hw/intc/arm_gicv3_its: Implement INV for virtual interrupts
[qemu/rayw.git] / softmmu / icount.c
blob5ca271620db6b8398d67acc123204ee08230c63d
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "migration/vmstate.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "exec/exec-all.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/qtest.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/option.h"
35 #include "qemu/seqlock.h"
36 #include "sysemu/replay.h"
37 #include "sysemu/runstate.h"
38 #include "hw/core/cpu.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/cpu-throttle.h"
41 #include "timers-state.h"
44 * ICOUNT: Instruction Counter
46 * this module is split off from cpu-timers because the icount part
47 * is TCG-specific, and does not need to be built for other accels.
49 static bool icount_sleep = true;
50 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
51 #define MAX_ICOUNT_SHIFT 10
54 * 0 = Do not count executed instructions.
55 * 1 = Fixed conversion of insn to ns via "shift" option
56 * 2 = Runtime adaptive algorithm to compute shift
58 int use_icount;
60 static void icount_enable_precise(void)
62 use_icount = 1;
65 static void icount_enable_adaptive(void)
67 use_icount = 2;
71 * The current number of executed instructions is based on what we
72 * originally budgeted minus the current state of the decrementing
73 * icount counters in extra/u16.low.
75 static int64_t icount_get_executed(CPUState *cpu)
77 return (cpu->icount_budget -
78 (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
82 * Update the global shared timer_state.qemu_icount to take into
83 * account executed instructions. This is done by the TCG vCPU
84 * thread so the main-loop can see time has moved forward.
86 static void icount_update_locked(CPUState *cpu)
88 int64_t executed = icount_get_executed(cpu);
89 cpu->icount_budget -= executed;
91 qatomic_set_i64(&timers_state.qemu_icount,
92 timers_state.qemu_icount + executed);
96 * Update the global shared timer_state.qemu_icount to take into
97 * account executed instructions. This is done by the TCG vCPU
98 * thread so the main-loop can see time has moved forward.
100 void icount_update(CPUState *cpu)
102 seqlock_write_lock(&timers_state.vm_clock_seqlock,
103 &timers_state.vm_clock_lock);
104 icount_update_locked(cpu);
105 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
106 &timers_state.vm_clock_lock);
109 static int64_t icount_get_raw_locked(void)
111 CPUState *cpu = current_cpu;
113 if (cpu && cpu->running) {
114 if (!cpu->can_do_io) {
115 error_report("Bad icount read");
116 exit(1);
118 /* Take into account what has run */
119 icount_update_locked(cpu);
121 /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
122 return qatomic_read_i64(&timers_state.qemu_icount);
125 static int64_t icount_get_locked(void)
127 int64_t icount = icount_get_raw_locked();
128 return qatomic_read_i64(&timers_state.qemu_icount_bias) +
129 icount_to_ns(icount);
132 int64_t icount_get_raw(void)
134 int64_t icount;
135 unsigned start;
137 do {
138 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
139 icount = icount_get_raw_locked();
140 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
142 return icount;
145 /* Return the virtual CPU time, based on the instruction counter. */
146 int64_t icount_get(void)
148 int64_t icount;
149 unsigned start;
151 do {
152 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
153 icount = icount_get_locked();
154 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
156 return icount;
159 int64_t icount_to_ns(int64_t icount)
161 return icount << qatomic_read(&timers_state.icount_time_shift);
165 * Correlation between real and virtual time is always going to be
166 * fairly approximate, so ignore small variation.
167 * When the guest is idle real and virtual time will be aligned in
168 * the IO wait loop.
170 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
172 static void icount_adjust(void)
174 int64_t cur_time;
175 int64_t cur_icount;
176 int64_t delta;
178 /* If the VM is not running, then do nothing. */
179 if (!runstate_is_running()) {
180 return;
183 seqlock_write_lock(&timers_state.vm_clock_seqlock,
184 &timers_state.vm_clock_lock);
185 cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
186 cpu_get_clock_locked());
187 cur_icount = icount_get_locked();
189 delta = cur_icount - cur_time;
190 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
191 if (delta > 0
192 && timers_state.last_delta + ICOUNT_WOBBLE < delta * 2
193 && timers_state.icount_time_shift > 0) {
194 /* The guest is getting too far ahead. Slow time down. */
195 qatomic_set(&timers_state.icount_time_shift,
196 timers_state.icount_time_shift - 1);
198 if (delta < 0
199 && timers_state.last_delta - ICOUNT_WOBBLE > delta * 2
200 && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
201 /* The guest is getting too far behind. Speed time up. */
202 qatomic_set(&timers_state.icount_time_shift,
203 timers_state.icount_time_shift + 1);
205 timers_state.last_delta = delta;
206 qatomic_set_i64(&timers_state.qemu_icount_bias,
207 cur_icount - (timers_state.qemu_icount
208 << timers_state.icount_time_shift));
209 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
210 &timers_state.vm_clock_lock);
213 static void icount_adjust_rt(void *opaque)
215 timer_mod(timers_state.icount_rt_timer,
216 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
217 icount_adjust();
220 static void icount_adjust_vm(void *opaque)
222 timer_mod(timers_state.icount_vm_timer,
223 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
224 NANOSECONDS_PER_SECOND / 10);
225 icount_adjust();
228 int64_t icount_round(int64_t count)
230 int shift = qatomic_read(&timers_state.icount_time_shift);
231 return (count + (1 << shift) - 1) >> shift;
234 static void icount_warp_rt(void)
236 unsigned seq;
237 int64_t warp_start;
240 * The icount_warp_timer is rescheduled soon after vm_clock_warp_start
241 * changes from -1 to another value, so the race here is okay.
243 do {
244 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
245 warp_start = timers_state.vm_clock_warp_start;
246 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
248 if (warp_start == -1) {
249 return;
252 seqlock_write_lock(&timers_state.vm_clock_seqlock,
253 &timers_state.vm_clock_lock);
254 if (runstate_is_running()) {
255 int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
256 cpu_get_clock_locked());
257 int64_t warp_delta;
259 warp_delta = clock - timers_state.vm_clock_warp_start;
260 if (icount_enabled() == 2) {
262 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
263 * far ahead of real time.
265 int64_t cur_icount = icount_get_locked();
266 int64_t delta = clock - cur_icount;
267 warp_delta = MIN(warp_delta, delta);
269 qatomic_set_i64(&timers_state.qemu_icount_bias,
270 timers_state.qemu_icount_bias + warp_delta);
272 timers_state.vm_clock_warp_start = -1;
273 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
274 &timers_state.vm_clock_lock);
276 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
277 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
281 static void icount_timer_cb(void *opaque)
284 * No need for a checkpoint because the timer already synchronizes
285 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
287 icount_warp_rt();
290 void icount_start_warp_timer(void)
292 int64_t clock;
293 int64_t deadline;
295 assert(icount_enabled());
298 * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
299 * do not fire, so computing the deadline does not make sense.
301 if (!runstate_is_running()) {
302 return;
305 if (replay_mode != REPLAY_MODE_PLAY) {
306 if (!all_cpu_threads_idle()) {
307 return;
310 if (qtest_enabled()) {
311 /* When testing, qtest commands advance icount. */
312 return;
315 replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
316 } else {
317 /* warp clock deterministically in record/replay mode */
318 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
320 * vCPU is sleeping and warp can't be started.
321 * It is probably a race condition: notification sent
322 * to vCPU was processed in advance and vCPU went to sleep.
323 * Therefore we have to wake it up for doing someting.
325 if (replay_has_checkpoint()) {
326 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
328 return;
332 /* We want to use the earliest deadline from ALL vm_clocks */
333 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
334 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
335 ~QEMU_TIMER_ATTR_EXTERNAL);
336 if (deadline < 0) {
337 static bool notified;
338 if (!icount_sleep && !notified) {
339 warn_report("icount sleep disabled and no active timers");
340 notified = true;
342 return;
345 if (deadline > 0) {
347 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
348 * sleep. Otherwise, the CPU might be waiting for a future timer
349 * interrupt to wake it up, but the interrupt never comes because
350 * the vCPU isn't running any insns and thus doesn't advance the
351 * QEMU_CLOCK_VIRTUAL.
353 if (!icount_sleep) {
355 * We never let VCPUs sleep in no sleep icount mode.
356 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
357 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
358 * It is useful when we want a deterministic execution time,
359 * isolated from host latencies.
361 seqlock_write_lock(&timers_state.vm_clock_seqlock,
362 &timers_state.vm_clock_lock);
363 qatomic_set_i64(&timers_state.qemu_icount_bias,
364 timers_state.qemu_icount_bias + deadline);
365 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
366 &timers_state.vm_clock_lock);
367 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
368 } else {
370 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
371 * "real" time, (related to the time left until the next event) has
372 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
373 * This avoids that the warps are visible externally; for example,
374 * you will not be sending network packets continuously instead of
375 * every 100ms.
377 seqlock_write_lock(&timers_state.vm_clock_seqlock,
378 &timers_state.vm_clock_lock);
379 if (timers_state.vm_clock_warp_start == -1
380 || timers_state.vm_clock_warp_start > clock) {
381 timers_state.vm_clock_warp_start = clock;
383 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
384 &timers_state.vm_clock_lock);
385 timer_mod_anticipate(timers_state.icount_warp_timer,
386 clock + deadline);
388 } else if (deadline == 0) {
389 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
393 void icount_account_warp_timer(void)
395 if (!icount_sleep) {
396 return;
400 * Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
401 * do not fire, so computing the deadline does not make sense.
403 if (!runstate_is_running()) {
404 return;
407 /* warp clock deterministically in record/replay mode */
408 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
409 return;
412 timer_del(timers_state.icount_warp_timer);
413 icount_warp_rt();
416 void icount_configure(QemuOpts *opts, Error **errp)
418 const char *option = qemu_opt_get(opts, "shift");
419 bool sleep = qemu_opt_get_bool(opts, "sleep", true);
420 bool align = qemu_opt_get_bool(opts, "align", false);
421 long time_shift = -1;
423 if (!option) {
424 if (qemu_opt_get(opts, "align") != NULL) {
425 error_setg(errp, "Please specify shift option when using align");
427 return;
430 if (align && !sleep) {
431 error_setg(errp, "align=on and sleep=off are incompatible");
432 return;
435 if (strcmp(option, "auto") != 0) {
436 if (qemu_strtol(option, NULL, 0, &time_shift) < 0
437 || time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
438 error_setg(errp, "icount: Invalid shift value");
439 return;
441 } else if (icount_align_option) {
442 error_setg(errp, "shift=auto and align=on are incompatible");
443 return;
444 } else if (!icount_sleep) {
445 error_setg(errp, "shift=auto and sleep=off are incompatible");
446 return;
449 icount_sleep = sleep;
450 if (icount_sleep) {
451 timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
452 icount_timer_cb, NULL);
455 icount_align_option = align;
457 if (time_shift >= 0) {
458 timers_state.icount_time_shift = time_shift;
459 icount_enable_precise();
460 return;
463 icount_enable_adaptive();
466 * 125MIPS seems a reasonable initial guess at the guest speed.
467 * It will be corrected fairly quickly anyway.
469 timers_state.icount_time_shift = 3;
472 * Have both realtime and virtual time triggers for speed adjustment.
473 * The realtime trigger catches emulated time passing too slowly,
474 * the virtual time trigger catches emulated time passing too fast.
475 * Realtime triggers occur even when idle, so use them less frequently
476 * than VM triggers.
478 timers_state.vm_clock_warp_start = -1;
479 timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
480 icount_adjust_rt, NULL);
481 timer_mod(timers_state.icount_rt_timer,
482 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
483 timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
484 icount_adjust_vm, NULL);
485 timer_mod(timers_state.icount_vm_timer,
486 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
487 NANOSECONDS_PER_SECOND / 10);