vl: switch -M parsing to keyval
[qemu/rayw.git] / hw / arm / armsse.c
bloba1456cb0f429c682ca1a0a633ac0351328e8b7e1
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qemu/units.h"
17 #include "qapi/error.h"
18 #include "trace.h"
19 #include "hw/sysbus.h"
20 #include "migration/vmstate.h"
21 #include "hw/registerfields.h"
22 #include "hw/arm/armsse.h"
23 #include "hw/arm/armsse-version.h"
24 #include "hw/arm/boot.h"
25 #include "hw/irq.h"
26 #include "hw/qdev-clock.h"
29 * The SSE-300 puts some devices in different places to the
30 * SSE-200 (and original IoTKit). We use an array of these structs
31 * to define how each variant lays out these devices. (Parts of the
32 * SoC that are the same for all variants aren't handled via these
33 * data structures.)
36 #define NO_IRQ -1
37 #define NO_PPC -1
39 * Special values for ARMSSEDeviceInfo::irq to indicate that this
40 * device uses one of the inputs to the OR gate that feeds into the
41 * CPU NMI input.
43 #define NMI_0 10000
44 #define NMI_1 10001
46 typedef struct ARMSSEDeviceInfo {
47 const char *name; /* name to use for the QOM object; NULL terminates list */
48 const char *type; /* QOM type name */
49 unsigned int index; /* Which of the N devices of this type is this ? */
50 hwaddr addr;
51 hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
52 int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
53 int ppc_port; /* Port number of this device on the PPC */
54 int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
55 bool slowclk; /* true if device uses the slow 32KHz clock */
56 } ARMSSEDeviceInfo;
58 struct ARMSSEInfo {
59 const char *name;
60 const char *cpu_type;
61 uint32_t sse_version;
62 int sram_banks;
63 uint32_t sram_bank_base;
64 int num_cpus;
65 uint32_t sys_version;
66 uint32_t iidr;
67 uint32_t cpuwait_rst;
68 bool has_mhus;
69 bool has_cachectrl;
70 bool has_cpusecctrl;
71 bool has_cpuid;
72 bool has_cpu_pwrctrl;
73 bool has_sse_counter;
74 bool has_tcms;
75 Property *props;
76 const ARMSSEDeviceInfo *devinfo;
77 const bool *irq_is_common;
80 static Property iotkit_properties[] = {
81 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
82 MemoryRegion *),
83 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
84 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
85 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
86 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
87 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
88 DEFINE_PROP_END_OF_LIST()
91 static Property sse200_properties[] = {
92 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
93 MemoryRegion *),
94 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
95 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
96 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
97 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
98 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
99 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
100 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
101 DEFINE_PROP_END_OF_LIST()
104 static Property sse300_properties[] = {
105 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
106 MemoryRegion *),
107 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
108 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18),
109 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
110 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
111 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
112 DEFINE_PROP_END_OF_LIST()
115 static const ARMSSEDeviceInfo iotkit_devices[] = {
117 .name = "timer0",
118 .type = TYPE_CMSDK_APB_TIMER,
119 .index = 0,
120 .addr = 0x40000000,
121 .ppc = 0,
122 .ppc_port = 0,
123 .irq = 3,
126 .name = "timer1",
127 .type = TYPE_CMSDK_APB_TIMER,
128 .index = 1,
129 .addr = 0x40001000,
130 .ppc = 0,
131 .ppc_port = 1,
132 .irq = 4,
135 .name = "s32ktimer",
136 .type = TYPE_CMSDK_APB_TIMER,
137 .index = 2,
138 .addr = 0x4002f000,
139 .ppc = 1,
140 .ppc_port = 0,
141 .irq = 2,
142 .slowclk = true,
145 .name = "dualtimer",
146 .type = TYPE_CMSDK_APB_DUALTIMER,
147 .index = 0,
148 .addr = 0x40002000,
149 .ppc = 0,
150 .ppc_port = 2,
151 .irq = 5,
154 .name = "s32kwatchdog",
155 .type = TYPE_CMSDK_APB_WATCHDOG,
156 .index = 0,
157 .addr = 0x5002e000,
158 .ppc = NO_PPC,
159 .irq = NMI_0,
160 .slowclk = true,
163 .name = "nswatchdog",
164 .type = TYPE_CMSDK_APB_WATCHDOG,
165 .index = 1,
166 .addr = 0x40081000,
167 .ppc = NO_PPC,
168 .irq = 1,
171 .name = "swatchdog",
172 .type = TYPE_CMSDK_APB_WATCHDOG,
173 .index = 2,
174 .addr = 0x50081000,
175 .ppc = NO_PPC,
176 .irq = NMI_1,
179 .name = "armsse-sysinfo",
180 .type = TYPE_IOTKIT_SYSINFO,
181 .index = 0,
182 .addr = 0x40020000,
183 .ppc = NO_PPC,
184 .irq = NO_IRQ,
187 .name = "armsse-sysctl",
188 .type = TYPE_IOTKIT_SYSCTL,
189 .index = 0,
190 .addr = 0x50021000,
191 .ppc = NO_PPC,
192 .irq = NO_IRQ,
195 .name = NULL,
199 static const ARMSSEDeviceInfo sse200_devices[] = {
201 .name = "timer0",
202 .type = TYPE_CMSDK_APB_TIMER,
203 .index = 0,
204 .addr = 0x40000000,
205 .ppc = 0,
206 .ppc_port = 0,
207 .irq = 3,
210 .name = "timer1",
211 .type = TYPE_CMSDK_APB_TIMER,
212 .index = 1,
213 .addr = 0x40001000,
214 .ppc = 0,
215 .ppc_port = 1,
216 .irq = 4,
219 .name = "s32ktimer",
220 .type = TYPE_CMSDK_APB_TIMER,
221 .index = 2,
222 .addr = 0x4002f000,
223 .ppc = 1,
224 .ppc_port = 0,
225 .irq = 2,
226 .slowclk = true,
229 .name = "dualtimer",
230 .type = TYPE_CMSDK_APB_DUALTIMER,
231 .index = 0,
232 .addr = 0x40002000,
233 .ppc = 0,
234 .ppc_port = 2,
235 .irq = 5,
238 .name = "s32kwatchdog",
239 .type = TYPE_CMSDK_APB_WATCHDOG,
240 .index = 0,
241 .addr = 0x5002e000,
242 .ppc = NO_PPC,
243 .irq = NMI_0,
244 .slowclk = true,
247 .name = "nswatchdog",
248 .type = TYPE_CMSDK_APB_WATCHDOG,
249 .index = 1,
250 .addr = 0x40081000,
251 .ppc = NO_PPC,
252 .irq = 1,
255 .name = "swatchdog",
256 .type = TYPE_CMSDK_APB_WATCHDOG,
257 .index = 2,
258 .addr = 0x50081000,
259 .ppc = NO_PPC,
260 .irq = NMI_1,
263 .name = "armsse-sysinfo",
264 .type = TYPE_IOTKIT_SYSINFO,
265 .index = 0,
266 .addr = 0x40020000,
267 .ppc = NO_PPC,
268 .irq = NO_IRQ,
271 .name = "armsse-sysctl",
272 .type = TYPE_IOTKIT_SYSCTL,
273 .index = 0,
274 .addr = 0x50021000,
275 .ppc = NO_PPC,
276 .irq = NO_IRQ,
279 .name = "CPU0CORE_PPU",
280 .type = TYPE_UNIMPLEMENTED_DEVICE,
281 .index = 0,
282 .addr = 0x50023000,
283 .size = 0x1000,
284 .ppc = NO_PPC,
285 .irq = NO_IRQ,
288 .name = "CPU1CORE_PPU",
289 .type = TYPE_UNIMPLEMENTED_DEVICE,
290 .index = 1,
291 .addr = 0x50025000,
292 .size = 0x1000,
293 .ppc = NO_PPC,
294 .irq = NO_IRQ,
297 .name = "DBG_PPU",
298 .type = TYPE_UNIMPLEMENTED_DEVICE,
299 .index = 2,
300 .addr = 0x50029000,
301 .size = 0x1000,
302 .ppc = NO_PPC,
303 .irq = NO_IRQ,
306 .name = "RAM0_PPU",
307 .type = TYPE_UNIMPLEMENTED_DEVICE,
308 .index = 3,
309 .addr = 0x5002a000,
310 .size = 0x1000,
311 .ppc = NO_PPC,
312 .irq = NO_IRQ,
315 .name = "RAM1_PPU",
316 .type = TYPE_UNIMPLEMENTED_DEVICE,
317 .index = 4,
318 .addr = 0x5002b000,
319 .size = 0x1000,
320 .ppc = NO_PPC,
321 .irq = NO_IRQ,
324 .name = "RAM2_PPU",
325 .type = TYPE_UNIMPLEMENTED_DEVICE,
326 .index = 5,
327 .addr = 0x5002c000,
328 .size = 0x1000,
329 .ppc = NO_PPC,
330 .irq = NO_IRQ,
333 .name = "RAM3_PPU",
334 .type = TYPE_UNIMPLEMENTED_DEVICE,
335 .index = 6,
336 .addr = 0x5002d000,
337 .size = 0x1000,
338 .ppc = NO_PPC,
339 .irq = NO_IRQ,
342 .name = "SYS_PPU",
343 .type = TYPE_UNIMPLEMENTED_DEVICE,
344 .index = 7,
345 .addr = 0x50022000,
346 .size = 0x1000,
347 .ppc = NO_PPC,
348 .irq = NO_IRQ,
351 .name = NULL,
355 static const ARMSSEDeviceInfo sse300_devices[] = {
357 .name = "timer0",
358 .type = TYPE_SSE_TIMER,
359 .index = 0,
360 .addr = 0x48000000,
361 .ppc = 0,
362 .ppc_port = 0,
363 .irq = 3,
366 .name = "timer1",
367 .type = TYPE_SSE_TIMER,
368 .index = 1,
369 .addr = 0x48001000,
370 .ppc = 0,
371 .ppc_port = 1,
372 .irq = 4,
375 .name = "timer2",
376 .type = TYPE_SSE_TIMER,
377 .index = 2,
378 .addr = 0x48002000,
379 .ppc = 0,
380 .ppc_port = 2,
381 .irq = 5,
384 .name = "timer3",
385 .type = TYPE_SSE_TIMER,
386 .index = 3,
387 .addr = 0x48003000,
388 .ppc = 0,
389 .ppc_port = 5,
390 .irq = 27,
393 .name = "s32ktimer",
394 .type = TYPE_CMSDK_APB_TIMER,
395 .index = 0,
396 .addr = 0x4802f000,
397 .ppc = 1,
398 .ppc_port = 0,
399 .irq = 2,
400 .slowclk = true,
403 .name = "s32kwatchdog",
404 .type = TYPE_CMSDK_APB_WATCHDOG,
405 .index = 0,
406 .addr = 0x4802e000,
407 .ppc = NO_PPC,
408 .irq = NMI_0,
409 .slowclk = true,
412 .name = "watchdog",
413 .type = TYPE_UNIMPLEMENTED_DEVICE,
414 .index = 0,
415 .addr = 0x48040000,
416 .size = 0x2000,
417 .ppc = NO_PPC,
418 .irq = NO_IRQ,
421 .name = "armsse-sysinfo",
422 .type = TYPE_IOTKIT_SYSINFO,
423 .index = 0,
424 .addr = 0x48020000,
425 .ppc = NO_PPC,
426 .irq = NO_IRQ,
429 .name = "armsse-sysctl",
430 .type = TYPE_IOTKIT_SYSCTL,
431 .index = 0,
432 .addr = 0x58021000,
433 .ppc = NO_PPC,
434 .irq = NO_IRQ,
437 .name = "SYS_PPU",
438 .type = TYPE_UNIMPLEMENTED_DEVICE,
439 .index = 1,
440 .addr = 0x58022000,
441 .size = 0x1000,
442 .ppc = NO_PPC,
443 .irq = NO_IRQ,
446 .name = "CPU0CORE_PPU",
447 .type = TYPE_UNIMPLEMENTED_DEVICE,
448 .index = 2,
449 .addr = 0x50023000,
450 .size = 0x1000,
451 .ppc = NO_PPC,
452 .irq = NO_IRQ,
455 .name = "MGMT_PPU",
456 .type = TYPE_UNIMPLEMENTED_DEVICE,
457 .index = 3,
458 .addr = 0x50028000,
459 .size = 0x1000,
460 .ppc = NO_PPC,
461 .irq = NO_IRQ,
464 .name = "DEBUG_PPU",
465 .type = TYPE_UNIMPLEMENTED_DEVICE,
466 .index = 4,
467 .addr = 0x50029000,
468 .size = 0x1000,
469 .ppc = NO_PPC,
470 .irq = NO_IRQ,
473 .name = NULL,
477 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
478 static const bool sse200_irq_is_common[32] = {
479 [0 ... 5] = true,
480 /* 6, 7: per-CPU MHU interrupts */
481 [8 ... 12] = true,
482 /* 13: per-CPU icache interrupt */
483 /* 14: reserved */
484 [15 ... 20] = true,
485 /* 21: reserved */
486 [22 ... 26] = true,
487 /* 27: reserved */
488 /* 28, 29: per-CPU CTI interrupts */
489 /* 30, 31: reserved */
492 static const bool sse300_irq_is_common[32] = {
493 [0 ... 5] = true,
494 /* 6, 7: per-CPU MHU interrupts */
495 [8 ... 12] = true,
496 /* 13: reserved */
497 [14 ... 16] = true,
498 /* 17-25: reserved */
499 [26 ... 27] = true,
500 /* 28, 29: per-CPU CTI interrupts */
501 /* 30, 31: reserved */
504 static const ARMSSEInfo armsse_variants[] = {
506 .name = TYPE_IOTKIT,
507 .sse_version = ARMSSE_IOTKIT,
508 .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
509 .sram_banks = 1,
510 .sram_bank_base = 0x20000000,
511 .num_cpus = 1,
512 .sys_version = 0x41743,
513 .iidr = 0,
514 .cpuwait_rst = 0,
515 .has_mhus = false,
516 .has_cachectrl = false,
517 .has_cpusecctrl = false,
518 .has_cpuid = false,
519 .has_cpu_pwrctrl = false,
520 .has_sse_counter = false,
521 .has_tcms = false,
522 .props = iotkit_properties,
523 .devinfo = iotkit_devices,
524 .irq_is_common = sse200_irq_is_common,
527 .name = TYPE_SSE200,
528 .sse_version = ARMSSE_SSE200,
529 .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
530 .sram_banks = 4,
531 .sram_bank_base = 0x20000000,
532 .num_cpus = 2,
533 .sys_version = 0x22041743,
534 .iidr = 0,
535 .cpuwait_rst = 2,
536 .has_mhus = true,
537 .has_cachectrl = true,
538 .has_cpusecctrl = true,
539 .has_cpuid = true,
540 .has_cpu_pwrctrl = false,
541 .has_sse_counter = false,
542 .has_tcms = false,
543 .props = sse200_properties,
544 .devinfo = sse200_devices,
545 .irq_is_common = sse200_irq_is_common,
548 .name = TYPE_SSE300,
549 .sse_version = ARMSSE_SSE300,
550 .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"),
551 .sram_banks = 2,
552 .sram_bank_base = 0x21000000,
553 .num_cpus = 1,
554 .sys_version = 0x7e00043b,
555 .iidr = 0x74a0043b,
556 .cpuwait_rst = 0,
557 .has_mhus = false,
558 .has_cachectrl = false,
559 .has_cpusecctrl = true,
560 .has_cpuid = true,
561 .has_cpu_pwrctrl = true,
562 .has_sse_counter = true,
563 .has_tcms = true,
564 .props = sse300_properties,
565 .devinfo = sse300_devices,
566 .irq_is_common = sse300_irq_is_common,
570 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
572 /* Return the SYS_CONFIG value for this SSE */
573 uint32_t sys_config;
575 switch (info->sse_version) {
576 case ARMSSE_IOTKIT:
577 sys_config = 0;
578 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
579 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
580 break;
581 case ARMSSE_SSE200:
582 sys_config = 0;
583 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
584 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
585 sys_config = deposit32(sys_config, 24, 4, 2);
586 if (info->num_cpus > 1) {
587 sys_config = deposit32(sys_config, 10, 1, 1);
588 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
589 sys_config = deposit32(sys_config, 28, 4, 2);
591 break;
592 case ARMSSE_SSE300:
593 sys_config = 0;
594 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
595 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
596 sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
597 break;
598 default:
599 g_assert_not_reached();
601 return sys_config;
604 /* Clock frequency in HZ of the 32KHz "slow clock" */
605 #define S32KCLK (32 * 1000)
608 * Create an alias region in @container of @size bytes starting at @base
609 * which mirrors the memory starting at @orig.
611 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
612 const char *name, hwaddr base, hwaddr size, hwaddr orig)
614 memory_region_init_alias(mr, NULL, name, container, orig, size);
615 /* The alias is even lower priority than unimplemented_device regions */
616 memory_region_add_subregion_overlap(container, base, mr, -1500);
619 static void irq_status_forwarder(void *opaque, int n, int level)
621 qemu_irq destirq = opaque;
623 qemu_set_irq(destirq, level);
626 static void nsccfg_handler(void *opaque, int n, int level)
628 ARMSSE *s = ARM_SSE(opaque);
630 s->nsccfg = level;
633 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
635 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
636 * system using the ARMSSE has a collection of control lines which
637 * are provided by the security controller and which we want to
638 * expose as control lines on the ARMSSE device itself, so the
639 * code using the ARMSSE can wire them up to the PPCs.
641 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
642 DeviceState *armssedev = DEVICE(s);
643 DeviceState *dev_secctl = DEVICE(&s->secctl);
644 DeviceState *dev_splitter = DEVICE(splitter);
645 char *name;
647 name = g_strdup_printf("%s_nonsec", ppcname);
648 qdev_pass_gpios(dev_secctl, armssedev, name);
649 g_free(name);
650 name = g_strdup_printf("%s_ap", ppcname);
651 qdev_pass_gpios(dev_secctl, armssedev, name);
652 g_free(name);
653 name = g_strdup_printf("%s_irq_enable", ppcname);
654 qdev_pass_gpios(dev_secctl, armssedev, name);
655 g_free(name);
656 name = g_strdup_printf("%s_irq_clear", ppcname);
657 qdev_pass_gpios(dev_secctl, armssedev, name);
658 g_free(name);
660 /* irq_status is a little more tricky, because we need to
661 * split it so we can send it both to the security controller
662 * and to our OR gate for the NVIC interrupt line.
663 * Connect up the splitter's outputs, and create a GPIO input
664 * which will pass the line state to the input splitter.
666 name = g_strdup_printf("%s_irq_status", ppcname);
667 qdev_connect_gpio_out(dev_splitter, 0,
668 qdev_get_gpio_in_named(dev_secctl,
669 name, 0));
670 qdev_connect_gpio_out(dev_splitter, 1,
671 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
672 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
673 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
674 s->irq_status_in[ppcnum], name, 1);
675 g_free(name);
678 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
680 /* Forward the 3rd output from the splitter device as a
681 * named GPIO output of the armsse object.
683 DeviceState *dev = DEVICE(s);
684 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
686 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
687 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
688 s->sec_resp_cfg, 1);
689 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
692 static void armsse_mainclk_update(void *opaque, ClockEvent event)
694 ARMSSE *s = ARM_SSE(opaque);
697 * Set system_clock_scale from our Clock input; this is what
698 * controls the tick rate of the CPU SysTick timer.
700 system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
703 static void armsse_init(Object *obj)
705 ARMSSE *s = ARM_SSE(obj);
706 ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
707 const ARMSSEInfo *info = asc->info;
708 const ARMSSEDeviceInfo *devinfo;
709 int i;
711 assert(info->sram_banks <= MAX_SRAM_BANKS);
712 assert(info->num_cpus <= SSE_MAX_CPUS);
714 s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
715 armsse_mainclk_update, s, ClockUpdate);
716 s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
718 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
720 for (i = 0; i < info->num_cpus; i++) {
722 * We put each CPU in its own cluster as they are logically
723 * distinct and may be configured differently.
725 char *name;
727 name = g_strdup_printf("cluster%d", i);
728 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
729 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
730 g_free(name);
732 name = g_strdup_printf("armv7m%d", i);
733 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
734 TYPE_ARMV7M);
735 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type);
736 g_free(name);
737 name = g_strdup_printf("arm-sse-cpu-container%d", i);
738 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
739 g_free(name);
740 if (i > 0) {
741 name = g_strdup_printf("arm-sse-container-alias%d", i);
742 memory_region_init_alias(&s->container_alias[i - 1], obj,
743 name, &s->container, 0, UINT64_MAX);
744 g_free(name);
748 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
749 assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
750 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
751 assert(devinfo->index < ARRAY_SIZE(s->timer));
752 object_initialize_child(obj, devinfo->name,
753 &s->timer[devinfo->index],
754 TYPE_CMSDK_APB_TIMER);
755 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
756 assert(devinfo->index == 0);
757 object_initialize_child(obj, devinfo->name, &s->dualtimer,
758 TYPE_CMSDK_APB_DUALTIMER);
759 } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
760 assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
761 object_initialize_child(obj, devinfo->name,
762 &s->sse_timer[devinfo->index],
763 TYPE_SSE_TIMER);
764 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
765 assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
766 object_initialize_child(obj, devinfo->name,
767 &s->cmsdk_watchdog[devinfo->index],
768 TYPE_CMSDK_APB_WATCHDOG);
769 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
770 assert(devinfo->index == 0);
771 object_initialize_child(obj, devinfo->name, &s->sysinfo,
772 TYPE_IOTKIT_SYSINFO);
773 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
774 assert(devinfo->index == 0);
775 object_initialize_child(obj, devinfo->name, &s->sysctl,
776 TYPE_IOTKIT_SYSCTL);
777 } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
778 assert(devinfo->index < ARRAY_SIZE(s->unimp));
779 object_initialize_child(obj, devinfo->name,
780 &s->unimp[devinfo->index],
781 TYPE_UNIMPLEMENTED_DEVICE);
782 } else {
783 g_assert_not_reached();
787 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
789 for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
790 g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
791 object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
794 for (i = 0; i < info->sram_banks; i++) {
795 char *name = g_strdup_printf("mpc%d", i);
796 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
797 g_free(name);
799 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
800 TYPE_OR_IRQ);
802 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
803 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
804 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
806 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
807 g_free(name);
810 if (info->has_mhus) {
811 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
812 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
814 if (info->has_cachectrl) {
815 for (i = 0; i < info->num_cpus; i++) {
816 char *name = g_strdup_printf("cachectrl%d", i);
818 object_initialize_child(obj, name, &s->cachectrl[i],
819 TYPE_UNIMPLEMENTED_DEVICE);
820 g_free(name);
823 if (info->has_cpusecctrl) {
824 for (i = 0; i < info->num_cpus; i++) {
825 char *name = g_strdup_printf("cpusecctrl%d", i);
827 object_initialize_child(obj, name, &s->cpusecctrl[i],
828 TYPE_UNIMPLEMENTED_DEVICE);
829 g_free(name);
832 if (info->has_cpuid) {
833 for (i = 0; i < info->num_cpus; i++) {
834 char *name = g_strdup_printf("cpuid%d", i);
836 object_initialize_child(obj, name, &s->cpuid[i],
837 TYPE_ARMSSE_CPUID);
838 g_free(name);
841 if (info->has_cpu_pwrctrl) {
842 for (i = 0; i < info->num_cpus; i++) {
843 char *name = g_strdup_printf("cpu_pwrctrl%d", i);
845 object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
846 TYPE_ARMSSE_CPU_PWRCTRL);
847 g_free(name);
850 if (info->has_sse_counter) {
851 object_initialize_child(obj, "sse-counter", &s->sse_counter,
852 TYPE_SSE_COUNTER);
855 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
856 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
857 TYPE_OR_IRQ);
858 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
859 TYPE_SPLIT_IRQ);
860 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
861 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
862 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
864 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
865 g_free(name);
867 if (info->num_cpus > 1) {
868 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
869 if (info->irq_is_common[i]) {
870 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
871 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
873 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
874 g_free(name);
880 static void armsse_exp_irq(void *opaque, int n, int level)
882 qemu_irq *irqarray = opaque;
884 qemu_set_irq(irqarray[n], level);
887 static void armsse_mpcexp_status(void *opaque, int n, int level)
889 ARMSSE *s = ARM_SSE(opaque);
890 qemu_set_irq(s->mpcexp_status_in[n], level);
893 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
896 * Return a qemu_irq which can be used to signal IRQ n to
897 * all CPUs in the SSE.
899 ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
900 const ARMSSEInfo *info = asc->info;
902 assert(info->irq_is_common[irqno]);
904 if (info->num_cpus == 1) {
905 /* Only one CPU -- just connect directly to it */
906 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
907 } else {
908 /* Connect to the splitter which feeds all CPUs */
909 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
913 static void armsse_realize(DeviceState *dev, Error **errp)
915 ARMSSE *s = ARM_SSE(dev);
916 ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
917 const ARMSSEInfo *info = asc->info;
918 const ARMSSEDeviceInfo *devinfo;
919 int i;
920 MemoryRegion *mr;
921 SysBusDevice *sbd_apb_ppc0;
922 SysBusDevice *sbd_secctl;
923 DeviceState *dev_apb_ppc0;
924 DeviceState *dev_apb_ppc1;
925 DeviceState *dev_secctl;
926 DeviceState *dev_splitter;
927 uint32_t addr_width_max;
929 ERRP_GUARD();
931 if (!s->board_memory) {
932 error_setg(errp, "memory property was not set");
933 return;
936 if (!clock_has_source(s->mainclk)) {
937 error_setg(errp, "MAINCLK clock was not connected");
939 if (!clock_has_source(s->s32kclk)) {
940 error_setg(errp, "S32KCLK clock was not connected");
943 assert(info->num_cpus <= SSE_MAX_CPUS);
945 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
946 assert(is_power_of_2(info->sram_banks));
947 addr_width_max = 24 - ctz32(info->sram_banks);
948 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
949 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
950 addr_width_max);
951 return;
954 /* Handling of which devices should be available only to secure
955 * code is usually done differently for M profile than for A profile.
956 * Instead of putting some devices only into the secure address space,
957 * devices exist in both address spaces but with hard-wired security
958 * permissions that will cause the CPU to fault for non-secure accesses.
960 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
961 * which specifies hard-wired security permissions for different
962 * areas of the physical address space. For the ARMSSE IDAU, the
963 * top 4 bits of the physical address are the IDAU region ID, and
964 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
965 * region, otherwise it is an S region.
967 * The various devices and RAMs are generally all mapped twice,
968 * once into a region that the IDAU defines as secure and once
969 * into a non-secure region. They sit behind either a Memory
970 * Protection Controller (for RAM) or a Peripheral Protection
971 * Controller (for devices), which allow a more fine grained
972 * configuration of whether non-secure accesses are permitted.
974 * (The other place that guest software can configure security
975 * permissions is in the architected SAU (Security Attribution
976 * Unit), which is entirely inside the CPU. The IDAU can upgrade
977 * the security attributes for a region to more restrictive than
978 * the SAU specifies, but cannot downgrade them.)
980 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
981 * 0x20000000..0x2007ffff 32KB FPGA block RAM
982 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
983 * 0x40000000..0x4000ffff base peripheral region 1
984 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
985 * 0x40020000..0x4002ffff system control element peripherals
986 * 0x40080000..0x400fffff base peripheral region 2
987 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
990 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
992 for (i = 0; i < info->num_cpus; i++) {
993 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
994 Object *cpuobj = OBJECT(&s->armv7m[i]);
995 int j;
996 char *gpioname;
998 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
1000 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
1001 * registers in the IoT Kit System Control Register block. In QEMU
1002 * we set the initial value here, and also the reset value of the
1003 * sysctl register, from this object's QOM init-svtor property.
1004 * If the guest changes the INITSVTOR* registers at runtime then the
1005 * code in iotkit-sysctl.c will update the CPU init-svtor property
1006 * (which will then take effect on the next CPU warm-reset).
1008 * Note that typically a board using the SSE-200 will have a system
1009 * control processor whose boot firmware initializes the INITSVTOR*
1010 * registers before powering up the CPUs. QEMU doesn't emulate
1011 * the control processor, so instead we behave in the way that the
1012 * firmware does: the initial value should be set by the board code
1013 * (using the init-svtor property on the ARMSSE object) to match
1014 * whatever its firmware does.
1016 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
1018 * CPUs start powered down if the corresponding bit in the CPUWAIT
1019 * register is 1. In real hardware the CPUWAIT register reset value is
1020 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1021 * CPUWAIT1_RST parameters), but since all the boards we care about
1022 * start CPU0 and leave CPU1 powered off, we hard-code that in
1023 * info->cpuwait_rst for now. We can add QOM properties for this
1024 * later if necessary.
1026 if (extract32(info->cpuwait_rst, i, 1)) {
1027 if (!object_property_set_bool(cpuobj, "start-powered-off", true,
1028 errp)) {
1029 return;
1032 if (!s->cpu_fpu[i]) {
1033 if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
1034 return;
1037 if (!s->cpu_dsp[i]) {
1038 if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
1039 return;
1043 if (i > 0) {
1044 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1045 &s->container_alias[i - 1], -1);
1046 } else {
1047 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1048 &s->container, -1);
1050 object_property_set_link(cpuobj, "memory",
1051 OBJECT(&s->cpu_container[i]), &error_abort);
1052 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
1053 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
1054 return;
1057 * The cluster must be realized after the armv7m container, as
1058 * the container's CPU object is only created on realize, and the
1059 * CPU must exist and have been parented into the cluster before
1060 * the cluster is realized.
1062 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
1063 return;
1066 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1067 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
1068 for (j = 0; j < s->exp_numirq; j++) {
1069 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
1071 if (i == 0) {
1072 gpioname = g_strdup("EXP_IRQ");
1073 } else {
1074 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
1076 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
1077 s->exp_irqs[i],
1078 gpioname, s->exp_numirq);
1079 g_free(gpioname);
1082 /* Wire up the splitters that connect common IRQs to all CPUs */
1083 if (info->num_cpus > 1) {
1084 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
1085 if (info->irq_is_common[i]) {
1086 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
1087 DeviceState *devs = DEVICE(splitter);
1088 int cpunum;
1090 if (!object_property_set_int(splitter, "num-lines",
1091 info->num_cpus, errp)) {
1092 return;
1094 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1095 return;
1097 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1098 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1100 qdev_connect_gpio_out(devs, cpunum,
1101 qdev_get_gpio_in(cpudev, i));
1107 /* Set up the big aliases first */
1108 make_alias(s, &s->alias1, &s->container, "alias 1",
1109 0x10000000, 0x10000000, 0x00000000);
1110 make_alias(s, &s->alias2, &s->container,
1111 "alias 2", 0x30000000, 0x10000000, 0x20000000);
1112 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1113 * a few extra devices that only appear there (generally the
1114 * control interfaces for the protection controllers).
1115 * We implement this by mapping those devices over the top of this
1116 * alias MR at a higher priority. Some of the devices in this range
1117 * are per-CPU, so we must put this alias in the per-cpu containers.
1119 for (i = 0; i < info->num_cpus; i++) {
1120 make_alias(s, &s->alias3[i], &s->cpu_container[i],
1121 "alias 3", 0x50000000, 0x10000000, 0x40000000);
1124 /* Security controller */
1125 object_property_set_int(OBJECT(&s->secctl), "sse-version",
1126 info->sse_version, &error_abort);
1127 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
1128 return;
1130 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
1131 dev_secctl = DEVICE(&s->secctl);
1132 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
1133 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
1135 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
1136 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
1138 /* The sec_resp_cfg output from the security controller must be split into
1139 * multiple lines, one for each of the PPCs within the ARMSSE and one
1140 * that will be an output from the ARMSSE to the system.
1142 if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
1143 "num-lines", 3, errp)) {
1144 return;
1146 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
1147 return;
1149 dev_splitter = DEVICE(&s->sec_resp_splitter);
1150 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
1151 qdev_get_gpio_in(dev_splitter, 0));
1153 /* Each SRAM bank lives behind its own Memory Protection Controller */
1154 for (i = 0; i < info->sram_banks; i++) {
1155 char *ramname = g_strdup_printf("armsse.sram%d", i);
1156 SysBusDevice *sbd_mpc;
1157 uint32_t sram_bank_size = 1 << s->sram_addr_width;
1159 memory_region_init_ram(&s->sram[i], NULL, ramname,
1160 sram_bank_size, errp);
1161 g_free(ramname);
1162 if (*errp) {
1163 return;
1165 object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
1166 OBJECT(&s->sram[i]), &error_abort);
1167 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
1168 return;
1170 /* Map the upstream end of the MPC into the right place... */
1171 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
1172 memory_region_add_subregion(&s->container,
1173 info->sram_bank_base + i * sram_bank_size,
1174 sysbus_mmio_get_region(sbd_mpc, 1));
1175 /* ...and its register interface */
1176 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
1177 sysbus_mmio_get_region(sbd_mpc, 0));
1180 /* We must OR together lines from the MPC splitters to go to the NVIC */
1181 if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
1182 IOTS_NUM_EXP_MPC + info->sram_banks,
1183 errp)) {
1184 return;
1186 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
1187 return;
1189 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
1190 armsse_get_common_irq_in(s, 9));
1192 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1193 if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1194 errp)) {
1195 return;
1197 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1198 return;
1200 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1201 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1203 /* The SSE-300 has a System Counter / System Timestamp Generator */
1204 if (info->has_sse_counter) {
1205 SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
1207 qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
1208 if (!sysbus_realize(sbd, errp)) {
1209 return;
1212 * The control frame is only in the Secure region;
1213 * the status frame is in the NS region (and visible in the
1214 * S region via the alias mapping).
1216 memory_region_add_subregion(&s->container, 0x58100000,
1217 sysbus_mmio_get_region(sbd, 0));
1218 memory_region_add_subregion(&s->container, 0x48101000,
1219 sysbus_mmio_get_region(sbd, 1));
1222 if (info->has_tcms) {
1223 /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */
1224 memory_region_init_ram(&s->itcm, NULL, "sse300-itcm", 512 * KiB, errp);
1225 if (*errp) {
1226 return;
1228 memory_region_init_ram(&s->dtcm, NULL, "sse300-dtcm", 512 * KiB, errp);
1229 if (*errp) {
1230 return;
1232 memory_region_add_subregion(&s->container, 0x00000000, &s->itcm);
1233 memory_region_add_subregion(&s->container, 0x20000000, &s->dtcm);
1236 /* Devices behind APB PPC0:
1237 * 0x40000000: timer0
1238 * 0x40001000: timer1
1239 * 0x40002000: dual timer
1240 * 0x40003000: MHU0 (SSE-200 only)
1241 * 0x40004000: MHU1 (SSE-200 only)
1242 * We must configure and realize each downstream device and connect
1243 * it to the appropriate PPC port; then we can realize the PPC and
1244 * map its upstream ends to the right place in the container.
1246 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1247 SysBusDevice *sbd;
1248 qemu_irq irq;
1250 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1251 sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1253 qdev_connect_clock_in(DEVICE(sbd), "pclk",
1254 devinfo->slowclk ? s->s32kclk : s->mainclk);
1255 if (!sysbus_realize(sbd, errp)) {
1256 return;
1258 mr = sysbus_mmio_get_region(sbd, 0);
1259 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1260 sbd = SYS_BUS_DEVICE(&s->dualtimer);
1262 qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1263 if (!sysbus_realize(sbd, errp)) {
1264 return;
1266 mr = sysbus_mmio_get_region(sbd, 0);
1267 } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
1268 sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
1270 assert(info->has_sse_counter);
1271 object_property_set_link(OBJECT(sbd), "counter",
1272 OBJECT(&s->sse_counter), &error_abort);
1273 if (!sysbus_realize(sbd, errp)) {
1274 return;
1276 mr = sysbus_mmio_get_region(sbd, 0);
1277 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1278 sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1280 qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1281 devinfo->slowclk ? s->s32kclk : s->mainclk);
1282 if (!sysbus_realize(sbd, errp)) {
1283 return;
1285 mr = sysbus_mmio_get_region(sbd, 0);
1286 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1287 sbd = SYS_BUS_DEVICE(&s->sysinfo);
1289 object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1290 info->sys_version, &error_abort);
1291 object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1292 armsse_sys_config_value(s, info),
1293 &error_abort);
1294 object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1295 info->sse_version, &error_abort);
1296 object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1297 info->iidr, &error_abort);
1298 if (!sysbus_realize(sbd, errp)) {
1299 return;
1301 mr = sysbus_mmio_get_region(sbd, 0);
1302 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1303 /* System control registers */
1304 sbd = SYS_BUS_DEVICE(&s->sysctl);
1306 object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1307 info->sse_version, &error_abort);
1308 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1309 info->cpuwait_rst, &error_abort);
1310 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1311 s->init_svtor, &error_abort);
1312 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1313 s->init_svtor, &error_abort);
1314 if (!sysbus_realize(sbd, errp)) {
1315 return;
1317 mr = sysbus_mmio_get_region(sbd, 0);
1318 } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1319 sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1321 qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1322 qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1323 if (!sysbus_realize(sbd, errp)) {
1324 return;
1326 mr = sysbus_mmio_get_region(sbd, 0);
1327 } else {
1328 g_assert_not_reached();
1331 switch (devinfo->irq) {
1332 case NO_IRQ:
1333 irq = NULL;
1334 break;
1335 case 0 ... NUM_SSE_IRQS - 1:
1336 irq = armsse_get_common_irq_in(s, devinfo->irq);
1337 break;
1338 case NMI_0:
1339 case NMI_1:
1340 irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1341 devinfo->irq - NMI_0);
1342 break;
1343 default:
1344 g_assert_not_reached();
1347 if (irq) {
1348 sysbus_connect_irq(sbd, 0, irq);
1352 * Devices connected to a PPC are connected to the port here;
1353 * we will map the upstream end of that port to the right address
1354 * in the container later after the PPC has been realized.
1355 * Devices not connected to a PPC can be mapped immediately.
1357 if (devinfo->ppc != NO_PPC) {
1358 TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1359 g_autofree char *portname = g_strdup_printf("port[%d]",
1360 devinfo->ppc_port);
1361 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1362 &error_abort);
1363 } else {
1364 memory_region_add_subregion(&s->container, devinfo->addr, mr);
1368 if (info->has_mhus) {
1370 * An SSE-200 with only one CPU should have only one MHU created,
1371 * with the region where the second MHU usually is being RAZ/WI.
1372 * We don't implement that SSE-200 config; if we want to support
1373 * it then this code needs to be enhanced to handle creating the
1374 * RAZ/WI region instead of the second MHU.
1376 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1378 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1379 char *port;
1380 int cpunum;
1381 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1383 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1384 return;
1386 port = g_strdup_printf("port[%d]", i + 3);
1387 mr = sysbus_mmio_get_region(mhu_sbd, 0);
1388 object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1389 &error_abort);
1390 g_free(port);
1393 * Each MHU has an irq line for each CPU:
1394 * MHU 0 irq line 0 -> CPU 0 IRQ 6
1395 * MHU 0 irq line 1 -> CPU 1 IRQ 6
1396 * MHU 1 irq line 0 -> CPU 0 IRQ 7
1397 * MHU 1 irq line 1 -> CPU 1 IRQ 7
1399 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1400 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1402 sysbus_connect_irq(mhu_sbd, cpunum,
1403 qdev_get_gpio_in(cpudev, 6 + i));
1408 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1409 return;
1412 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1413 dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1415 if (info->has_mhus) {
1416 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1417 memory_region_add_subregion(&s->container, 0x40003000, mr);
1418 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1419 memory_region_add_subregion(&s->container, 0x40004000, mr);
1421 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1422 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1423 qdev_get_gpio_in_named(dev_apb_ppc0,
1424 "cfg_nonsec", i));
1425 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1426 qdev_get_gpio_in_named(dev_apb_ppc0,
1427 "cfg_ap", i));
1429 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1430 qdev_get_gpio_in_named(dev_apb_ppc0,
1431 "irq_enable", 0));
1432 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1433 qdev_get_gpio_in_named(dev_apb_ppc0,
1434 "irq_clear", 0));
1435 qdev_connect_gpio_out(dev_splitter, 0,
1436 qdev_get_gpio_in_named(dev_apb_ppc0,
1437 "cfg_sec_resp", 0));
1439 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1440 * ones) are sent individually to the security controller, and also
1441 * ORed together to give a single combined PPC interrupt to the NVIC.
1443 if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1444 "num-lines", NUM_PPCS, errp)) {
1445 return;
1447 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1448 return;
1450 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1451 armsse_get_common_irq_in(s, 10));
1454 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1455 * private per-CPU region (all these devices are SSE-200 only):
1456 * 0x50010000: L1 icache control registers
1457 * 0x50011000: CPUSECCTRL (CPU local security control registers)
1458 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1459 * The SSE-300 has an extra:
1460 * 0x40012000 and 0x50012000: CPU_PWRCTRL register block
1462 if (info->has_cachectrl) {
1463 for (i = 0; i < info->num_cpus; i++) {
1464 char *name = g_strdup_printf("cachectrl%d", i);
1465 MemoryRegion *mr;
1467 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1468 g_free(name);
1469 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1470 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1471 return;
1474 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1475 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1478 if (info->has_cpusecctrl) {
1479 for (i = 0; i < info->num_cpus; i++) {
1480 char *name = g_strdup_printf("CPUSECCTRL%d", i);
1481 MemoryRegion *mr;
1483 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1484 g_free(name);
1485 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1486 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1487 return;
1490 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1491 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1494 if (info->has_cpuid) {
1495 for (i = 0; i < info->num_cpus; i++) {
1496 MemoryRegion *mr;
1498 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1499 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1500 return;
1503 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1504 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1507 if (info->has_cpu_pwrctrl) {
1508 for (i = 0; i < info->num_cpus; i++) {
1509 MemoryRegion *mr;
1511 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
1512 return;
1515 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
1516 memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
1520 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1521 return;
1524 dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1525 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1526 qdev_get_gpio_in_named(dev_apb_ppc1,
1527 "cfg_nonsec", 0));
1528 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1529 qdev_get_gpio_in_named(dev_apb_ppc1,
1530 "cfg_ap", 0));
1531 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1532 qdev_get_gpio_in_named(dev_apb_ppc1,
1533 "irq_enable", 0));
1534 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1535 qdev_get_gpio_in_named(dev_apb_ppc1,
1536 "irq_clear", 0));
1537 qdev_connect_gpio_out(dev_splitter, 1,
1538 qdev_get_gpio_in_named(dev_apb_ppc1,
1539 "cfg_sec_resp", 0));
1542 * Now both PPCs are realized we can map the upstream ends of
1543 * ports which correspond to entries in the devinfo array.
1544 * The ports which are connected to non-devinfo devices have
1545 * already been mapped.
1547 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1548 SysBusDevice *ppc_sbd;
1550 if (devinfo->ppc == NO_PPC) {
1551 continue;
1553 ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1554 mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1555 memory_region_add_subregion(&s->container, devinfo->addr, mr);
1558 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1559 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1561 if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1562 return;
1564 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1565 return;
1569 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1570 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1572 armsse_forward_ppc(s, ppcname, i);
1573 g_free(ppcname);
1576 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1577 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1579 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1580 g_free(ppcname);
1583 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1584 /* Wire up IRQ splitter for internal PPCs */
1585 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1586 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1587 i - NUM_EXTERNAL_PPCS);
1588 TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1590 qdev_connect_gpio_out(devs, 0,
1591 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1592 qdev_connect_gpio_out(devs, 1,
1593 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1594 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1595 qdev_get_gpio_in(devs, 0));
1596 g_free(gpioname);
1599 /* Wire up the splitters for the MPC IRQs */
1600 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1601 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1602 DeviceState *dev_splitter = DEVICE(splitter);
1604 if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1605 errp)) {
1606 return;
1608 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1609 return;
1612 if (i < IOTS_NUM_EXP_MPC) {
1613 /* Splitter input is from GPIO input line */
1614 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1615 qdev_connect_gpio_out(dev_splitter, 0,
1616 qdev_get_gpio_in_named(dev_secctl,
1617 "mpcexp_status", i));
1618 } else {
1619 /* Splitter input is from our own MPC */
1620 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1621 "irq", 0,
1622 qdev_get_gpio_in(dev_splitter, 0));
1623 qdev_connect_gpio_out(dev_splitter, 0,
1624 qdev_get_gpio_in_named(dev_secctl,
1625 "mpc_status",
1626 i - IOTS_NUM_EXP_MPC));
1629 qdev_connect_gpio_out(dev_splitter, 1,
1630 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1632 /* Create GPIO inputs which will pass the line state for our
1633 * mpcexp_irq inputs to the correct splitter devices.
1635 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1636 IOTS_NUM_EXP_MPC);
1638 armsse_forward_sec_resp_cfg(s);
1640 /* Forward the MSC related signals */
1641 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1642 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1643 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1644 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1645 armsse_get_common_irq_in(s, 11));
1648 * Expose our container region to the board model; this corresponds
1649 * to the AHB Slave Expansion ports which allow bus master devices
1650 * (eg DMA controllers) in the board model to make transactions into
1651 * devices in the ARMSSE.
1653 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1655 /* Set initial system_clock_scale from MAINCLK */
1656 armsse_mainclk_update(s, ClockUpdate);
1659 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1660 int *iregion, bool *exempt, bool *ns, bool *nsc)
1663 * For ARMSSE systems the IDAU responses are simple logical functions
1664 * of the address bits. The NSC attribute is guest-adjustable via the
1665 * NSCCFG register in the security controller.
1667 ARMSSE *s = ARM_SSE(ii);
1668 int region = extract32(address, 28, 4);
1670 *ns = !(region & 1);
1671 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1672 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1673 *exempt = (address & 0xeff00000) == 0xe0000000;
1674 *iregion = region;
1677 static const VMStateDescription armsse_vmstate = {
1678 .name = "iotkit",
1679 .version_id = 2,
1680 .minimum_version_id = 2,
1681 .fields = (VMStateField[]) {
1682 VMSTATE_CLOCK(mainclk, ARMSSE),
1683 VMSTATE_CLOCK(s32kclk, ARMSSE),
1684 VMSTATE_UINT32(nsccfg, ARMSSE),
1685 VMSTATE_END_OF_LIST()
1689 static void armsse_reset(DeviceState *dev)
1691 ARMSSE *s = ARM_SSE(dev);
1693 s->nsccfg = 0;
1696 static void armsse_class_init(ObjectClass *klass, void *data)
1698 DeviceClass *dc = DEVICE_CLASS(klass);
1699 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1700 ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1701 const ARMSSEInfo *info = data;
1703 dc->realize = armsse_realize;
1704 dc->vmsd = &armsse_vmstate;
1705 device_class_set_props(dc, info->props);
1706 dc->reset = armsse_reset;
1707 iic->check = armsse_idau_check;
1708 asc->info = info;
1711 static const TypeInfo armsse_info = {
1712 .name = TYPE_ARM_SSE,
1713 .parent = TYPE_SYS_BUS_DEVICE,
1714 .instance_size = sizeof(ARMSSE),
1715 .class_size = sizeof(ARMSSEClass),
1716 .instance_init = armsse_init,
1717 .abstract = true,
1718 .interfaces = (InterfaceInfo[]) {
1719 { TYPE_IDAU_INTERFACE },
1724 static void armsse_register_types(void)
1726 int i;
1728 type_register_static(&armsse_info);
1730 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1731 TypeInfo ti = {
1732 .name = armsse_variants[i].name,
1733 .parent = TYPE_ARM_SSE,
1734 .class_init = armsse_class_init,
1735 .class_data = (void *)&armsse_variants[i],
1737 type_register(&ti);
1741 type_init(armsse_register_types);