2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
24 #include "signal-common.h"
26 #include "hw/core/tcg-cpu-ops.h"
27 #include "host-signal.h"
29 static struct target_sigaction sigact_table
[TARGET_NSIG
];
30 static void host_signal_handler(int host_sig
, siginfo_t
*info
, void *puc
);
31 static void target_to_host_sigset_internal(sigset_t
*d
,
32 const target_sigset_t
*s
);
34 static inline int on_sig_stack(TaskState
*ts
, unsigned long sp
)
36 return sp
- ts
->sigaltstack_used
.ss_sp
< ts
->sigaltstack_used
.ss_size
;
39 static inline int sas_ss_flags(TaskState
*ts
, unsigned long sp
)
41 return ts
->sigaltstack_used
.ss_size
== 0 ? SS_DISABLE
:
42 on_sig_stack(ts
, sp
) ? SS_ONSTACK
: 0;
46 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
47 * (unlike Linux) these functions are just the identity mapping. This might not
48 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
50 int host_to_target_signal(int sig
)
55 int target_to_host_signal(int sig
)
60 static inline void target_sigemptyset(target_sigset_t
*set
)
62 memset(set
, 0, sizeof(*set
));
65 static inline void target_sigaddset(target_sigset_t
*set
, int signum
)
68 uint32_t mask
= (uint32_t)1 << (signum
% TARGET_NSIG_BPW
);
69 set
->__bits
[signum
/ TARGET_NSIG_BPW
] |= mask
;
72 static inline int target_sigismember(const target_sigset_t
*set
, int signum
)
75 abi_ulong mask
= (abi_ulong
)1 << (signum
% TARGET_NSIG_BPW
);
76 return (set
->__bits
[signum
/ TARGET_NSIG_BPW
] & mask
) != 0;
79 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
80 static inline void rewind_if_in_safe_syscall(void *puc
)
82 ucontext_t
*uc
= (ucontext_t
*)puc
;
83 uintptr_t pcreg
= host_signal_pc(uc
);
85 if (pcreg
> (uintptr_t)safe_syscall_start
86 && pcreg
< (uintptr_t)safe_syscall_end
) {
87 host_signal_set_pc(uc
, (uintptr_t)safe_syscall_start
);
92 * Note: The following take advantage of the BSD signal property that all
93 * signals are available on all architectures.
95 static void host_to_target_sigset_internal(target_sigset_t
*d
,
100 target_sigemptyset(d
);
101 for (i
= 1; i
<= NSIG
; i
++) {
102 if (sigismember(s
, i
)) {
103 target_sigaddset(d
, host_to_target_signal(i
));
108 void host_to_target_sigset(target_sigset_t
*d
, const sigset_t
*s
)
113 host_to_target_sigset_internal(&d1
, s
);
114 for (i
= 0; i
< _SIG_WORDS
; i
++) {
115 d
->__bits
[i
] = tswap32(d1
.__bits
[i
]);
119 static void target_to_host_sigset_internal(sigset_t
*d
,
120 const target_sigset_t
*s
)
125 for (i
= 1; i
<= TARGET_NSIG
; i
++) {
126 if (target_sigismember(s
, i
)) {
127 sigaddset(d
, target_to_host_signal(i
));
132 void target_to_host_sigset(sigset_t
*d
, const target_sigset_t
*s
)
137 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
138 s1
.__bits
[i
] = tswap32(s
->__bits
[i
]);
140 target_to_host_sigset_internal(d
, &s1
);
143 static bool has_trapno(int tsig
)
145 return tsig
== TARGET_SIGILL
||
146 tsig
== TARGET_SIGFPE
||
147 tsig
== TARGET_SIGSEGV
||
148 tsig
== TARGET_SIGBUS
||
149 tsig
== TARGET_SIGTRAP
;
152 /* Siginfo conversion. */
155 * Populate tinfo w/o swapping based on guessing which fields are valid.
157 static inline void host_to_target_siginfo_noswap(target_siginfo_t
*tinfo
,
158 const siginfo_t
*info
)
160 int sig
= host_to_target_signal(info
->si_signo
);
161 int si_code
= info
->si_code
;
165 * Make sure we that the variable portion of the target siginfo is zeroed
166 * out so we don't leak anything into that.
168 memset(&tinfo
->_reason
, 0, sizeof(tinfo
->_reason
));
171 * This is awkward, because we have to use a combination of the si_code and
172 * si_signo to figure out which of the union's members are valid.o We
173 * therefore make our best guess.
175 * Once we have made our guess, we record it in the top 16 bits of
176 * the si_code, so that tswap_siginfo() later can use it.
177 * tswap_siginfo() will strip these top bits out before writing
178 * si_code to the guest (sign-extending the lower bits).
180 tinfo
->si_signo
= sig
;
181 tinfo
->si_errno
= info
->si_errno
;
182 tinfo
->si_code
= info
->si_code
;
183 tinfo
->si_pid
= info
->si_pid
;
184 tinfo
->si_uid
= info
->si_uid
;
185 tinfo
->si_status
= info
->si_status
;
186 tinfo
->si_addr
= (abi_ulong
)(unsigned long)info
->si_addr
;
188 * si_value is opaque to kernel. On all FreeBSD platforms,
189 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
190 * always will copy the larger element.
192 tinfo
->si_value
.sival_ptr
=
193 (abi_ulong
)(unsigned long)info
->si_value
.sival_ptr
;
197 * All the SI_xxx codes that are defined here are global to
198 * all the signals (they have values that none of the other,
199 * more specific signal info will set).
207 * Only the fixed parts are valid (though FreeBSD doesn't always
208 * set all the fields to non-zero values.
210 si_type
= QEMU_SI_NOINFO
;
213 tinfo
->_reason
._timer
._timerid
= info
->_reason
._timer
._timerid
;
214 tinfo
->_reason
._timer
._overrun
= info
->_reason
._timer
._overrun
;
215 si_type
= QEMU_SI_TIMER
;
218 tinfo
->_reason
._mesgq
._mqd
= info
->_reason
._mesgq
._mqd
;
219 si_type
= QEMU_SI_MESGQ
;
223 * We have to go based on the signal number now to figure out
226 si_type
= QEMU_SI_NOINFO
;
227 if (has_trapno(sig
)) {
228 tinfo
->_reason
._fault
._trapno
= info
->_reason
._fault
._trapno
;
229 si_type
= QEMU_SI_FAULT
;
231 #ifdef TARGET_SIGPOLL
233 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
234 * a chance it may popup in the future.
236 if (sig
== TARGET_SIGPOLL
) {
237 tinfo
->_reason
._poll
._band
= info
->_reason
._poll
._band
;
238 si_type
= QEMU_SI_POLL
;
242 * Unsure that this can actually be generated, and our support for
243 * capsicum is somewhere between weak and non-existant, but if we get
244 * one, then we know what to save.
246 #ifdef QEMU_SI_CAPSICUM
247 if (sig
== TARGET_SIGTRAP
) {
248 tinfo
->_reason
._capsicum
._syscall
=
249 info
->_reason
._capsicum
._syscall
;
250 si_type
= QEMU_SI_CAPSICUM
;
255 tinfo
->si_code
= deposit32(si_code
, 24, 8, si_type
);
258 static void tswap_siginfo(target_siginfo_t
*tinfo
, const target_siginfo_t
*info
)
260 int si_type
= extract32(info
->si_code
, 24, 8);
261 int si_code
= sextract32(info
->si_code
, 0, 24);
263 __put_user(info
->si_signo
, &tinfo
->si_signo
);
264 __put_user(info
->si_errno
, &tinfo
->si_errno
);
265 __put_user(si_code
, &tinfo
->si_code
); /* Zero out si_type, it's internal */
266 __put_user(info
->si_pid
, &tinfo
->si_pid
);
267 __put_user(info
->si_uid
, &tinfo
->si_uid
);
268 __put_user(info
->si_status
, &tinfo
->si_status
);
269 __put_user(info
->si_addr
, &tinfo
->si_addr
);
271 * Unswapped, because we passed it through mostly untouched. si_value is
272 * opaque to the kernel, so we didn't bother with potentially wasting cycles
273 * to swap it into host byte order.
275 tinfo
->si_value
.sival_ptr
= info
->si_value
.sival_ptr
;
278 * We can use our internal marker of which fields in the structure
279 * are valid, rather than duplicating the guesswork of
280 * host_to_target_siginfo_noswap() here.
283 case QEMU_SI_NOINFO
: /* No additional info */
286 __put_user(info
->_reason
._fault
._trapno
,
287 &tinfo
->_reason
._fault
._trapno
);
290 __put_user(info
->_reason
._timer
._timerid
,
291 &tinfo
->_reason
._timer
._timerid
);
292 __put_user(info
->_reason
._timer
._overrun
,
293 &tinfo
->_reason
._timer
._overrun
);
296 __put_user(info
->_reason
._mesgq
._mqd
, &tinfo
->_reason
._mesgq
._mqd
);
299 /* Note: Not generated on FreeBSD */
300 __put_user(info
->_reason
._poll
._band
, &tinfo
->_reason
._poll
._band
);
302 #ifdef QEMU_SI_CAPSICUM
303 case QEMU_SI_CAPSICUM
:
304 __put_user(info
->_reason
._capsicum
._syscall
,
305 &tinfo
->_reason
._capsicum
._syscall
);
309 g_assert_not_reached();
313 int block_signals(void)
315 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
319 * It's OK to block everything including SIGSEGV, because we won't run any
320 * further guest code before unblocking signals in
321 * process_pending_signals(). We depend on the FreeBSD behaivor here where
322 * this will only affect this thread's signal mask. We don't use
323 * pthread_sigmask which might seem more correct because that routine also
324 * does odd things with SIGCANCEL to implement pthread_cancel().
327 sigprocmask(SIG_SETMASK
, &set
, 0);
329 return qatomic_xchg(&ts
->signal_pending
, 1);
332 /* Returns 1 if given signal should dump core if not handled. */
333 static int core_dump_signal(int sig
)
349 /* Abort execution with signal. */
350 static void QEMU_NORETURN
dump_core_and_abort(int target_sig
)
352 CPUArchState
*env
= thread_cpu
->env_ptr
;
353 CPUState
*cpu
= env_cpu(env
);
354 TaskState
*ts
= cpu
->opaque
;
357 struct sigaction act
;
359 host_sig
= target_to_host_signal(target_sig
);
360 gdb_signalled(env
, target_sig
);
362 /* Dump core if supported by target binary format */
363 if (core_dump_signal(target_sig
) && (ts
->bprm
->core_dump
!= NULL
)) {
366 ((*ts
->bprm
->core_dump
)(target_sig
, env
) == 0);
369 struct rlimit nodump
;
372 * We already dumped the core of target process, we don't want
373 * a coredump of qemu itself.
375 getrlimit(RLIMIT_CORE
, &nodump
);
377 setrlimit(RLIMIT_CORE
, &nodump
);
378 (void) fprintf(stderr
, "qemu: uncaught target signal %d (%s) "
379 "- %s\n", target_sig
, strsignal(host_sig
), "core dumped");
383 * The proper exit code for dying from an uncaught signal is
384 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
385 * a negative value. To get the proper exit code we need to
386 * actually die from an uncaught signal. Here the default signal
387 * handler is installed, we send ourself a signal and we wait for
390 memset(&act
, 0, sizeof(act
));
391 sigfillset(&act
.sa_mask
);
392 act
.sa_handler
= SIG_DFL
;
393 sigaction(host_sig
, &act
, NULL
);
395 kill(getpid(), host_sig
);
398 * Make sure the signal isn't masked (just reuse the mask inside
401 sigdelset(&act
.sa_mask
, host_sig
);
402 sigsuspend(&act
.sa_mask
);
409 * Queue a signal so that it will be send to the virtual CPU as soon as
412 void queue_signal(CPUArchState
*env
, int sig
, int si_type
,
413 target_siginfo_t
*info
)
415 CPUState
*cpu
= env_cpu(env
);
416 TaskState
*ts
= cpu
->opaque
;
418 trace_user_queue_signal(env
, sig
);
420 info
->si_code
= deposit32(info
->si_code
, 24, 8, si_type
);
422 ts
->sync_signal
.info
= *info
;
423 ts
->sync_signal
.pending
= sig
;
424 /* Signal that a new signal is pending. */
425 qatomic_set(&ts
->signal_pending
, 1);
429 static int fatal_signal(int sig
)
435 case TARGET_SIGWINCH
:
437 /* Ignored by default. */
444 /* Job control signals. */
452 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
453 * 'force' part is handled in process_pending_signals().
455 void force_sig_fault(int sig
, int code
, abi_ulong addr
)
457 CPUState
*cpu
= thread_cpu
;
458 CPUArchState
*env
= cpu
->env_ptr
;
459 target_siginfo_t info
= {};
465 queue_signal(env
, sig
, QEMU_SI_FAULT
, &info
);
468 static void host_signal_handler(int host_sig
, siginfo_t
*info
, void *puc
)
470 CPUArchState
*env
= thread_cpu
->env_ptr
;
471 CPUState
*cpu
= env_cpu(env
);
472 TaskState
*ts
= cpu
->opaque
;
473 target_siginfo_t tinfo
;
474 ucontext_t
*uc
= puc
;
475 struct emulated_sigtable
*k
;
478 bool sync_sig
= false;
481 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
482 * handling wrt signal blocking and unwinding.
484 if ((host_sig
== SIGSEGV
|| host_sig
== SIGBUS
) && info
->si_code
> 0) {
485 MMUAccessType access_type
;
490 host_addr
= (uintptr_t)info
->si_addr
;
493 * Convert forcefully to guest address space: addresses outside
494 * reserved_va are still valid to report via SEGV_MAPERR.
496 guest_addr
= h2g_nocheck(host_addr
);
498 pc
= host_signal_pc(uc
);
499 is_write
= host_signal_write(info
, uc
);
500 access_type
= adjust_signal_pc(&pc
, is_write
);
502 if (host_sig
== SIGSEGV
) {
505 if (info
->si_code
== SEGV_ACCERR
&& h2g_valid(host_addr
)) {
506 /* If this was a write to a TB protected page, restart. */
508 handle_sigsegv_accerr_write(cpu
, &uc
->uc_sigmask
,
514 * With reserved_va, the whole address space is PROT_NONE,
515 * which means that we may get ACCERR when we want MAPERR.
517 if (page_get_flags(guest_addr
) & PAGE_VALID
) {
520 info
->si_code
= SEGV_MAPERR
;
524 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
525 cpu_loop_exit_sigsegv(cpu
, guest_addr
, access_type
, maperr
, pc
);
527 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
528 if (info
->si_code
== BUS_ADRALN
) {
529 cpu_loop_exit_sigbus(cpu
, guest_addr
, access_type
, pc
);
536 /* Get the target signal number. */
537 guest_sig
= host_to_target_signal(host_sig
);
538 if (guest_sig
< 1 || guest_sig
> TARGET_NSIG
) {
541 trace_user_host_signal(cpu
, host_sig
, guest_sig
);
543 host_to_target_siginfo_noswap(&tinfo
, info
);
545 k
= &ts
->sigtab
[guest_sig
- 1];
547 k
->pending
= guest_sig
;
548 ts
->signal_pending
= 1;
551 * For synchronous signals, unwind the cpu state to the faulting
552 * insn and then exit back to the main loop so that the signal
553 * is delivered immediately.
556 cpu
->exception_index
= EXCP_INTERRUPT
;
557 cpu_loop_exit_restore(cpu
, pc
);
560 rewind_if_in_safe_syscall(puc
);
563 * Block host signals until target signal handler entered. We
564 * can't block SIGSEGV or SIGBUS while we're executing guest
565 * code in case the guest code provokes one in the window between
566 * now and it getting out to the main loop. Signals will be
567 * unblocked again in process_pending_signals().
569 sigfillset(&uc
->uc_sigmask
);
570 sigdelset(&uc
->uc_sigmask
, SIGSEGV
);
571 sigdelset(&uc
->uc_sigmask
, SIGBUS
);
573 /* Interrupt the virtual CPU as soon as possible. */
574 cpu_exit(thread_cpu
);
577 /* do_sigaltstack() returns target values and errnos. */
578 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
579 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
, abi_ulong sp
)
581 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
586 /* Save current signal stack params */
587 oss
.ss_sp
= tswapl(ts
->sigaltstack_used
.ss_sp
);
588 oss
.ss_size
= tswapl(ts
->sigaltstack_used
.ss_size
);
589 oss
.ss_flags
= tswapl(sas_ss_flags(ts
, sp
));
595 size_t minstacksize
= TARGET_MINSIGSTKSZ
;
597 ret
= -TARGET_EFAULT
;
598 if (!lock_user_struct(VERIFY_READ
, uss
, uss_addr
, 1)) {
601 __get_user(ss
.ss_sp
, &uss
->ss_sp
);
602 __get_user(ss
.ss_size
, &uss
->ss_size
);
603 __get_user(ss
.ss_flags
, &uss
->ss_flags
);
604 unlock_user_struct(uss
, uss_addr
, 0);
607 if (on_sig_stack(ts
, sp
)) {
611 ret
= -TARGET_EINVAL
;
612 if (ss
.ss_flags
!= TARGET_SS_DISABLE
613 && ss
.ss_flags
!= TARGET_SS_ONSTACK
614 && ss
.ss_flags
!= 0) {
618 if (ss
.ss_flags
== TARGET_SS_DISABLE
) {
622 ret
= -TARGET_ENOMEM
;
623 if (ss
.ss_size
< minstacksize
) {
628 ts
->sigaltstack_used
.ss_sp
= ss
.ss_sp
;
629 ts
->sigaltstack_used
.ss_size
= ss
.ss_size
;
633 ret
= -TARGET_EFAULT
;
634 if (copy_to_user(uoss_addr
, &oss
, sizeof(oss
))) {
644 /* do_sigaction() return host values and errnos */
645 int do_sigaction(int sig
, const struct target_sigaction
*act
,
646 struct target_sigaction
*oact
)
648 struct target_sigaction
*k
;
649 struct sigaction act1
;
653 if (sig
< 1 || sig
> TARGET_NSIG
) {
654 return -TARGET_EINVAL
;
657 if ((sig
== TARGET_SIGKILL
|| sig
== TARGET_SIGSTOP
) &&
658 act
!= NULL
&& act
->_sa_handler
!= TARGET_SIG_DFL
) {
659 return -TARGET_EINVAL
;
662 if (block_signals()) {
663 return -TARGET_ERESTART
;
666 k
= &sigact_table
[sig
- 1];
668 oact
->_sa_handler
= tswapal(k
->_sa_handler
);
669 oact
->sa_flags
= tswap32(k
->sa_flags
);
670 oact
->sa_mask
= k
->sa_mask
;
673 k
->_sa_handler
= tswapal(act
->_sa_handler
);
674 k
->sa_flags
= tswap32(act
->sa_flags
);
675 k
->sa_mask
= act
->sa_mask
;
677 /* Update the host signal state. */
678 host_sig
= target_to_host_signal(sig
);
679 if (host_sig
!= SIGSEGV
&& host_sig
!= SIGBUS
) {
680 memset(&act1
, 0, sizeof(struct sigaction
));
681 sigfillset(&act1
.sa_mask
);
682 act1
.sa_flags
= SA_SIGINFO
;
683 if (k
->sa_flags
& TARGET_SA_RESTART
) {
684 act1
.sa_flags
|= SA_RESTART
;
687 * Note: It is important to update the host kernel signal mask to
688 * avoid getting unexpected interrupted system calls.
690 if (k
->_sa_handler
== TARGET_SIG_IGN
) {
691 act1
.sa_sigaction
= (void *)SIG_IGN
;
692 } else if (k
->_sa_handler
== TARGET_SIG_DFL
) {
693 if (fatal_signal(sig
)) {
694 act1
.sa_sigaction
= host_signal_handler
;
696 act1
.sa_sigaction
= (void *)SIG_DFL
;
699 act1
.sa_sigaction
= host_signal_handler
;
701 ret
= sigaction(host_sig
, &act1
, NULL
);
707 static inline abi_ulong
get_sigframe(struct target_sigaction
*ka
,
708 CPUArchState
*env
, size_t frame_size
)
710 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
713 /* Use default user stack */
714 sp
= get_sp_from_cpustate(env
);
716 if ((ka
->sa_flags
& TARGET_SA_ONSTACK
) && sas_ss_flags(ts
, sp
) == 0) {
717 sp
= ts
->sigaltstack_used
.ss_sp
+ ts
->sigaltstack_used
.ss_size
;
720 /* TODO: make this a target_arch function / define */
721 #if defined(TARGET_ARM)
722 return (sp
- frame_size
) & ~7;
723 #elif defined(TARGET_AARCH64)
724 return (sp
- frame_size
) & ~15;
726 return sp
- frame_size
;
730 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
732 static void setup_frame(int sig
, int code
, struct target_sigaction
*ka
,
733 target_sigset_t
*set
, target_siginfo_t
*tinfo
, CPUArchState
*env
)
735 struct target_sigframe
*frame
;
736 abi_ulong frame_addr
;
739 frame_addr
= get_sigframe(ka
, env
, sizeof(*frame
));
740 trace_user_setup_frame(env
, frame_addr
);
741 if (!lock_user_struct(VERIFY_WRITE
, frame
, frame_addr
, 0)) {
742 unlock_user_struct(frame
, frame_addr
, 1);
743 dump_core_and_abort(TARGET_SIGILL
);
747 memset(frame
, 0, sizeof(*frame
));
748 setup_sigframe_arch(env
, frame_addr
, frame
, 0);
750 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
751 __put_user(set
->__bits
[i
], &frame
->sf_uc
.uc_sigmask
.__bits
[i
]);
755 frame
->sf_si
.si_signo
= tinfo
->si_signo
;
756 frame
->sf_si
.si_errno
= tinfo
->si_errno
;
757 frame
->sf_si
.si_code
= tinfo
->si_code
;
758 frame
->sf_si
.si_pid
= tinfo
->si_pid
;
759 frame
->sf_si
.si_uid
= tinfo
->si_uid
;
760 frame
->sf_si
.si_status
= tinfo
->si_status
;
761 frame
->sf_si
.si_addr
= tinfo
->si_addr
;
762 /* see host_to_target_siginfo_noswap() for more details */
763 frame
->sf_si
.si_value
.sival_ptr
= tinfo
->si_value
.sival_ptr
;
765 * At this point, whatever is in the _reason union is complete
766 * and in target order, so just copy the whole thing over, even
767 * if it's too large for this specific signal.
768 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
771 memcpy(&frame
->sf_si
._reason
, &tinfo
->_reason
,
772 sizeof(tinfo
->_reason
));
775 set_sigtramp_args(env
, sig
, frame
, frame_addr
, ka
);
777 unlock_user_struct(frame
, frame_addr
, 1);
780 static int reset_signal_mask(target_ucontext_t
*ucontext
)
784 target_sigset_t target_set
;
785 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
787 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
788 if (__get_user(target_set
.__bits
[i
],
789 &ucontext
->uc_sigmask
.__bits
[i
])) {
790 return -TARGET_EFAULT
;
793 target_to_host_sigset_internal(&blocked
, &target_set
);
794 ts
->signal_mask
= blocked
;
799 /* See sys/$M/$M/exec_machdep.c sigreturn() */
800 long do_sigreturn(CPUArchState
*env
, abi_ulong addr
)
803 abi_ulong target_ucontext
;
804 target_ucontext_t
*ucontext
= NULL
;
806 /* Get the target ucontext address from the stack frame */
807 ret
= get_ucontext_sigreturn(env
, addr
, &target_ucontext
);
811 trace_user_do_sigreturn(env
, addr
);
812 if (!lock_user_struct(VERIFY_READ
, ucontext
, target_ucontext
, 0)) {
816 /* Set the register state back to before the signal. */
817 if (set_mcontext(env
, &ucontext
->uc_mcontext
, 1)) {
821 /* And reset the signal mask. */
822 if (reset_signal_mask(ucontext
)) {
826 unlock_user_struct(ucontext
, target_ucontext
, 0);
827 return -TARGET_EJUSTRETURN
;
830 if (ucontext
!= NULL
) {
831 unlock_user_struct(ucontext
, target_ucontext
, 0);
833 return -TARGET_EFAULT
;
836 void signal_init(void)
838 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
839 struct sigaction act
;
840 struct sigaction oact
;
844 /* Set the signal mask from the host mask. */
845 sigprocmask(0, 0, &ts
->signal_mask
);
847 sigfillset(&act
.sa_mask
);
848 act
.sa_sigaction
= host_signal_handler
;
849 act
.sa_flags
= SA_SIGINFO
;
851 for (i
= 1; i
<= TARGET_NSIG
; i
++) {
853 if (i
== TARGET_SIGPROF
) {
857 host_sig
= target_to_host_signal(i
);
858 sigaction(host_sig
, NULL
, &oact
);
859 if (oact
.sa_sigaction
== (void *)SIG_IGN
) {
860 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_IGN
;
861 } else if (oact
.sa_sigaction
== (void *)SIG_DFL
) {
862 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_DFL
;
865 * If there's already a handler installed then something has
866 * gone horribly wrong, so don't even try to handle that case.
867 * Install some handlers for our own use. We need at least
868 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
869 * trap all signals because it affects syscall interrupt
870 * behavior. But do trap all default-fatal signals.
872 if (fatal_signal(i
)) {
873 sigaction(host_sig
, &act
, NULL
);
878 static void handle_pending_signal(CPUArchState
*env
, int sig
,
879 struct emulated_sigtable
*k
)
881 CPUState
*cpu
= env_cpu(env
);
882 TaskState
*ts
= cpu
->opaque
;
883 struct target_sigaction
*sa
;
887 target_siginfo_t tinfo
;
888 target_sigset_t target_old_set
;
890 trace_user_handle_signal(env
, sig
);
894 sig
= gdb_handlesig(cpu
, sig
);
897 handler
= TARGET_SIG_IGN
;
899 sa
= &sigact_table
[sig
- 1];
900 handler
= sa
->_sa_handler
;
904 print_taken_signal(sig
, &k
->info
);
907 if (handler
== TARGET_SIG_DFL
) {
909 * default handler : ignore some signal. The other are job
912 if (sig
== TARGET_SIGTSTP
|| sig
== TARGET_SIGTTIN
||
913 sig
== TARGET_SIGTTOU
) {
914 kill(getpid(), SIGSTOP
);
915 } else if (sig
!= TARGET_SIGCHLD
&& sig
!= TARGET_SIGURG
&&
916 sig
!= TARGET_SIGINFO
&& sig
!= TARGET_SIGWINCH
&&
917 sig
!= TARGET_SIGCONT
) {
918 dump_core_and_abort(sig
);
920 } else if (handler
== TARGET_SIG_IGN
) {
922 } else if (handler
== TARGET_SIG_ERR
) {
923 dump_core_and_abort(sig
);
925 /* compute the blocked signals during the handler execution */
926 sigset_t
*blocked_set
;
928 target_to_host_sigset(&set
, &sa
->sa_mask
);
930 * SA_NODEFER indicates that the current signal should not be
931 * blocked during the handler.
933 if (!(sa
->sa_flags
& TARGET_SA_NODEFER
)) {
934 sigaddset(&set
, target_to_host_signal(sig
));
938 * Save the previous blocked signal state to restore it at the
939 * end of the signal execution (see do_sigreturn).
941 host_to_target_sigset_internal(&target_old_set
, &ts
->signal_mask
);
943 blocked_set
= ts
->in_sigsuspend
?
944 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
945 sigorset(&ts
->signal_mask
, blocked_set
, &set
);
946 ts
->in_sigsuspend
= false;
947 sigprocmask(SIG_SETMASK
, &ts
->signal_mask
, NULL
);
949 /* XXX VM86 on x86 ??? */
951 code
= k
->info
.si_code
; /* From host, so no si_type */
952 /* prepare the stack frame of the virtual CPU */
953 if (sa
->sa_flags
& TARGET_SA_SIGINFO
) {
954 tswap_siginfo(&tinfo
, &k
->info
);
955 setup_frame(sig
, code
, sa
, &target_old_set
, &tinfo
, env
);
957 setup_frame(sig
, code
, sa
, &target_old_set
, NULL
, env
);
959 if (sa
->sa_flags
& TARGET_SA_RESETHAND
) {
960 sa
->_sa_handler
= TARGET_SIG_DFL
;
965 void process_pending_signals(CPUArchState
*env
)
967 CPUState
*cpu
= env_cpu(env
);
969 sigset_t
*blocked_set
, set
;
970 struct emulated_sigtable
*k
;
971 TaskState
*ts
= cpu
->opaque
;
973 while (qatomic_read(&ts
->signal_pending
)) {
975 sigprocmask(SIG_SETMASK
, &set
, 0);
978 sig
= ts
->sync_signal
.pending
;
981 * Synchronous signals are forced by the emulated CPU in some way.
982 * If they are set to ignore, restore the default handler (see
983 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
984 * though maybe this is done only when forcing exit for non SIGCHLD.
986 if (sigismember(&ts
->signal_mask
, target_to_host_signal(sig
)) ||
987 sigact_table
[sig
- 1]._sa_handler
== TARGET_SIG_IGN
) {
988 sigdelset(&ts
->signal_mask
, target_to_host_signal(sig
));
989 sigact_table
[sig
- 1]._sa_handler
= TARGET_SIG_DFL
;
991 handle_pending_signal(env
, sig
, &ts
->sync_signal
);
995 for (sig
= 1; sig
<= TARGET_NSIG
; sig
++, k
++) {
996 blocked_set
= ts
->in_sigsuspend
?
997 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
999 !sigismember(blocked_set
, target_to_host_signal(sig
))) {
1000 handle_pending_signal(env
, sig
, k
);
1002 * Restart scan from the beginning, as handle_pending_signal
1003 * might have resulted in a new synchronous signal (eg SIGSEGV).
1010 * Unblock signals and check one more time. Unblocking signals may cause
1011 * us to take another host signal, which will set signal_pending again.
1013 qatomic_set(&ts
->signal_pending
, 0);
1014 ts
->in_sigsuspend
= false;
1015 set
= ts
->signal_mask
;
1016 sigdelset(&set
, SIGSEGV
);
1017 sigdelset(&set
, SIGBUS
);
1018 sigprocmask(SIG_SETMASK
, &set
, 0);
1020 ts
->in_sigsuspend
= false;
1023 void cpu_loop_exit_sigsegv(CPUState
*cpu
, target_ulong addr
,
1024 MMUAccessType access_type
, bool maperr
, uintptr_t ra
)
1026 const struct TCGCPUOps
*tcg_ops
= CPU_GET_CLASS(cpu
)->tcg_ops
;
1028 if (tcg_ops
->record_sigsegv
) {
1029 tcg_ops
->record_sigsegv(cpu
, addr
, access_type
, maperr
, ra
);
1032 force_sig_fault(TARGET_SIGSEGV
,
1033 maperr
? TARGET_SEGV_MAPERR
: TARGET_SEGV_ACCERR
,
1035 cpu
->exception_index
= EXCP_INTERRUPT
;
1036 cpu_loop_exit_restore(cpu
, ra
);
1039 void cpu_loop_exit_sigbus(CPUState
*cpu
, target_ulong addr
,
1040 MMUAccessType access_type
, uintptr_t ra
)
1042 const struct TCGCPUOps
*tcg_ops
= CPU_GET_CLASS(cpu
)->tcg_ops
;
1044 if (tcg_ops
->record_sigbus
) {
1045 tcg_ops
->record_sigbus(cpu
, addr
, access_type
, ra
);
1048 force_sig_fault(TARGET_SIGBUS
, TARGET_BUS_ADRALN
, addr
);
1049 cpu
->exception_index
= EXCP_INTERRUPT
;
1050 cpu_loop_exit_restore(cpu
, ra
);