4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
32 #include "exec-memory.h"
34 /* This check must be after config-host.h is included */
36 #include <sys/eventfd.h>
39 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
40 #define PAGE_SIZE TARGET_PAGE_SIZE
45 #define DPRINTF(fmt, ...) \
46 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
48 #define DPRINTF(fmt, ...) \
52 #define KVM_MSI_HASHTAB_SIZE 256
54 typedef struct KVMSlot
56 target_phys_addr_t start_addr
;
57 ram_addr_t memory_size
;
63 typedef struct kvm_dirty_log KVMDirtyLog
;
71 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
72 bool coalesced_flush_in_progress
;
73 int broken_set_mem_region
;
76 int robust_singlestep
;
78 #ifdef KVM_CAP_SET_GUEST_DEBUG
79 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
84 /* The man page (and posix) say ioctl numbers are signed int, but
85 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
86 * unsigned, and treating them as signed here can break things */
87 unsigned irqchip_inject_ioctl
;
88 #ifdef KVM_CAP_IRQ_ROUTING
89 struct kvm_irq_routing
*irq_routes
;
90 int nr_allocated_irq_routes
;
91 uint32_t *used_gsi_bitmap
;
92 unsigned int gsi_count
;
93 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
99 bool kvm_kernel_irqchip
;
101 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
102 KVM_CAP_INFO(USER_MEMORY
),
103 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
107 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
111 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
112 if (s
->slots
[i
].memory_size
== 0) {
117 fprintf(stderr
, "%s: no free slot available\n", __func__
);
121 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
122 target_phys_addr_t start_addr
,
123 target_phys_addr_t end_addr
)
127 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
128 KVMSlot
*mem
= &s
->slots
[i
];
130 if (start_addr
== mem
->start_addr
&&
131 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
140 * Find overlapping slot with lowest start address
142 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
143 target_phys_addr_t start_addr
,
144 target_phys_addr_t end_addr
)
146 KVMSlot
*found
= NULL
;
149 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
150 KVMSlot
*mem
= &s
->slots
[i
];
152 if (mem
->memory_size
== 0 ||
153 (found
&& found
->start_addr
< mem
->start_addr
)) {
157 if (end_addr
> mem
->start_addr
&&
158 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
166 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
167 target_phys_addr_t
*phys_addr
)
171 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
172 KVMSlot
*mem
= &s
->slots
[i
];
174 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
175 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
183 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
185 struct kvm_userspace_memory_region mem
;
187 mem
.slot
= slot
->slot
;
188 mem
.guest_phys_addr
= slot
->start_addr
;
189 mem
.memory_size
= slot
->memory_size
;
190 mem
.userspace_addr
= (unsigned long)slot
->ram
;
191 mem
.flags
= slot
->flags
;
192 if (s
->migration_log
) {
193 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
195 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
198 static void kvm_reset_vcpu(void *opaque
)
200 CPUArchState
*env
= opaque
;
202 kvm_arch_reset_vcpu(env
);
205 int kvm_init_vcpu(CPUArchState
*env
)
207 KVMState
*s
= kvm_state
;
211 DPRINTF("kvm_init_vcpu\n");
213 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
215 DPRINTF("kvm_create_vcpu failed\n");
221 env
->kvm_vcpu_dirty
= 1;
223 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
226 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
230 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
232 if (env
->kvm_run
== MAP_FAILED
) {
234 DPRINTF("mmap'ing vcpu state failed\n");
238 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
239 s
->coalesced_mmio_ring
=
240 (void *)env
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
243 ret
= kvm_arch_init_vcpu(env
);
245 qemu_register_reset(kvm_reset_vcpu
, env
);
246 kvm_arch_reset_vcpu(env
);
253 * dirty pages logging control
256 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
)
258 return log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
261 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
263 KVMState
*s
= kvm_state
;
264 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
267 old_flags
= mem
->flags
;
269 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
);
272 /* If nothing changed effectively, no need to issue ioctl */
273 if (s
->migration_log
) {
274 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
277 if (flags
== old_flags
) {
281 return kvm_set_user_memory_region(s
, mem
);
284 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
285 ram_addr_t size
, bool log_dirty
)
287 KVMState
*s
= kvm_state
;
288 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
291 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
292 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
293 (target_phys_addr_t
)(phys_addr
+ size
- 1));
296 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
299 static void kvm_log_start(MemoryListener
*listener
,
300 MemoryRegionSection
*section
)
304 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
305 section
->size
, true);
311 static void kvm_log_stop(MemoryListener
*listener
,
312 MemoryRegionSection
*section
)
316 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
317 section
->size
, false);
323 static int kvm_set_migration_log(int enable
)
325 KVMState
*s
= kvm_state
;
329 s
->migration_log
= enable
;
331 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
334 if (!mem
->memory_size
) {
337 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
340 err
= kvm_set_user_memory_region(s
, mem
);
348 /* get kvm's dirty pages bitmap and update qemu's */
349 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
350 unsigned long *bitmap
)
353 unsigned long page_number
, c
;
354 target_phys_addr_t addr
, addr1
;
355 unsigned int len
= ((section
->size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
356 unsigned long hpratio
= getpagesize() / TARGET_PAGE_SIZE
;
359 * bitmap-traveling is faster than memory-traveling (for addr...)
360 * especially when most of the memory is not dirty.
362 for (i
= 0; i
< len
; i
++) {
363 if (bitmap
[i
] != 0) {
364 c
= leul_to_cpu(bitmap
[i
]);
368 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
369 addr1
= page_number
* TARGET_PAGE_SIZE
;
370 addr
= section
->offset_within_region
+ addr1
;
371 memory_region_set_dirty(section
->mr
, addr
,
372 TARGET_PAGE_SIZE
* hpratio
);
379 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
382 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
383 * This function updates qemu's dirty bitmap using
384 * memory_region_set_dirty(). This means all bits are set
387 * @start_add: start of logged region.
388 * @end_addr: end of logged region.
390 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
392 KVMState
*s
= kvm_state
;
393 unsigned long size
, allocated_size
= 0;
397 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
398 target_phys_addr_t end_addr
= start_addr
+ section
->size
;
400 d
.dirty_bitmap
= NULL
;
401 while (start_addr
< end_addr
) {
402 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
407 /* XXX bad kernel interface alert
408 * For dirty bitmap, kernel allocates array of size aligned to
409 * bits-per-long. But for case when the kernel is 64bits and
410 * the userspace is 32bits, userspace can't align to the same
411 * bits-per-long, since sizeof(long) is different between kernel
412 * and user space. This way, userspace will provide buffer which
413 * may be 4 bytes less than the kernel will use, resulting in
414 * userspace memory corruption (which is not detectable by valgrind
415 * too, in most cases).
416 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
417 * a hope that sizeof(long) wont become >8 any time soon.
419 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
420 /*HOST_LONG_BITS*/ 64) / 8;
421 if (!d
.dirty_bitmap
) {
422 d
.dirty_bitmap
= g_malloc(size
);
423 } else if (size
> allocated_size
) {
424 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
426 allocated_size
= size
;
427 memset(d
.dirty_bitmap
, 0, allocated_size
);
431 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
432 DPRINTF("ioctl failed %d\n", errno
);
437 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
438 start_addr
= mem
->start_addr
+ mem
->memory_size
;
440 g_free(d
.dirty_bitmap
);
445 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
448 KVMState
*s
= kvm_state
;
450 if (s
->coalesced_mmio
) {
451 struct kvm_coalesced_mmio_zone zone
;
457 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
463 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
466 KVMState
*s
= kvm_state
;
468 if (s
->coalesced_mmio
) {
469 struct kvm_coalesced_mmio_zone zone
;
475 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
481 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
485 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
493 static int kvm_check_many_ioeventfds(void)
495 /* Userspace can use ioeventfd for io notification. This requires a host
496 * that supports eventfd(2) and an I/O thread; since eventfd does not
497 * support SIGIO it cannot interrupt the vcpu.
499 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
500 * can avoid creating too many ioeventfds.
502 #if defined(CONFIG_EVENTFD)
505 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
506 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
507 if (ioeventfds
[i
] < 0) {
510 ret
= kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, true);
512 close(ioeventfds
[i
]);
517 /* Decide whether many devices are supported or not */
518 ret
= i
== ARRAY_SIZE(ioeventfds
);
521 kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, false);
522 close(ioeventfds
[i
]);
530 static const KVMCapabilityInfo
*
531 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
534 if (!kvm_check_extension(s
, list
->value
)) {
542 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
544 KVMState
*s
= kvm_state
;
547 MemoryRegion
*mr
= section
->mr
;
548 bool log_dirty
= memory_region_is_logging(mr
);
549 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
550 ram_addr_t size
= section
->size
;
554 /* kvm works in page size chunks, but the function may be called
555 with sub-page size and unaligned start address. */
556 delta
= TARGET_PAGE_ALIGN(size
) - size
;
562 size
&= TARGET_PAGE_MASK
;
563 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
567 if (!memory_region_is_ram(mr
)) {
571 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
574 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
579 if (add
&& start_addr
>= mem
->start_addr
&&
580 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
581 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
582 /* The new slot fits into the existing one and comes with
583 * identical parameters - update flags and done. */
584 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
590 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
591 kvm_physical_sync_dirty_bitmap(section
);
594 /* unregister the overlapping slot */
595 mem
->memory_size
= 0;
596 err
= kvm_set_user_memory_region(s
, mem
);
598 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
599 __func__
, strerror(-err
));
603 /* Workaround for older KVM versions: we can't join slots, even not by
604 * unregistering the previous ones and then registering the larger
605 * slot. We have to maintain the existing fragmentation. Sigh.
607 * This workaround assumes that the new slot starts at the same
608 * address as the first existing one. If not or if some overlapping
609 * slot comes around later, we will fail (not seen in practice so far)
610 * - and actually require a recent KVM version. */
611 if (s
->broken_set_mem_region
&&
612 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
613 mem
= kvm_alloc_slot(s
);
614 mem
->memory_size
= old
.memory_size
;
615 mem
->start_addr
= old
.start_addr
;
617 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
619 err
= kvm_set_user_memory_region(s
, mem
);
621 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
626 start_addr
+= old
.memory_size
;
627 ram
+= old
.memory_size
;
628 size
-= old
.memory_size
;
632 /* register prefix slot */
633 if (old
.start_addr
< start_addr
) {
634 mem
= kvm_alloc_slot(s
);
635 mem
->memory_size
= start_addr
- old
.start_addr
;
636 mem
->start_addr
= old
.start_addr
;
638 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
640 err
= kvm_set_user_memory_region(s
, mem
);
642 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
643 __func__
, strerror(-err
));
645 fprintf(stderr
, "%s: This is probably because your kernel's " \
646 "PAGE_SIZE is too big. Please try to use 4k " \
647 "PAGE_SIZE!\n", __func__
);
653 /* register suffix slot */
654 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
655 ram_addr_t size_delta
;
657 mem
= kvm_alloc_slot(s
);
658 mem
->start_addr
= start_addr
+ size
;
659 size_delta
= mem
->start_addr
- old
.start_addr
;
660 mem
->memory_size
= old
.memory_size
- size_delta
;
661 mem
->ram
= old
.ram
+ size_delta
;
662 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
664 err
= kvm_set_user_memory_region(s
, mem
);
666 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
667 __func__
, strerror(-err
));
673 /* in case the KVM bug workaround already "consumed" the new slot */
680 mem
= kvm_alloc_slot(s
);
681 mem
->memory_size
= size
;
682 mem
->start_addr
= start_addr
;
684 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
686 err
= kvm_set_user_memory_region(s
, mem
);
688 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
694 static void kvm_begin(MemoryListener
*listener
)
698 static void kvm_commit(MemoryListener
*listener
)
702 static void kvm_region_add(MemoryListener
*listener
,
703 MemoryRegionSection
*section
)
705 kvm_set_phys_mem(section
, true);
708 static void kvm_region_del(MemoryListener
*listener
,
709 MemoryRegionSection
*section
)
711 kvm_set_phys_mem(section
, false);
714 static void kvm_region_nop(MemoryListener
*listener
,
715 MemoryRegionSection
*section
)
719 static void kvm_log_sync(MemoryListener
*listener
,
720 MemoryRegionSection
*section
)
724 r
= kvm_physical_sync_dirty_bitmap(section
);
730 static void kvm_log_global_start(struct MemoryListener
*listener
)
734 r
= kvm_set_migration_log(1);
738 static void kvm_log_global_stop(struct MemoryListener
*listener
)
742 r
= kvm_set_migration_log(0);
746 static void kvm_mem_ioeventfd_add(MemoryRegionSection
*section
,
747 bool match_data
, uint64_t data
, int fd
)
751 assert(match_data
&& section
->size
<= 8);
753 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
754 data
, true, section
->size
);
760 static void kvm_mem_ioeventfd_del(MemoryRegionSection
*section
,
761 bool match_data
, uint64_t data
, int fd
)
765 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
766 data
, false, section
->size
);
772 static void kvm_io_ioeventfd_add(MemoryRegionSection
*section
,
773 bool match_data
, uint64_t data
, int fd
)
777 assert(match_data
&& section
->size
== 2);
779 r
= kvm_set_ioeventfd_pio_word(fd
, section
->offset_within_address_space
,
786 static void kvm_io_ioeventfd_del(MemoryRegionSection
*section
,
787 bool match_data
, uint64_t data
, int fd
)
792 r
= kvm_set_ioeventfd_pio_word(fd
, section
->offset_within_address_space
,
799 static void kvm_eventfd_add(MemoryListener
*listener
,
800 MemoryRegionSection
*section
,
801 bool match_data
, uint64_t data
, int fd
)
803 if (section
->address_space
== get_system_memory()) {
804 kvm_mem_ioeventfd_add(section
, match_data
, data
, fd
);
806 kvm_io_ioeventfd_add(section
, match_data
, data
, fd
);
810 static void kvm_eventfd_del(MemoryListener
*listener
,
811 MemoryRegionSection
*section
,
812 bool match_data
, uint64_t data
, int fd
)
814 if (section
->address_space
== get_system_memory()) {
815 kvm_mem_ioeventfd_del(section
, match_data
, data
, fd
);
817 kvm_io_ioeventfd_del(section
, match_data
, data
, fd
);
821 static MemoryListener kvm_memory_listener
= {
823 .commit
= kvm_commit
,
824 .region_add
= kvm_region_add
,
825 .region_del
= kvm_region_del
,
826 .region_nop
= kvm_region_nop
,
827 .log_start
= kvm_log_start
,
828 .log_stop
= kvm_log_stop
,
829 .log_sync
= kvm_log_sync
,
830 .log_global_start
= kvm_log_global_start
,
831 .log_global_stop
= kvm_log_global_stop
,
832 .eventfd_add
= kvm_eventfd_add
,
833 .eventfd_del
= kvm_eventfd_del
,
837 static void kvm_handle_interrupt(CPUArchState
*env
, int mask
)
839 env
->interrupt_request
|= mask
;
841 if (!qemu_cpu_is_self(env
)) {
846 int kvm_irqchip_set_irq(KVMState
*s
, int irq
, int level
)
848 struct kvm_irq_level event
;
851 assert(kvm_irqchip_in_kernel());
855 ret
= kvm_vm_ioctl(s
, s
->irqchip_inject_ioctl
, &event
);
857 perror("kvm_set_irqchip_line");
861 return (s
->irqchip_inject_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
864 #ifdef KVM_CAP_IRQ_ROUTING
865 typedef struct KVMMSIRoute
{
866 struct kvm_irq_routing_entry kroute
;
867 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
870 static void set_gsi(KVMState
*s
, unsigned int gsi
)
872 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
875 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
877 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
880 static void kvm_init_irq_routing(KVMState
*s
)
884 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
886 unsigned int gsi_bits
, i
;
888 /* Round up so we can search ints using ffs */
889 gsi_bits
= ALIGN(gsi_count
, 32);
890 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
891 s
->gsi_count
= gsi_count
;
893 /* Mark any over-allocated bits as already in use */
894 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
899 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
900 s
->nr_allocated_irq_routes
= 0;
902 if (!s
->direct_msi
) {
903 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
904 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
908 kvm_arch_init_irq_routing(s
);
911 static void kvm_irqchip_commit_routes(KVMState
*s
)
915 s
->irq_routes
->flags
= 0;
916 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
920 static void kvm_add_routing_entry(KVMState
*s
,
921 struct kvm_irq_routing_entry
*entry
)
923 struct kvm_irq_routing_entry
*new;
926 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
927 n
= s
->nr_allocated_irq_routes
* 2;
931 size
= sizeof(struct kvm_irq_routing
);
932 size
+= n
* sizeof(*new);
933 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
934 s
->nr_allocated_irq_routes
= n
;
936 n
= s
->irq_routes
->nr
++;
937 new = &s
->irq_routes
->entries
[n
];
938 memset(new, 0, sizeof(*new));
939 new->gsi
= entry
->gsi
;
940 new->type
= entry
->type
;
941 new->flags
= entry
->flags
;
944 set_gsi(s
, entry
->gsi
);
946 kvm_irqchip_commit_routes(s
);
949 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
951 struct kvm_irq_routing_entry e
;
953 assert(pin
< s
->gsi_count
);
956 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
958 e
.u
.irqchip
.irqchip
= irqchip
;
959 e
.u
.irqchip
.pin
= pin
;
960 kvm_add_routing_entry(s
, &e
);
963 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
965 struct kvm_irq_routing_entry
*e
;
968 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
969 e
= &s
->irq_routes
->entries
[i
];
970 if (e
->gsi
== virq
) {
972 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
977 kvm_irqchip_commit_routes(s
);
980 static unsigned int kvm_hash_msi(uint32_t data
)
982 /* This is optimized for IA32 MSI layout. However, no other arch shall
983 * repeat the mistake of not providing a direct MSI injection API. */
987 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
989 KVMMSIRoute
*route
, *next
;
992 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
993 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
994 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
995 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1001 static int kvm_irqchip_get_virq(KVMState
*s
)
1003 uint32_t *word
= s
->used_gsi_bitmap
;
1004 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1009 /* Return the lowest unused GSI in the bitmap */
1010 for (i
= 0; i
< max_words
; i
++) {
1011 bit
= ffs(~word
[i
]);
1016 return bit
- 1 + i
* 32;
1018 if (!s
->direct_msi
&& retry
) {
1020 kvm_flush_dynamic_msi_routes(s
);
1027 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1029 unsigned int hash
= kvm_hash_msi(msg
.data
);
1032 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1033 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1034 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1035 route
->kroute
.u
.msi
.data
== msg
.data
) {
1042 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1047 if (s
->direct_msi
) {
1048 msi
.address_lo
= (uint32_t)msg
.address
;
1049 msi
.address_hi
= msg
.address
>> 32;
1050 msi
.data
= msg
.data
;
1052 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1054 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1057 route
= kvm_lookup_msi_route(s
, msg
);
1061 virq
= kvm_irqchip_get_virq(s
);
1066 route
= g_malloc(sizeof(KVMMSIRoute
));
1067 route
->kroute
.gsi
= virq
;
1068 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1069 route
->kroute
.flags
= 0;
1070 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1071 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1072 route
->kroute
.u
.msi
.data
= msg
.data
;
1074 kvm_add_routing_entry(s
, &route
->kroute
);
1076 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1080 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1082 return kvm_irqchip_set_irq(s
, route
->kroute
.gsi
, 1);
1085 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1087 struct kvm_irq_routing_entry kroute
;
1090 if (!kvm_irqchip_in_kernel()) {
1094 virq
= kvm_irqchip_get_virq(s
);
1100 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1102 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1103 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1104 kroute
.u
.msi
.data
= msg
.data
;
1106 kvm_add_routing_entry(s
, &kroute
);
1111 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1113 struct kvm_irqfd irqfd
= {
1116 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1119 if (!kvm_irqchip_in_kernel()) {
1123 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1126 #else /* !KVM_CAP_IRQ_ROUTING */
1128 static void kvm_init_irq_routing(KVMState
*s
)
1132 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1136 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1141 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1146 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1150 #endif /* !KVM_CAP_IRQ_ROUTING */
1152 int kvm_irqchip_add_irqfd(KVMState
*s
, int fd
, int virq
)
1154 return kvm_irqchip_assign_irqfd(s
, fd
, virq
, true);
1157 int kvm_irqchip_remove_irqfd(KVMState
*s
, int fd
, int virq
)
1159 return kvm_irqchip_assign_irqfd(s
, fd
, virq
, false);
1162 static int kvm_irqchip_create(KVMState
*s
)
1164 QemuOptsList
*list
= qemu_find_opts("machine");
1167 if (QTAILQ_EMPTY(&list
->head
) ||
1168 !qemu_opt_get_bool(QTAILQ_FIRST(&list
->head
),
1169 "kernel_irqchip", true) ||
1170 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1174 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1176 fprintf(stderr
, "Create kernel irqchip failed\n");
1180 s
->irqchip_inject_ioctl
= KVM_IRQ_LINE
;
1181 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1182 s
->irqchip_inject_ioctl
= KVM_IRQ_LINE_STATUS
;
1184 kvm_kernel_irqchip
= true;
1186 kvm_init_irq_routing(s
);
1193 static const char upgrade_note
[] =
1194 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1195 "(see http://sourceforge.net/projects/kvm).\n";
1197 const KVMCapabilityInfo
*missing_cap
;
1201 s
= g_malloc0(sizeof(KVMState
));
1204 * On systems where the kernel can support different base page
1205 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1206 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1207 * page size for the system though.
1209 assert(TARGET_PAGE_SIZE
<= getpagesize());
1211 #ifdef KVM_CAP_SET_GUEST_DEBUG
1212 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1214 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
1215 s
->slots
[i
].slot
= i
;
1218 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1220 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1225 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1226 if (ret
< KVM_API_VERSION
) {
1230 fprintf(stderr
, "kvm version too old\n");
1234 if (ret
> KVM_API_VERSION
) {
1236 fprintf(stderr
, "kvm version not supported\n");
1240 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1243 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1244 "your host kernel command line\n");
1250 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1253 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1257 fprintf(stderr
, "kvm does not support %s\n%s",
1258 missing_cap
->name
, upgrade_note
);
1262 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1264 s
->broken_set_mem_region
= 1;
1265 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1267 s
->broken_set_mem_region
= 0;
1270 #ifdef KVM_CAP_VCPU_EVENTS
1271 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1274 s
->robust_singlestep
=
1275 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1277 #ifdef KVM_CAP_DEBUGREGS
1278 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1281 #ifdef KVM_CAP_XSAVE
1282 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1286 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1289 #ifdef KVM_CAP_PIT_STATE2
1290 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1293 #ifdef KVM_CAP_IRQ_ROUTING
1294 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1297 ret
= kvm_arch_init(s
);
1302 ret
= kvm_irqchip_create(s
);
1308 memory_listener_register(&kvm_memory_listener
, NULL
);
1310 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1312 cpu_interrupt_handler
= kvm_handle_interrupt
;
1330 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1334 uint8_t *ptr
= data
;
1336 for (i
= 0; i
< count
; i
++) {
1337 if (direction
== KVM_EXIT_IO_IN
) {
1340 stb_p(ptr
, cpu_inb(port
));
1343 stw_p(ptr
, cpu_inw(port
));
1346 stl_p(ptr
, cpu_inl(port
));
1352 cpu_outb(port
, ldub_p(ptr
));
1355 cpu_outw(port
, lduw_p(ptr
));
1358 cpu_outl(port
, ldl_p(ptr
));
1367 static int kvm_handle_internal_error(CPUArchState
*env
, struct kvm_run
*run
)
1369 fprintf(stderr
, "KVM internal error.");
1370 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1373 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1374 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1375 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1376 i
, (uint64_t)run
->internal
.data
[i
]);
1379 fprintf(stderr
, "\n");
1381 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1382 fprintf(stderr
, "emulation failure\n");
1383 if (!kvm_arch_stop_on_emulation_error(env
)) {
1384 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1385 return EXCP_INTERRUPT
;
1388 /* FIXME: Should trigger a qmp message to let management know
1389 * something went wrong.
1394 void kvm_flush_coalesced_mmio_buffer(void)
1396 KVMState
*s
= kvm_state
;
1398 if (s
->coalesced_flush_in_progress
) {
1402 s
->coalesced_flush_in_progress
= true;
1404 if (s
->coalesced_mmio_ring
) {
1405 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1406 while (ring
->first
!= ring
->last
) {
1407 struct kvm_coalesced_mmio
*ent
;
1409 ent
= &ring
->coalesced_mmio
[ring
->first
];
1411 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1413 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1417 s
->coalesced_flush_in_progress
= false;
1420 static void do_kvm_cpu_synchronize_state(void *_env
)
1422 CPUArchState
*env
= _env
;
1424 if (!env
->kvm_vcpu_dirty
) {
1425 kvm_arch_get_registers(env
);
1426 env
->kvm_vcpu_dirty
= 1;
1430 void kvm_cpu_synchronize_state(CPUArchState
*env
)
1432 if (!env
->kvm_vcpu_dirty
) {
1433 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
1437 void kvm_cpu_synchronize_post_reset(CPUArchState
*env
)
1439 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
1440 env
->kvm_vcpu_dirty
= 0;
1443 void kvm_cpu_synchronize_post_init(CPUArchState
*env
)
1445 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
1446 env
->kvm_vcpu_dirty
= 0;
1449 int kvm_cpu_exec(CPUArchState
*env
)
1451 struct kvm_run
*run
= env
->kvm_run
;
1454 DPRINTF("kvm_cpu_exec()\n");
1456 if (kvm_arch_process_async_events(env
)) {
1457 env
->exit_request
= 0;
1462 if (env
->kvm_vcpu_dirty
) {
1463 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
1464 env
->kvm_vcpu_dirty
= 0;
1467 kvm_arch_pre_run(env
, run
);
1468 if (env
->exit_request
) {
1469 DPRINTF("interrupt exit requested\n");
1471 * KVM requires us to reenter the kernel after IO exits to complete
1472 * instruction emulation. This self-signal will ensure that we
1475 qemu_cpu_kick_self();
1477 qemu_mutex_unlock_iothread();
1479 run_ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
1481 qemu_mutex_lock_iothread();
1482 kvm_arch_post_run(env
, run
);
1484 kvm_flush_coalesced_mmio_buffer();
1487 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1488 DPRINTF("io window exit\n");
1489 ret
= EXCP_INTERRUPT
;
1492 fprintf(stderr
, "error: kvm run failed %s\n",
1493 strerror(-run_ret
));
1497 switch (run
->exit_reason
) {
1499 DPRINTF("handle_io\n");
1500 kvm_handle_io(run
->io
.port
,
1501 (uint8_t *)run
+ run
->io
.data_offset
,
1508 DPRINTF("handle_mmio\n");
1509 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1512 run
->mmio
.is_write
);
1515 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1516 DPRINTF("irq_window_open\n");
1517 ret
= EXCP_INTERRUPT
;
1519 case KVM_EXIT_SHUTDOWN
:
1520 DPRINTF("shutdown\n");
1521 qemu_system_reset_request();
1522 ret
= EXCP_INTERRUPT
;
1524 case KVM_EXIT_UNKNOWN
:
1525 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1526 (uint64_t)run
->hw
.hardware_exit_reason
);
1529 case KVM_EXIT_INTERNAL_ERROR
:
1530 ret
= kvm_handle_internal_error(env
, run
);
1533 DPRINTF("kvm_arch_handle_exit\n");
1534 ret
= kvm_arch_handle_exit(env
, run
);
1540 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1541 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1544 env
->exit_request
= 0;
1548 int kvm_ioctl(KVMState
*s
, int type
, ...)
1555 arg
= va_arg(ap
, void *);
1558 ret
= ioctl(s
->fd
, type
, arg
);
1565 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1572 arg
= va_arg(ap
, void *);
1575 ret
= ioctl(s
->vmfd
, type
, arg
);
1582 int kvm_vcpu_ioctl(CPUArchState
*env
, int type
, ...)
1589 arg
= va_arg(ap
, void *);
1592 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1599 int kvm_has_sync_mmu(void)
1601 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1604 int kvm_has_vcpu_events(void)
1606 return kvm_state
->vcpu_events
;
1609 int kvm_has_robust_singlestep(void)
1611 return kvm_state
->robust_singlestep
;
1614 int kvm_has_debugregs(void)
1616 return kvm_state
->debugregs
;
1619 int kvm_has_xsave(void)
1621 return kvm_state
->xsave
;
1624 int kvm_has_xcrs(void)
1626 return kvm_state
->xcrs
;
1629 int kvm_has_pit_state2(void)
1631 return kvm_state
->pit_state2
;
1634 int kvm_has_many_ioeventfds(void)
1636 if (!kvm_enabled()) {
1639 return kvm_state
->many_ioeventfds
;
1642 int kvm_has_gsi_routing(void)
1644 #ifdef KVM_CAP_IRQ_ROUTING
1645 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1651 int kvm_allows_irq0_override(void)
1653 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1656 void kvm_setup_guest_memory(void *start
, size_t size
)
1658 if (!kvm_has_sync_mmu()) {
1659 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1662 perror("qemu_madvise");
1664 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1670 #ifdef KVM_CAP_SET_GUEST_DEBUG
1671 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUArchState
*env
,
1674 struct kvm_sw_breakpoint
*bp
;
1676 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1684 int kvm_sw_breakpoints_active(CPUArchState
*env
)
1686 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1689 struct kvm_set_guest_debug_data
{
1690 struct kvm_guest_debug dbg
;
1695 static void kvm_invoke_set_guest_debug(void *data
)
1697 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1698 CPUArchState
*env
= dbg_data
->env
;
1700 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1703 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
1705 struct kvm_set_guest_debug_data data
;
1707 data
.dbg
.control
= reinject_trap
;
1709 if (env
->singlestep_enabled
) {
1710 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1712 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1715 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1719 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1720 target_ulong len
, int type
)
1722 struct kvm_sw_breakpoint
*bp
;
1726 if (type
== GDB_BREAKPOINT_SW
) {
1727 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1733 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1740 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1746 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1749 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1755 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1756 err
= kvm_update_guest_debug(env
, 0);
1764 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1765 target_ulong len
, int type
)
1767 struct kvm_sw_breakpoint
*bp
;
1771 if (type
== GDB_BREAKPOINT_SW
) {
1772 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1777 if (bp
->use_count
> 1) {
1782 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1787 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1790 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1796 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1797 err
= kvm_update_guest_debug(env
, 0);
1805 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
1807 struct kvm_sw_breakpoint
*bp
, *next
;
1808 KVMState
*s
= current_env
->kvm_state
;
1811 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1812 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1813 /* Try harder to find a CPU that currently sees the breakpoint. */
1814 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1815 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0) {
1821 kvm_arch_remove_all_hw_breakpoints();
1823 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1824 kvm_update_guest_debug(env
, 0);
1828 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1830 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
1835 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1836 target_ulong len
, int type
)
1841 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1842 target_ulong len
, int type
)
1847 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
1850 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1852 int kvm_set_signal_mask(CPUArchState
*env
, const sigset_t
*sigset
)
1854 struct kvm_signal_mask
*sigmask
;
1858 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1861 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1864 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1865 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1871 int kvm_set_ioeventfd_mmio(int fd
, uint32_t addr
, uint32_t val
, bool assign
,
1875 struct kvm_ioeventfd iofd
;
1877 iofd
.datamatch
= val
;
1880 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1883 if (!kvm_enabled()) {
1888 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1891 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1900 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1902 struct kvm_ioeventfd kick
= {
1906 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1910 if (!kvm_enabled()) {
1914 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1916 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1923 int kvm_on_sigbus_vcpu(CPUArchState
*env
, int code
, void *addr
)
1925 return kvm_arch_on_sigbus_vcpu(env
, code
, addr
);
1928 int kvm_on_sigbus(int code
, void *addr
)
1930 return kvm_arch_on_sigbus(code
, addr
);