target/i386/kvm: Free xsave_buf when destroying vCPU
[qemu/rayw.git] / bsd-user / signal.c
blob8a36b696d82bd94d34757716ec1d6bd6e4259ff1
1 /*
2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "signal-common.h"
25 #include "trace.h"
26 #include "hw/core/tcg-cpu-ops.h"
27 #include "host-signal.h"
29 static struct target_sigaction sigact_table[TARGET_NSIG];
30 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
31 static void target_to_host_sigset_internal(sigset_t *d,
32 const target_sigset_t *s);
34 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
36 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
39 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
41 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
42 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
46 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
47 * (unlike Linux) these functions are just the identity mapping. This might not
48 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
50 int host_to_target_signal(int sig)
52 return sig;
55 int target_to_host_signal(int sig)
57 return sig;
60 static inline void target_sigemptyset(target_sigset_t *set)
62 memset(set, 0, sizeof(*set));
65 static inline void target_sigaddset(target_sigset_t *set, int signum)
67 signum--;
68 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
69 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
72 static inline int target_sigismember(const target_sigset_t *set, int signum)
74 signum--;
75 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
76 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
79 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
80 static inline void rewind_if_in_safe_syscall(void *puc)
82 ucontext_t *uc = (ucontext_t *)puc;
83 uintptr_t pcreg = host_signal_pc(uc);
85 if (pcreg > (uintptr_t)safe_syscall_start
86 && pcreg < (uintptr_t)safe_syscall_end) {
87 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
92 * Note: The following take advantage of the BSD signal property that all
93 * signals are available on all architectures.
95 static void host_to_target_sigset_internal(target_sigset_t *d,
96 const sigset_t *s)
98 int i;
100 target_sigemptyset(d);
101 for (i = 1; i <= NSIG; i++) {
102 if (sigismember(s, i)) {
103 target_sigaddset(d, host_to_target_signal(i));
108 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
110 target_sigset_t d1;
111 int i;
113 host_to_target_sigset_internal(&d1, s);
114 for (i = 0; i < _SIG_WORDS; i++) {
115 d->__bits[i] = tswap32(d1.__bits[i]);
119 static void target_to_host_sigset_internal(sigset_t *d,
120 const target_sigset_t *s)
122 int i;
124 sigemptyset(d);
125 for (i = 1; i <= TARGET_NSIG; i++) {
126 if (target_sigismember(s, i)) {
127 sigaddset(d, target_to_host_signal(i));
132 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
134 target_sigset_t s1;
135 int i;
137 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
138 s1.__bits[i] = tswap32(s->__bits[i]);
140 target_to_host_sigset_internal(d, &s1);
143 static bool has_trapno(int tsig)
145 return tsig == TARGET_SIGILL ||
146 tsig == TARGET_SIGFPE ||
147 tsig == TARGET_SIGSEGV ||
148 tsig == TARGET_SIGBUS ||
149 tsig == TARGET_SIGTRAP;
152 /* Siginfo conversion. */
155 * Populate tinfo w/o swapping based on guessing which fields are valid.
157 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
158 const siginfo_t *info)
160 int sig = host_to_target_signal(info->si_signo);
161 int si_code = info->si_code;
162 int si_type;
165 * Make sure we that the variable portion of the target siginfo is zeroed
166 * out so we don't leak anything into that.
168 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
171 * This is awkward, because we have to use a combination of the si_code and
172 * si_signo to figure out which of the union's members are valid.o We
173 * therefore make our best guess.
175 * Once we have made our guess, we record it in the top 16 bits of
176 * the si_code, so that tswap_siginfo() later can use it.
177 * tswap_siginfo() will strip these top bits out before writing
178 * si_code to the guest (sign-extending the lower bits).
180 tinfo->si_signo = sig;
181 tinfo->si_errno = info->si_errno;
182 tinfo->si_code = info->si_code;
183 tinfo->si_pid = info->si_pid;
184 tinfo->si_uid = info->si_uid;
185 tinfo->si_status = info->si_status;
186 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
188 * si_value is opaque to kernel. On all FreeBSD platforms,
189 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
190 * always will copy the larger element.
192 tinfo->si_value.sival_ptr =
193 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
195 switch (si_code) {
197 * All the SI_xxx codes that are defined here are global to
198 * all the signals (they have values that none of the other,
199 * more specific signal info will set).
201 case SI_USER:
202 case SI_LWP:
203 case SI_KERNEL:
204 case SI_QUEUE:
205 case SI_ASYNCIO:
207 * Only the fixed parts are valid (though FreeBSD doesn't always
208 * set all the fields to non-zero values.
210 si_type = QEMU_SI_NOINFO;
211 break;
212 case SI_TIMER:
213 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
214 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
215 si_type = QEMU_SI_TIMER;
216 break;
217 case SI_MESGQ:
218 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
219 si_type = QEMU_SI_MESGQ;
220 break;
221 default:
223 * We have to go based on the signal number now to figure out
224 * what's valid.
226 si_type = QEMU_SI_NOINFO;
227 if (has_trapno(sig)) {
228 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
229 si_type = QEMU_SI_FAULT;
231 #ifdef TARGET_SIGPOLL
233 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
234 * a chance it may popup in the future.
236 if (sig == TARGET_SIGPOLL) {
237 tinfo->_reason._poll._band = info->_reason._poll._band;
238 si_type = QEMU_SI_POLL;
240 #endif
242 * Unsure that this can actually be generated, and our support for
243 * capsicum is somewhere between weak and non-existant, but if we get
244 * one, then we know what to save.
246 #ifdef QEMU_SI_CAPSICUM
247 if (sig == TARGET_SIGTRAP) {
248 tinfo->_reason._capsicum._syscall =
249 info->_reason._capsicum._syscall;
250 si_type = QEMU_SI_CAPSICUM;
252 #endif
253 break;
255 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
258 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
260 int si_type = extract32(info->si_code, 24, 8);
261 int si_code = sextract32(info->si_code, 0, 24);
263 __put_user(info->si_signo, &tinfo->si_signo);
264 __put_user(info->si_errno, &tinfo->si_errno);
265 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
266 __put_user(info->si_pid, &tinfo->si_pid);
267 __put_user(info->si_uid, &tinfo->si_uid);
268 __put_user(info->si_status, &tinfo->si_status);
269 __put_user(info->si_addr, &tinfo->si_addr);
271 * Unswapped, because we passed it through mostly untouched. si_value is
272 * opaque to the kernel, so we didn't bother with potentially wasting cycles
273 * to swap it into host byte order.
275 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
278 * We can use our internal marker of which fields in the structure
279 * are valid, rather than duplicating the guesswork of
280 * host_to_target_siginfo_noswap() here.
282 switch (si_type) {
283 case QEMU_SI_NOINFO: /* No additional info */
284 break;
285 case QEMU_SI_FAULT:
286 __put_user(info->_reason._fault._trapno,
287 &tinfo->_reason._fault._trapno);
288 break;
289 case QEMU_SI_TIMER:
290 __put_user(info->_reason._timer._timerid,
291 &tinfo->_reason._timer._timerid);
292 __put_user(info->_reason._timer._overrun,
293 &tinfo->_reason._timer._overrun);
294 break;
295 case QEMU_SI_MESGQ:
296 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
297 break;
298 case QEMU_SI_POLL:
299 /* Note: Not generated on FreeBSD */
300 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
301 break;
302 #ifdef QEMU_SI_CAPSICUM
303 case QEMU_SI_CAPSICUM:
304 __put_user(info->_reason._capsicum._syscall,
305 &tinfo->_reason._capsicum._syscall);
306 break;
307 #endif
308 default:
309 g_assert_not_reached();
313 int block_signals(void)
315 TaskState *ts = (TaskState *)thread_cpu->opaque;
316 sigset_t set;
319 * It's OK to block everything including SIGSEGV, because we won't run any
320 * further guest code before unblocking signals in
321 * process_pending_signals(). We depend on the FreeBSD behaivor here where
322 * this will only affect this thread's signal mask. We don't use
323 * pthread_sigmask which might seem more correct because that routine also
324 * does odd things with SIGCANCEL to implement pthread_cancel().
326 sigfillset(&set);
327 sigprocmask(SIG_SETMASK, &set, 0);
329 return qatomic_xchg(&ts->signal_pending, 1);
332 /* Returns 1 if given signal should dump core if not handled. */
333 static int core_dump_signal(int sig)
335 switch (sig) {
336 case TARGET_SIGABRT:
337 case TARGET_SIGFPE:
338 case TARGET_SIGILL:
339 case TARGET_SIGQUIT:
340 case TARGET_SIGSEGV:
341 case TARGET_SIGTRAP:
342 case TARGET_SIGBUS:
343 return 1;
344 default:
345 return 0;
349 /* Abort execution with signal. */
350 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
352 CPUArchState *env = thread_cpu->env_ptr;
353 CPUState *cpu = env_cpu(env);
354 TaskState *ts = cpu->opaque;
355 int core_dumped = 0;
356 int host_sig;
357 struct sigaction act;
359 host_sig = target_to_host_signal(target_sig);
360 gdb_signalled(env, target_sig);
362 /* Dump core if supported by target binary format */
363 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
364 stop_all_tasks();
365 core_dumped =
366 ((*ts->bprm->core_dump)(target_sig, env) == 0);
368 if (core_dumped) {
369 struct rlimit nodump;
372 * We already dumped the core of target process, we don't want
373 * a coredump of qemu itself.
375 getrlimit(RLIMIT_CORE, &nodump);
376 nodump.rlim_cur = 0;
377 setrlimit(RLIMIT_CORE, &nodump);
378 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
379 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
383 * The proper exit code for dying from an uncaught signal is
384 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
385 * a negative value. To get the proper exit code we need to
386 * actually die from an uncaught signal. Here the default signal
387 * handler is installed, we send ourself a signal and we wait for
388 * it to arrive.
390 memset(&act, 0, sizeof(act));
391 sigfillset(&act.sa_mask);
392 act.sa_handler = SIG_DFL;
393 sigaction(host_sig, &act, NULL);
395 kill(getpid(), host_sig);
398 * Make sure the signal isn't masked (just reuse the mask inside
399 * of act).
401 sigdelset(&act.sa_mask, host_sig);
402 sigsuspend(&act.sa_mask);
404 /* unreachable */
405 abort();
409 * Queue a signal so that it will be send to the virtual CPU as soon as
410 * possible.
412 void queue_signal(CPUArchState *env, int sig, int si_type,
413 target_siginfo_t *info)
415 CPUState *cpu = env_cpu(env);
416 TaskState *ts = cpu->opaque;
418 trace_user_queue_signal(env, sig);
420 info->si_code = deposit32(info->si_code, 24, 8, si_type);
422 ts->sync_signal.info = *info;
423 ts->sync_signal.pending = sig;
424 /* Signal that a new signal is pending. */
425 qatomic_set(&ts->signal_pending, 1);
426 return;
429 static int fatal_signal(int sig)
432 switch (sig) {
433 case TARGET_SIGCHLD:
434 case TARGET_SIGURG:
435 case TARGET_SIGWINCH:
436 case TARGET_SIGINFO:
437 /* Ignored by default. */
438 return 0;
439 case TARGET_SIGCONT:
440 case TARGET_SIGSTOP:
441 case TARGET_SIGTSTP:
442 case TARGET_SIGTTIN:
443 case TARGET_SIGTTOU:
444 /* Job control signals. */
445 return 0;
446 default:
447 return 1;
452 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
453 * 'force' part is handled in process_pending_signals().
455 void force_sig_fault(int sig, int code, abi_ulong addr)
457 CPUState *cpu = thread_cpu;
458 CPUArchState *env = cpu->env_ptr;
459 target_siginfo_t info = {};
461 info.si_signo = sig;
462 info.si_errno = 0;
463 info.si_code = code;
464 info.si_addr = addr;
465 queue_signal(env, sig, QEMU_SI_FAULT, &info);
468 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
470 CPUArchState *env = thread_cpu->env_ptr;
471 CPUState *cpu = env_cpu(env);
472 TaskState *ts = cpu->opaque;
473 target_siginfo_t tinfo;
474 ucontext_t *uc = puc;
475 struct emulated_sigtable *k;
476 int guest_sig;
477 uintptr_t pc = 0;
478 bool sync_sig = false;
481 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
482 * handling wrt signal blocking and unwinding.
484 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
485 MMUAccessType access_type;
486 uintptr_t host_addr;
487 abi_ptr guest_addr;
488 bool is_write;
490 host_addr = (uintptr_t)info->si_addr;
493 * Convert forcefully to guest address space: addresses outside
494 * reserved_va are still valid to report via SEGV_MAPERR.
496 guest_addr = h2g_nocheck(host_addr);
498 pc = host_signal_pc(uc);
499 is_write = host_signal_write(info, uc);
500 access_type = adjust_signal_pc(&pc, is_write);
502 if (host_sig == SIGSEGV) {
503 bool maperr = true;
505 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
506 /* If this was a write to a TB protected page, restart. */
507 if (is_write &&
508 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
509 pc, guest_addr)) {
510 return;
514 * With reserved_va, the whole address space is PROT_NONE,
515 * which means that we may get ACCERR when we want MAPERR.
517 if (page_get_flags(guest_addr) & PAGE_VALID) {
518 maperr = false;
519 } else {
520 info->si_code = SEGV_MAPERR;
524 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
525 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
526 } else {
527 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
528 if (info->si_code == BUS_ADRALN) {
529 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
533 sync_sig = true;
536 /* Get the target signal number. */
537 guest_sig = host_to_target_signal(host_sig);
538 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
539 return;
541 trace_user_host_signal(cpu, host_sig, guest_sig);
543 host_to_target_siginfo_noswap(&tinfo, info);
545 k = &ts->sigtab[guest_sig - 1];
546 k->info = tinfo;
547 k->pending = guest_sig;
548 ts->signal_pending = 1;
551 * For synchronous signals, unwind the cpu state to the faulting
552 * insn and then exit back to the main loop so that the signal
553 * is delivered immediately.
555 if (sync_sig) {
556 cpu->exception_index = EXCP_INTERRUPT;
557 cpu_loop_exit_restore(cpu, pc);
560 rewind_if_in_safe_syscall(puc);
563 * Block host signals until target signal handler entered. We
564 * can't block SIGSEGV or SIGBUS while we're executing guest
565 * code in case the guest code provokes one in the window between
566 * now and it getting out to the main loop. Signals will be
567 * unblocked again in process_pending_signals().
569 sigfillset(&uc->uc_sigmask);
570 sigdelset(&uc->uc_sigmask, SIGSEGV);
571 sigdelset(&uc->uc_sigmask, SIGBUS);
573 /* Interrupt the virtual CPU as soon as possible. */
574 cpu_exit(thread_cpu);
577 /* do_sigaltstack() returns target values and errnos. */
578 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
579 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
581 TaskState *ts = (TaskState *)thread_cpu->opaque;
582 int ret;
583 target_stack_t oss;
585 if (uoss_addr) {
586 /* Save current signal stack params */
587 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
588 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
589 oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
592 if (uss_addr) {
593 target_stack_t *uss;
594 target_stack_t ss;
595 size_t minstacksize = TARGET_MINSIGSTKSZ;
597 ret = -TARGET_EFAULT;
598 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
599 goto out;
601 __get_user(ss.ss_sp, &uss->ss_sp);
602 __get_user(ss.ss_size, &uss->ss_size);
603 __get_user(ss.ss_flags, &uss->ss_flags);
604 unlock_user_struct(uss, uss_addr, 0);
606 ret = -TARGET_EPERM;
607 if (on_sig_stack(ts, sp)) {
608 goto out;
611 ret = -TARGET_EINVAL;
612 if (ss.ss_flags != TARGET_SS_DISABLE
613 && ss.ss_flags != TARGET_SS_ONSTACK
614 && ss.ss_flags != 0) {
615 goto out;
618 if (ss.ss_flags == TARGET_SS_DISABLE) {
619 ss.ss_size = 0;
620 ss.ss_sp = 0;
621 } else {
622 ret = -TARGET_ENOMEM;
623 if (ss.ss_size < minstacksize) {
624 goto out;
628 ts->sigaltstack_used.ss_sp = ss.ss_sp;
629 ts->sigaltstack_used.ss_size = ss.ss_size;
632 if (uoss_addr) {
633 ret = -TARGET_EFAULT;
634 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
635 goto out;
639 ret = 0;
640 out:
641 return ret;
644 /* do_sigaction() return host values and errnos */
645 int do_sigaction(int sig, const struct target_sigaction *act,
646 struct target_sigaction *oact)
648 struct target_sigaction *k;
649 struct sigaction act1;
650 int host_sig;
651 int ret = 0;
653 if (sig < 1 || sig > TARGET_NSIG) {
654 return -TARGET_EINVAL;
657 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
658 act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
659 return -TARGET_EINVAL;
662 if (block_signals()) {
663 return -TARGET_ERESTART;
666 k = &sigact_table[sig - 1];
667 if (oact) {
668 oact->_sa_handler = tswapal(k->_sa_handler);
669 oact->sa_flags = tswap32(k->sa_flags);
670 oact->sa_mask = k->sa_mask;
672 if (act) {
673 k->_sa_handler = tswapal(act->_sa_handler);
674 k->sa_flags = tswap32(act->sa_flags);
675 k->sa_mask = act->sa_mask;
677 /* Update the host signal state. */
678 host_sig = target_to_host_signal(sig);
679 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
680 memset(&act1, 0, sizeof(struct sigaction));
681 sigfillset(&act1.sa_mask);
682 act1.sa_flags = SA_SIGINFO;
683 if (k->sa_flags & TARGET_SA_RESTART) {
684 act1.sa_flags |= SA_RESTART;
687 * Note: It is important to update the host kernel signal mask to
688 * avoid getting unexpected interrupted system calls.
690 if (k->_sa_handler == TARGET_SIG_IGN) {
691 act1.sa_sigaction = (void *)SIG_IGN;
692 } else if (k->_sa_handler == TARGET_SIG_DFL) {
693 if (fatal_signal(sig)) {
694 act1.sa_sigaction = host_signal_handler;
695 } else {
696 act1.sa_sigaction = (void *)SIG_DFL;
698 } else {
699 act1.sa_sigaction = host_signal_handler;
701 ret = sigaction(host_sig, &act1, NULL);
704 return ret;
707 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
708 CPUArchState *env, size_t frame_size)
710 TaskState *ts = (TaskState *)thread_cpu->opaque;
711 abi_ulong sp;
713 /* Use default user stack */
714 sp = get_sp_from_cpustate(env);
716 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
717 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
720 /* TODO: make this a target_arch function / define */
721 #if defined(TARGET_ARM)
722 return (sp - frame_size) & ~7;
723 #elif defined(TARGET_AARCH64)
724 return (sp - frame_size) & ~15;
725 #else
726 return sp - frame_size;
727 #endif
730 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
732 static void setup_frame(int sig, int code, struct target_sigaction *ka,
733 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
735 struct target_sigframe *frame;
736 abi_ulong frame_addr;
737 int i;
739 frame_addr = get_sigframe(ka, env, sizeof(*frame));
740 trace_user_setup_frame(env, frame_addr);
741 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
742 unlock_user_struct(frame, frame_addr, 1);
743 dump_core_and_abort(TARGET_SIGILL);
744 return;
747 memset(frame, 0, sizeof(*frame));
748 setup_sigframe_arch(env, frame_addr, frame, 0);
750 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
751 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
754 if (tinfo) {
755 frame->sf_si.si_signo = tinfo->si_signo;
756 frame->sf_si.si_errno = tinfo->si_errno;
757 frame->sf_si.si_code = tinfo->si_code;
758 frame->sf_si.si_pid = tinfo->si_pid;
759 frame->sf_si.si_uid = tinfo->si_uid;
760 frame->sf_si.si_status = tinfo->si_status;
761 frame->sf_si.si_addr = tinfo->si_addr;
762 /* see host_to_target_siginfo_noswap() for more details */
763 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
765 * At this point, whatever is in the _reason union is complete
766 * and in target order, so just copy the whole thing over, even
767 * if it's too large for this specific signal.
768 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
769 * that's so.
771 memcpy(&frame->sf_si._reason, &tinfo->_reason,
772 sizeof(tinfo->_reason));
775 set_sigtramp_args(env, sig, frame, frame_addr, ka);
777 unlock_user_struct(frame, frame_addr, 1);
780 static int reset_signal_mask(target_ucontext_t *ucontext)
782 int i;
783 sigset_t blocked;
784 target_sigset_t target_set;
785 TaskState *ts = (TaskState *)thread_cpu->opaque;
787 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
788 if (__get_user(target_set.__bits[i],
789 &ucontext->uc_sigmask.__bits[i])) {
790 return -TARGET_EFAULT;
793 target_to_host_sigset_internal(&blocked, &target_set);
794 ts->signal_mask = blocked;
796 return 0;
799 /* See sys/$M/$M/exec_machdep.c sigreturn() */
800 long do_sigreturn(CPUArchState *env, abi_ulong addr)
802 long ret;
803 abi_ulong target_ucontext;
804 target_ucontext_t *ucontext = NULL;
806 /* Get the target ucontext address from the stack frame */
807 ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
808 if (is_error(ret)) {
809 return ret;
811 trace_user_do_sigreturn(env, addr);
812 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
813 goto badframe;
816 /* Set the register state back to before the signal. */
817 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
818 goto badframe;
821 /* And reset the signal mask. */
822 if (reset_signal_mask(ucontext)) {
823 goto badframe;
826 unlock_user_struct(ucontext, target_ucontext, 0);
827 return -TARGET_EJUSTRETURN;
829 badframe:
830 if (ucontext != NULL) {
831 unlock_user_struct(ucontext, target_ucontext, 0);
833 return -TARGET_EFAULT;
836 void signal_init(void)
838 TaskState *ts = (TaskState *)thread_cpu->opaque;
839 struct sigaction act;
840 struct sigaction oact;
841 int i;
842 int host_sig;
844 /* Set the signal mask from the host mask. */
845 sigprocmask(0, 0, &ts->signal_mask);
847 sigfillset(&act.sa_mask);
848 act.sa_sigaction = host_signal_handler;
849 act.sa_flags = SA_SIGINFO;
851 for (i = 1; i <= TARGET_NSIG; i++) {
852 #ifdef CONFIG_GPROF
853 if (i == TARGET_SIGPROF) {
854 continue;
856 #endif
857 host_sig = target_to_host_signal(i);
858 sigaction(host_sig, NULL, &oact);
859 if (oact.sa_sigaction == (void *)SIG_IGN) {
860 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
861 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
862 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
865 * If there's already a handler installed then something has
866 * gone horribly wrong, so don't even try to handle that case.
867 * Install some handlers for our own use. We need at least
868 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
869 * trap all signals because it affects syscall interrupt
870 * behavior. But do trap all default-fatal signals.
872 if (fatal_signal(i)) {
873 sigaction(host_sig, &act, NULL);
878 static void handle_pending_signal(CPUArchState *env, int sig,
879 struct emulated_sigtable *k)
881 CPUState *cpu = env_cpu(env);
882 TaskState *ts = cpu->opaque;
883 struct target_sigaction *sa;
884 int code;
885 sigset_t set;
886 abi_ulong handler;
887 target_siginfo_t tinfo;
888 target_sigset_t target_old_set;
890 trace_user_handle_signal(env, sig);
892 k->pending = 0;
894 sig = gdb_handlesig(cpu, sig);
895 if (!sig) {
896 sa = NULL;
897 handler = TARGET_SIG_IGN;
898 } else {
899 sa = &sigact_table[sig - 1];
900 handler = sa->_sa_handler;
903 if (do_strace) {
904 print_taken_signal(sig, &k->info);
907 if (handler == TARGET_SIG_DFL) {
909 * default handler : ignore some signal. The other are job
910 * control or fatal.
912 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
913 sig == TARGET_SIGTTOU) {
914 kill(getpid(), SIGSTOP);
915 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
916 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
917 sig != TARGET_SIGCONT) {
918 dump_core_and_abort(sig);
920 } else if (handler == TARGET_SIG_IGN) {
921 /* ignore sig */
922 } else if (handler == TARGET_SIG_ERR) {
923 dump_core_and_abort(sig);
924 } else {
925 /* compute the blocked signals during the handler execution */
926 sigset_t *blocked_set;
928 target_to_host_sigset(&set, &sa->sa_mask);
930 * SA_NODEFER indicates that the current signal should not be
931 * blocked during the handler.
933 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
934 sigaddset(&set, target_to_host_signal(sig));
938 * Save the previous blocked signal state to restore it at the
939 * end of the signal execution (see do_sigreturn).
941 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
943 blocked_set = ts->in_sigsuspend ?
944 &ts->sigsuspend_mask : &ts->signal_mask;
945 sigorset(&ts->signal_mask, blocked_set, &set);
946 ts->in_sigsuspend = false;
947 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
949 /* XXX VM86 on x86 ??? */
951 code = k->info.si_code; /* From host, so no si_type */
952 /* prepare the stack frame of the virtual CPU */
953 if (sa->sa_flags & TARGET_SA_SIGINFO) {
954 tswap_siginfo(&tinfo, &k->info);
955 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
956 } else {
957 setup_frame(sig, code, sa, &target_old_set, NULL, env);
959 if (sa->sa_flags & TARGET_SA_RESETHAND) {
960 sa->_sa_handler = TARGET_SIG_DFL;
965 void process_pending_signals(CPUArchState *env)
967 CPUState *cpu = env_cpu(env);
968 int sig;
969 sigset_t *blocked_set, set;
970 struct emulated_sigtable *k;
971 TaskState *ts = cpu->opaque;
973 while (qatomic_read(&ts->signal_pending)) {
974 sigfillset(&set);
975 sigprocmask(SIG_SETMASK, &set, 0);
977 restart_scan:
978 sig = ts->sync_signal.pending;
979 if (sig) {
981 * Synchronous signals are forced by the emulated CPU in some way.
982 * If they are set to ignore, restore the default handler (see
983 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
984 * though maybe this is done only when forcing exit for non SIGCHLD.
986 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
987 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
988 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
989 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
991 handle_pending_signal(env, sig, &ts->sync_signal);
994 k = ts->sigtab;
995 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
996 blocked_set = ts->in_sigsuspend ?
997 &ts->sigsuspend_mask : &ts->signal_mask;
998 if (k->pending &&
999 !sigismember(blocked_set, target_to_host_signal(sig))) {
1000 handle_pending_signal(env, sig, k);
1002 * Restart scan from the beginning, as handle_pending_signal
1003 * might have resulted in a new synchronous signal (eg SIGSEGV).
1005 goto restart_scan;
1010 * Unblock signals and check one more time. Unblocking signals may cause
1011 * us to take another host signal, which will set signal_pending again.
1013 qatomic_set(&ts->signal_pending, 0);
1014 ts->in_sigsuspend = false;
1015 set = ts->signal_mask;
1016 sigdelset(&set, SIGSEGV);
1017 sigdelset(&set, SIGBUS);
1018 sigprocmask(SIG_SETMASK, &set, 0);
1020 ts->in_sigsuspend = false;
1023 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1024 MMUAccessType access_type, bool maperr, uintptr_t ra)
1026 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1028 if (tcg_ops->record_sigsegv) {
1029 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1032 force_sig_fault(TARGET_SIGSEGV,
1033 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1034 addr);
1035 cpu->exception_index = EXCP_INTERRUPT;
1036 cpu_loop_exit_restore(cpu, ra);
1039 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1040 MMUAccessType access_type, uintptr_t ra)
1042 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1044 if (tcg_ops->record_sigbus) {
1045 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1048 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1049 cpu->exception_index = EXCP_INTERRUPT;
1050 cpu_loop_exit_restore(cpu, ra);