2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "exec/helper-proto.h"
22 #include "sysemu/kvm.h"
24 #include "mmu-hash64.h"
29 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
31 # define LOG_SLB(...) do { } while (0)
35 * Used to indicate whether we have allocated htab in the
38 bool kvmppc_kern_htab
;
43 static ppc_slb_t
*slb_lookup(CPUPPCState
*env
, target_ulong eaddr
)
45 uint64_t esid_256M
, esid_1T
;
48 LOG_SLB("%s: eaddr " TARGET_FMT_lx
"\n", __func__
, eaddr
);
50 esid_256M
= (eaddr
& SEGMENT_MASK_256M
) | SLB_ESID_V
;
51 esid_1T
= (eaddr
& SEGMENT_MASK_1T
) | SLB_ESID_V
;
53 for (n
= 0; n
< env
->slb_nr
; n
++) {
54 ppc_slb_t
*slb
= &env
->slb
[n
];
56 LOG_SLB("%s: slot %d %016" PRIx64
" %016"
57 PRIx64
"\n", __func__
, n
, slb
->esid
, slb
->vsid
);
58 /* We check for 1T matches on all MMUs here - if the MMU
59 * doesn't have 1T segment support, we will have prevented 1T
60 * entries from being inserted in the slbmte code. */
61 if (((slb
->esid
== esid_256M
) &&
62 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_256M
))
63 || ((slb
->esid
== esid_1T
) &&
64 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_1T
))) {
72 void dump_slb(FILE *f
, fprintf_function cpu_fprintf
, CPUPPCState
*env
)
77 cpu_synchronize_state(CPU(ppc_env_get_cpu(env
)));
79 cpu_fprintf(f
, "SLB\tESID\t\t\tVSID\n");
80 for (i
= 0; i
< env
->slb_nr
; i
++) {
81 slbe
= env
->slb
[i
].esid
;
82 slbv
= env
->slb
[i
].vsid
;
83 if (slbe
== 0 && slbv
== 0) {
86 cpu_fprintf(f
, "%d\t0x%016" PRIx64
"\t0x%016" PRIx64
"\n",
91 void helper_slbia(CPUPPCState
*env
)
93 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
97 /* XXX: Warning: slbia never invalidates the first segment */
98 for (n
= 1; n
< env
->slb_nr
; n
++) {
99 ppc_slb_t
*slb
= &env
->slb
[n
];
101 if (slb
->esid
& SLB_ESID_V
) {
102 slb
->esid
&= ~SLB_ESID_V
;
103 /* XXX: given the fact that segment size is 256 MB or 1TB,
104 * and we still don't have a tlb_flush_mask(env, n, mask)
105 * in QEMU, we just invalidate all TLBs
111 tlb_flush(CPU(cpu
), 1);
115 void helper_slbie(CPUPPCState
*env
, target_ulong addr
)
117 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
120 slb
= slb_lookup(env
, addr
);
125 if (slb
->esid
& SLB_ESID_V
) {
126 slb
->esid
&= ~SLB_ESID_V
;
128 /* XXX: given the fact that segment size is 256 MB or 1TB,
129 * and we still don't have a tlb_flush_mask(env, n, mask)
130 * in QEMU, we just invalidate all TLBs
132 tlb_flush(CPU(cpu
), 1);
136 int ppc_store_slb(CPUPPCState
*env
, target_ulong rb
, target_ulong rs
)
138 int slot
= rb
& 0xfff;
139 ppc_slb_t
*slb
= &env
->slb
[slot
];
141 if (rb
& (0x1000 - env
->slb_nr
)) {
142 return -1; /* Reserved bits set or slot too high */
144 if (rs
& (SLB_VSID_B
& ~SLB_VSID_B_1T
)) {
145 return -1; /* Bad segment size */
147 if ((rs
& SLB_VSID_B
) && !(env
->mmu_model
& POWERPC_MMU_1TSEG
)) {
148 return -1; /* 1T segment on MMU that doesn't support it */
151 /* Mask out the slot number as we store the entry */
152 slb
->esid
= rb
& (SLB_ESID_ESID
| SLB_ESID_V
);
155 LOG_SLB("%s: %d " TARGET_FMT_lx
" - " TARGET_FMT_lx
" => %016" PRIx64
156 " %016" PRIx64
"\n", __func__
, slot
, rb
, rs
,
157 slb
->esid
, slb
->vsid
);
162 static int ppc_load_slb_esid(CPUPPCState
*env
, target_ulong rb
,
165 int slot
= rb
& 0xfff;
166 ppc_slb_t
*slb
= &env
->slb
[slot
];
168 if (slot
>= env
->slb_nr
) {
176 static int ppc_load_slb_vsid(CPUPPCState
*env
, target_ulong rb
,
179 int slot
= rb
& 0xfff;
180 ppc_slb_t
*slb
= &env
->slb
[slot
];
182 if (slot
>= env
->slb_nr
) {
190 void helper_store_slb(CPUPPCState
*env
, target_ulong rb
, target_ulong rs
)
192 if (ppc_store_slb(env
, rb
, rs
) < 0) {
193 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
198 target_ulong
helper_load_slb_esid(CPUPPCState
*env
, target_ulong rb
)
202 if (ppc_load_slb_esid(env
, rb
, &rt
) < 0) {
203 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
209 target_ulong
helper_load_slb_vsid(CPUPPCState
*env
, target_ulong rb
)
213 if (ppc_load_slb_vsid(env
, rb
, &rt
) < 0) {
214 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
221 * 64-bit hash table MMU handling
224 static int ppc_hash64_pte_prot(CPUPPCState
*env
,
225 ppc_slb_t
*slb
, ppc_hash_pte64_t pte
)
228 /* Some pp bit combinations have undefined behaviour, so default
229 * to no access in those cases */
232 key
= !!(msr_pr
? (slb
->vsid
& SLB_VSID_KP
)
233 : (slb
->vsid
& SLB_VSID_KS
));
234 pp
= (pte
.pte1
& HPTE64_R_PP
) | ((pte
.pte1
& HPTE64_R_PP0
) >> 61);
241 prot
= PAGE_READ
| PAGE_WRITE
;
262 prot
= PAGE_READ
| PAGE_WRITE
;
267 /* No execute if either noexec or guarded bits set */
268 if (!(pte
.pte1
& HPTE64_R_N
) || (pte
.pte1
& HPTE64_R_G
)
269 || (slb
->vsid
& SLB_VSID_N
)) {
276 static int ppc_hash64_amr_prot(CPUPPCState
*env
, ppc_hash_pte64_t pte
)
279 int prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
282 /* Only recent MMUs implement Virtual Page Class Key Protection */
283 if (!(env
->mmu_model
& POWERPC_MMU_AMR
)) {
287 key
= HPTE64_R_KEY(pte
.pte1
);
288 amrbits
= (env
->spr
[SPR_AMR
] >> 2*(31 - key
)) & 0x3;
290 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
291 /* env->spr[SPR_AMR]); */
294 * A store is permitted if the AMR bit is 0. Remove write
295 * protection if it is set.
301 * A load is permitted if the AMR bit is 0. Remove read
302 * protection if it is set.
311 uint64_t ppc_hash64_start_access(PowerPCCPU
*cpu
, target_ulong pte_index
)
316 pte_offset
= pte_index
* HASH_PTE_SIZE_64
;
317 if (kvmppc_kern_htab
) {
319 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
321 token
= kvmppc_hash64_read_pteg(cpu
, pte_index
);
326 * pteg read failed, even though we have allocated htab via
332 * HTAB is controlled by QEMU. Just point to the internally
335 if (cpu
->env
.external_htab
) {
336 token
= (uint64_t)(uintptr_t) cpu
->env
.external_htab
+ pte_offset
;
337 } else if (cpu
->env
.htab_base
) {
338 token
= cpu
->env
.htab_base
+ pte_offset
;
343 void ppc_hash64_stop_access(uint64_t token
)
345 if (kvmppc_kern_htab
) {
346 kvmppc_hash64_free_pteg(token
);
350 static hwaddr
ppc_hash64_pteg_search(CPUPPCState
*env
, hwaddr hash
,
351 bool secondary
, target_ulong ptem
,
352 ppc_hash_pte64_t
*pte
)
356 target_ulong pte0
, pte1
;
357 target_ulong pte_index
;
359 pte_index
= (hash
& env
->htab_mask
) * HPTES_PER_GROUP
;
360 token
= ppc_hash64_start_access(ppc_env_get_cpu(env
), pte_index
);
364 for (i
= 0; i
< HPTES_PER_GROUP
; i
++) {
365 pte0
= ppc_hash64_load_hpte0(env
, token
, i
);
366 pte1
= ppc_hash64_load_hpte1(env
, token
, i
);
368 if ((pte0
& HPTE64_V_VALID
)
369 && (secondary
== !!(pte0
& HPTE64_V_SECONDARY
))
370 && HPTE64_V_COMPARE(pte0
, ptem
)) {
373 ppc_hash64_stop_access(token
);
374 return (pte_index
+ i
) * HASH_PTE_SIZE_64
;
377 ppc_hash64_stop_access(token
);
379 * We didn't find a valid entry.
384 static uint64_t ppc_hash64_page_shift(ppc_slb_t
*slb
)
388 /* Page size according to the SLB, which we use to generate the
389 * EPN for hash table lookup.. When we implement more recent MMU
390 * extensions this might be different from the actual page size
391 * encoded in the PTE */
392 if ((slb
->vsid
& SLB_VSID_LLP_MASK
) == SLB_VSID_4K
) {
393 epnshift
= TARGET_PAGE_BITS
;
394 } else if ((slb
->vsid
& SLB_VSID_LLP_MASK
) == SLB_VSID_64K
) {
395 epnshift
= TARGET_PAGE_BITS_64K
;
397 epnshift
= TARGET_PAGE_BITS_16M
;
402 static hwaddr
ppc_hash64_htab_lookup(CPUPPCState
*env
,
403 ppc_slb_t
*slb
, target_ulong eaddr
,
404 ppc_hash_pte64_t
*pte
)
408 uint64_t vsid
, epnshift
, epnmask
, epn
, ptem
;
410 epnshift
= ppc_hash64_page_shift(slb
);
411 epnmask
= ~((1ULL << epnshift
) - 1);
413 if (slb
->vsid
& SLB_VSID_B
) {
415 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT_1T
;
416 epn
= (eaddr
& ~SEGMENT_MASK_1T
) & epnmask
;
417 hash
= vsid
^ (vsid
<< 25) ^ (epn
>> epnshift
);
420 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT
;
421 epn
= (eaddr
& ~SEGMENT_MASK_256M
) & epnmask
;
422 hash
= vsid
^ (epn
>> epnshift
);
424 ptem
= (slb
->vsid
& SLB_VSID_PTEM
) | ((epn
>> 16) & HPTE64_V_AVPN
);
426 /* Page address translation */
427 qemu_log_mask(CPU_LOG_MMU
,
428 "htab_base " TARGET_FMT_plx
" htab_mask " TARGET_FMT_plx
429 " hash " TARGET_FMT_plx
"\n",
430 env
->htab_base
, env
->htab_mask
, hash
);
432 /* Primary PTEG lookup */
433 qemu_log_mask(CPU_LOG_MMU
,
434 "0 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
435 " vsid=" TARGET_FMT_lx
" ptem=" TARGET_FMT_lx
436 " hash=" TARGET_FMT_plx
"\n",
437 env
->htab_base
, env
->htab_mask
, vsid
, ptem
, hash
);
438 pte_offset
= ppc_hash64_pteg_search(env
, hash
, 0, ptem
, pte
);
440 if (pte_offset
== -1) {
441 /* Secondary PTEG lookup */
442 qemu_log_mask(CPU_LOG_MMU
,
443 "1 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
444 " vsid=" TARGET_FMT_lx
" api=" TARGET_FMT_lx
445 " hash=" TARGET_FMT_plx
"\n", env
->htab_base
,
446 env
->htab_mask
, vsid
, ptem
, ~hash
);
448 pte_offset
= ppc_hash64_pteg_search(env
, ~hash
, 1, ptem
, pte
);
454 static hwaddr
ppc_hash64_pte_raddr(ppc_slb_t
*slb
, ppc_hash_pte64_t pte
,
458 int target_page_bits
;
459 hwaddr rpn
= pte
.pte1
& HPTE64_R_RPN
;
461 * We support 4K, 64K and 16M now
463 target_page_bits
= ppc_hash64_page_shift(slb
);
464 mask
= (1ULL << target_page_bits
) - 1;
465 return (rpn
& ~mask
) | (eaddr
& mask
);
468 int ppc_hash64_handle_mmu_fault(PowerPCCPU
*cpu
, target_ulong eaddr
,
469 int rwx
, int mmu_idx
)
471 CPUState
*cs
= CPU(cpu
);
472 CPUPPCState
*env
= &cpu
->env
;
475 ppc_hash_pte64_t pte
;
476 int pp_prot
, amr_prot
, prot
;
478 const int need_prot
[] = {PAGE_READ
, PAGE_WRITE
, PAGE_EXEC
};
481 assert((rwx
== 0) || (rwx
== 1) || (rwx
== 2));
483 /* 1. Handle real mode accesses */
484 if (((rwx
== 2) && (msr_ir
== 0)) || ((rwx
!= 2) && (msr_dr
== 0))) {
485 /* Translation is off */
486 /* In real mode the top 4 effective address bits are ignored */
487 raddr
= eaddr
& 0x0FFFFFFFFFFFFFFFULL
;
488 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
489 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
, mmu_idx
,
494 /* 2. Translation is on, so look up the SLB */
495 slb
= slb_lookup(env
, eaddr
);
499 cs
->exception_index
= POWERPC_EXCP_ISEG
;
502 cs
->exception_index
= POWERPC_EXCP_DSEG
;
504 env
->spr
[SPR_DAR
] = eaddr
;
509 /* 3. Check for segment level no-execute violation */
510 if ((rwx
== 2) && (slb
->vsid
& SLB_VSID_N
)) {
511 cs
->exception_index
= POWERPC_EXCP_ISI
;
512 env
->error_code
= 0x10000000;
516 /* 4. Locate the PTE in the hash table */
517 pte_offset
= ppc_hash64_htab_lookup(env
, slb
, eaddr
, &pte
);
518 if (pte_offset
== -1) {
520 cs
->exception_index
= POWERPC_EXCP_ISI
;
521 env
->error_code
= 0x40000000;
523 cs
->exception_index
= POWERPC_EXCP_DSI
;
525 env
->spr
[SPR_DAR
] = eaddr
;
527 env
->spr
[SPR_DSISR
] = 0x42000000;
529 env
->spr
[SPR_DSISR
] = 0x40000000;
534 qemu_log_mask(CPU_LOG_MMU
,
535 "found PTE at offset %08" HWADDR_PRIx
"\n", pte_offset
);
537 /* 5. Check access permissions */
539 pp_prot
= ppc_hash64_pte_prot(env
, slb
, pte
);
540 amr_prot
= ppc_hash64_amr_prot(env
, pte
);
541 prot
= pp_prot
& amr_prot
;
543 if ((need_prot
[rwx
] & ~prot
) != 0) {
544 /* Access right violation */
545 qemu_log_mask(CPU_LOG_MMU
, "PTE access rejected\n");
547 cs
->exception_index
= POWERPC_EXCP_ISI
;
548 env
->error_code
= 0x08000000;
550 target_ulong dsisr
= 0;
552 cs
->exception_index
= POWERPC_EXCP_DSI
;
554 env
->spr
[SPR_DAR
] = eaddr
;
555 if (need_prot
[rwx
] & ~pp_prot
) {
561 if (need_prot
[rwx
] & ~amr_prot
) {
564 env
->spr
[SPR_DSISR
] = dsisr
;
569 qemu_log_mask(CPU_LOG_MMU
, "PTE access granted !\n");
571 /* 6. Update PTE referenced and changed bits if necessary */
573 new_pte1
= pte
.pte1
| HPTE64_R_R
; /* set referenced bit */
575 new_pte1
|= HPTE64_R_C
; /* set changed (dirty) bit */
577 /* Treat the page as read-only for now, so that a later write
578 * will pass through this function again to set the C bit */
582 if (new_pte1
!= pte
.pte1
) {
583 ppc_hash64_store_hpte(env
, pte_offset
/ HASH_PTE_SIZE_64
,
587 /* 7. Determine the real address from the PTE */
589 raddr
= ppc_hash64_pte_raddr(slb
, pte
, eaddr
);
591 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
592 prot
, mmu_idx
, TARGET_PAGE_SIZE
);
597 hwaddr
ppc_hash64_get_phys_page_debug(CPUPPCState
*env
, target_ulong addr
)
601 ppc_hash_pte64_t pte
;
604 /* In real mode the top 4 effective address bits are ignored */
605 return addr
& 0x0FFFFFFFFFFFFFFFULL
;
608 slb
= slb_lookup(env
, addr
);
613 pte_offset
= ppc_hash64_htab_lookup(env
, slb
, addr
, &pte
);
614 if (pte_offset
== -1) {
618 return ppc_hash64_pte_raddr(slb
, pte
, addr
) & TARGET_PAGE_MASK
;
621 void ppc_hash64_store_hpte(CPUPPCState
*env
,
622 target_ulong pte_index
,
623 target_ulong pte0
, target_ulong pte1
)
625 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
627 if (kvmppc_kern_htab
) {
628 kvmppc_hash64_write_pte(env
, pte_index
, pte0
, pte1
);
632 pte_index
*= HASH_PTE_SIZE_64
;
633 if (env
->external_htab
) {
634 stq_p(env
->external_htab
+ pte_index
, pte0
);
635 stq_p(env
->external_htab
+ pte_index
+ HASH_PTE_SIZE_64
/2, pte1
);
637 stq_phys(cs
->as
, env
->htab_base
+ pte_index
, pte0
);
638 stq_phys(cs
->as
, env
->htab_base
+ pte_index
+ HASH_PTE_SIZE_64
/2, pte1
);