2 * ARM v8.5-MemTag Operations
4 * Copyright (c) 2020 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/ram_addr.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/helper-proto.h"
28 #include "qapi/error.h"
29 #include "qemu/guest-random.h"
32 static int choose_nonexcluded_tag(int tag
, int offset
, uint16_t exclude
)
34 if (exclude
== 0xffff) {
38 while (exclude
& (1 << tag
)) {
45 } while (exclude
& (1 << tag
));
46 } while (--offset
> 0);
53 * @env: the cpu environment
54 * @ptr_mmu_idx: the addressing regime to use for the virtual address
55 * @ptr: the virtual address for which to look up tag memory
56 * @ptr_access: the access to use for the virtual address
57 * @ptr_size: the number of bytes in the normal memory access
58 * @tag_access: the access to use for the tag memory
59 * @tag_size: the number of bytes in the tag memory access
60 * @ra: the return address for exception handling
62 * Our tag memory is formatted as a sequence of little-endian nibbles.
63 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
64 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
65 * for the higher addr.
67 * Here, resolve the physical address from the virtual address, and return
68 * a pointer to the corresponding tag byte. Exit with exception if the
69 * virtual address is not accessible for @ptr_access.
71 * The @ptr_size and @tag_size values may not have an obvious relation
72 * due to the alignment of @ptr, and the number of tag checks required.
74 * If there is no tag storage corresponding to @ptr, return NULL.
76 static uint8_t *allocation_tag_mem(CPUARMState
*env
, int ptr_mmu_idx
,
77 uint64_t ptr
, MMUAccessType ptr_access
,
78 int ptr_size
, MMUAccessType tag_access
,
79 int tag_size
, uintptr_t ra
)
81 #ifdef CONFIG_USER_ONLY
82 uint64_t clean_ptr
= useronly_clean_ptr(ptr
);
83 int flags
= page_get_flags(clean_ptr
);
87 if (!(flags
& (ptr_access
== MMU_DATA_STORE
? PAGE_WRITE_ORG
: PAGE_READ
))) {
88 cpu_loop_exit_sigsegv(env_cpu(env
), ptr
, ptr_access
,
89 !(flags
& PAGE_VALID
), ra
);
92 /* Require both MAP_ANON and PROT_MTE for the page. */
93 if (!(flags
& PAGE_ANON
) || !(flags
& PAGE_MTE
)) {
97 tags
= page_get_target_data(clean_ptr
);
99 size_t alloc_size
= TARGET_PAGE_SIZE
>> (LOG2_TAG_GRANULE
+ 1);
100 tags
= page_alloc_target_data(clean_ptr
, alloc_size
);
101 assert(tags
!= NULL
);
104 index
= extract32(ptr
, LOG2_TAG_GRANULE
+ 1,
105 TARGET_PAGE_BITS
- LOG2_TAG_GRANULE
- 1);
109 CPUIOTLBEntry
*iotlbentry
;
112 hwaddr ptr_paddr
, tag_paddr
, xlat
;
115 AddressSpace
*tag_as
;
119 * Probe the first byte of the virtual address. This raises an
120 * exception for inaccessible pages, and resolves the virtual address
121 * into the softmmu tlb.
123 * When RA == 0, this is for mte_probe. The page is expected to be
124 * valid. Indicate to probe_access_flags no-fault, then assert that
125 * we received a valid page.
127 flags
= probe_access_flags(env
, ptr
, ptr_access
, ptr_mmu_idx
,
129 assert(!(flags
& TLB_INVALID_MASK
));
132 * Find the iotlbentry for ptr. This *must* be present in the TLB
133 * because we just found the mapping.
134 * TODO: Perhaps there should be a cputlb helper that returns a
135 * matching tlb entry + iotlb entry.
137 index
= tlb_index(env
, ptr_mmu_idx
, ptr
);
138 # ifdef CONFIG_DEBUG_TCG
140 CPUTLBEntry
*entry
= tlb_entry(env
, ptr_mmu_idx
, ptr
);
141 target_ulong comparator
= (ptr_access
== MMU_DATA_LOAD
143 : tlb_addr_write(entry
));
144 g_assert(tlb_hit(comparator
, ptr
));
147 iotlbentry
= &env_tlb(env
)->d
[ptr_mmu_idx
].iotlb
[index
];
149 /* If the virtual page MemAttr != Tagged, access unchecked. */
150 if (!arm_tlb_mte_tagged(&iotlbentry
->attrs
)) {
155 * If not backed by host ram, there is no tag storage: access unchecked.
156 * This is probably a guest os bug though, so log it.
158 if (unlikely(flags
& TLB_MMIO
)) {
159 qemu_log_mask(LOG_GUEST_ERROR
,
160 "Page @ 0x%" PRIx64
" indicates Tagged Normal memory "
161 "but is not backed by host ram\n", ptr
);
166 * The Normal memory access can extend to the next page. E.g. a single
167 * 8-byte access to the last byte of a page will check only the last
168 * tag on the first page.
169 * Any page access exception has priority over tag check exception.
171 in_page
= -(ptr
| TARGET_PAGE_MASK
);
172 if (unlikely(ptr_size
> in_page
)) {
174 flags
|= probe_access_flags(env
, ptr
+ in_page
, ptr_access
,
175 ptr_mmu_idx
, ra
== 0, &ignore
, ra
);
176 assert(!(flags
& TLB_INVALID_MASK
));
179 /* Any debug exception has priority over a tag check exception. */
180 if (unlikely(flags
& TLB_WATCHPOINT
)) {
181 int wp
= ptr_access
== MMU_DATA_LOAD
? BP_MEM_READ
: BP_MEM_WRITE
;
183 cpu_check_watchpoint(env_cpu(env
), ptr
, ptr_size
,
184 iotlbentry
->attrs
, wp
, ra
);
188 * Find the physical address within the normal mem space.
189 * The memory region lookup must succeed because TLB_MMIO was
190 * not set in the cputlb lookup above.
192 mr
= memory_region_from_host(host
, &ptr_ra
);
193 tcg_debug_assert(mr
!= NULL
);
194 tcg_debug_assert(memory_region_is_ram(mr
));
197 ptr_paddr
+= mr
->addr
;
201 /* Convert to the physical address in tag space. */
202 tag_paddr
= ptr_paddr
>> (LOG2_TAG_GRANULE
+ 1);
204 /* Look up the address in tag space. */
205 tag_asi
= iotlbentry
->attrs
.secure
? ARMASIdx_TagS
: ARMASIdx_TagNS
;
206 tag_as
= cpu_get_address_space(env_cpu(env
), tag_asi
);
207 mr
= address_space_translate(tag_as
, tag_paddr
, &xlat
, NULL
,
208 tag_access
== MMU_DATA_STORE
,
212 * Note that @mr will never be NULL. If there is nothing in the address
213 * space at @tag_paddr, the translation will return the unallocated memory
214 * region. For our purposes, the result must be ram.
216 if (unlikely(!memory_region_is_ram(mr
))) {
217 /* ??? Failure is a board configuration error. */
218 qemu_log_mask(LOG_UNIMP
,
219 "Tag Memory @ 0x%" HWADDR_PRIx
" not found for "
220 "Normal Memory @ 0x%" HWADDR_PRIx
"\n",
221 tag_paddr
, ptr_paddr
);
226 * Ensure the tag memory is dirty on write, for migration.
227 * Tag memory can never contain code or display memory (vga).
229 if (tag_access
== MMU_DATA_STORE
) {
230 ram_addr_t tag_ra
= memory_region_get_ram_addr(mr
) + xlat
;
231 cpu_physical_memory_set_dirty_flag(tag_ra
, DIRTY_MEMORY_MIGRATION
);
234 return memory_region_get_ram_ptr(mr
) + xlat
;
238 uint64_t HELPER(irg
)(CPUARMState
*env
, uint64_t rn
, uint64_t rm
)
240 uint16_t exclude
= extract32(rm
| env
->cp15
.gcr_el1
, 0, 16);
241 int rrnd
= extract32(env
->cp15
.gcr_el1
, 16, 1);
242 int start
= extract32(env
->cp15
.rgsr_el1
, 0, 4);
243 int seed
= extract32(env
->cp15
.rgsr_el1
, 8, 16);
247 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
248 * deterministic algorithm. Except that with RRND==1 the kernel is
249 * not required to have set RGSR_EL1.SEED != 0, which is required for
250 * the deterministic algorithm to function. So we force a non-zero
251 * SEED for that case.
253 if (unlikely(seed
== 0) && rrnd
) {
258 if (qemu_guest_getrandom(&two
, sizeof(two
), &err
) < 0) {
260 * Failed, for unknown reasons in the crypto subsystem.
261 * Best we can do is log the reason and use a constant seed.
263 qemu_log_mask(LOG_UNIMP
, "IRG: Crypto failure: %s\n",
264 error_get_pretty(err
));
273 for (i
= offset
= 0; i
< 4; ++i
) {
274 /* NextRandomTagBit */
275 int top
= (extract32(seed
, 5, 1) ^ extract32(seed
, 3, 1) ^
276 extract32(seed
, 2, 1) ^ extract32(seed
, 0, 1));
277 seed
= (top
<< 15) | (seed
>> 1);
280 rtag
= choose_nonexcluded_tag(start
, offset
, exclude
);
281 env
->cp15
.rgsr_el1
= rtag
| (seed
<< 8);
283 return address_with_allocation_tag(rn
, rtag
);
286 uint64_t HELPER(addsubg
)(CPUARMState
*env
, uint64_t ptr
,
287 int32_t offset
, uint32_t tag_offset
)
289 int start_tag
= allocation_tag_from_addr(ptr
);
290 uint16_t exclude
= extract32(env
->cp15
.gcr_el1
, 0, 16);
291 int rtag
= choose_nonexcluded_tag(start_tag
, tag_offset
, exclude
);
293 return address_with_allocation_tag(ptr
+ offset
, rtag
);
296 static int load_tag1(uint64_t ptr
, uint8_t *mem
)
298 int ofs
= extract32(ptr
, LOG2_TAG_GRANULE
, 1) * 4;
299 return extract32(*mem
, ofs
, 4);
302 uint64_t HELPER(ldg
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
304 int mmu_idx
= cpu_mmu_index(env
, false);
308 /* Trap if accessing an invalid page. */
309 mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_LOAD
, 1,
310 MMU_DATA_LOAD
, 1, GETPC());
312 /* Load if page supports tags. */
314 rtag
= load_tag1(ptr
, mem
);
317 return address_with_allocation_tag(xt
, rtag
);
320 static void check_tag_aligned(CPUARMState
*env
, uint64_t ptr
, uintptr_t ra
)
322 if (unlikely(!QEMU_IS_ALIGNED(ptr
, TAG_GRANULE
))) {
323 arm_cpu_do_unaligned_access(env_cpu(env
), ptr
, MMU_DATA_STORE
,
324 cpu_mmu_index(env
, false), ra
);
325 g_assert_not_reached();
329 /* For use in a non-parallel context, store to the given nibble. */
330 static void store_tag1(uint64_t ptr
, uint8_t *mem
, int tag
)
332 int ofs
= extract32(ptr
, LOG2_TAG_GRANULE
, 1) * 4;
333 *mem
= deposit32(*mem
, ofs
, 4, tag
);
336 /* For use in a parallel context, atomically store to the given nibble. */
337 static void store_tag1_parallel(uint64_t ptr
, uint8_t *mem
, int tag
)
339 int ofs
= extract32(ptr
, LOG2_TAG_GRANULE
, 1) * 4;
340 uint8_t old
= qatomic_read(mem
);
343 uint8_t new = deposit32(old
, ofs
, 4, tag
);
344 uint8_t cmp
= qatomic_cmpxchg(mem
, old
, new);
345 if (likely(cmp
== old
)) {
352 typedef void stg_store1(uint64_t, uint8_t *, int);
354 static inline void do_stg(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
,
355 uintptr_t ra
, stg_store1 store1
)
357 int mmu_idx
= cpu_mmu_index(env
, false);
360 check_tag_aligned(env
, ptr
, ra
);
362 /* Trap if accessing an invalid page. */
363 mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
, TAG_GRANULE
,
364 MMU_DATA_STORE
, 1, ra
);
366 /* Store if page supports tags. */
368 store1(ptr
, mem
, allocation_tag_from_addr(xt
));
372 void HELPER(stg
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
374 do_stg(env
, ptr
, xt
, GETPC(), store_tag1
);
377 void HELPER(stg_parallel
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
379 do_stg(env
, ptr
, xt
, GETPC(), store_tag1_parallel
);
382 void HELPER(stg_stub
)(CPUARMState
*env
, uint64_t ptr
)
384 int mmu_idx
= cpu_mmu_index(env
, false);
385 uintptr_t ra
= GETPC();
387 check_tag_aligned(env
, ptr
, ra
);
388 probe_write(env
, ptr
, TAG_GRANULE
, mmu_idx
, ra
);
391 static inline void do_st2g(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
,
392 uintptr_t ra
, stg_store1 store1
)
394 int mmu_idx
= cpu_mmu_index(env
, false);
395 int tag
= allocation_tag_from_addr(xt
);
396 uint8_t *mem1
, *mem2
;
398 check_tag_aligned(env
, ptr
, ra
);
401 * Trap if accessing an invalid page(s).
402 * This takes priority over !allocation_tag_access_enabled.
404 if (ptr
& TAG_GRANULE
) {
405 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
406 mem1
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
,
407 TAG_GRANULE
, MMU_DATA_STORE
, 1, ra
);
408 mem2
= allocation_tag_mem(env
, mmu_idx
, ptr
+ TAG_GRANULE
,
409 MMU_DATA_STORE
, TAG_GRANULE
,
410 MMU_DATA_STORE
, 1, ra
);
412 /* Store if page(s) support tags. */
414 store1(TAG_GRANULE
, mem1
, tag
);
417 store1(0, mem2
, tag
);
420 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
421 mem1
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
,
422 2 * TAG_GRANULE
, MMU_DATA_STORE
, 1, ra
);
425 qatomic_set(mem1
, tag
);
430 void HELPER(st2g
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
432 do_st2g(env
, ptr
, xt
, GETPC(), store_tag1
);
435 void HELPER(st2g_parallel
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
437 do_st2g(env
, ptr
, xt
, GETPC(), store_tag1_parallel
);
440 void HELPER(st2g_stub
)(CPUARMState
*env
, uint64_t ptr
)
442 int mmu_idx
= cpu_mmu_index(env
, false);
443 uintptr_t ra
= GETPC();
444 int in_page
= -(ptr
| TARGET_PAGE_MASK
);
446 check_tag_aligned(env
, ptr
, ra
);
448 if (likely(in_page
>= 2 * TAG_GRANULE
)) {
449 probe_write(env
, ptr
, 2 * TAG_GRANULE
, mmu_idx
, ra
);
451 probe_write(env
, ptr
, TAG_GRANULE
, mmu_idx
, ra
);
452 probe_write(env
, ptr
+ TAG_GRANULE
, TAG_GRANULE
, mmu_idx
, ra
);
456 #define LDGM_STGM_SIZE (4 << GMID_EL1_BS)
458 uint64_t HELPER(ldgm
)(CPUARMState
*env
, uint64_t ptr
)
460 int mmu_idx
= cpu_mmu_index(env
, false);
461 uintptr_t ra
= GETPC();
464 ptr
= QEMU_ALIGN_DOWN(ptr
, LDGM_STGM_SIZE
);
466 /* Trap if accessing an invalid page. */
467 tag_mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_LOAD
,
468 LDGM_STGM_SIZE
, MMU_DATA_LOAD
,
469 LDGM_STGM_SIZE
/ (2 * TAG_GRANULE
), ra
);
471 /* The tag is squashed to zero if the page does not support tags. */
476 QEMU_BUILD_BUG_ON(GMID_EL1_BS
!= 6);
478 * We are loading 64-bits worth of tags. The ordering of elements
479 * within the word corresponds to a 64-bit little-endian operation.
481 return ldq_le_p(tag_mem
);
484 void HELPER(stgm
)(CPUARMState
*env
, uint64_t ptr
, uint64_t val
)
486 int mmu_idx
= cpu_mmu_index(env
, false);
487 uintptr_t ra
= GETPC();
490 ptr
= QEMU_ALIGN_DOWN(ptr
, LDGM_STGM_SIZE
);
492 /* Trap if accessing an invalid page. */
493 tag_mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
,
494 LDGM_STGM_SIZE
, MMU_DATA_LOAD
,
495 LDGM_STGM_SIZE
/ (2 * TAG_GRANULE
), ra
);
498 * Tag store only happens if the page support tags,
499 * and if the OS has enabled access to the tags.
505 QEMU_BUILD_BUG_ON(GMID_EL1_BS
!= 6);
507 * We are storing 64-bits worth of tags. The ordering of elements
508 * within the word corresponds to a 64-bit little-endian operation.
510 stq_le_p(tag_mem
, val
);
513 void HELPER(stzgm_tags
)(CPUARMState
*env
, uint64_t ptr
, uint64_t val
)
515 uintptr_t ra
= GETPC();
516 int mmu_idx
= cpu_mmu_index(env
, false);
517 int log2_dcz_bytes
, log2_tag_bytes
;
518 intptr_t dcz_bytes
, tag_bytes
;
522 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
523 * i.e. 32 bytes, which is an unreasonably small dcz anyway,
524 * to make sure that we can access one complete tag byte here.
526 log2_dcz_bytes
= env_archcpu(env
)->dcz_blocksize
+ 2;
527 log2_tag_bytes
= log2_dcz_bytes
- (LOG2_TAG_GRANULE
+ 1);
528 dcz_bytes
= (intptr_t)1 << log2_dcz_bytes
;
529 tag_bytes
= (intptr_t)1 << log2_tag_bytes
;
532 mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
, dcz_bytes
,
533 MMU_DATA_STORE
, tag_bytes
, ra
);
535 int tag_pair
= (val
& 0xf) * 0x11;
536 memset(mem
, tag_pair
, tag_bytes
);
540 static void mte_sync_check_fail(CPUARMState
*env
, uint32_t desc
,
541 uint64_t dirty_ptr
, uintptr_t ra
)
545 env
->exception
.vaddress
= dirty_ptr
;
547 is_write
= FIELD_EX32(desc
, MTEDESC
, WRITE
);
548 syn
= syn_data_abort_no_iss(arm_current_el(env
) != 0, 0, 0, 0, 0, is_write
,
550 raise_exception_ra(env
, EXCP_DATA_ABORT
, syn
, exception_target_el(env
), ra
);
551 g_assert_not_reached();
554 static void mte_async_check_fail(CPUARMState
*env
, uint64_t dirty_ptr
,
555 uintptr_t ra
, ARMMMUIdx arm_mmu_idx
, int el
)
559 if (regime_has_2_ranges(arm_mmu_idx
)) {
560 select
= extract64(dirty_ptr
, 55, 1);
564 env
->cp15
.tfsr_el
[el
] |= 1 << select
;
565 #ifdef CONFIG_USER_ONLY
567 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
568 * which then sends a SIGSEGV when the thread is next scheduled.
569 * This cpu will return to the main loop at the end of the TB,
570 * which is rather sooner than "normal". But the alternative
571 * is waiting until the next syscall.
573 qemu_cpu_kick(env_cpu(env
));
577 /* Record a tag check failure. */
578 static void mte_check_fail(CPUARMState
*env
, uint32_t desc
,
579 uint64_t dirty_ptr
, uintptr_t ra
)
581 int mmu_idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
582 ARMMMUIdx arm_mmu_idx
= core_to_aa64_mmu_idx(mmu_idx
);
586 reg_el
= regime_el(env
, arm_mmu_idx
);
587 sctlr
= env
->cp15
.sctlr_el
[reg_el
];
589 switch (arm_mmu_idx
) {
590 case ARMMMUIdx_E10_0
:
591 case ARMMMUIdx_E20_0
:
593 tcf
= extract64(sctlr
, 38, 2);
597 tcf
= extract64(sctlr
, 40, 2);
602 /* Tag check fail causes a synchronous exception. */
603 mte_sync_check_fail(env
, desc
, dirty_ptr
, ra
);
608 * Tag check fail does not affect the PE.
609 * We eliminate this case by not setting MTE_ACTIVE
610 * in tb_flags, so that we never make this runtime call.
612 g_assert_not_reached();
615 /* Tag check fail causes asynchronous flag set. */
616 mte_async_check_fail(env
, dirty_ptr
, ra
, arm_mmu_idx
, el
);
621 * Tag check fail causes asynchronous flag set for stores, or
622 * a synchronous exception for loads.
624 if (FIELD_EX32(desc
, MTEDESC
, WRITE
)) {
625 mte_async_check_fail(env
, dirty_ptr
, ra
, arm_mmu_idx
, el
);
627 mte_sync_check_fail(env
, desc
, dirty_ptr
, ra
);
635 * @tag: tag memory to test
636 * @odd: true to begin testing at tags at odd nibble
637 * @cmp: the tag to compare against
638 * @count: number of tags to test
640 * Return the number of successful tests.
641 * Thus a return value < @count indicates a failure.
643 * A note about sizes: count is expected to be small.
645 * The most common use will be LDP/STP of two integer registers,
646 * which means 16 bytes of memory touching at most 2 tags, but
647 * often the access is aligned and thus just 1 tag.
649 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
650 * touching at most 5 tags. SVE LDR/STR (vector) with the default
651 * vector length is also 64 bytes; the maximum architectural length
652 * is 256 bytes touching at most 9 tags.
654 * The loop below uses 7 logical operations and 1 memory operation
655 * per tag pair. An implementation that loads an aligned word and
656 * uses masking to ignore adjacent tags requires 18 logical operations
657 * and thus does not begin to pay off until 6 tags.
658 * Which, according to the survey above, is unlikely to be common.
660 static int checkN(uint8_t *mem
, int odd
, int cmp
, int count
)
664 /* Replicate the test tag and compare. */
674 if (unlikely((diff
) & 0x0f)) {
683 if (unlikely((diff
) & 0xf0)) {
696 * mte_probe_int() - helper for mte_probe and mte_check
697 * @env: CPU environment
698 * @desc: MTEDESC descriptor
699 * @ptr: virtual address of the base of the access
700 * @fault: return virtual address of the first check failure
702 * Internal routine for both mte_probe and mte_check.
703 * Return zero on failure, filling in *fault.
704 * Return negative on trivial success for tbi disabled.
705 * Return positive on success with tbi enabled.
707 static int mte_probe_int(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
,
708 uintptr_t ra
, uint64_t *fault
)
710 int mmu_idx
, ptr_tag
, bit55
;
711 uint64_t ptr_last
, prev_page
, next_page
;
712 uint64_t tag_first
, tag_last
;
713 uint64_t tag_byte_first
, tag_byte_last
;
714 uint32_t sizem1
, tag_count
, tag_size
, n
, c
;
715 uint8_t *mem1
, *mem2
;
718 bit55
= extract64(ptr
, 55, 1);
721 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
722 if (unlikely(!tbi_check(desc
, bit55
))) {
726 ptr_tag
= allocation_tag_from_addr(ptr
);
728 if (tcma_check(desc
, bit55
, ptr_tag
)) {
732 mmu_idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
733 type
= FIELD_EX32(desc
, MTEDESC
, WRITE
) ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
734 sizem1
= FIELD_EX32(desc
, MTEDESC
, SIZEM1
);
736 /* Find the addr of the end of the access */
737 ptr_last
= ptr
+ sizem1
;
739 /* Round the bounds to the tag granule, and compute the number of tags. */
740 tag_first
= QEMU_ALIGN_DOWN(ptr
, TAG_GRANULE
);
741 tag_last
= QEMU_ALIGN_DOWN(ptr_last
, TAG_GRANULE
);
742 tag_count
= ((tag_last
- tag_first
) / TAG_GRANULE
) + 1;
744 /* Round the bounds to twice the tag granule, and compute the bytes. */
745 tag_byte_first
= QEMU_ALIGN_DOWN(ptr
, 2 * TAG_GRANULE
);
746 tag_byte_last
= QEMU_ALIGN_DOWN(ptr_last
, 2 * TAG_GRANULE
);
748 /* Locate the page boundaries. */
749 prev_page
= ptr
& TARGET_PAGE_MASK
;
750 next_page
= prev_page
+ TARGET_PAGE_SIZE
;
752 if (likely(tag_last
- prev_page
< TARGET_PAGE_SIZE
)) {
753 /* Memory access stays on one page. */
754 tag_size
= ((tag_byte_last
- tag_byte_first
) / (2 * TAG_GRANULE
)) + 1;
755 mem1
= allocation_tag_mem(env
, mmu_idx
, ptr
, type
, sizem1
+ 1,
756 MMU_DATA_LOAD
, tag_size
, ra
);
760 /* Perform all of the comparisons. */
761 n
= checkN(mem1
, ptr
& TAG_GRANULE
, ptr_tag
, tag_count
);
763 /* Memory access crosses to next page. */
764 tag_size
= (next_page
- tag_byte_first
) / (2 * TAG_GRANULE
);
765 mem1
= allocation_tag_mem(env
, mmu_idx
, ptr
, type
, next_page
- ptr
,
766 MMU_DATA_LOAD
, tag_size
, ra
);
768 tag_size
= ((tag_byte_last
- next_page
) / (2 * TAG_GRANULE
)) + 1;
769 mem2
= allocation_tag_mem(env
, mmu_idx
, next_page
, type
,
770 ptr_last
- next_page
+ 1,
771 MMU_DATA_LOAD
, tag_size
, ra
);
774 * Perform all of the comparisons.
775 * Note the possible but unlikely case of the operation spanning
776 * two pages that do not both have tagging enabled.
778 n
= c
= (next_page
- tag_first
) / TAG_GRANULE
;
780 n
= checkN(mem1
, ptr
& TAG_GRANULE
, ptr_tag
, c
);
786 n
+= checkN(mem2
, 0, ptr_tag
, tag_count
- c
);
790 if (likely(n
== tag_count
)) {
795 * If we failed, we know which granule. For the first granule, the
796 * failure address is @ptr, the first byte accessed. Otherwise the
797 * failure address is the first byte of the nth granule.
800 *fault
= tag_first
+ n
* TAG_GRANULE
;
805 uint64_t mte_check(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
, uintptr_t ra
)
808 int ret
= mte_probe_int(env
, desc
, ptr
, ra
, &fault
);
810 if (unlikely(ret
== 0)) {
811 mte_check_fail(env
, desc
, fault
, ra
);
812 } else if (ret
< 0) {
815 return useronly_clean_ptr(ptr
);
818 uint64_t HELPER(mte_check
)(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
)
820 return mte_check(env
, desc
, ptr
, GETPC());
824 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
825 * Returns false if the access is Checked and the check failed. This
826 * is only intended to probe the tag -- the validity of the page must
827 * be checked beforehand.
829 bool mte_probe(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
)
832 int ret
= mte_probe_int(env
, desc
, ptr
, 0, &fault
);
838 * Perform an MTE checked access for DC_ZVA.
840 uint64_t HELPER(mte_check_zva
)(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
)
842 uintptr_t ra
= GETPC();
843 int log2_dcz_bytes
, log2_tag_bytes
;
845 intptr_t dcz_bytes
, tag_bytes
, i
;
847 uint64_t ptr_tag
, mem_tag
, align_ptr
;
849 bit55
= extract64(ptr
, 55, 1);
851 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
852 if (unlikely(!tbi_check(desc
, bit55
))) {
856 ptr_tag
= allocation_tag_from_addr(ptr
);
858 if (tcma_check(desc
, bit55
, ptr_tag
)) {
863 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
864 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
865 * sure that we can access one complete tag byte here.
867 log2_dcz_bytes
= env_archcpu(env
)->dcz_blocksize
+ 2;
868 log2_tag_bytes
= log2_dcz_bytes
- (LOG2_TAG_GRANULE
+ 1);
869 dcz_bytes
= (intptr_t)1 << log2_dcz_bytes
;
870 tag_bytes
= (intptr_t)1 << log2_tag_bytes
;
871 align_ptr
= ptr
& -dcz_bytes
;
874 * Trap if accessing an invalid page. DC_ZVA requires that we supply
875 * the original pointer for an invalid page. But watchpoints require
876 * that we probe the actual space. So do both.
878 mmu_idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
879 (void) probe_write(env
, ptr
, 1, mmu_idx
, ra
);
880 mem
= allocation_tag_mem(env
, mmu_idx
, align_ptr
, MMU_DATA_STORE
,
881 dcz_bytes
, MMU_DATA_LOAD
, tag_bytes
, ra
);
887 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
888 * it is quite easy to perform all of the comparisons at once without
891 * The most common zva block size is 64; some of the thunderx cpus use
892 * a block size of 128. For user-only, aarch64_max_initfn will set the
893 * block size to 512. Fill out the other cases for future-proofing.
895 * In order to be able to find the first miscompare later, we want the
896 * tag bytes to be in little-endian order.
898 switch (log2_tag_bytes
) {
899 case 0: /* zva_blocksize 32 */
900 mem_tag
= *(uint8_t *)mem
;
903 case 1: /* zva_blocksize 64 */
904 mem_tag
= cpu_to_le16(*(uint16_t *)mem
);
907 case 2: /* zva_blocksize 128 */
908 mem_tag
= cpu_to_le32(*(uint32_t *)mem
);
909 ptr_tag
*= 0x11111111u
;
911 case 3: /* zva_blocksize 256 */
912 mem_tag
= cpu_to_le64(*(uint64_t *)mem
);
913 ptr_tag
*= 0x1111111111111111ull
;
916 default: /* zva_blocksize 512, 1024, 2048 */
917 ptr_tag
*= 0x1111111111111111ull
;
920 mem_tag
= cpu_to_le64(*(uint64_t *)(mem
+ i
));
921 if (unlikely(mem_tag
!= ptr_tag
)) {
925 align_ptr
+= 16 * TAG_GRANULE
;
926 } while (i
< tag_bytes
);
930 if (likely(mem_tag
== ptr_tag
)) {
935 /* Locate the first nibble that differs. */
936 i
= ctz64(mem_tag
^ ptr_tag
) >> 4;
937 mte_check_fail(env
, desc
, align_ptr
+ i
* TAG_GRANULE
, ra
);
940 return useronly_clean_ptr(ptr
);