMState *env)
2438 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2439 !arm_el_is_aa64(env, 3) &&
2440 !(env->cp15.scr_el3 & SCR_NS));
2442 return ret;
2445 /* Macros for accessing a specified CP register bank */
2446 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2447 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2449 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2450 do { \
2451 if (_secure) { \
2452 (_env)->cp15._regname##_s = (_val); \
2453 } else { \
2454 (_env)->cp15._regname##_ns = (_val); \
2456 } while (0)
2458 /* Macros for automatically accessing a specific CP register bank depending on
2459 * the current secure state of the system. These macros are not intended for
2460 * supporting instruction translation reads/writes as these are dependent
2461 * solely on the SCR.NS bit and not the mode.
2463 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2464 A32_BANKED_REG_GET((_env), _regname, \
2465 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2467 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2468 A32_BANKED_REG_SET((_env), _regname, \
2469 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2470 (_val))
2472 void arm_cpu_list(void);
2473 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2474 uint32_t cur_el, bool secure);
2476 /* Interface between CPU and Interrupt controller. */
2477 #ifndef CONFIG_USER_ONLY
2478 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2479 #else
2480 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2482 return true;
2484 #endif
2486 * armv7m_nvic_set_pending: mark the specified exception as pending
2487 * @opaque: the NVIC
2488 * @irq: the exception number to mark pending
2489 * @secure: false for non-banked exceptions or for the nonsecure
2490 * version of a banked exception, true for the secure version of a banked
2491 * exception.
2493 * Marks the specified exception as pending. Note that we will assert()
2494 * if @secure is true and @irq does not specify one of the fixed set
2495 * of architecturally banked exceptions.
2497 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2499 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2500 * @opaque: the NVIC
2501 * @irq: the exception number to mark pending
2502 * @secure: false for non-banked exceptions or for the nonsecure
2503 * version of a banked exception, true for the secure version of a banked
2504 * exception.
2506 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2507 * exceptions (exceptions generated in the course of trying to take
2508 * a different exception).
2510 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2512 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2513 * @opaque: the NVIC
2514 * @irq: the exception number to mark pending
2515 * @secure: false for non-banked exceptions or for the nonsecure
2516 * version of a banked exception, true for the secure version of a banked
2517 * exception.
2519 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2520 * generated in the course of lazy stacking of FP registers.
2522 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2524 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2525 * exception, and whether it targets Secure state
2526 * @opaque: the NVIC
2527 * @pirq: set to pending exception number
2528 * @ptargets_secure: set to whether pending exception targets Secure
2530 * This function writes the number of the highest priority pending
2531 * exception (the one which would be made active by
2532 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2533 * to true if the current highest priority pending exception should
2534 * be taken to Secure state, false for NS.
2536 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2537 bool *ptargets_secure);
2539 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2540 * @opaque: the NVIC
2542 * Move the current highest priority pending exception from the pending
2543 * state to the active state, and update v7m.exception to indicate that
2544 * it is the exception currently being handled.
2546 void armv7m_nvic_acknowledge_irq(void *opaque);
2548 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2549 * @opaque: the NVIC
2550 * @irq: the exception number to complete
2551 * @secure: true if this exception was secure
2553 * Returns: -1 if the irq was not active
2554 * 1 if completing this irq brought us back to base (no active irqs)
2555 * 0 if there is still an irq active after this one was completed
2556 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2558 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2560 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2561 * @opaque: the NVIC
2562 * @irq: the exception number to mark pending
2563 * @secure: false for non-banked exceptions or for the nonsecure
2564 * version of a banked exception, true for the secure version of a banked
2565 * exception.
2567 * Return whether an exception is "ready", i.e. whether the exception is
2568 * enabled and is configured at a priority which would allow it to
2569 * interrupt the current execution priority. This controls whether the
2570 * RDY bit for it in the FPCCR is set.
2572 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2574 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2575 * @opaque: the NVIC
2577 * Returns: the raw execution priority as defined by the v8M architecture.
2578 * This is the execution priority minus the effects of AIRCR.PRIS,
2579 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2580 * (v8M ARM ARM I_PKLD.)
2582 int armv7m_nvic_raw_execution_priority(void *opaque);
2584 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2585 * priority is negative for the specified security state.
2586 * @opaque: the NVIC
2587 * @secure: the security state to test
2588 * This corresponds to the pseudocode IsReqExecPriNeg().
2590 #ifndef CONFIG_USER_ONLY
2591 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2592 #else
2593 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2595 return false;
2597 #endif
2599 /* Interface for defining coprocessor registers.
2600 * Registers are defined in tables of arm_cp_reginfo structs
2601 * which are passed to define_arm_cp_regs().
2604 /* When looking up a coprocessor register we look for it
2605 * via an integer which encodes all of:
2606 * coprocessor number
2607 * Crn, Crm, opc1, opc2 fields
2608 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2609 * or via MRRC/MCRR?)
2610 * non-secure/secure bank (AArch32 only)
2611 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2612 * (In this case crn and opc2 should be zero.)
2613 * For AArch64, there is no 32/64 bit size distinction;
2614 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2615 * and 4 bit CRn and CRm. The encoding patterns are chosen
2616 * to be easy to convert to and from the KVM encodings, and also
2617 * so that the hashtable can contain both AArch32 and AArch64
2618 * registers (to allow for interprocessing where we might run
2619 * 32 bit code on a 64 bit core).
2621 /* This bit is private to our hashtable cpreg; in KVM register
2622 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2623 * in the upper bits of the 64 bit ID.
2625 #define CP_REG_AA64_SHIFT 28
2626 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2628 /* To enable banking of coprocessor registers depending on ns-bit we
2629 * add a bit to distinguish between secure and non-secure cpregs in the
2630 * hashtable.
2632 #define CP_REG_NS_SHIFT 29
2633 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2635 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2636 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2637 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2639 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2640 (CP_REG_AA64_MASK | \
2641 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2642 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2643 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2644 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2645 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2646 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2648 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2649 * version used as a key for the coprocessor register hashtable
2651 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2653 uint32_t cpregid = kvmid;
2654 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2655 cpregid |= CP_REG_AA64_MASK;
2656 } else {
2657 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2658 cpregid |= (1 << 15);
2661 /* KVM is always non-secure so add the NS flag on AArch32 register
2662 * entries.
2664 cpregid |= 1 << CP_REG_NS_SHIFT;
2666 return cpregid;
2669 /* Convert a truncated 32 bit hashtable key into the full
2670 * 64 bit KVM register ID.
2672 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2674 uint64_t kvmid;
2676 if (cpregid & CP_REG_AA64_MASK) {
2677 kvmid = cpregid & ~CP_REG_AA64_MASK;
2678 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2679 } else {
2680 kvmid = cpregid & ~(1 << 15);
2681 if (cpregid & (1 << 15)) {
2682 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2683 } else {
2684 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2687 return kvmid;
2690 /* Return the highest implemented Exception Level */
2691 static inline int arm_highest_el(CPUARMState *env)
2693 if (arm_feature(env, ARM_FEATURE_EL3)) {
2694 return 3;
2696 if (arm_feature(env, ARM_FEATURE_EL2)) {
2697 return 2;
2699 return 1;
2702 /* Return true if a v7M CPU is in Handler mode */
2703 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2705 return env->v7m.exception != 0;
2708 /* Return the current Exception Level (as per ARMv8; note that this differs
2709 * from the ARMv7 Privilege Level).
2711 static inline int arm_current_el(CPUARMState *env)
2713 if (arm_feature(env, ARM_FEATURE_M)) {
2714 return arm_v7m_is_handler_mode(env) ||
2715 !(env->v7m.control[env->v7m.secure] & 1);
2718 if (is_a64(env)) {
2719 return extract32(env->pstate, 2, 2);
2722 switch (env->uncached_cpsr & 0x1f) {
2723 case ARM_CPU_MODE_USR:
2724 return 0;
2725 case ARM_CPU_MODE_HYP:
2726 return 2;
2727 case ARM_CPU_MODE_MON:
2728 return 3;
2729 default:
2730 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2731 /* If EL3 is 32-bit then all secure privileged modes run in
2732 * EL3
2734 return 3;
2737 return 1;
2742 * write_list_to_cpustate
2743 * @cpu: ARMCPU
2745 * For each register listed in the ARMCPU cpreg_indexes list, write
2746 * its value from the cpreg_values list into the ARMCPUState structure.
2747 * This updates TCG's working data structures from KVM data or
2748 * from incoming migration state.
2750 * Returns: true if all register values were updated correctly,
2751 * false if some register was unknown or could not be written.
2752 * Note that we do not stop early on failure -- we will attempt
2753 * writing all registers in the list.
2755 bool write_list_to_cpustate(ARMCPU *cpu);
2758 * write_cpustate_to_list:
2759 * @cpu: ARMCPU
2760 * @kvm_sync: true if this is for syncing back to KVM
2762 * For each register listed in the ARMCPU cpreg_indexes list, write
2763 * its value from the ARMCPUState structure into the cpreg_values list.
2764 * This is used to copy info from TCG's working data structures into
2765 * KVM or for outbound migration.
2767 * @kvm_sync is true if we are doing this in order to sync the
2768 * register state back to KVM. In this case we will only update
2769 * values in the list if the previous list->cpustate sync actually
2770 * successfully wrote the CPU state. Otherwise we will keep the value
2771 * that is in the list.
2773 * Returns: true if all register values were read correctly,
2774 * false if some register was unknown or could not be read.
2775 * Note that we do not stop early on failure -- we will attempt
2776 * reading all registers in the list.
2778 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2780 #define ARM_CPUID_TI915T 0x54029152
2781 #define ARM_CPUID_TI925T 0x54029252
2783 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2784 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2785 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2787 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2789 #define cpu_list arm_cpu_list
2791 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2793 * If EL3 is 64-bit:
2794 * + NonSecure EL1 & 0 stage 1
2795 * + NonSecure EL1 & 0 stage 2
2796 * + NonSecure EL2
2797 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2798 * + Secure EL1 & 0
2799 * + Secure EL3
2800 * If EL3 is 32-bit:
2801 * + NonSecure PL1 & 0 stage 1
2802 * + NonSecure PL1 & 0 stage 2
2803 * + NonSecure PL2
2804 * + Secure PL0
2805 * + Secure PL1
2806 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2808 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2809 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2810 * because they may differ in access permissions even if the VA->PA map is
2811 * the same
2812 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2813 * translation, which means that we have one mmu_idx that deals with two
2814 * concatenated translation regimes [this sort of combined s1+2 TLB is
2815 * architecturally permitted]
2816 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2817 * handling via the TLB. The only way to do a stage 1 translation without
2818 * the immediate stage 2 translation is via the ATS or AT system insns,
2819 * which can be slow-pathed and always do a page table walk.
2820 * The only use of stage 2 translations is either as part of an s1+2
2821 * lookup or when loading the descriptors during a stage 1 page table walk,
2822 * and in both those cases we don't use the TLB.
2823 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2824 * translation regimes, because they map reasonably well to each other
2825 * and they can't both be active at the same time.
2826 * 5. we want to be able to use the TLB for accesses done as part of a
2827 * stage1 page table walk, rather than having to walk the stage2 page
2828 * table over and over.
2829 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2830 * Never (PAN) bit within PSTATE.
2832 * This gives us the following list of cases:
2834 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2835 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2836 * NS EL1 EL1&0 stage 1+2 +PAN
2837 * NS EL0 EL2&0
2838 * NS EL2 EL2&0
2839 * NS EL2 EL2&0 +PAN
2840 * NS EL2 (aka NS PL2)
2841 * S EL0 EL1&0 (aka S PL0)
2842 * S EL1 EL1&0 (not used if EL3 is 32 bit)
2843 * S EL1 EL1&0 +PAN
2844 * S EL3 (aka S PL1)
2846 * for a total of 11 different mmu_idx.
2848 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2849 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2850 * NS EL2 if we ever model a Cortex-R52).
2852 * M profile CPUs are rather different as they do not have a true MMU.
2853 * They have the following different MMU indexes:
2854 * User
2855 * Privileged
2856 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2857 * Privileged, execution priority negative (ditto)
2858 * If the CPU supports the v8M Security Extension then there are also:
2859 * Secure User
2860 * Secure Privileged
2861 * Secure User, execution priority negative
2862 * Secure Privileged, execution priority negative
2864 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2865 * are not quite the same -- different CPU types (most notably M profile
2866 * vs A/R profile) would like to use MMU indexes with different semantics,
2867 * but since we don't ever need to use all of those in a single CPU we
2868 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2869 * modes + total number of M profile MMU modes". The lower bits of
2870 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2871 * the same for any particular CPU.
2872 * Variables of type ARMMUIdx are always full values, and the core
2873 * index values are in variables of type 'int'.
2875 * Our enumeration includes at the end some entries which are not "true"
2876 * mmu_idx values in that they don't have corresponding TLBs and are only
2877 * valid for doing slow path page table walks.
2879 * The constant names here are patterned after the general style of the names
2880 * of the AT/ATS operations.
2881 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2882 * For M profile we arrange them to have a bit for priv, a bit for negpri
2883 * and a bit for secure.
2885 #define ARM_MMU_IDX_A 0x10 /* A profile */
2886 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2887 #define ARM_MMU_IDX_M 0x40 /* M profile */
2889 /* Meanings of the bits for A profile mmu idx values */
2890 #define ARM_MMU_IDX_A_NS 0x8
2892 /* Meanings of the bits for M profile mmu idx values */
2893 #define ARM_MMU_IDX_M_PRIV 0x1
2894 #define ARM_MMU_IDX_M_NEGPRI 0x2
2895 #define ARM_MMU_IDX_M_S 0x4 /* Secure */
2897 #define ARM_MMU_IDX_TYPE_MASK \
2898 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2899 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2901 typedef enum ARMMMUIdx {
2903 * A-profile.
2905 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
2906 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
2907 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
2908 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
2909 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
2910 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
2911 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
2912 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
2914 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2915 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2916 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2917 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2918 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2919 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2920 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2923 * These are not allocated TLBs and are used only for AT system
2924 * instructions or for the first stage of an S12 page table walk.
2926 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2927 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2928 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2929 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2930 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2931 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2933 * Not allocated a TLB: used only for second stage of an S12 page
2934 * table walk, or for descriptor loads during first stage of an S1
2935 * page table walk. Note that if we ever want to have a TLB for this
2936 * then various TLB flush insns which currently are no-ops or flush
2937 * only stage 1 MMU indexes will need to change to flush stage 2.
2939 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
2940 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
2943 * M-profile.
2945 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2946 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2947 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2948 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2949 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2950 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2951 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2952 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2953 } ARMMMUIdx;
2956 * Bit macros for the core-mmu-index values for each index,
2957 * for use when calling tlb_flush_by_mmuidx() and friends.
2959 #define TO_CORE_BIT(NAME) \
2960 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2962 typedef enum ARMMMUIdxBit {
2963 TO_CORE_BIT(E10_0),
2964 TO_CORE_BIT(E20_0),
2965 TO_CORE_BIT(E10_1),
2966 TO_CORE_BIT(E10_1_PAN),
2967 TO_CORE_BIT(E2),
2968 TO_CORE_BIT(E20_2),
2969 TO_CORE_BIT(E20_2_PAN),
2970 TO_CORE_BIT(SE10_0),
2971 TO_CORE_BIT(SE20_0),
2972 TO_CORE_BIT(SE10_1),
2973 TO_CORE_BIT(SE20_2),
2974 TO_CORE_BIT(SE10_1_PAN),
2975 TO_CORE_BIT(SE20_2_PAN),
2976 TO_CORE_BIT(SE2),
2977 TO_CORE_BIT(SE3),
2979 TO_CORE_BIT(MUser),
2980 TO_CORE_BIT(MPriv),
2981 TO_CORE_BIT(MUserNegPri),
2982 TO_CORE_BIT(MPrivNegPri),
2983 TO_CORE_BIT(MSUser),
2984 TO_CORE_BIT(MSPriv),
2985 TO_CORE_BIT(MSUserNegPri),
2986 TO_CORE_BIT(MSPrivNegPri),
2987 } ARMMMUIdxBit;
2989 #undef TO_CORE_BIT
2991 #define MMU_USER_IDX 0
2993 /* Indexes used when registering address spaces with cpu_address_space_init */
2994 typedef enum ARMASIdx {
2995 ARMASIdx_NS = 0,
2996 ARMASIdx_S = 1,
2997 ARMASIdx_TagNS = 2,
2998 ARMASIdx_TagS = 3,
2999 } ARMASIdx;
3001 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3003 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3004 * CSSELR is RAZ/WI.
3006 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3009 static inline bool arm_sctlr_b(CPUARMState *env)
3011 return
3012 /* We need not implement SCTLR.ITD in user-mode emulation, so
3013 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3014 * This lets people run BE32 binaries with "-cpu any".
3016 #ifndef CONFIG_USER_ONLY
3017 !arm_feature(env, ARM_FEATURE_V7) &&
3018 #endif
3019 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3022 uint64_t arm_sctlr(CPUARMState *env, int el);
3024 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3025 bool sctlr_b)
3027 #ifdef CONFIG_USER_ONLY
3029 * In system mode, BE32 is modelled in line with the
3030 * architecture (as word-invariant big-endianness), where loads
3031 * and stores are done little endian but from addresses which
3032 * are adjusted by XORing with the appropriate constant. So the
3033 * endianness to use for the raw data access is not affected by
3034 * SCTLR.B.
3035 * In user mode, however, we model BE32 as byte-invariant
3036 * big-endianness (because user-only code cannot tell the
3037 * difference), and so we need to use a data access endianness
3038 * that depends on SCTLR.B.
3040 if (sctlr_b) {
3041 return true;
3043 #endif
3044 /* In 32bit endianness is determined by looking at CPSR's E bit */
3045 return env->uncached_cpsr & CPSR_E;
3048 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3050 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3053 /* Return true if the processor is in big-endian mode. */
3054 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3056 if (!is_a64(env)) {
3057 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3058 } else {
3059 int cur_el = arm_current_el(env);
3060 uint64_t sctlr = arm_sctlr(env, cur_el);
3061 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3065 #include "exec/cpu-all.h"
3068 * We have more than 32-bits worth of state per TB, so we split the data
3069 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3070 * We collect these two parts in CPUARMTBFlags where they are named
3071 * flags and flags2 respectively.
3073 * The flags that are shared between all execution modes, TBFLAG_ANY,
3074 * are stored in flags. The flags that are specific to a given mode
3075 * are stores in flags2. Since cs_base is sized on the configured
3076 * address size, flags2 always has 64-bits for A64, and a minimum of
3077 * 32-bits for A32 and M32.
3079 * The bits for 32-bit A-profile and M-profile partially overlap:
3081 * 31 23 11 10 0
3082 * +-------------+----------+----------------+
3083 * | | | TBFLAG_A32 |
3084 * | TBFLAG_AM32 | +-----+----------+
3085 * | | |TBFLAG_M32|
3086 * +-------------+----------------+----------+
3087 * 31 23 6 5 0
3089 * Unless otherwise noted, these bits are cached in env->hflags.
3091 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3092 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3093 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3094 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3095 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3096 /* Target EL if we take a floating-point-disabled exception */
3097 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3098 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3099 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3100 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3103 * Bit usage when in AArch32 state, both A- and M-profile.
3105 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3106 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3109 * Bit usage when in AArch32 state, for A-profile only.
3111 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3112 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
3114 * We store the bottom two bits of the CPAR as TB flags and handle
3115 * checks on the other bits at runtime. This shares the same bits as
3116 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3117 * Not cached, because VECLEN+VECSTRIDE are not cached.
3119 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3120 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3121 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3122 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3124 * Indicates whether cp register reads and writes by guest code should access
3125 * the secure or nonsecure bank of banked registers; note that this is not
3126 * the same thing as the current security state of the processor!
3128 FIELD(TBFLAG_A32, NS, 10, 1)
3131 * Bit usage when in AArch32 state, for M-profile only.
3133 /* Handler (ie not Thread) mode */
3134 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3135 /* Whether we should generate stack-limit checks */
3136 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3137 /* Set if FPCCR.LSPACT is set */
3138 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
3139 /* Set if we must create a new FP context */
3140 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
3141 /* Set if FPCCR.S does not match current security state */
3142 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
3143 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3144 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
3147 * Bit usage when in AArch64 state
3149 FIELD(TBFLAG_A64, TBII, 0, 2)
3150 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3151 /* The current vector length, either NVL or SVL. */
3152 FIELD(TBFLAG_A64, VL, 4, 4)
3153 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3154 FIELD(TBFLAG_A64, BT, 9, 1)
3155 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3156 FIELD(TBFLAG_A64, TBID, 12, 2)
3157 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3158 FIELD(TBFLAG_A64, ATA, 15, 1)
3159 FIELD(TBFLAG_A64, TCMA, 16, 2)
3160 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3161 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3162 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3165 * Helpers for using the above.
3167 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3168 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3169 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3170 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3171 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3172 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3173 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3174 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3175 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3176 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3178 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3179 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3180 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3181 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3182 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3185 * cpu_mmu_index:
3186 * @env: The cpu environment
3187 * @ifetch: True for code access, false for data access.
3189 * Return the core mmu index for the current translation regime.
3190 * This function is used by generic TCG code paths.
3192 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3194 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3198 * sve_vq
3199 * @env: the cpu context
3201 * Return the VL cached within env->hflags, in units of quadwords.
3203 static inline int sve_vq(CPUARMState *env)
3205 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3208 static inline bool bswap_code(bool sctlr_b)
3210 #ifdef CONFIG_USER_ONLY
3211 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3212 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3213 * would also end up as a mixed-endian mode with BE code, LE data.
3215 return
3216 #if TARGET_BIG_ENDIAN
3218 #endif
3219 sctlr_b;
3220 #else
3221 /* All code access in ARM is little endian, and there are no loaders
3222 * doing swaps that need to be reversed
3224 return 0;
3225 #endif
3228 #ifdef CONFIG_USER_ONLY
3229 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3231 return
3232 #if TARGET_BIG_ENDIAN
3234 #endif
3235 arm_cpu_data_is_big_endian(env);
3237 #endif
3239 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3240 target_ulong *cs_base, uint32_t *flags);
3242 enum {
3243 QEMU_PSCI_CONDUIT_DISABLED = 0,
3244 QEMU_PSCI_CONDUIT_SMC = 1,
3245 QEMU_PSCI_CONDUIT_HVC = 2,
3248 #ifndef CONFIG_USER_ONLY
3249 /* Return the address space index to use for a memory access */
3250 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3252 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3255 /* Return the AddressSpace to use for a memory access
3256 * (which depends on whether the access is S or NS, and whether
3257 * the board gave us a separate AddressSpace for S accesses).
3259 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3261 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3263 #endif
3266 * arm_register_pre_el_change_hook:
3267 * Register a hook function which will be called immediately before this
3268 * CPU changes exception level or mode. The hook function will be
3269 * passed a pointer to the ARMCPU and the opaque data pointer passed
3270 * to this function when the hook was registered.
3272 * Note that if a pre-change hook is called, any registered post-change hooks
3273 * are guaranteed to subsequently be called.
3275 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3276 void *opaque);
3278 * arm_register_el_change_hook:
3279 * Register a hook function which will be called immediately after this
3280 * CPU changes exception level or mode. The hook function will be
3281 * passed a pointer to the ARMCPU and the opaque data pointer passed
3282 * to this function when the hook was registered.
3284 * Note that any registered hooks registered here are guaranteed to be called
3285 * if pre-change hooks have been.
3287 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3288 *opaque);
3291 * arm_rebuild_hflags:
3292 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3294 void arm_rebuild_hflags(CPUARMState *env);
3297 * aa32_vfp_dreg:
3298 * Return a pointer to the Dn register within env in 32-bit mode.
3300 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3302 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3306 * aa32_vfp_qreg:
3307 * Return a pointer to the Qn register within env in 32-bit mode.
3309 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3311 return &env->vfp.zregs[regno].d[0];
3315 * aa64_vfp_qreg:
3316 * Return a pointer to the Qn register within env in 64-bit mode.
3318 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3320 return &env->vfp.zregs[regno].d[0];
3323 /* Shared between translate-sve.c and sve_helper.c. */
3324 extern const uint64_t pred_esz_masks[4];
3326 /* Helper for the macros below, validating the argument type. */
3327 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3329 return x;
3333 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3334 * Using these should be a bit more self-documenting than using the
3335 * generic target bits directly.
3337 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3338 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3341 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3343 #define PAGE_BTI PAGE_TARGET_1
3344 #define PAGE_MTE PAGE_TARGET_2
3346 #ifdef TARGET_TAGGED_ADDRESSES
3348 * cpu_untagged_addr:
3349 * @cs: CPU context
3350 * @x: tagged address
3352 * Remove any address tag from @x. This is explicitly related to the
3353 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3355 * There should be a better place to put this, but we need this in
3356 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3358 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3360 ARMCPU *cpu = ARM_CPU(cs);
3361 if (cpu->env.tagged_addr_enable) {
3363 * TBI is enabled for userspace but not kernelspace addresses.
3364 * Only clear the tag if bit 55 is clear.
3366 x &= sextract64(x, 0, 56);
3368 return x;
3370 #endif
3373 * Naming convention for isar_feature functions:
3374 * Functions which test 32-bit ID registers should have _aa32_ in
3375 * their name. Functions which test 64-bit ID registers should have
3376 * _aa64_ in their name. These must only be used in code where we
3377 * know for certain that the CPU has AArch32 or AArch64 respectively
3378 * or where the correct answer for a CPU which doesn't implement that
3379 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3380 * system registers that are specific to that CPU state, for "should
3381 * we let this system register bit be set" tests where the 32-bit
3382 * flavour of the register doesn't have the bit, and so on).
3383 * Functions which simply ask "does this feature exist at all" have
3384 * _any_ in their name, and always return the logical OR of the _aa64_
3385 * and the _aa32_ function.
3389 * 32-bit feature tests via id registers.
3391 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3393 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3396 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3398 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3401 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3403 /* (M-profile) low-overhead loops and branch future */
3404 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3407 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3409 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3412 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3414 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3417 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3419 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3422 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3424 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3427 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3429 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3432 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3434 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3437 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3439 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3442 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3444 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3447 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3449 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3452 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3454 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3457 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3459 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3462 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3464 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3467 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3469 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3472 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3474 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3477 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3479 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3482 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3484 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3487 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3489 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3492 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3495 * Return true if M-profile state handling insns
3496 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3498 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3501 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3503 /* Sadly this is encoded differently for A-profile and M-profile */
3504 if (isar_feature_aa32_mprofile(id)) {
3505 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3506 } else {
3507 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3511 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3514 * Return true if MVE is supported (either integer or floating point).
3515 * We must check for M-profile as the MVFR1 field means something
3516 * else for A-profile.
3518 return isar_feature_aa32_mprofile(id) &&
3519 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3522 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3525 * Return true if MVE is supported (either integer or floating point).
3526 * We must check for M-profile as the MVFR1 field means something
3527 * else for A-profile.
3529 return isar_feature_aa32_mprofile(id) &&
3530 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3533 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3536 * Return true if either VFP or SIMD is implemented.
3537 * In this case, a minimum of VFP w/ D0-D15.
3539 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3542 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3544 /* Return true if D16-D31 are implemented */
3545 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3548 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3550 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3553 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3555 /* Return true if CPU supports single precision floating point, VFPv2 */
3556 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3559 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3561 /* Return true if CPU supports single precision floating point, VFPv3 */
3562 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3565 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3567 /* Return true if CPU supports double precision floating point, VFPv2 */
3568 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3571 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3573 /* Return true if CPU supports double precision floating point, VFPv3 */
3574 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3577 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3579 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3583 * We always set the FP and SIMD FP16 fields to indicate identical
3584 * levels of support (assuming SIMD is implemented at all), so
3585 * we only need one set of accessors.
3587 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3589 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3592 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3594 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3598 * Note that this ID register field covers both VFP and Neon FMAC,
3599 * so should usually be tested in combination with some other
3600 * check that confirms the presence of whichever of VFP or Neon is
3601 * relevant, to avoid accidentally enabling a Neon feature on
3602 * a VFP-no-Neon core or vice-versa.
3604 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3606 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3609 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3611 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3614 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3616 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3619 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3621 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3624 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3626 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3629 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3631 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3634 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3636 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3639 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3641 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3644 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3646 /* 0xf means "non-standard IMPDEF PMU" */
3647 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3648 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3651 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3653 /* 0xf means "non-standard IMPDEF PMU" */
3654 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3655 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3658 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3660 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3663 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3665 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3668 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3670 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3673 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3675 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3678 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3680 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3683 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3685 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3688 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3690 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3694 * 64-bit feature tests via id registers.
3696 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3698 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3701 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3703 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3706 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3708 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3711 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3713 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3716 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3718 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3721 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3723 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3726 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3728 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3731 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3733 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3736 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3738 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3741 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3743 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3746 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3748 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3751 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3753 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3756 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3758 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3761 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3763 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3766 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3768 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3771 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3773 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3776 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3778 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3781 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3783 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3786 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3789 * Return true if any form of pauth is enabled, as this
3790 * predicate controls migration of the 128-bit keys.
3792 return (id->id_aa64isar1 &
3793 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3794 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3795 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3796 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3799 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3802 * Return true if pauth is enabled with the architected QARMA algorithm.
3803 * QEMU will always set APA+GPA to the same value.
3805 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3808 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3810 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3813 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3815 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3818 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3820 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3823 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3825 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3828 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3830 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3833 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3835 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3838 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3840 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3843 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3845 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3848 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3850 /* We always set the AdvSIMD and FP fields identically. */
3851 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3854 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3856 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3857 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3860 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3862 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3865 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3867 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3870 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3872 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3875 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3877 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3880 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3882 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3885 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3887 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3890 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3892 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3895 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3897 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3900 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3902 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3905 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3907 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3910 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3912 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3915 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3917 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3920 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3922 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3925 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3927 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3930 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3932 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3935 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3937 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3940 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3942 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3945 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3947 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3950 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3952 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3955 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
3957 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
3960 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3962 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3963 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3966 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3968 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3969 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3972 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3974 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3977 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3979 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3982 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3984 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3987 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3989 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
3992 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
3994 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3995 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
3998 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4000 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4003 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4005 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4006 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4009 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4011 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4014 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4016 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4019 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4021 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4024 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4026 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4029 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4031 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4032 if (key >= 2) {
4033 return true; /* FEAT_CSV2_2 */
4035 if (key == 1) {
4036 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4037 return key >= 2; /* FEAT_CSV2_1p2 */
4039 return false;
4042 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4044 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4047 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4049 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4052 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4054 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4057 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4059 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4062 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4064 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4067 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4069 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4072 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4074 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4077 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4079 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4082 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4084 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4087 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4089 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4092 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4094 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4097 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4099 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4102 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4104 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4107 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4109 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4112 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4114 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4118 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4120 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4122 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4125 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4127 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4130 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4132 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4135 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4137 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4140 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4142 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4145 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4147 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4150 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4152 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4155 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4157 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4161 * Forward to the above feature tests given an ARMCPU pointer.
4163 #define cpu_isar_feature(name, cpu) \
4164 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4166 #endif