2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qemu/units.h"
17 #include "qapi/error.h"
19 #include "hw/sysbus.h"
20 #include "migration/vmstate.h"
21 #include "hw/registerfields.h"
22 #include "hw/arm/armsse.h"
23 #include "hw/arm/armsse-version.h"
24 #include "hw/arm/boot.h"
26 #include "hw/qdev-clock.h"
29 * The SSE-300 puts some devices in different places to the
30 * SSE-200 (and original IoTKit). We use an array of these structs
31 * to define how each variant lays out these devices. (Parts of the
32 * SoC that are the same for all variants aren't handled via these
39 * Special values for ARMSSEDeviceInfo::irq to indicate that this
40 * device uses one of the inputs to the OR gate that feeds into the
46 typedef struct ARMSSEDeviceInfo
{
47 const char *name
; /* name to use for the QOM object; NULL terminates list */
48 const char *type
; /* QOM type name */
49 unsigned int index
; /* Which of the N devices of this type is this ? */
51 hwaddr size
; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
52 int ppc
; /* Index of APB PPC this device is wired up to, or NO_PPC */
53 int ppc_port
; /* Port number of this device on the PPC */
54 int irq
; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
55 bool slowclk
; /* true if device uses the slow 32KHz clock */
63 uint32_t sram_bank_base
;
76 const ARMSSEDeviceInfo
*devinfo
;
77 const bool *irq_is_common
;
80 static Property iotkit_properties
[] = {
81 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
83 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
84 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
85 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
86 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
87 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
88 DEFINE_PROP_END_OF_LIST()
91 static Property sse200_properties
[] = {
92 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
94 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
95 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
96 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
97 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], false),
98 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], false),
99 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE
, cpu_fpu
[1], true),
100 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE
, cpu_dsp
[1], true),
101 DEFINE_PROP_END_OF_LIST()
104 static Property sse300_properties
[] = {
105 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
107 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
108 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 18),
109 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
110 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
111 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
112 DEFINE_PROP_END_OF_LIST()
115 static const ARMSSEDeviceInfo iotkit_devices
[] = {
118 .type
= TYPE_CMSDK_APB_TIMER
,
127 .type
= TYPE_CMSDK_APB_TIMER
,
136 .type
= TYPE_CMSDK_APB_TIMER
,
146 .type
= TYPE_CMSDK_APB_DUALTIMER
,
154 .name
= "s32kwatchdog",
155 .type
= TYPE_CMSDK_APB_WATCHDOG
,
163 .name
= "nswatchdog",
164 .type
= TYPE_CMSDK_APB_WATCHDOG
,
172 .type
= TYPE_CMSDK_APB_WATCHDOG
,
179 .name
= "armsse-sysinfo",
180 .type
= TYPE_IOTKIT_SYSINFO
,
187 .name
= "armsse-sysctl",
188 .type
= TYPE_IOTKIT_SYSCTL
,
199 static const ARMSSEDeviceInfo sse200_devices
[] = {
202 .type
= TYPE_CMSDK_APB_TIMER
,
211 .type
= TYPE_CMSDK_APB_TIMER
,
220 .type
= TYPE_CMSDK_APB_TIMER
,
230 .type
= TYPE_CMSDK_APB_DUALTIMER
,
238 .name
= "s32kwatchdog",
239 .type
= TYPE_CMSDK_APB_WATCHDOG
,
247 .name
= "nswatchdog",
248 .type
= TYPE_CMSDK_APB_WATCHDOG
,
256 .type
= TYPE_CMSDK_APB_WATCHDOG
,
263 .name
= "armsse-sysinfo",
264 .type
= TYPE_IOTKIT_SYSINFO
,
271 .name
= "armsse-sysctl",
272 .type
= TYPE_IOTKIT_SYSCTL
,
279 .name
= "CPU0CORE_PPU",
280 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
288 .name
= "CPU1CORE_PPU",
289 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
298 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
307 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
316 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
325 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
334 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
343 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
355 static const ARMSSEDeviceInfo sse300_devices
[] = {
358 .type
= TYPE_SSE_TIMER
,
367 .type
= TYPE_SSE_TIMER
,
376 .type
= TYPE_SSE_TIMER
,
385 .type
= TYPE_SSE_TIMER
,
394 .type
= TYPE_CMSDK_APB_TIMER
,
403 .name
= "s32kwatchdog",
404 .type
= TYPE_CMSDK_APB_WATCHDOG
,
413 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
421 .name
= "armsse-sysinfo",
422 .type
= TYPE_IOTKIT_SYSINFO
,
429 .name
= "armsse-sysctl",
430 .type
= TYPE_IOTKIT_SYSCTL
,
438 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
446 .name
= "CPU0CORE_PPU",
447 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
456 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
465 .type
= TYPE_UNIMPLEMENTED_DEVICE
,
477 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
478 static const bool sse200_irq_is_common
[32] = {
480 /* 6, 7: per-CPU MHU interrupts */
482 /* 13: per-CPU icache interrupt */
488 /* 28, 29: per-CPU CTI interrupts */
489 /* 30, 31: reserved */
492 static const bool sse300_irq_is_common
[32] = {
494 /* 6, 7: per-CPU MHU interrupts */
498 /* 17-25: reserved */
500 /* 28, 29: per-CPU CTI interrupts */
501 /* 30, 31: reserved */
504 static const ARMSSEInfo armsse_variants
[] = {
507 .sse_version
= ARMSSE_IOTKIT
,
508 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33"),
510 .sram_bank_base
= 0x20000000,
512 .sys_version
= 0x41743,
516 .has_cachectrl
= false,
517 .has_cpusecctrl
= false,
519 .has_cpu_pwrctrl
= false,
520 .has_sse_counter
= false,
522 .props
= iotkit_properties
,
523 .devinfo
= iotkit_devices
,
524 .irq_is_common
= sse200_irq_is_common
,
528 .sse_version
= ARMSSE_SSE200
,
529 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33"),
531 .sram_bank_base
= 0x20000000,
533 .sys_version
= 0x22041743,
537 .has_cachectrl
= true,
538 .has_cpusecctrl
= true,
540 .has_cpu_pwrctrl
= false,
541 .has_sse_counter
= false,
543 .props
= sse200_properties
,
544 .devinfo
= sse200_devices
,
545 .irq_is_common
= sse200_irq_is_common
,
549 .sse_version
= ARMSSE_SSE300
,
550 .cpu_type
= ARM_CPU_TYPE_NAME("cortex-m55"),
552 .sram_bank_base
= 0x21000000,
554 .sys_version
= 0x7e00043b,
558 .has_cachectrl
= false,
559 .has_cpusecctrl
= true,
561 .has_cpu_pwrctrl
= true,
562 .has_sse_counter
= true,
564 .props
= sse300_properties
,
565 .devinfo
= sse300_devices
,
566 .irq_is_common
= sse300_irq_is_common
,
570 static uint32_t armsse_sys_config_value(ARMSSE
*s
, const ARMSSEInfo
*info
)
572 /* Return the SYS_CONFIG value for this SSE */
575 switch (info
->sse_version
) {
578 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
579 sys_config
= deposit32(sys_config
, 4, 4, s
->sram_addr_width
- 12);
583 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
584 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
585 sys_config
= deposit32(sys_config
, 24, 4, 2);
586 if (info
->num_cpus
> 1) {
587 sys_config
= deposit32(sys_config
, 10, 1, 1);
588 sys_config
= deposit32(sys_config
, 20, 4, info
->sram_banks
- 1);
589 sys_config
= deposit32(sys_config
, 28, 4, 2);
594 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
595 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
596 sys_config
= deposit32(sys_config
, 16, 3, 3); /* CPU0 = Cortex-M55 */
599 g_assert_not_reached();
604 /* Clock frequency in HZ of the 32KHz "slow clock" */
605 #define S32KCLK (32 * 1000)
608 * Create an alias region in @container of @size bytes starting at @base
609 * which mirrors the memory starting at @orig.
611 static void make_alias(ARMSSE
*s
, MemoryRegion
*mr
, MemoryRegion
*container
,
612 const char *name
, hwaddr base
, hwaddr size
, hwaddr orig
)
614 memory_region_init_alias(mr
, NULL
, name
, container
, orig
, size
);
615 /* The alias is even lower priority than unimplemented_device regions */
616 memory_region_add_subregion_overlap(container
, base
, mr
, -1500);
619 static void irq_status_forwarder(void *opaque
, int n
, int level
)
621 qemu_irq destirq
= opaque
;
623 qemu_set_irq(destirq
, level
);
626 static void nsccfg_handler(void *opaque
, int n
, int level
)
628 ARMSSE
*s
= ARM_SSE(opaque
);
633 static void armsse_forward_ppc(ARMSSE
*s
, const char *ppcname
, int ppcnum
)
635 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
636 * system using the ARMSSE has a collection of control lines which
637 * are provided by the security controller and which we want to
638 * expose as control lines on the ARMSSE device itself, so the
639 * code using the ARMSSE can wire them up to the PPCs.
641 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[ppcnum
];
642 DeviceState
*armssedev
= DEVICE(s
);
643 DeviceState
*dev_secctl
= DEVICE(&s
->secctl
);
644 DeviceState
*dev_splitter
= DEVICE(splitter
);
647 name
= g_strdup_printf("%s_nonsec", ppcname
);
648 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
650 name
= g_strdup_printf("%s_ap", ppcname
);
651 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
653 name
= g_strdup_printf("%s_irq_enable", ppcname
);
654 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
656 name
= g_strdup_printf("%s_irq_clear", ppcname
);
657 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
660 /* irq_status is a little more tricky, because we need to
661 * split it so we can send it both to the security controller
662 * and to our OR gate for the NVIC interrupt line.
663 * Connect up the splitter's outputs, and create a GPIO input
664 * which will pass the line state to the input splitter.
666 name
= g_strdup_printf("%s_irq_status", ppcname
);
667 qdev_connect_gpio_out(dev_splitter
, 0,
668 qdev_get_gpio_in_named(dev_secctl
,
670 qdev_connect_gpio_out(dev_splitter
, 1,
671 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), ppcnum
));
672 s
->irq_status_in
[ppcnum
] = qdev_get_gpio_in(dev_splitter
, 0);
673 qdev_init_gpio_in_named_with_opaque(armssedev
, irq_status_forwarder
,
674 s
->irq_status_in
[ppcnum
], name
, 1);
678 static void armsse_forward_sec_resp_cfg(ARMSSE
*s
)
680 /* Forward the 3rd output from the splitter device as a
681 * named GPIO output of the armsse object.
683 DeviceState
*dev
= DEVICE(s
);
684 DeviceState
*dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
686 qdev_init_gpio_out_named(dev
, &s
->sec_resp_cfg
, "sec_resp_cfg", 1);
687 s
->sec_resp_cfg_in
= qemu_allocate_irq(irq_status_forwarder
,
689 qdev_connect_gpio_out(dev_splitter
, 2, s
->sec_resp_cfg_in
);
692 static void armsse_mainclk_update(void *opaque
, ClockEvent event
)
694 ARMSSE
*s
= ARM_SSE(opaque
);
697 * Set system_clock_scale from our Clock input; this is what
698 * controls the tick rate of the CPU SysTick timer.
700 system_clock_scale
= clock_ticks_to_ns(s
->mainclk
, 1);
703 static void armsse_init(Object
*obj
)
705 ARMSSE
*s
= ARM_SSE(obj
);
706 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(obj
);
707 const ARMSSEInfo
*info
= asc
->info
;
708 const ARMSSEDeviceInfo
*devinfo
;
711 assert(info
->sram_banks
<= MAX_SRAM_BANKS
);
712 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
714 s
->mainclk
= qdev_init_clock_in(DEVICE(s
), "MAINCLK",
715 armsse_mainclk_update
, s
, ClockUpdate
);
716 s
->s32kclk
= qdev_init_clock_in(DEVICE(s
), "S32KCLK", NULL
, NULL
, 0);
718 memory_region_init(&s
->container
, obj
, "armsse-container", UINT64_MAX
);
720 for (i
= 0; i
< info
->num_cpus
; i
++) {
722 * We put each CPU in its own cluster as they are logically
723 * distinct and may be configured differently.
727 name
= g_strdup_printf("cluster%d", i
);
728 object_initialize_child(obj
, name
, &s
->cluster
[i
], TYPE_CPU_CLUSTER
);
729 qdev_prop_set_uint32(DEVICE(&s
->cluster
[i
]), "cluster-id", i
);
732 name
= g_strdup_printf("armv7m%d", i
);
733 object_initialize_child(OBJECT(&s
->cluster
[i
]), name
, &s
->armv7m
[i
],
735 qdev_prop_set_string(DEVICE(&s
->armv7m
[i
]), "cpu-type", info
->cpu_type
);
737 name
= g_strdup_printf("arm-sse-cpu-container%d", i
);
738 memory_region_init(&s
->cpu_container
[i
], obj
, name
, UINT64_MAX
);
741 name
= g_strdup_printf("arm-sse-container-alias%d", i
);
742 memory_region_init_alias(&s
->container_alias
[i
- 1], obj
,
743 name
, &s
->container
, 0, UINT64_MAX
);
748 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
749 assert(devinfo
->ppc
== NO_PPC
|| devinfo
->ppc
< ARRAY_SIZE(s
->apb_ppc
));
750 if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_TIMER
)) {
751 assert(devinfo
->index
< ARRAY_SIZE(s
->timer
));
752 object_initialize_child(obj
, devinfo
->name
,
753 &s
->timer
[devinfo
->index
],
754 TYPE_CMSDK_APB_TIMER
);
755 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_DUALTIMER
)) {
756 assert(devinfo
->index
== 0);
757 object_initialize_child(obj
, devinfo
->name
, &s
->dualtimer
,
758 TYPE_CMSDK_APB_DUALTIMER
);
759 } else if (!strcmp(devinfo
->type
, TYPE_SSE_TIMER
)) {
760 assert(devinfo
->index
< ARRAY_SIZE(s
->sse_timer
));
761 object_initialize_child(obj
, devinfo
->name
,
762 &s
->sse_timer
[devinfo
->index
],
764 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_WATCHDOG
)) {
765 assert(devinfo
->index
< ARRAY_SIZE(s
->cmsdk_watchdog
));
766 object_initialize_child(obj
, devinfo
->name
,
767 &s
->cmsdk_watchdog
[devinfo
->index
],
768 TYPE_CMSDK_APB_WATCHDOG
);
769 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSINFO
)) {
770 assert(devinfo
->index
== 0);
771 object_initialize_child(obj
, devinfo
->name
, &s
->sysinfo
,
772 TYPE_IOTKIT_SYSINFO
);
773 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSCTL
)) {
774 assert(devinfo
->index
== 0);
775 object_initialize_child(obj
, devinfo
->name
, &s
->sysctl
,
777 } else if (!strcmp(devinfo
->type
, TYPE_UNIMPLEMENTED_DEVICE
)) {
778 assert(devinfo
->index
< ARRAY_SIZE(s
->unimp
));
779 object_initialize_child(obj
, devinfo
->name
,
780 &s
->unimp
[devinfo
->index
],
781 TYPE_UNIMPLEMENTED_DEVICE
);
783 g_assert_not_reached();
787 object_initialize_child(obj
, "secctl", &s
->secctl
, TYPE_IOTKIT_SECCTL
);
789 for (i
= 0; i
< ARRAY_SIZE(s
->apb_ppc
); i
++) {
790 g_autofree
char *name
= g_strdup_printf("apb-ppc%d", i
);
791 object_initialize_child(obj
, name
, &s
->apb_ppc
[i
], TYPE_TZ_PPC
);
794 for (i
= 0; i
< info
->sram_banks
; i
++) {
795 char *name
= g_strdup_printf("mpc%d", i
);
796 object_initialize_child(obj
, name
, &s
->mpc
[i
], TYPE_TZ_MPC
);
799 object_initialize_child(obj
, "mpc-irq-orgate", &s
->mpc_irq_orgate
,
802 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
803 char *name
= g_strdup_printf("mpc-irq-splitter-%d", i
);
804 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
806 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
810 if (info
->has_mhus
) {
811 object_initialize_child(obj
, "mhu0", &s
->mhu
[0], TYPE_ARMSSE_MHU
);
812 object_initialize_child(obj
, "mhu1", &s
->mhu
[1], TYPE_ARMSSE_MHU
);
814 if (info
->has_cachectrl
) {
815 for (i
= 0; i
< info
->num_cpus
; i
++) {
816 char *name
= g_strdup_printf("cachectrl%d", i
);
818 object_initialize_child(obj
, name
, &s
->cachectrl
[i
],
819 TYPE_UNIMPLEMENTED_DEVICE
);
823 if (info
->has_cpusecctrl
) {
824 for (i
= 0; i
< info
->num_cpus
; i
++) {
825 char *name
= g_strdup_printf("cpusecctrl%d", i
);
827 object_initialize_child(obj
, name
, &s
->cpusecctrl
[i
],
828 TYPE_UNIMPLEMENTED_DEVICE
);
832 if (info
->has_cpuid
) {
833 for (i
= 0; i
< info
->num_cpus
; i
++) {
834 char *name
= g_strdup_printf("cpuid%d", i
);
836 object_initialize_child(obj
, name
, &s
->cpuid
[i
],
841 if (info
->has_cpu_pwrctrl
) {
842 for (i
= 0; i
< info
->num_cpus
; i
++) {
843 char *name
= g_strdup_printf("cpu_pwrctrl%d", i
);
845 object_initialize_child(obj
, name
, &s
->cpu_pwrctrl
[i
],
846 TYPE_ARMSSE_CPU_PWRCTRL
);
850 if (info
->has_sse_counter
) {
851 object_initialize_child(obj
, "sse-counter", &s
->sse_counter
,
855 object_initialize_child(obj
, "nmi-orgate", &s
->nmi_orgate
, TYPE_OR_IRQ
);
856 object_initialize_child(obj
, "ppc-irq-orgate", &s
->ppc_irq_orgate
,
858 object_initialize_child(obj
, "sec-resp-splitter", &s
->sec_resp_splitter
,
860 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
861 char *name
= g_strdup_printf("ppc-irq-splitter-%d", i
);
862 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[i
];
864 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
867 if (info
->num_cpus
> 1) {
868 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
869 if (info
->irq_is_common
[i
]) {
870 char *name
= g_strdup_printf("cpu-irq-splitter%d", i
);
871 SplitIRQ
*splitter
= &s
->cpu_irq_splitter
[i
];
873 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
880 static void armsse_exp_irq(void *opaque
, int n
, int level
)
882 qemu_irq
*irqarray
= opaque
;
884 qemu_set_irq(irqarray
[n
], level
);
887 static void armsse_mpcexp_status(void *opaque
, int n
, int level
)
889 ARMSSE
*s
= ARM_SSE(opaque
);
890 qemu_set_irq(s
->mpcexp_status_in
[n
], level
);
893 static qemu_irq
armsse_get_common_irq_in(ARMSSE
*s
, int irqno
)
896 * Return a qemu_irq which can be used to signal IRQ n to
897 * all CPUs in the SSE.
899 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(s
);
900 const ARMSSEInfo
*info
= asc
->info
;
902 assert(info
->irq_is_common
[irqno
]);
904 if (info
->num_cpus
== 1) {
905 /* Only one CPU -- just connect directly to it */
906 return qdev_get_gpio_in(DEVICE(&s
->armv7m
[0]), irqno
);
908 /* Connect to the splitter which feeds all CPUs */
909 return qdev_get_gpio_in(DEVICE(&s
->cpu_irq_splitter
[irqno
]), 0);
913 static void armsse_realize(DeviceState
*dev
, Error
**errp
)
915 ARMSSE
*s
= ARM_SSE(dev
);
916 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(dev
);
917 const ARMSSEInfo
*info
= asc
->info
;
918 const ARMSSEDeviceInfo
*devinfo
;
921 SysBusDevice
*sbd_apb_ppc0
;
922 SysBusDevice
*sbd_secctl
;
923 DeviceState
*dev_apb_ppc0
;
924 DeviceState
*dev_apb_ppc1
;
925 DeviceState
*dev_secctl
;
926 DeviceState
*dev_splitter
;
927 uint32_t addr_width_max
;
931 if (!s
->board_memory
) {
932 error_setg(errp
, "memory property was not set");
936 if (!clock_has_source(s
->mainclk
)) {
937 error_setg(errp
, "MAINCLK clock was not connected");
939 if (!clock_has_source(s
->s32kclk
)) {
940 error_setg(errp
, "S32KCLK clock was not connected");
943 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
945 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
946 assert(is_power_of_2(info
->sram_banks
));
947 addr_width_max
= 24 - ctz32(info
->sram_banks
);
948 if (s
->sram_addr_width
< 1 || s
->sram_addr_width
> addr_width_max
) {
949 error_setg(errp
, "SRAM_ADDR_WIDTH must be between 1 and %d",
954 /* Handling of which devices should be available only to secure
955 * code is usually done differently for M profile than for A profile.
956 * Instead of putting some devices only into the secure address space,
957 * devices exist in both address spaces but with hard-wired security
958 * permissions that will cause the CPU to fault for non-secure accesses.
960 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
961 * which specifies hard-wired security permissions for different
962 * areas of the physical address space. For the ARMSSE IDAU, the
963 * top 4 bits of the physical address are the IDAU region ID, and
964 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
965 * region, otherwise it is an S region.
967 * The various devices and RAMs are generally all mapped twice,
968 * once into a region that the IDAU defines as secure and once
969 * into a non-secure region. They sit behind either a Memory
970 * Protection Controller (for RAM) or a Peripheral Protection
971 * Controller (for devices), which allow a more fine grained
972 * configuration of whether non-secure accesses are permitted.
974 * (The other place that guest software can configure security
975 * permissions is in the architected SAU (Security Attribution
976 * Unit), which is entirely inside the CPU. The IDAU can upgrade
977 * the security attributes for a region to more restrictive than
978 * the SAU specifies, but cannot downgrade them.)
980 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
981 * 0x20000000..0x2007ffff 32KB FPGA block RAM
982 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
983 * 0x40000000..0x4000ffff base peripheral region 1
984 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
985 * 0x40020000..0x4002ffff system control element peripherals
986 * 0x40080000..0x400fffff base peripheral region 2
987 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
990 memory_region_add_subregion_overlap(&s
->container
, 0, s
->board_memory
, -2);
992 for (i
= 0; i
< info
->num_cpus
; i
++) {
993 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[i
]);
994 Object
*cpuobj
= OBJECT(&s
->armv7m
[i
]);
998 qdev_prop_set_uint32(cpudev
, "num-irq", s
->exp_numirq
+ NUM_SSE_IRQS
);
1000 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
1001 * registers in the IoT Kit System Control Register block. In QEMU
1002 * we set the initial value here, and also the reset value of the
1003 * sysctl register, from this object's QOM init-svtor property.
1004 * If the guest changes the INITSVTOR* registers at runtime then the
1005 * code in iotkit-sysctl.c will update the CPU init-svtor property
1006 * (which will then take effect on the next CPU warm-reset).
1008 * Note that typically a board using the SSE-200 will have a system
1009 * control processor whose boot firmware initializes the INITSVTOR*
1010 * registers before powering up the CPUs. QEMU doesn't emulate
1011 * the control processor, so instead we behave in the way that the
1012 * firmware does: the initial value should be set by the board code
1013 * (using the init-svtor property on the ARMSSE object) to match
1014 * whatever its firmware does.
1016 qdev_prop_set_uint32(cpudev
, "init-svtor", s
->init_svtor
);
1018 * CPUs start powered down if the corresponding bit in the CPUWAIT
1019 * register is 1. In real hardware the CPUWAIT register reset value is
1020 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1021 * CPUWAIT1_RST parameters), but since all the boards we care about
1022 * start CPU0 and leave CPU1 powered off, we hard-code that in
1023 * info->cpuwait_rst for now. We can add QOM properties for this
1024 * later if necessary.
1026 if (extract32(info
->cpuwait_rst
, i
, 1)) {
1027 if (!object_property_set_bool(cpuobj
, "start-powered-off", true,
1032 if (!s
->cpu_fpu
[i
]) {
1033 if (!object_property_set_bool(cpuobj
, "vfp", false, errp
)) {
1037 if (!s
->cpu_dsp
[i
]) {
1038 if (!object_property_set_bool(cpuobj
, "dsp", false, errp
)) {
1044 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
1045 &s
->container_alias
[i
- 1], -1);
1047 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
1050 object_property_set_link(cpuobj
, "memory",
1051 OBJECT(&s
->cpu_container
[i
]), &error_abort
);
1052 object_property_set_link(cpuobj
, "idau", OBJECT(s
), &error_abort
);
1053 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj
), errp
)) {
1057 * The cluster must be realized after the armv7m container, as
1058 * the container's CPU object is only created on realize, and the
1059 * CPU must exist and have been parented into the cluster before
1060 * the cluster is realized.
1062 if (!qdev_realize(DEVICE(&s
->cluster
[i
]), NULL
, errp
)) {
1066 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1067 s
->exp_irqs
[i
] = g_new(qemu_irq
, s
->exp_numirq
);
1068 for (j
= 0; j
< s
->exp_numirq
; j
++) {
1069 s
->exp_irqs
[i
][j
] = qdev_get_gpio_in(cpudev
, j
+ NUM_SSE_IRQS
);
1072 gpioname
= g_strdup("EXP_IRQ");
1074 gpioname
= g_strdup_printf("EXP_CPU%d_IRQ", i
);
1076 qdev_init_gpio_in_named_with_opaque(dev
, armsse_exp_irq
,
1078 gpioname
, s
->exp_numirq
);
1082 /* Wire up the splitters that connect common IRQs to all CPUs */
1083 if (info
->num_cpus
> 1) {
1084 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
1085 if (info
->irq_is_common
[i
]) {
1086 Object
*splitter
= OBJECT(&s
->cpu_irq_splitter
[i
]);
1087 DeviceState
*devs
= DEVICE(splitter
);
1090 if (!object_property_set_int(splitter
, "num-lines",
1091 info
->num_cpus
, errp
)) {
1094 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1097 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
1098 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
1100 qdev_connect_gpio_out(devs
, cpunum
,
1101 qdev_get_gpio_in(cpudev
, i
));
1107 /* Set up the big aliases first */
1108 make_alias(s
, &s
->alias1
, &s
->container
, "alias 1",
1109 0x10000000, 0x10000000, 0x00000000);
1110 make_alias(s
, &s
->alias2
, &s
->container
,
1111 "alias 2", 0x30000000, 0x10000000, 0x20000000);
1112 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1113 * a few extra devices that only appear there (generally the
1114 * control interfaces for the protection controllers).
1115 * We implement this by mapping those devices over the top of this
1116 * alias MR at a higher priority. Some of the devices in this range
1117 * are per-CPU, so we must put this alias in the per-cpu containers.
1119 for (i
= 0; i
< info
->num_cpus
; i
++) {
1120 make_alias(s
, &s
->alias3
[i
], &s
->cpu_container
[i
],
1121 "alias 3", 0x50000000, 0x10000000, 0x40000000);
1124 /* Security controller */
1125 object_property_set_int(OBJECT(&s
->secctl
), "sse-version",
1126 info
->sse_version
, &error_abort
);
1127 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->secctl
), errp
)) {
1130 sbd_secctl
= SYS_BUS_DEVICE(&s
->secctl
);
1131 dev_secctl
= DEVICE(&s
->secctl
);
1132 sysbus_mmio_map(sbd_secctl
, 0, 0x50080000);
1133 sysbus_mmio_map(sbd_secctl
, 1, 0x40080000);
1135 s
->nsc_cfg_in
= qemu_allocate_irq(nsccfg_handler
, s
, 1);
1136 qdev_connect_gpio_out_named(dev_secctl
, "nsc_cfg", 0, s
->nsc_cfg_in
);
1138 /* The sec_resp_cfg output from the security controller must be split into
1139 * multiple lines, one for each of the PPCs within the ARMSSE and one
1140 * that will be an output from the ARMSSE to the system.
1142 if (!object_property_set_int(OBJECT(&s
->sec_resp_splitter
),
1143 "num-lines", 3, errp
)) {
1146 if (!qdev_realize(DEVICE(&s
->sec_resp_splitter
), NULL
, errp
)) {
1149 dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
1150 qdev_connect_gpio_out_named(dev_secctl
, "sec_resp_cfg", 0,
1151 qdev_get_gpio_in(dev_splitter
, 0));
1153 /* Each SRAM bank lives behind its own Memory Protection Controller */
1154 for (i
= 0; i
< info
->sram_banks
; i
++) {
1155 char *ramname
= g_strdup_printf("armsse.sram%d", i
);
1156 SysBusDevice
*sbd_mpc
;
1157 uint32_t sram_bank_size
= 1 << s
->sram_addr_width
;
1159 memory_region_init_ram(&s
->sram
[i
], NULL
, ramname
,
1160 sram_bank_size
, errp
);
1165 object_property_set_link(OBJECT(&s
->mpc
[i
]), "downstream",
1166 OBJECT(&s
->sram
[i
]), &error_abort
);
1167 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mpc
[i
]), errp
)) {
1170 /* Map the upstream end of the MPC into the right place... */
1171 sbd_mpc
= SYS_BUS_DEVICE(&s
->mpc
[i
]);
1172 memory_region_add_subregion(&s
->container
,
1173 info
->sram_bank_base
+ i
* sram_bank_size
,
1174 sysbus_mmio_get_region(sbd_mpc
, 1));
1175 /* ...and its register interface */
1176 memory_region_add_subregion(&s
->container
, 0x50083000 + i
* 0x1000,
1177 sysbus_mmio_get_region(sbd_mpc
, 0));
1180 /* We must OR together lines from the MPC splitters to go to the NVIC */
1181 if (!object_property_set_int(OBJECT(&s
->mpc_irq_orgate
), "num-lines",
1182 IOTS_NUM_EXP_MPC
+ info
->sram_banks
,
1186 if (!qdev_realize(DEVICE(&s
->mpc_irq_orgate
), NULL
, errp
)) {
1189 qdev_connect_gpio_out(DEVICE(&s
->mpc_irq_orgate
), 0,
1190 armsse_get_common_irq_in(s
, 9));
1192 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1193 if (!object_property_set_int(OBJECT(&s
->nmi_orgate
), "num-lines", 2,
1197 if (!qdev_realize(DEVICE(&s
->nmi_orgate
), NULL
, errp
)) {
1200 qdev_connect_gpio_out(DEVICE(&s
->nmi_orgate
), 0,
1201 qdev_get_gpio_in_named(DEVICE(&s
->armv7m
), "NMI", 0));
1203 /* The SSE-300 has a System Counter / System Timestamp Generator */
1204 if (info
->has_sse_counter
) {
1205 SysBusDevice
*sbd
= SYS_BUS_DEVICE(&s
->sse_counter
);
1207 qdev_connect_clock_in(DEVICE(sbd
), "CLK", s
->mainclk
);
1208 if (!sysbus_realize(sbd
, errp
)) {
1212 * The control frame is only in the Secure region;
1213 * the status frame is in the NS region (and visible in the
1214 * S region via the alias mapping).
1216 memory_region_add_subregion(&s
->container
, 0x58100000,
1217 sysbus_mmio_get_region(sbd
, 0));
1218 memory_region_add_subregion(&s
->container
, 0x48101000,
1219 sysbus_mmio_get_region(sbd
, 1));
1222 if (info
->has_tcms
) {
1223 /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */
1224 memory_region_init_ram(&s
->itcm
, NULL
, "sse300-itcm", 512 * KiB
, errp
);
1228 memory_region_init_ram(&s
->dtcm
, NULL
, "sse300-dtcm", 512 * KiB
, errp
);
1232 memory_region_add_subregion(&s
->container
, 0x00000000, &s
->itcm
);
1233 memory_region_add_subregion(&s
->container
, 0x20000000, &s
->dtcm
);
1236 /* Devices behind APB PPC0:
1237 * 0x40000000: timer0
1238 * 0x40001000: timer1
1239 * 0x40002000: dual timer
1240 * 0x40003000: MHU0 (SSE-200 only)
1241 * 0x40004000: MHU1 (SSE-200 only)
1242 * We must configure and realize each downstream device and connect
1243 * it to the appropriate PPC port; then we can realize the PPC and
1244 * map its upstream ends to the right place in the container.
1246 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
1250 if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_TIMER
)) {
1251 sbd
= SYS_BUS_DEVICE(&s
->timer
[devinfo
->index
]);
1253 qdev_connect_clock_in(DEVICE(sbd
), "pclk",
1254 devinfo
->slowclk
? s
->s32kclk
: s
->mainclk
);
1255 if (!sysbus_realize(sbd
, errp
)) {
1258 mr
= sysbus_mmio_get_region(sbd
, 0);
1259 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_DUALTIMER
)) {
1260 sbd
= SYS_BUS_DEVICE(&s
->dualtimer
);
1262 qdev_connect_clock_in(DEVICE(sbd
), "TIMCLK", s
->mainclk
);
1263 if (!sysbus_realize(sbd
, errp
)) {
1266 mr
= sysbus_mmio_get_region(sbd
, 0);
1267 } else if (!strcmp(devinfo
->type
, TYPE_SSE_TIMER
)) {
1268 sbd
= SYS_BUS_DEVICE(&s
->sse_timer
[devinfo
->index
]);
1270 assert(info
->has_sse_counter
);
1271 object_property_set_link(OBJECT(sbd
), "counter",
1272 OBJECT(&s
->sse_counter
), &error_abort
);
1273 if (!sysbus_realize(sbd
, errp
)) {
1276 mr
= sysbus_mmio_get_region(sbd
, 0);
1277 } else if (!strcmp(devinfo
->type
, TYPE_CMSDK_APB_WATCHDOG
)) {
1278 sbd
= SYS_BUS_DEVICE(&s
->cmsdk_watchdog
[devinfo
->index
]);
1280 qdev_connect_clock_in(DEVICE(sbd
), "WDOGCLK",
1281 devinfo
->slowclk
? s
->s32kclk
: s
->mainclk
);
1282 if (!sysbus_realize(sbd
, errp
)) {
1285 mr
= sysbus_mmio_get_region(sbd
, 0);
1286 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSINFO
)) {
1287 sbd
= SYS_BUS_DEVICE(&s
->sysinfo
);
1289 object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_VERSION",
1290 info
->sys_version
, &error_abort
);
1291 object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_CONFIG",
1292 armsse_sys_config_value(s
, info
),
1294 object_property_set_int(OBJECT(&s
->sysinfo
), "sse-version",
1295 info
->sse_version
, &error_abort
);
1296 object_property_set_int(OBJECT(&s
->sysinfo
), "IIDR",
1297 info
->iidr
, &error_abort
);
1298 if (!sysbus_realize(sbd
, errp
)) {
1301 mr
= sysbus_mmio_get_region(sbd
, 0);
1302 } else if (!strcmp(devinfo
->type
, TYPE_IOTKIT_SYSCTL
)) {
1303 /* System control registers */
1304 sbd
= SYS_BUS_DEVICE(&s
->sysctl
);
1306 object_property_set_int(OBJECT(&s
->sysctl
), "sse-version",
1307 info
->sse_version
, &error_abort
);
1308 object_property_set_int(OBJECT(&s
->sysctl
), "CPUWAIT_RST",
1309 info
->cpuwait_rst
, &error_abort
);
1310 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR0_RST",
1311 s
->init_svtor
, &error_abort
);
1312 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR1_RST",
1313 s
->init_svtor
, &error_abort
);
1314 if (!sysbus_realize(sbd
, errp
)) {
1317 mr
= sysbus_mmio_get_region(sbd
, 0);
1318 } else if (!strcmp(devinfo
->type
, TYPE_UNIMPLEMENTED_DEVICE
)) {
1319 sbd
= SYS_BUS_DEVICE(&s
->unimp
[devinfo
->index
]);
1321 qdev_prop_set_string(DEVICE(sbd
), "name", devinfo
->name
);
1322 qdev_prop_set_uint64(DEVICE(sbd
), "size", devinfo
->size
);
1323 if (!sysbus_realize(sbd
, errp
)) {
1326 mr
= sysbus_mmio_get_region(sbd
, 0);
1328 g_assert_not_reached();
1331 switch (devinfo
->irq
) {
1335 case 0 ... NUM_SSE_IRQS
- 1:
1336 irq
= armsse_get_common_irq_in(s
, devinfo
->irq
);
1340 irq
= qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
),
1341 devinfo
->irq
- NMI_0
);
1344 g_assert_not_reached();
1348 sysbus_connect_irq(sbd
, 0, irq
);
1352 * Devices connected to a PPC are connected to the port here;
1353 * we will map the upstream end of that port to the right address
1354 * in the container later after the PPC has been realized.
1355 * Devices not connected to a PPC can be mapped immediately.
1357 if (devinfo
->ppc
!= NO_PPC
) {
1358 TZPPC
*ppc
= &s
->apb_ppc
[devinfo
->ppc
];
1359 g_autofree
char *portname
= g_strdup_printf("port[%d]",
1361 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
1364 memory_region_add_subregion(&s
->container
, devinfo
->addr
, mr
);
1368 if (info
->has_mhus
) {
1370 * An SSE-200 with only one CPU should have only one MHU created,
1371 * with the region where the second MHU usually is being RAZ/WI.
1372 * We don't implement that SSE-200 config; if we want to support
1373 * it then this code needs to be enhanced to handle creating the
1374 * RAZ/WI region instead of the second MHU.
1376 assert(info
->num_cpus
== ARRAY_SIZE(s
->mhu
));
1378 for (i
= 0; i
< ARRAY_SIZE(s
->mhu
); i
++) {
1381 SysBusDevice
*mhu_sbd
= SYS_BUS_DEVICE(&s
->mhu
[i
]);
1383 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mhu
[i
]), errp
)) {
1386 port
= g_strdup_printf("port[%d]", i
+ 3);
1387 mr
= sysbus_mmio_get_region(mhu_sbd
, 0);
1388 object_property_set_link(OBJECT(&s
->apb_ppc
[0]), port
, OBJECT(mr
),
1393 * Each MHU has an irq line for each CPU:
1394 * MHU 0 irq line 0 -> CPU 0 IRQ 6
1395 * MHU 0 irq line 1 -> CPU 1 IRQ 6
1396 * MHU 1 irq line 0 -> CPU 0 IRQ 7
1397 * MHU 1 irq line 1 -> CPU 1 IRQ 7
1399 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
1400 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
1402 sysbus_connect_irq(mhu_sbd
, cpunum
,
1403 qdev_get_gpio_in(cpudev
, 6 + i
));
1408 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc
[0]), errp
)) {
1412 sbd_apb_ppc0
= SYS_BUS_DEVICE(&s
->apb_ppc
[0]);
1413 dev_apb_ppc0
= DEVICE(&s
->apb_ppc
[0]);
1415 if (info
->has_mhus
) {
1416 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 3);
1417 memory_region_add_subregion(&s
->container
, 0x40003000, mr
);
1418 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 4);
1419 memory_region_add_subregion(&s
->container
, 0x40004000, mr
);
1421 for (i
= 0; i
< IOTS_APB_PPC0_NUM_PORTS
; i
++) {
1422 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_nonsec", i
,
1423 qdev_get_gpio_in_named(dev_apb_ppc0
,
1425 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_ap", i
,
1426 qdev_get_gpio_in_named(dev_apb_ppc0
,
1429 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_enable", 0,
1430 qdev_get_gpio_in_named(dev_apb_ppc0
,
1432 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_clear", 0,
1433 qdev_get_gpio_in_named(dev_apb_ppc0
,
1435 qdev_connect_gpio_out(dev_splitter
, 0,
1436 qdev_get_gpio_in_named(dev_apb_ppc0
,
1437 "cfg_sec_resp", 0));
1439 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1440 * ones) are sent individually to the security controller, and also
1441 * ORed together to give a single combined PPC interrupt to the NVIC.
1443 if (!object_property_set_int(OBJECT(&s
->ppc_irq_orgate
),
1444 "num-lines", NUM_PPCS
, errp
)) {
1447 if (!qdev_realize(DEVICE(&s
->ppc_irq_orgate
), NULL
, errp
)) {
1450 qdev_connect_gpio_out(DEVICE(&s
->ppc_irq_orgate
), 0,
1451 armsse_get_common_irq_in(s
, 10));
1454 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1455 * private per-CPU region (all these devices are SSE-200 only):
1456 * 0x50010000: L1 icache control registers
1457 * 0x50011000: CPUSECCTRL (CPU local security control registers)
1458 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1459 * The SSE-300 has an extra:
1460 * 0x40012000 and 0x50012000: CPU_PWRCTRL register block
1462 if (info
->has_cachectrl
) {
1463 for (i
= 0; i
< info
->num_cpus
; i
++) {
1464 char *name
= g_strdup_printf("cachectrl%d", i
);
1467 qdev_prop_set_string(DEVICE(&s
->cachectrl
[i
]), "name", name
);
1469 qdev_prop_set_uint64(DEVICE(&s
->cachectrl
[i
]), "size", 0x1000);
1470 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), errp
)) {
1474 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), 0);
1475 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50010000, mr
);
1478 if (info
->has_cpusecctrl
) {
1479 for (i
= 0; i
< info
->num_cpus
; i
++) {
1480 char *name
= g_strdup_printf("CPUSECCTRL%d", i
);
1483 qdev_prop_set_string(DEVICE(&s
->cpusecctrl
[i
]), "name", name
);
1485 qdev_prop_set_uint64(DEVICE(&s
->cpusecctrl
[i
]), "size", 0x1000);
1486 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), errp
)) {
1490 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), 0);
1491 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50011000, mr
);
1494 if (info
->has_cpuid
) {
1495 for (i
= 0; i
< info
->num_cpus
; i
++) {
1498 qdev_prop_set_uint32(DEVICE(&s
->cpuid
[i
]), "CPUID", i
);
1499 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpuid
[i
]), errp
)) {
1503 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpuid
[i
]), 0);
1504 memory_region_add_subregion(&s
->cpu_container
[i
], 0x4001F000, mr
);
1507 if (info
->has_cpu_pwrctrl
) {
1508 for (i
= 0; i
< info
->num_cpus
; i
++) {
1511 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpu_pwrctrl
[i
]), errp
)) {
1515 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpu_pwrctrl
[i
]), 0);
1516 memory_region_add_subregion(&s
->cpu_container
[i
], 0x40012000, mr
);
1520 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc
[1]), errp
)) {
1524 dev_apb_ppc1
= DEVICE(&s
->apb_ppc
[1]);
1525 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_nonsec", 0,
1526 qdev_get_gpio_in_named(dev_apb_ppc1
,
1528 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_ap", 0,
1529 qdev_get_gpio_in_named(dev_apb_ppc1
,
1531 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_enable", 0,
1532 qdev_get_gpio_in_named(dev_apb_ppc1
,
1534 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_clear", 0,
1535 qdev_get_gpio_in_named(dev_apb_ppc1
,
1537 qdev_connect_gpio_out(dev_splitter
, 1,
1538 qdev_get_gpio_in_named(dev_apb_ppc1
,
1539 "cfg_sec_resp", 0));
1542 * Now both PPCs are realized we can map the upstream ends of
1543 * ports which correspond to entries in the devinfo array.
1544 * The ports which are connected to non-devinfo devices have
1545 * already been mapped.
1547 for (devinfo
= info
->devinfo
; devinfo
->name
; devinfo
++) {
1548 SysBusDevice
*ppc_sbd
;
1550 if (devinfo
->ppc
== NO_PPC
) {
1553 ppc_sbd
= SYS_BUS_DEVICE(&s
->apb_ppc
[devinfo
->ppc
]);
1554 mr
= sysbus_mmio_get_region(ppc_sbd
, devinfo
->ppc_port
);
1555 memory_region_add_subregion(&s
->container
, devinfo
->addr
, mr
);
1558 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
1559 Object
*splitter
= OBJECT(&s
->ppc_irq_splitter
[i
]);
1561 if (!object_property_set_int(splitter
, "num-lines", 2, errp
)) {
1564 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1569 for (i
= 0; i
< IOTS_NUM_AHB_EXP_PPC
; i
++) {
1570 char *ppcname
= g_strdup_printf("ahb_ppcexp%d", i
);
1572 armsse_forward_ppc(s
, ppcname
, i
);
1576 for (i
= 0; i
< IOTS_NUM_APB_EXP_PPC
; i
++) {
1577 char *ppcname
= g_strdup_printf("apb_ppcexp%d", i
);
1579 armsse_forward_ppc(s
, ppcname
, i
+ IOTS_NUM_AHB_EXP_PPC
);
1583 for (i
= NUM_EXTERNAL_PPCS
; i
< NUM_PPCS
; i
++) {
1584 /* Wire up IRQ splitter for internal PPCs */
1585 DeviceState
*devs
= DEVICE(&s
->ppc_irq_splitter
[i
]);
1586 char *gpioname
= g_strdup_printf("apb_ppc%d_irq_status",
1587 i
- NUM_EXTERNAL_PPCS
);
1588 TZPPC
*ppc
= &s
->apb_ppc
[i
- NUM_EXTERNAL_PPCS
];
1590 qdev_connect_gpio_out(devs
, 0,
1591 qdev_get_gpio_in_named(dev_secctl
, gpioname
, 0));
1592 qdev_connect_gpio_out(devs
, 1,
1593 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), i
));
1594 qdev_connect_gpio_out_named(DEVICE(ppc
), "irq", 0,
1595 qdev_get_gpio_in(devs
, 0));
1599 /* Wire up the splitters for the MPC IRQs */
1600 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
1601 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
1602 DeviceState
*dev_splitter
= DEVICE(splitter
);
1604 if (!object_property_set_int(OBJECT(splitter
), "num-lines", 2,
1608 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1612 if (i
< IOTS_NUM_EXP_MPC
) {
1613 /* Splitter input is from GPIO input line */
1614 s
->mpcexp_status_in
[i
] = qdev_get_gpio_in(dev_splitter
, 0);
1615 qdev_connect_gpio_out(dev_splitter
, 0,
1616 qdev_get_gpio_in_named(dev_secctl
,
1617 "mpcexp_status", i
));
1619 /* Splitter input is from our own MPC */
1620 qdev_connect_gpio_out_named(DEVICE(&s
->mpc
[i
- IOTS_NUM_EXP_MPC
]),
1622 qdev_get_gpio_in(dev_splitter
, 0));
1623 qdev_connect_gpio_out(dev_splitter
, 0,
1624 qdev_get_gpio_in_named(dev_secctl
,
1626 i
- IOTS_NUM_EXP_MPC
));
1629 qdev_connect_gpio_out(dev_splitter
, 1,
1630 qdev_get_gpio_in(DEVICE(&s
->mpc_irq_orgate
), i
));
1632 /* Create GPIO inputs which will pass the line state for our
1633 * mpcexp_irq inputs to the correct splitter devices.
1635 qdev_init_gpio_in_named(dev
, armsse_mpcexp_status
, "mpcexp_status",
1638 armsse_forward_sec_resp_cfg(s
);
1640 /* Forward the MSC related signals */
1641 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_status");
1642 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_clear");
1643 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_ns");
1644 qdev_connect_gpio_out_named(dev_secctl
, "msc_irq", 0,
1645 armsse_get_common_irq_in(s
, 11));
1648 * Expose our container region to the board model; this corresponds
1649 * to the AHB Slave Expansion ports which allow bus master devices
1650 * (eg DMA controllers) in the board model to make transactions into
1651 * devices in the ARMSSE.
1653 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->container
);
1655 /* Set initial system_clock_scale from MAINCLK */
1656 armsse_mainclk_update(s
, ClockUpdate
);
1659 static void armsse_idau_check(IDAUInterface
*ii
, uint32_t address
,
1660 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1663 * For ARMSSE systems the IDAU responses are simple logical functions
1664 * of the address bits. The NSC attribute is guest-adjustable via the
1665 * NSCCFG register in the security controller.
1667 ARMSSE
*s
= ARM_SSE(ii
);
1668 int region
= extract32(address
, 28, 4);
1670 *ns
= !(region
& 1);
1671 *nsc
= (region
== 1 && (s
->nsccfg
& 1)) || (region
== 3 && (s
->nsccfg
& 2));
1672 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1673 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1677 static const VMStateDescription armsse_vmstate
= {
1680 .minimum_version_id
= 2,
1681 .fields
= (VMStateField
[]) {
1682 VMSTATE_CLOCK(mainclk
, ARMSSE
),
1683 VMSTATE_CLOCK(s32kclk
, ARMSSE
),
1684 VMSTATE_UINT32(nsccfg
, ARMSSE
),
1685 VMSTATE_END_OF_LIST()
1689 static void armsse_reset(DeviceState
*dev
)
1691 ARMSSE
*s
= ARM_SSE(dev
);
1696 static void armsse_class_init(ObjectClass
*klass
, void *data
)
1698 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1699 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(klass
);
1700 ARMSSEClass
*asc
= ARM_SSE_CLASS(klass
);
1701 const ARMSSEInfo
*info
= data
;
1703 dc
->realize
= armsse_realize
;
1704 dc
->vmsd
= &armsse_vmstate
;
1705 device_class_set_props(dc
, info
->props
);
1706 dc
->reset
= armsse_reset
;
1707 iic
->check
= armsse_idau_check
;
1711 static const TypeInfo armsse_info
= {
1712 .name
= TYPE_ARM_SSE
,
1713 .parent
= TYPE_SYS_BUS_DEVICE
,
1714 .instance_size
= sizeof(ARMSSE
),
1715 .class_size
= sizeof(ARMSSEClass
),
1716 .instance_init
= armsse_init
,
1718 .interfaces
= (InterfaceInfo
[]) {
1719 { TYPE_IDAU_INTERFACE
},
1724 static void armsse_register_types(void)
1728 type_register_static(&armsse_info
);
1730 for (i
= 0; i
< ARRAY_SIZE(armsse_variants
); i
++) {
1732 .name
= armsse_variants
[i
].name
,
1733 .parent
= TYPE_ARM_SSE
,
1734 .class_init
= armsse_class_init
,
1735 .class_data
= (void *)&armsse_variants
[i
],
1741 type_init(armsse_register_types
);