iotests: 124: move incremental failure test
[qemu/rayw.git] / target-ppc / mmu-hash64.c
blob34e20fa3a96027041172695afa931c27293b188c
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "sysemu/kvm.h"
23 #include "kvm_ppc.h"
24 #include "mmu-hash64.h"
26 //#define DEBUG_SLB
28 #ifdef DEBUG_SLB
29 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
30 #else
31 # define LOG_SLB(...) do { } while (0)
32 #endif
35 * Used to indicate whether we have allocated htab in the
36 * host kernel
38 bool kvmppc_kern_htab;
40 * SLB handling
43 static ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr)
45 uint64_t esid_256M, esid_1T;
46 int n;
48 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
50 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
51 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
53 for (n = 0; n < env->slb_nr; n++) {
54 ppc_slb_t *slb = &env->slb[n];
56 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
57 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
58 /* We check for 1T matches on all MMUs here - if the MMU
59 * doesn't have 1T segment support, we will have prevented 1T
60 * entries from being inserted in the slbmte code. */
61 if (((slb->esid == esid_256M) &&
62 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
63 || ((slb->esid == esid_1T) &&
64 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
65 return slb;
69 return NULL;
72 void dump_slb(FILE *f, fprintf_function cpu_fprintf, CPUPPCState *env)
74 int i;
75 uint64_t slbe, slbv;
77 cpu_synchronize_state(CPU(ppc_env_get_cpu(env)));
79 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
80 for (i = 0; i < env->slb_nr; i++) {
81 slbe = env->slb[i].esid;
82 slbv = env->slb[i].vsid;
83 if (slbe == 0 && slbv == 0) {
84 continue;
86 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
87 i, slbe, slbv);
91 void helper_slbia(CPUPPCState *env)
93 PowerPCCPU *cpu = ppc_env_get_cpu(env);
94 int n, do_invalidate;
96 do_invalidate = 0;
97 /* XXX: Warning: slbia never invalidates the first segment */
98 for (n = 1; n < env->slb_nr; n++) {
99 ppc_slb_t *slb = &env->slb[n];
101 if (slb->esid & SLB_ESID_V) {
102 slb->esid &= ~SLB_ESID_V;
103 /* XXX: given the fact that segment size is 256 MB or 1TB,
104 * and we still don't have a tlb_flush_mask(env, n, mask)
105 * in QEMU, we just invalidate all TLBs
107 do_invalidate = 1;
110 if (do_invalidate) {
111 tlb_flush(CPU(cpu), 1);
115 void helper_slbie(CPUPPCState *env, target_ulong addr)
117 PowerPCCPU *cpu = ppc_env_get_cpu(env);
118 ppc_slb_t *slb;
120 slb = slb_lookup(env, addr);
121 if (!slb) {
122 return;
125 if (slb->esid & SLB_ESID_V) {
126 slb->esid &= ~SLB_ESID_V;
128 /* XXX: given the fact that segment size is 256 MB or 1TB,
129 * and we still don't have a tlb_flush_mask(env, n, mask)
130 * in QEMU, we just invalidate all TLBs
132 tlb_flush(CPU(cpu), 1);
136 int ppc_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
138 int slot = rb & 0xfff;
139 ppc_slb_t *slb = &env->slb[slot];
141 if (rb & (0x1000 - env->slb_nr)) {
142 return -1; /* Reserved bits set or slot too high */
144 if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
145 return -1; /* Bad segment size */
147 if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
148 return -1; /* 1T segment on MMU that doesn't support it */
151 /* Mask out the slot number as we store the entry */
152 slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V);
153 slb->vsid = rs;
155 LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
156 " %016" PRIx64 "\n", __func__, slot, rb, rs,
157 slb->esid, slb->vsid);
159 return 0;
162 static int ppc_load_slb_esid(CPUPPCState *env, target_ulong rb,
163 target_ulong *rt)
165 int slot = rb & 0xfff;
166 ppc_slb_t *slb = &env->slb[slot];
168 if (slot >= env->slb_nr) {
169 return -1;
172 *rt = slb->esid;
173 return 0;
176 static int ppc_load_slb_vsid(CPUPPCState *env, target_ulong rb,
177 target_ulong *rt)
179 int slot = rb & 0xfff;
180 ppc_slb_t *slb = &env->slb[slot];
182 if (slot >= env->slb_nr) {
183 return -1;
186 *rt = slb->vsid;
187 return 0;
190 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
192 if (ppc_store_slb(env, rb, rs) < 0) {
193 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
194 POWERPC_EXCP_INVAL);
198 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
200 target_ulong rt = 0;
202 if (ppc_load_slb_esid(env, rb, &rt) < 0) {
203 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
204 POWERPC_EXCP_INVAL);
206 return rt;
209 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
211 target_ulong rt = 0;
213 if (ppc_load_slb_vsid(env, rb, &rt) < 0) {
214 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
215 POWERPC_EXCP_INVAL);
217 return rt;
221 * 64-bit hash table MMU handling
224 static int ppc_hash64_pte_prot(CPUPPCState *env,
225 ppc_slb_t *slb, ppc_hash_pte64_t pte)
227 unsigned pp, key;
228 /* Some pp bit combinations have undefined behaviour, so default
229 * to no access in those cases */
230 int prot = 0;
232 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
233 : (slb->vsid & SLB_VSID_KS));
234 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
236 if (key == 0) {
237 switch (pp) {
238 case 0x0:
239 case 0x1:
240 case 0x2:
241 prot = PAGE_READ | PAGE_WRITE;
242 break;
244 case 0x3:
245 case 0x6:
246 prot = PAGE_READ;
247 break;
249 } else {
250 switch (pp) {
251 case 0x0:
252 case 0x6:
253 prot = 0;
254 break;
256 case 0x1:
257 case 0x3:
258 prot = PAGE_READ;
259 break;
261 case 0x2:
262 prot = PAGE_READ | PAGE_WRITE;
263 break;
267 /* No execute if either noexec or guarded bits set */
268 if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
269 || (slb->vsid & SLB_VSID_N)) {
270 prot |= PAGE_EXEC;
273 return prot;
276 static int ppc_hash64_amr_prot(CPUPPCState *env, ppc_hash_pte64_t pte)
278 int key, amrbits;
279 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
282 /* Only recent MMUs implement Virtual Page Class Key Protection */
283 if (!(env->mmu_model & POWERPC_MMU_AMR)) {
284 return prot;
287 key = HPTE64_R_KEY(pte.pte1);
288 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
290 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
291 /* env->spr[SPR_AMR]); */
294 * A store is permitted if the AMR bit is 0. Remove write
295 * protection if it is set.
297 if (amrbits & 0x2) {
298 prot &= ~PAGE_WRITE;
301 * A load is permitted if the AMR bit is 0. Remove read
302 * protection if it is set.
304 if (amrbits & 0x1) {
305 prot &= ~PAGE_READ;
308 return prot;
311 uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
313 uint64_t token = 0;
314 hwaddr pte_offset;
316 pte_offset = pte_index * HASH_PTE_SIZE_64;
317 if (kvmppc_kern_htab) {
319 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
321 token = kvmppc_hash64_read_pteg(cpu, pte_index);
322 if (token) {
323 return token;
326 * pteg read failed, even though we have allocated htab via
327 * kvmppc_reset_htab.
329 return 0;
332 * HTAB is controlled by QEMU. Just point to the internally
333 * accessible PTEG.
335 if (cpu->env.external_htab) {
336 token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
337 } else if (cpu->env.htab_base) {
338 token = cpu->env.htab_base + pte_offset;
340 return token;
343 void ppc_hash64_stop_access(uint64_t token)
345 if (kvmppc_kern_htab) {
346 kvmppc_hash64_free_pteg(token);
350 static hwaddr ppc_hash64_pteg_search(CPUPPCState *env, hwaddr hash,
351 bool secondary, target_ulong ptem,
352 ppc_hash_pte64_t *pte)
354 int i;
355 uint64_t token;
356 target_ulong pte0, pte1;
357 target_ulong pte_index;
359 pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
360 token = ppc_hash64_start_access(ppc_env_get_cpu(env), pte_index);
361 if (!token) {
362 return -1;
364 for (i = 0; i < HPTES_PER_GROUP; i++) {
365 pte0 = ppc_hash64_load_hpte0(env, token, i);
366 pte1 = ppc_hash64_load_hpte1(env, token, i);
368 if ((pte0 & HPTE64_V_VALID)
369 && (secondary == !!(pte0 & HPTE64_V_SECONDARY))
370 && HPTE64_V_COMPARE(pte0, ptem)) {
371 pte->pte0 = pte0;
372 pte->pte1 = pte1;
373 ppc_hash64_stop_access(token);
374 return (pte_index + i) * HASH_PTE_SIZE_64;
377 ppc_hash64_stop_access(token);
379 * We didn't find a valid entry.
381 return -1;
384 static uint64_t ppc_hash64_page_shift(ppc_slb_t *slb)
386 uint64_t epnshift;
388 /* Page size according to the SLB, which we use to generate the
389 * EPN for hash table lookup.. When we implement more recent MMU
390 * extensions this might be different from the actual page size
391 * encoded in the PTE */
392 if ((slb->vsid & SLB_VSID_LLP_MASK) == SLB_VSID_4K) {
393 epnshift = TARGET_PAGE_BITS;
394 } else if ((slb->vsid & SLB_VSID_LLP_MASK) == SLB_VSID_64K) {
395 epnshift = TARGET_PAGE_BITS_64K;
396 } else {
397 epnshift = TARGET_PAGE_BITS_16M;
399 return epnshift;
402 static hwaddr ppc_hash64_htab_lookup(CPUPPCState *env,
403 ppc_slb_t *slb, target_ulong eaddr,
404 ppc_hash_pte64_t *pte)
406 hwaddr pte_offset;
407 hwaddr hash;
408 uint64_t vsid, epnshift, epnmask, epn, ptem;
410 epnshift = ppc_hash64_page_shift(slb);
411 epnmask = ~((1ULL << epnshift) - 1);
413 if (slb->vsid & SLB_VSID_B) {
414 /* 1TB segment */
415 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
416 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
417 hash = vsid ^ (vsid << 25) ^ (epn >> epnshift);
418 } else {
419 /* 256M segment */
420 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
421 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
422 hash = vsid ^ (epn >> epnshift);
424 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
426 /* Page address translation */
427 qemu_log_mask(CPU_LOG_MMU,
428 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
429 " hash " TARGET_FMT_plx "\n",
430 env->htab_base, env->htab_mask, hash);
432 /* Primary PTEG lookup */
433 qemu_log_mask(CPU_LOG_MMU,
434 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
435 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
436 " hash=" TARGET_FMT_plx "\n",
437 env->htab_base, env->htab_mask, vsid, ptem, hash);
438 pte_offset = ppc_hash64_pteg_search(env, hash, 0, ptem, pte);
440 if (pte_offset == -1) {
441 /* Secondary PTEG lookup */
442 qemu_log_mask(CPU_LOG_MMU,
443 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
444 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
445 " hash=" TARGET_FMT_plx "\n", env->htab_base,
446 env->htab_mask, vsid, ptem, ~hash);
448 pte_offset = ppc_hash64_pteg_search(env, ~hash, 1, ptem, pte);
451 return pte_offset;
454 static hwaddr ppc_hash64_pte_raddr(ppc_slb_t *slb, ppc_hash_pte64_t pte,
455 target_ulong eaddr)
457 hwaddr mask;
458 int target_page_bits;
459 hwaddr rpn = pte.pte1 & HPTE64_R_RPN;
461 * We support 4K, 64K and 16M now
463 target_page_bits = ppc_hash64_page_shift(slb);
464 mask = (1ULL << target_page_bits) - 1;
465 return (rpn & ~mask) | (eaddr & mask);
468 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, target_ulong eaddr,
469 int rwx, int mmu_idx)
471 CPUState *cs = CPU(cpu);
472 CPUPPCState *env = &cpu->env;
473 ppc_slb_t *slb;
474 hwaddr pte_offset;
475 ppc_hash_pte64_t pte;
476 int pp_prot, amr_prot, prot;
477 uint64_t new_pte1;
478 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
479 hwaddr raddr;
481 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
483 /* 1. Handle real mode accesses */
484 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
485 /* Translation is off */
486 /* In real mode the top 4 effective address bits are ignored */
487 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
488 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
489 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
490 TARGET_PAGE_SIZE);
491 return 0;
494 /* 2. Translation is on, so look up the SLB */
495 slb = slb_lookup(env, eaddr);
497 if (!slb) {
498 if (rwx == 2) {
499 cs->exception_index = POWERPC_EXCP_ISEG;
500 env->error_code = 0;
501 } else {
502 cs->exception_index = POWERPC_EXCP_DSEG;
503 env->error_code = 0;
504 env->spr[SPR_DAR] = eaddr;
506 return 1;
509 /* 3. Check for segment level no-execute violation */
510 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
511 cs->exception_index = POWERPC_EXCP_ISI;
512 env->error_code = 0x10000000;
513 return 1;
516 /* 4. Locate the PTE in the hash table */
517 pte_offset = ppc_hash64_htab_lookup(env, slb, eaddr, &pte);
518 if (pte_offset == -1) {
519 if (rwx == 2) {
520 cs->exception_index = POWERPC_EXCP_ISI;
521 env->error_code = 0x40000000;
522 } else {
523 cs->exception_index = POWERPC_EXCP_DSI;
524 env->error_code = 0;
525 env->spr[SPR_DAR] = eaddr;
526 if (rwx == 1) {
527 env->spr[SPR_DSISR] = 0x42000000;
528 } else {
529 env->spr[SPR_DSISR] = 0x40000000;
532 return 1;
534 qemu_log_mask(CPU_LOG_MMU,
535 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
537 /* 5. Check access permissions */
539 pp_prot = ppc_hash64_pte_prot(env, slb, pte);
540 amr_prot = ppc_hash64_amr_prot(env, pte);
541 prot = pp_prot & amr_prot;
543 if ((need_prot[rwx] & ~prot) != 0) {
544 /* Access right violation */
545 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
546 if (rwx == 2) {
547 cs->exception_index = POWERPC_EXCP_ISI;
548 env->error_code = 0x08000000;
549 } else {
550 target_ulong dsisr = 0;
552 cs->exception_index = POWERPC_EXCP_DSI;
553 env->error_code = 0;
554 env->spr[SPR_DAR] = eaddr;
555 if (need_prot[rwx] & ~pp_prot) {
556 dsisr |= 0x08000000;
558 if (rwx == 1) {
559 dsisr |= 0x02000000;
561 if (need_prot[rwx] & ~amr_prot) {
562 dsisr |= 0x00200000;
564 env->spr[SPR_DSISR] = dsisr;
566 return 1;
569 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
571 /* 6. Update PTE referenced and changed bits if necessary */
573 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
574 if (rwx == 1) {
575 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
576 } else {
577 /* Treat the page as read-only for now, so that a later write
578 * will pass through this function again to set the C bit */
579 prot &= ~PAGE_WRITE;
582 if (new_pte1 != pte.pte1) {
583 ppc_hash64_store_hpte(env, pte_offset / HASH_PTE_SIZE_64,
584 pte.pte0, new_pte1);
587 /* 7. Determine the real address from the PTE */
589 raddr = ppc_hash64_pte_raddr(slb, pte, eaddr);
591 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
592 prot, mmu_idx, TARGET_PAGE_SIZE);
594 return 0;
597 hwaddr ppc_hash64_get_phys_page_debug(CPUPPCState *env, target_ulong addr)
599 ppc_slb_t *slb;
600 hwaddr pte_offset;
601 ppc_hash_pte64_t pte;
603 if (msr_dr == 0) {
604 /* In real mode the top 4 effective address bits are ignored */
605 return addr & 0x0FFFFFFFFFFFFFFFULL;
608 slb = slb_lookup(env, addr);
609 if (!slb) {
610 return -1;
613 pte_offset = ppc_hash64_htab_lookup(env, slb, addr, &pte);
614 if (pte_offset == -1) {
615 return -1;
618 return ppc_hash64_pte_raddr(slb, pte, addr) & TARGET_PAGE_MASK;
621 void ppc_hash64_store_hpte(CPUPPCState *env,
622 target_ulong pte_index,
623 target_ulong pte0, target_ulong pte1)
625 CPUState *cs = CPU(ppc_env_get_cpu(env));
627 if (kvmppc_kern_htab) {
628 kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
629 return;
632 pte_index *= HASH_PTE_SIZE_64;
633 if (env->external_htab) {
634 stq_p(env->external_htab + pte_index, pte0);
635 stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64/2, pte1);
636 } else {
637 stq_phys(cs->as, env->htab_base + pte_index, pte0);
638 stq_phys(cs->as, env->htab_base + pte_index + HASH_PTE_SIZE_64/2, pte1);