target/nios2: Move nios2-semi.c to nios2_softmmu_ss
[qemu/rayw.git] / accel / kvm / kvm-all.c
blobba3210b1c10d988d81b6efc46d891a175b0f6408
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
49 #include "hw/boards.h"
50 #include "monitor/stats.h"
52 /* This check must be after config-host.h is included */
53 #ifdef CONFIG_EVENTFD
54 #include <sys/eventfd.h>
55 #endif
57 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
58 * need to use the real host PAGE_SIZE, as that's what KVM will use.
60 #ifdef PAGE_SIZE
61 #undef PAGE_SIZE
62 #endif
63 #define PAGE_SIZE qemu_real_host_page_size()
65 #ifndef KVM_GUESTDBG_BLOCKIRQ
66 #define KVM_GUESTDBG_BLOCKIRQ 0
67 #endif
69 //#define DEBUG_KVM
71 #ifdef DEBUG_KVM
72 #define DPRINTF(fmt, ...) \
73 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
74 #else
75 #define DPRINTF(fmt, ...) \
76 do { } while (0)
77 #endif
79 #define KVM_MSI_HASHTAB_SIZE 256
81 struct KVMParkedVcpu {
82 unsigned long vcpu_id;
83 int kvm_fd;
84 QLIST_ENTRY(KVMParkedVcpu) node;
87 enum KVMDirtyRingReaperState {
88 KVM_DIRTY_RING_REAPER_NONE = 0,
89 /* The reaper is sleeping */
90 KVM_DIRTY_RING_REAPER_WAIT,
91 /* The reaper is reaping for dirty pages */
92 KVM_DIRTY_RING_REAPER_REAPING,
96 * KVM reaper instance, responsible for collecting the KVM dirty bits
97 * via the dirty ring.
99 struct KVMDirtyRingReaper {
100 /* The reaper thread */
101 QemuThread reaper_thr;
102 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
103 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
106 struct KVMState
108 AccelState parent_obj;
110 int nr_slots;
111 int fd;
112 int vmfd;
113 int coalesced_mmio;
114 int coalesced_pio;
115 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
116 bool coalesced_flush_in_progress;
117 int vcpu_events;
118 int robust_singlestep;
119 int debugregs;
120 #ifdef KVM_CAP_SET_GUEST_DEBUG
121 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
122 #endif
123 int max_nested_state_len;
124 int many_ioeventfds;
125 int intx_set_mask;
126 int kvm_shadow_mem;
127 bool kernel_irqchip_allowed;
128 bool kernel_irqchip_required;
129 OnOffAuto kernel_irqchip_split;
130 bool sync_mmu;
131 uint64_t manual_dirty_log_protect;
132 /* The man page (and posix) say ioctl numbers are signed int, but
133 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
134 * unsigned, and treating them as signed here can break things */
135 unsigned irq_set_ioctl;
136 unsigned int sigmask_len;
137 GHashTable *gsimap;
138 #ifdef KVM_CAP_IRQ_ROUTING
139 struct kvm_irq_routing *irq_routes;
140 int nr_allocated_irq_routes;
141 unsigned long *used_gsi_bitmap;
142 unsigned int gsi_count;
143 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
144 #endif
145 KVMMemoryListener memory_listener;
146 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
148 /* For "info mtree -f" to tell if an MR is registered in KVM */
149 int nr_as;
150 struct KVMAs {
151 KVMMemoryListener *ml;
152 AddressSpace *as;
153 } *as;
154 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */
155 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */
156 struct KVMDirtyRingReaper reaper;
159 KVMState *kvm_state;
160 bool kvm_kernel_irqchip;
161 bool kvm_split_irqchip;
162 bool kvm_async_interrupts_allowed;
163 bool kvm_halt_in_kernel_allowed;
164 bool kvm_eventfds_allowed;
165 bool kvm_irqfds_allowed;
166 bool kvm_resamplefds_allowed;
167 bool kvm_msi_via_irqfd_allowed;
168 bool kvm_gsi_routing_allowed;
169 bool kvm_gsi_direct_mapping;
170 bool kvm_allowed;
171 bool kvm_readonly_mem_allowed;
172 bool kvm_vm_attributes_allowed;
173 bool kvm_direct_msi_allowed;
174 bool kvm_ioeventfd_any_length_allowed;
175 bool kvm_msi_use_devid;
176 bool kvm_has_guest_debug;
177 int kvm_sstep_flags;
178 static bool kvm_immediate_exit;
179 static hwaddr kvm_max_slot_size = ~0;
181 static const KVMCapabilityInfo kvm_required_capabilites[] = {
182 KVM_CAP_INFO(USER_MEMORY),
183 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
184 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
185 KVM_CAP_LAST_INFO
188 static NotifierList kvm_irqchip_change_notifiers =
189 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
191 struct KVMResampleFd {
192 int gsi;
193 EventNotifier *resample_event;
194 QLIST_ENTRY(KVMResampleFd) node;
196 typedef struct KVMResampleFd KVMResampleFd;
199 * Only used with split irqchip where we need to do the resample fd
200 * kick for the kernel from userspace.
202 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
203 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
205 static QemuMutex kml_slots_lock;
207 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
208 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
210 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
212 static inline void kvm_resample_fd_remove(int gsi)
214 KVMResampleFd *rfd;
216 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
217 if (rfd->gsi == gsi) {
218 QLIST_REMOVE(rfd, node);
219 g_free(rfd);
220 break;
225 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
227 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
229 rfd->gsi = gsi;
230 rfd->resample_event = event;
232 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
235 void kvm_resample_fd_notify(int gsi)
237 KVMResampleFd *rfd;
239 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
240 if (rfd->gsi == gsi) {
241 event_notifier_set(rfd->resample_event);
242 trace_kvm_resample_fd_notify(gsi);
243 return;
248 int kvm_get_max_memslots(void)
250 KVMState *s = KVM_STATE(current_accel());
252 return s->nr_slots;
255 /* Called with KVMMemoryListener.slots_lock held */
256 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
258 KVMState *s = kvm_state;
259 int i;
261 for (i = 0; i < s->nr_slots; i++) {
262 if (kml->slots[i].memory_size == 0) {
263 return &kml->slots[i];
267 return NULL;
270 bool kvm_has_free_slot(MachineState *ms)
272 KVMState *s = KVM_STATE(ms->accelerator);
273 bool result;
274 KVMMemoryListener *kml = &s->memory_listener;
276 kvm_slots_lock();
277 result = !!kvm_get_free_slot(kml);
278 kvm_slots_unlock();
280 return result;
283 /* Called with KVMMemoryListener.slots_lock held */
284 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
286 KVMSlot *slot = kvm_get_free_slot(kml);
288 if (slot) {
289 return slot;
292 fprintf(stderr, "%s: no free slot available\n", __func__);
293 abort();
296 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
297 hwaddr start_addr,
298 hwaddr size)
300 KVMState *s = kvm_state;
301 int i;
303 for (i = 0; i < s->nr_slots; i++) {
304 KVMSlot *mem = &kml->slots[i];
306 if (start_addr == mem->start_addr && size == mem->memory_size) {
307 return mem;
311 return NULL;
315 * Calculate and align the start address and the size of the section.
316 * Return the size. If the size is 0, the aligned section is empty.
318 static hwaddr kvm_align_section(MemoryRegionSection *section,
319 hwaddr *start)
321 hwaddr size = int128_get64(section->size);
322 hwaddr delta, aligned;
324 /* kvm works in page size chunks, but the function may be called
325 with sub-page size and unaligned start address. Pad the start
326 address to next and truncate size to previous page boundary. */
327 aligned = ROUND_UP(section->offset_within_address_space,
328 qemu_real_host_page_size());
329 delta = aligned - section->offset_within_address_space;
330 *start = aligned;
331 if (delta > size) {
332 return 0;
335 return (size - delta) & qemu_real_host_page_mask();
338 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
339 hwaddr *phys_addr)
341 KVMMemoryListener *kml = &s->memory_listener;
342 int i, ret = 0;
344 kvm_slots_lock();
345 for (i = 0; i < s->nr_slots; i++) {
346 KVMSlot *mem = &kml->slots[i];
348 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
349 *phys_addr = mem->start_addr + (ram - mem->ram);
350 ret = 1;
351 break;
354 kvm_slots_unlock();
356 return ret;
359 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
361 KVMState *s = kvm_state;
362 struct kvm_userspace_memory_region mem;
363 int ret;
365 mem.slot = slot->slot | (kml->as_id << 16);
366 mem.guest_phys_addr = slot->start_addr;
367 mem.userspace_addr = (unsigned long)slot->ram;
368 mem.flags = slot->flags;
370 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
371 /* Set the slot size to 0 before setting the slot to the desired
372 * value. This is needed based on KVM commit 75d61fbc. */
373 mem.memory_size = 0;
374 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
375 if (ret < 0) {
376 goto err;
379 mem.memory_size = slot->memory_size;
380 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
381 slot->old_flags = mem.flags;
382 err:
383 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
384 mem.memory_size, mem.userspace_addr, ret);
385 if (ret < 0) {
386 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
387 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
388 __func__, mem.slot, slot->start_addr,
389 (uint64_t)mem.memory_size, strerror(errno));
391 return ret;
394 static int do_kvm_destroy_vcpu(CPUState *cpu)
396 KVMState *s = kvm_state;
397 long mmap_size;
398 struct KVMParkedVcpu *vcpu = NULL;
399 int ret = 0;
401 DPRINTF("kvm_destroy_vcpu\n");
403 ret = kvm_arch_destroy_vcpu(cpu);
404 if (ret < 0) {
405 goto err;
408 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
409 if (mmap_size < 0) {
410 ret = mmap_size;
411 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
412 goto err;
415 ret = munmap(cpu->kvm_run, mmap_size);
416 if (ret < 0) {
417 goto err;
420 if (cpu->kvm_dirty_gfns) {
421 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
422 if (ret < 0) {
423 goto err;
427 vcpu = g_malloc0(sizeof(*vcpu));
428 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
429 vcpu->kvm_fd = cpu->kvm_fd;
430 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
431 err:
432 return ret;
435 void kvm_destroy_vcpu(CPUState *cpu)
437 if (do_kvm_destroy_vcpu(cpu) < 0) {
438 error_report("kvm_destroy_vcpu failed");
439 exit(EXIT_FAILURE);
443 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
445 struct KVMParkedVcpu *cpu;
447 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
448 if (cpu->vcpu_id == vcpu_id) {
449 int kvm_fd;
451 QLIST_REMOVE(cpu, node);
452 kvm_fd = cpu->kvm_fd;
453 g_free(cpu);
454 return kvm_fd;
458 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
461 int kvm_init_vcpu(CPUState *cpu, Error **errp)
463 KVMState *s = kvm_state;
464 long mmap_size;
465 int ret;
467 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
469 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
470 if (ret < 0) {
471 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
472 kvm_arch_vcpu_id(cpu));
473 goto err;
476 cpu->kvm_fd = ret;
477 cpu->kvm_state = s;
478 cpu->vcpu_dirty = true;
479 cpu->dirty_pages = 0;
481 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
482 if (mmap_size < 0) {
483 ret = mmap_size;
484 error_setg_errno(errp, -mmap_size,
485 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
486 goto err;
489 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
490 cpu->kvm_fd, 0);
491 if (cpu->kvm_run == MAP_FAILED) {
492 ret = -errno;
493 error_setg_errno(errp, ret,
494 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
495 kvm_arch_vcpu_id(cpu));
496 goto err;
499 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
500 s->coalesced_mmio_ring =
501 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
504 if (s->kvm_dirty_ring_size) {
505 /* Use MAP_SHARED to share pages with the kernel */
506 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
507 PROT_READ | PROT_WRITE, MAP_SHARED,
508 cpu->kvm_fd,
509 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
510 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
511 ret = -errno;
512 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
513 goto err;
517 ret = kvm_arch_init_vcpu(cpu);
518 if (ret < 0) {
519 error_setg_errno(errp, -ret,
520 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
521 kvm_arch_vcpu_id(cpu));
523 err:
524 return ret;
528 * dirty pages logging control
531 static int kvm_mem_flags(MemoryRegion *mr)
533 bool readonly = mr->readonly || memory_region_is_romd(mr);
534 int flags = 0;
536 if (memory_region_get_dirty_log_mask(mr) != 0) {
537 flags |= KVM_MEM_LOG_DIRTY_PAGES;
539 if (readonly && kvm_readonly_mem_allowed) {
540 flags |= KVM_MEM_READONLY;
542 return flags;
545 /* Called with KVMMemoryListener.slots_lock held */
546 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
547 MemoryRegion *mr)
549 mem->flags = kvm_mem_flags(mr);
551 /* If nothing changed effectively, no need to issue ioctl */
552 if (mem->flags == mem->old_flags) {
553 return 0;
556 kvm_slot_init_dirty_bitmap(mem);
557 return kvm_set_user_memory_region(kml, mem, false);
560 static int kvm_section_update_flags(KVMMemoryListener *kml,
561 MemoryRegionSection *section)
563 hwaddr start_addr, size, slot_size;
564 KVMSlot *mem;
565 int ret = 0;
567 size = kvm_align_section(section, &start_addr);
568 if (!size) {
569 return 0;
572 kvm_slots_lock();
574 while (size && !ret) {
575 slot_size = MIN(kvm_max_slot_size, size);
576 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
577 if (!mem) {
578 /* We don't have a slot if we want to trap every access. */
579 goto out;
582 ret = kvm_slot_update_flags(kml, mem, section->mr);
583 start_addr += slot_size;
584 size -= slot_size;
587 out:
588 kvm_slots_unlock();
589 return ret;
592 static void kvm_log_start(MemoryListener *listener,
593 MemoryRegionSection *section,
594 int old, int new)
596 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
597 int r;
599 if (old != 0) {
600 return;
603 r = kvm_section_update_flags(kml, section);
604 if (r < 0) {
605 abort();
609 static void kvm_log_stop(MemoryListener *listener,
610 MemoryRegionSection *section,
611 int old, int new)
613 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
614 int r;
616 if (new != 0) {
617 return;
620 r = kvm_section_update_flags(kml, section);
621 if (r < 0) {
622 abort();
626 /* get kvm's dirty pages bitmap and update qemu's */
627 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
629 ram_addr_t start = slot->ram_start_offset;
630 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
632 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
635 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
637 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
640 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
642 /* Allocate the dirty bitmap for a slot */
643 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
645 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
646 return;
650 * XXX bad kernel interface alert
651 * For dirty bitmap, kernel allocates array of size aligned to
652 * bits-per-long. But for case when the kernel is 64bits and
653 * the userspace is 32bits, userspace can't align to the same
654 * bits-per-long, since sizeof(long) is different between kernel
655 * and user space. This way, userspace will provide buffer which
656 * may be 4 bytes less than the kernel will use, resulting in
657 * userspace memory corruption (which is not detectable by valgrind
658 * too, in most cases).
659 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
660 * a hope that sizeof(long) won't become >8 any time soon.
662 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
663 * And mem->memory_size is aligned to it (otherwise this mem can't
664 * be registered to KVM).
666 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
667 /*HOST_LONG_BITS*/ 64) / 8;
668 mem->dirty_bmap = g_malloc0(bitmap_size);
669 mem->dirty_bmap_size = bitmap_size;
673 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
674 * succeeded, false otherwise
676 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
678 struct kvm_dirty_log d = {};
679 int ret;
681 d.dirty_bitmap = slot->dirty_bmap;
682 d.slot = slot->slot | (slot->as_id << 16);
683 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
685 if (ret == -ENOENT) {
686 /* kernel does not have dirty bitmap in this slot */
687 ret = 0;
689 if (ret) {
690 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
691 __func__, ret);
693 return ret == 0;
696 /* Should be with all slots_lock held for the address spaces. */
697 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
698 uint32_t slot_id, uint64_t offset)
700 KVMMemoryListener *kml;
701 KVMSlot *mem;
703 if (as_id >= s->nr_as) {
704 return;
707 kml = s->as[as_id].ml;
708 mem = &kml->slots[slot_id];
710 if (!mem->memory_size || offset >=
711 (mem->memory_size / qemu_real_host_page_size())) {
712 return;
715 set_bit(offset, mem->dirty_bmap);
718 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
720 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
723 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
725 gfn->flags = KVM_DIRTY_GFN_F_RESET;
729 * Should be with all slots_lock held for the address spaces. It returns the
730 * dirty page we've collected on this dirty ring.
732 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
734 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
735 uint32_t ring_size = s->kvm_dirty_ring_size;
736 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
738 assert(dirty_gfns && ring_size);
739 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
741 while (true) {
742 cur = &dirty_gfns[fetch % ring_size];
743 if (!dirty_gfn_is_dirtied(cur)) {
744 break;
746 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
747 cur->offset);
748 dirty_gfn_set_collected(cur);
749 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
750 fetch++;
751 count++;
753 cpu->kvm_fetch_index = fetch;
754 cpu->dirty_pages += count;
756 return count;
759 /* Must be with slots_lock held */
760 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
762 int ret;
763 CPUState *cpu;
764 uint64_t total = 0;
765 int64_t stamp;
767 stamp = get_clock();
769 CPU_FOREACH(cpu) {
770 total += kvm_dirty_ring_reap_one(s, cpu);
773 if (total) {
774 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
775 assert(ret == total);
778 stamp = get_clock() - stamp;
780 if (total) {
781 trace_kvm_dirty_ring_reap(total, stamp / 1000);
784 return total;
788 * Currently for simplicity, we must hold BQL before calling this. We can
789 * consider to drop the BQL if we're clear with all the race conditions.
791 static uint64_t kvm_dirty_ring_reap(KVMState *s)
793 uint64_t total;
796 * We need to lock all kvm slots for all address spaces here,
797 * because:
799 * (1) We need to mark dirty for dirty bitmaps in multiple slots
800 * and for tons of pages, so it's better to take the lock here
801 * once rather than once per page. And more importantly,
803 * (2) We must _NOT_ publish dirty bits to the other threads
804 * (e.g., the migration thread) via the kvm memory slot dirty
805 * bitmaps before correctly re-protect those dirtied pages.
806 * Otherwise we can have potential risk of data corruption if
807 * the page data is read in the other thread before we do
808 * reset below.
810 kvm_slots_lock();
811 total = kvm_dirty_ring_reap_locked(s);
812 kvm_slots_unlock();
814 return total;
817 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
819 /* No need to do anything */
823 * Kick all vcpus out in a synchronized way. When returned, we
824 * guarantee that every vcpu has been kicked and at least returned to
825 * userspace once.
827 static void kvm_cpu_synchronize_kick_all(void)
829 CPUState *cpu;
831 CPU_FOREACH(cpu) {
832 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
837 * Flush all the existing dirty pages to the KVM slot buffers. When
838 * this call returns, we guarantee that all the touched dirty pages
839 * before calling this function have been put into the per-kvmslot
840 * dirty bitmap.
842 * This function must be called with BQL held.
844 static void kvm_dirty_ring_flush(void)
846 trace_kvm_dirty_ring_flush(0);
848 * The function needs to be serialized. Since this function
849 * should always be with BQL held, serialization is guaranteed.
850 * However, let's be sure of it.
852 assert(qemu_mutex_iothread_locked());
854 * First make sure to flush the hardware buffers by kicking all
855 * vcpus out in a synchronous way.
857 kvm_cpu_synchronize_kick_all();
858 kvm_dirty_ring_reap(kvm_state);
859 trace_kvm_dirty_ring_flush(1);
863 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
865 * This function will first try to fetch dirty bitmap from the kernel,
866 * and then updates qemu's dirty bitmap.
868 * NOTE: caller must be with kml->slots_lock held.
870 * @kml: the KVM memory listener object
871 * @section: the memory section to sync the dirty bitmap with
873 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
874 MemoryRegionSection *section)
876 KVMState *s = kvm_state;
877 KVMSlot *mem;
878 hwaddr start_addr, size;
879 hwaddr slot_size;
881 size = kvm_align_section(section, &start_addr);
882 while (size) {
883 slot_size = MIN(kvm_max_slot_size, size);
884 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
885 if (!mem) {
886 /* We don't have a slot if we want to trap every access. */
887 return;
889 if (kvm_slot_get_dirty_log(s, mem)) {
890 kvm_slot_sync_dirty_pages(mem);
892 start_addr += slot_size;
893 size -= slot_size;
897 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
898 #define KVM_CLEAR_LOG_SHIFT 6
899 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
900 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
902 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
903 uint64_t size)
905 KVMState *s = kvm_state;
906 uint64_t end, bmap_start, start_delta, bmap_npages;
907 struct kvm_clear_dirty_log d;
908 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
909 int ret;
912 * We need to extend either the start or the size or both to
913 * satisfy the KVM interface requirement. Firstly, do the start
914 * page alignment on 64 host pages
916 bmap_start = start & KVM_CLEAR_LOG_MASK;
917 start_delta = start - bmap_start;
918 bmap_start /= psize;
921 * The kernel interface has restriction on the size too, that either:
923 * (1) the size is 64 host pages aligned (just like the start), or
924 * (2) the size fills up until the end of the KVM memslot.
926 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
927 << KVM_CLEAR_LOG_SHIFT;
928 end = mem->memory_size / psize;
929 if (bmap_npages > end - bmap_start) {
930 bmap_npages = end - bmap_start;
932 start_delta /= psize;
935 * Prepare the bitmap to clear dirty bits. Here we must guarantee
936 * that we won't clear any unknown dirty bits otherwise we might
937 * accidentally clear some set bits which are not yet synced from
938 * the kernel into QEMU's bitmap, then we'll lose track of the
939 * guest modifications upon those pages (which can directly lead
940 * to guest data loss or panic after migration).
942 * Layout of the KVMSlot.dirty_bmap:
944 * |<-------- bmap_npages -----------..>|
945 * [1]
946 * start_delta size
947 * |----------------|-------------|------------------|------------|
948 * ^ ^ ^ ^
949 * | | | |
950 * start bmap_start (start) end
951 * of memslot of memslot
953 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
956 assert(bmap_start % BITS_PER_LONG == 0);
957 /* We should never do log_clear before log_sync */
958 assert(mem->dirty_bmap);
959 if (start_delta || bmap_npages - size / psize) {
960 /* Slow path - we need to manipulate a temp bitmap */
961 bmap_clear = bitmap_new(bmap_npages);
962 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
963 bmap_start, start_delta + size / psize);
965 * We need to fill the holes at start because that was not
966 * specified by the caller and we extended the bitmap only for
967 * 64 pages alignment
969 bitmap_clear(bmap_clear, 0, start_delta);
970 d.dirty_bitmap = bmap_clear;
971 } else {
973 * Fast path - both start and size align well with BITS_PER_LONG
974 * (or the end of memory slot)
976 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
979 d.first_page = bmap_start;
980 /* It should never overflow. If it happens, say something */
981 assert(bmap_npages <= UINT32_MAX);
982 d.num_pages = bmap_npages;
983 d.slot = mem->slot | (as_id << 16);
985 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
986 if (ret < 0 && ret != -ENOENT) {
987 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
988 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
989 __func__, d.slot, (uint64_t)d.first_page,
990 (uint32_t)d.num_pages, ret);
991 } else {
992 ret = 0;
993 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
997 * After we have updated the remote dirty bitmap, we update the
998 * cached bitmap as well for the memslot, then if another user
999 * clears the same region we know we shouldn't clear it again on
1000 * the remote otherwise it's data loss as well.
1002 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1003 size / psize);
1004 /* This handles the NULL case well */
1005 g_free(bmap_clear);
1006 return ret;
1011 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1013 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1014 * protection in the host kernel because in that case this operation
1015 * will be done within log_sync().
1017 * @kml: the kvm memory listener
1018 * @section: the memory range to clear dirty bitmap
1020 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1021 MemoryRegionSection *section)
1023 KVMState *s = kvm_state;
1024 uint64_t start, size, offset, count;
1025 KVMSlot *mem;
1026 int ret = 0, i;
1028 if (!s->manual_dirty_log_protect) {
1029 /* No need to do explicit clear */
1030 return ret;
1033 start = section->offset_within_address_space;
1034 size = int128_get64(section->size);
1036 if (!size) {
1037 /* Nothing more we can do... */
1038 return ret;
1041 kvm_slots_lock();
1043 for (i = 0; i < s->nr_slots; i++) {
1044 mem = &kml->slots[i];
1045 /* Discard slots that are empty or do not overlap the section */
1046 if (!mem->memory_size ||
1047 mem->start_addr > start + size - 1 ||
1048 start > mem->start_addr + mem->memory_size - 1) {
1049 continue;
1052 if (start >= mem->start_addr) {
1053 /* The slot starts before section or is aligned to it. */
1054 offset = start - mem->start_addr;
1055 count = MIN(mem->memory_size - offset, size);
1056 } else {
1057 /* The slot starts after section. */
1058 offset = 0;
1059 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1061 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1062 if (ret < 0) {
1063 break;
1067 kvm_slots_unlock();
1069 return ret;
1072 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1073 MemoryRegionSection *secion,
1074 hwaddr start, hwaddr size)
1076 KVMState *s = kvm_state;
1078 if (s->coalesced_mmio) {
1079 struct kvm_coalesced_mmio_zone zone;
1081 zone.addr = start;
1082 zone.size = size;
1083 zone.pad = 0;
1085 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1089 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1090 MemoryRegionSection *secion,
1091 hwaddr start, hwaddr size)
1093 KVMState *s = kvm_state;
1095 if (s->coalesced_mmio) {
1096 struct kvm_coalesced_mmio_zone zone;
1098 zone.addr = start;
1099 zone.size = size;
1100 zone.pad = 0;
1102 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1106 static void kvm_coalesce_pio_add(MemoryListener *listener,
1107 MemoryRegionSection *section,
1108 hwaddr start, hwaddr size)
1110 KVMState *s = kvm_state;
1112 if (s->coalesced_pio) {
1113 struct kvm_coalesced_mmio_zone zone;
1115 zone.addr = start;
1116 zone.size = size;
1117 zone.pio = 1;
1119 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1123 static void kvm_coalesce_pio_del(MemoryListener *listener,
1124 MemoryRegionSection *section,
1125 hwaddr start, hwaddr size)
1127 KVMState *s = kvm_state;
1129 if (s->coalesced_pio) {
1130 struct kvm_coalesced_mmio_zone zone;
1132 zone.addr = start;
1133 zone.size = size;
1134 zone.pio = 1;
1136 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1140 static MemoryListener kvm_coalesced_pio_listener = {
1141 .name = "kvm-coalesced-pio",
1142 .coalesced_io_add = kvm_coalesce_pio_add,
1143 .coalesced_io_del = kvm_coalesce_pio_del,
1146 int kvm_check_extension(KVMState *s, unsigned int extension)
1148 int ret;
1150 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1151 if (ret < 0) {
1152 ret = 0;
1155 return ret;
1158 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1160 int ret;
1162 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1163 if (ret < 0) {
1164 /* VM wide version not implemented, use global one instead */
1165 ret = kvm_check_extension(s, extension);
1168 return ret;
1171 typedef struct HWPoisonPage {
1172 ram_addr_t ram_addr;
1173 QLIST_ENTRY(HWPoisonPage) list;
1174 } HWPoisonPage;
1176 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1177 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1179 static void kvm_unpoison_all(void *param)
1181 HWPoisonPage *page, *next_page;
1183 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1184 QLIST_REMOVE(page, list);
1185 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1186 g_free(page);
1190 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1192 HWPoisonPage *page;
1194 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1195 if (page->ram_addr == ram_addr) {
1196 return;
1199 page = g_new(HWPoisonPage, 1);
1200 page->ram_addr = ram_addr;
1201 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1204 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1206 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1207 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1208 * endianness, but the memory core hands them in target endianness.
1209 * For example, PPC is always treated as big-endian even if running
1210 * on KVM and on PPC64LE. Correct here.
1212 switch (size) {
1213 case 2:
1214 val = bswap16(val);
1215 break;
1216 case 4:
1217 val = bswap32(val);
1218 break;
1220 #endif
1221 return val;
1224 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1225 bool assign, uint32_t size, bool datamatch)
1227 int ret;
1228 struct kvm_ioeventfd iofd = {
1229 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1230 .addr = addr,
1231 .len = size,
1232 .flags = 0,
1233 .fd = fd,
1236 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1237 datamatch);
1238 if (!kvm_enabled()) {
1239 return -ENOSYS;
1242 if (datamatch) {
1243 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1245 if (!assign) {
1246 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1249 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1251 if (ret < 0) {
1252 return -errno;
1255 return 0;
1258 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1259 bool assign, uint32_t size, bool datamatch)
1261 struct kvm_ioeventfd kick = {
1262 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1263 .addr = addr,
1264 .flags = KVM_IOEVENTFD_FLAG_PIO,
1265 .len = size,
1266 .fd = fd,
1268 int r;
1269 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1270 if (!kvm_enabled()) {
1271 return -ENOSYS;
1273 if (datamatch) {
1274 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1276 if (!assign) {
1277 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1279 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1280 if (r < 0) {
1281 return r;
1283 return 0;
1287 static int kvm_check_many_ioeventfds(void)
1289 /* Userspace can use ioeventfd for io notification. This requires a host
1290 * that supports eventfd(2) and an I/O thread; since eventfd does not
1291 * support SIGIO it cannot interrupt the vcpu.
1293 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1294 * can avoid creating too many ioeventfds.
1296 #if defined(CONFIG_EVENTFD)
1297 int ioeventfds[7];
1298 int i, ret = 0;
1299 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1300 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1301 if (ioeventfds[i] < 0) {
1302 break;
1304 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1305 if (ret < 0) {
1306 close(ioeventfds[i]);
1307 break;
1311 /* Decide whether many devices are supported or not */
1312 ret = i == ARRAY_SIZE(ioeventfds);
1314 while (i-- > 0) {
1315 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1316 close(ioeventfds[i]);
1318 return ret;
1319 #else
1320 return 0;
1321 #endif
1324 static const KVMCapabilityInfo *
1325 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1327 while (list->name) {
1328 if (!kvm_check_extension(s, list->value)) {
1329 return list;
1331 list++;
1333 return NULL;
1336 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1338 g_assert(
1339 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1341 kvm_max_slot_size = max_slot_size;
1344 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1345 MemoryRegionSection *section, bool add)
1347 KVMSlot *mem;
1348 int err;
1349 MemoryRegion *mr = section->mr;
1350 bool writable = !mr->readonly && !mr->rom_device;
1351 hwaddr start_addr, size, slot_size, mr_offset;
1352 ram_addr_t ram_start_offset;
1353 void *ram;
1355 if (!memory_region_is_ram(mr)) {
1356 if (writable || !kvm_readonly_mem_allowed) {
1357 return;
1358 } else if (!mr->romd_mode) {
1359 /* If the memory device is not in romd_mode, then we actually want
1360 * to remove the kvm memory slot so all accesses will trap. */
1361 add = false;
1365 size = kvm_align_section(section, &start_addr);
1366 if (!size) {
1367 return;
1370 /* The offset of the kvmslot within the memory region */
1371 mr_offset = section->offset_within_region + start_addr -
1372 section->offset_within_address_space;
1374 /* use aligned delta to align the ram address and offset */
1375 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1376 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1378 kvm_slots_lock();
1380 if (!add) {
1381 do {
1382 slot_size = MIN(kvm_max_slot_size, size);
1383 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1384 if (!mem) {
1385 goto out;
1387 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1389 * NOTE: We should be aware of the fact that here we're only
1390 * doing a best effort to sync dirty bits. No matter whether
1391 * we're using dirty log or dirty ring, we ignored two facts:
1393 * (1) dirty bits can reside in hardware buffers (PML)
1395 * (2) after we collected dirty bits here, pages can be dirtied
1396 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1397 * remove the slot.
1399 * Not easy. Let's cross the fingers until it's fixed.
1401 if (kvm_state->kvm_dirty_ring_size) {
1402 kvm_dirty_ring_reap_locked(kvm_state);
1403 } else {
1404 kvm_slot_get_dirty_log(kvm_state, mem);
1406 kvm_slot_sync_dirty_pages(mem);
1409 /* unregister the slot */
1410 g_free(mem->dirty_bmap);
1411 mem->dirty_bmap = NULL;
1412 mem->memory_size = 0;
1413 mem->flags = 0;
1414 err = kvm_set_user_memory_region(kml, mem, false);
1415 if (err) {
1416 fprintf(stderr, "%s: error unregistering slot: %s\n",
1417 __func__, strerror(-err));
1418 abort();
1420 start_addr += slot_size;
1421 size -= slot_size;
1422 } while (size);
1423 goto out;
1426 /* register the new slot */
1427 do {
1428 slot_size = MIN(kvm_max_slot_size, size);
1429 mem = kvm_alloc_slot(kml);
1430 mem->as_id = kml->as_id;
1431 mem->memory_size = slot_size;
1432 mem->start_addr = start_addr;
1433 mem->ram_start_offset = ram_start_offset;
1434 mem->ram = ram;
1435 mem->flags = kvm_mem_flags(mr);
1436 kvm_slot_init_dirty_bitmap(mem);
1437 err = kvm_set_user_memory_region(kml, mem, true);
1438 if (err) {
1439 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1440 strerror(-err));
1441 abort();
1443 start_addr += slot_size;
1444 ram_start_offset += slot_size;
1445 ram += slot_size;
1446 size -= slot_size;
1447 } while (size);
1449 out:
1450 kvm_slots_unlock();
1453 static void *kvm_dirty_ring_reaper_thread(void *data)
1455 KVMState *s = data;
1456 struct KVMDirtyRingReaper *r = &s->reaper;
1458 rcu_register_thread();
1460 trace_kvm_dirty_ring_reaper("init");
1462 while (true) {
1463 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1464 trace_kvm_dirty_ring_reaper("wait");
1466 * TODO: provide a smarter timeout rather than a constant?
1468 sleep(1);
1470 trace_kvm_dirty_ring_reaper("wakeup");
1471 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1473 qemu_mutex_lock_iothread();
1474 kvm_dirty_ring_reap(s);
1475 qemu_mutex_unlock_iothread();
1477 r->reaper_iteration++;
1480 trace_kvm_dirty_ring_reaper("exit");
1482 rcu_unregister_thread();
1484 return NULL;
1487 static int kvm_dirty_ring_reaper_init(KVMState *s)
1489 struct KVMDirtyRingReaper *r = &s->reaper;
1491 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1492 kvm_dirty_ring_reaper_thread,
1493 s, QEMU_THREAD_JOINABLE);
1495 return 0;
1498 static void kvm_region_add(MemoryListener *listener,
1499 MemoryRegionSection *section)
1501 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1503 memory_region_ref(section->mr);
1504 kvm_set_phys_mem(kml, section, true);
1507 static void kvm_region_del(MemoryListener *listener,
1508 MemoryRegionSection *section)
1510 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1512 kvm_set_phys_mem(kml, section, false);
1513 memory_region_unref(section->mr);
1516 static void kvm_log_sync(MemoryListener *listener,
1517 MemoryRegionSection *section)
1519 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1521 kvm_slots_lock();
1522 kvm_physical_sync_dirty_bitmap(kml, section);
1523 kvm_slots_unlock();
1526 static void kvm_log_sync_global(MemoryListener *l)
1528 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1529 KVMState *s = kvm_state;
1530 KVMSlot *mem;
1531 int i;
1533 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1534 kvm_dirty_ring_flush();
1537 * TODO: make this faster when nr_slots is big while there are
1538 * only a few used slots (small VMs).
1540 kvm_slots_lock();
1541 for (i = 0; i < s->nr_slots; i++) {
1542 mem = &kml->slots[i];
1543 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1544 kvm_slot_sync_dirty_pages(mem);
1546 * This is not needed by KVM_GET_DIRTY_LOG because the
1547 * ioctl will unconditionally overwrite the whole region.
1548 * However kvm dirty ring has no such side effect.
1550 kvm_slot_reset_dirty_pages(mem);
1553 kvm_slots_unlock();
1556 static void kvm_log_clear(MemoryListener *listener,
1557 MemoryRegionSection *section)
1559 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1560 int r;
1562 r = kvm_physical_log_clear(kml, section);
1563 if (r < 0) {
1564 error_report_once("%s: kvm log clear failed: mr=%s "
1565 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1566 section->mr->name, section->offset_within_region,
1567 int128_get64(section->size));
1568 abort();
1572 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1573 MemoryRegionSection *section,
1574 bool match_data, uint64_t data,
1575 EventNotifier *e)
1577 int fd = event_notifier_get_fd(e);
1578 int r;
1580 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1581 data, true, int128_get64(section->size),
1582 match_data);
1583 if (r < 0) {
1584 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1585 __func__, strerror(-r), -r);
1586 abort();
1590 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1591 MemoryRegionSection *section,
1592 bool match_data, uint64_t data,
1593 EventNotifier *e)
1595 int fd = event_notifier_get_fd(e);
1596 int r;
1598 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1599 data, false, int128_get64(section->size),
1600 match_data);
1601 if (r < 0) {
1602 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1603 __func__, strerror(-r), -r);
1604 abort();
1608 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1609 MemoryRegionSection *section,
1610 bool match_data, uint64_t data,
1611 EventNotifier *e)
1613 int fd = event_notifier_get_fd(e);
1614 int r;
1616 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1617 data, true, int128_get64(section->size),
1618 match_data);
1619 if (r < 0) {
1620 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1621 __func__, strerror(-r), -r);
1622 abort();
1626 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1627 MemoryRegionSection *section,
1628 bool match_data, uint64_t data,
1629 EventNotifier *e)
1632 int fd = event_notifier_get_fd(e);
1633 int r;
1635 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1636 data, false, int128_get64(section->size),
1637 match_data);
1638 if (r < 0) {
1639 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1640 __func__, strerror(-r), -r);
1641 abort();
1645 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1646 AddressSpace *as, int as_id, const char *name)
1648 int i;
1650 kml->slots = g_new0(KVMSlot, s->nr_slots);
1651 kml->as_id = as_id;
1653 for (i = 0; i < s->nr_slots; i++) {
1654 kml->slots[i].slot = i;
1657 kml->listener.region_add = kvm_region_add;
1658 kml->listener.region_del = kvm_region_del;
1659 kml->listener.log_start = kvm_log_start;
1660 kml->listener.log_stop = kvm_log_stop;
1661 kml->listener.priority = 10;
1662 kml->listener.name = name;
1664 if (s->kvm_dirty_ring_size) {
1665 kml->listener.log_sync_global = kvm_log_sync_global;
1666 } else {
1667 kml->listener.log_sync = kvm_log_sync;
1668 kml->listener.log_clear = kvm_log_clear;
1671 memory_listener_register(&kml->listener, as);
1673 for (i = 0; i < s->nr_as; ++i) {
1674 if (!s->as[i].as) {
1675 s->as[i].as = as;
1676 s->as[i].ml = kml;
1677 break;
1682 static MemoryListener kvm_io_listener = {
1683 .name = "kvm-io",
1684 .eventfd_add = kvm_io_ioeventfd_add,
1685 .eventfd_del = kvm_io_ioeventfd_del,
1686 .priority = 10,
1689 int kvm_set_irq(KVMState *s, int irq, int level)
1691 struct kvm_irq_level event;
1692 int ret;
1694 assert(kvm_async_interrupts_enabled());
1696 event.level = level;
1697 event.irq = irq;
1698 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1699 if (ret < 0) {
1700 perror("kvm_set_irq");
1701 abort();
1704 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1707 #ifdef KVM_CAP_IRQ_ROUTING
1708 typedef struct KVMMSIRoute {
1709 struct kvm_irq_routing_entry kroute;
1710 QTAILQ_ENTRY(KVMMSIRoute) entry;
1711 } KVMMSIRoute;
1713 static void set_gsi(KVMState *s, unsigned int gsi)
1715 set_bit(gsi, s->used_gsi_bitmap);
1718 static void clear_gsi(KVMState *s, unsigned int gsi)
1720 clear_bit(gsi, s->used_gsi_bitmap);
1723 void kvm_init_irq_routing(KVMState *s)
1725 int gsi_count, i;
1727 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1728 if (gsi_count > 0) {
1729 /* Round up so we can search ints using ffs */
1730 s->used_gsi_bitmap = bitmap_new(gsi_count);
1731 s->gsi_count = gsi_count;
1734 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1735 s->nr_allocated_irq_routes = 0;
1737 if (!kvm_direct_msi_allowed) {
1738 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1739 QTAILQ_INIT(&s->msi_hashtab[i]);
1743 kvm_arch_init_irq_routing(s);
1746 void kvm_irqchip_commit_routes(KVMState *s)
1748 int ret;
1750 if (kvm_gsi_direct_mapping()) {
1751 return;
1754 if (!kvm_gsi_routing_enabled()) {
1755 return;
1758 s->irq_routes->flags = 0;
1759 trace_kvm_irqchip_commit_routes();
1760 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1761 assert(ret == 0);
1764 static void kvm_add_routing_entry(KVMState *s,
1765 struct kvm_irq_routing_entry *entry)
1767 struct kvm_irq_routing_entry *new;
1768 int n, size;
1770 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1771 n = s->nr_allocated_irq_routes * 2;
1772 if (n < 64) {
1773 n = 64;
1775 size = sizeof(struct kvm_irq_routing);
1776 size += n * sizeof(*new);
1777 s->irq_routes = g_realloc(s->irq_routes, size);
1778 s->nr_allocated_irq_routes = n;
1780 n = s->irq_routes->nr++;
1781 new = &s->irq_routes->entries[n];
1783 *new = *entry;
1785 set_gsi(s, entry->gsi);
1788 static int kvm_update_routing_entry(KVMState *s,
1789 struct kvm_irq_routing_entry *new_entry)
1791 struct kvm_irq_routing_entry *entry;
1792 int n;
1794 for (n = 0; n < s->irq_routes->nr; n++) {
1795 entry = &s->irq_routes->entries[n];
1796 if (entry->gsi != new_entry->gsi) {
1797 continue;
1800 if(!memcmp(entry, new_entry, sizeof *entry)) {
1801 return 0;
1804 *entry = *new_entry;
1806 return 0;
1809 return -ESRCH;
1812 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1814 struct kvm_irq_routing_entry e = {};
1816 assert(pin < s->gsi_count);
1818 e.gsi = irq;
1819 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1820 e.flags = 0;
1821 e.u.irqchip.irqchip = irqchip;
1822 e.u.irqchip.pin = pin;
1823 kvm_add_routing_entry(s, &e);
1826 void kvm_irqchip_release_virq(KVMState *s, int virq)
1828 struct kvm_irq_routing_entry *e;
1829 int i;
1831 if (kvm_gsi_direct_mapping()) {
1832 return;
1835 for (i = 0; i < s->irq_routes->nr; i++) {
1836 e = &s->irq_routes->entries[i];
1837 if (e->gsi == virq) {
1838 s->irq_routes->nr--;
1839 *e = s->irq_routes->entries[s->irq_routes->nr];
1842 clear_gsi(s, virq);
1843 kvm_arch_release_virq_post(virq);
1844 trace_kvm_irqchip_release_virq(virq);
1847 void kvm_irqchip_add_change_notifier(Notifier *n)
1849 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1852 void kvm_irqchip_remove_change_notifier(Notifier *n)
1854 notifier_remove(n);
1857 void kvm_irqchip_change_notify(void)
1859 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1862 static unsigned int kvm_hash_msi(uint32_t data)
1864 /* This is optimized for IA32 MSI layout. However, no other arch shall
1865 * repeat the mistake of not providing a direct MSI injection API. */
1866 return data & 0xff;
1869 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1871 KVMMSIRoute *route, *next;
1872 unsigned int hash;
1874 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1875 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1876 kvm_irqchip_release_virq(s, route->kroute.gsi);
1877 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1878 g_free(route);
1883 static int kvm_irqchip_get_virq(KVMState *s)
1885 int next_virq;
1888 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1889 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1890 * number can succeed even though a new route entry cannot be added.
1891 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1893 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1894 kvm_flush_dynamic_msi_routes(s);
1897 /* Return the lowest unused GSI in the bitmap */
1898 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1899 if (next_virq >= s->gsi_count) {
1900 return -ENOSPC;
1901 } else {
1902 return next_virq;
1906 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1908 unsigned int hash = kvm_hash_msi(msg.data);
1909 KVMMSIRoute *route;
1911 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1912 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1913 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1914 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1915 return route;
1918 return NULL;
1921 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1923 struct kvm_msi msi;
1924 KVMMSIRoute *route;
1926 if (kvm_direct_msi_allowed) {
1927 msi.address_lo = (uint32_t)msg.address;
1928 msi.address_hi = msg.address >> 32;
1929 msi.data = le32_to_cpu(msg.data);
1930 msi.flags = 0;
1931 memset(msi.pad, 0, sizeof(msi.pad));
1933 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1936 route = kvm_lookup_msi_route(s, msg);
1937 if (!route) {
1938 int virq;
1940 virq = kvm_irqchip_get_virq(s);
1941 if (virq < 0) {
1942 return virq;
1945 route = g_new0(KVMMSIRoute, 1);
1946 route->kroute.gsi = virq;
1947 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1948 route->kroute.flags = 0;
1949 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1950 route->kroute.u.msi.address_hi = msg.address >> 32;
1951 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1953 kvm_add_routing_entry(s, &route->kroute);
1954 kvm_irqchip_commit_routes(s);
1956 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1957 entry);
1960 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1962 return kvm_set_irq(s, route->kroute.gsi, 1);
1965 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1967 struct kvm_irq_routing_entry kroute = {};
1968 int virq;
1969 KVMState *s = c->s;
1970 MSIMessage msg = {0, 0};
1972 if (pci_available && dev) {
1973 msg = pci_get_msi_message(dev, vector);
1976 if (kvm_gsi_direct_mapping()) {
1977 return kvm_arch_msi_data_to_gsi(msg.data);
1980 if (!kvm_gsi_routing_enabled()) {
1981 return -ENOSYS;
1984 virq = kvm_irqchip_get_virq(s);
1985 if (virq < 0) {
1986 return virq;
1989 kroute.gsi = virq;
1990 kroute.type = KVM_IRQ_ROUTING_MSI;
1991 kroute.flags = 0;
1992 kroute.u.msi.address_lo = (uint32_t)msg.address;
1993 kroute.u.msi.address_hi = msg.address >> 32;
1994 kroute.u.msi.data = le32_to_cpu(msg.data);
1995 if (pci_available && kvm_msi_devid_required()) {
1996 kroute.flags = KVM_MSI_VALID_DEVID;
1997 kroute.u.msi.devid = pci_requester_id(dev);
1999 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2000 kvm_irqchip_release_virq(s, virq);
2001 return -EINVAL;
2004 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2005 vector, virq);
2007 kvm_add_routing_entry(s, &kroute);
2008 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2009 c->changes++;
2011 return virq;
2014 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2015 PCIDevice *dev)
2017 struct kvm_irq_routing_entry kroute = {};
2019 if (kvm_gsi_direct_mapping()) {
2020 return 0;
2023 if (!kvm_irqchip_in_kernel()) {
2024 return -ENOSYS;
2027 kroute.gsi = virq;
2028 kroute.type = KVM_IRQ_ROUTING_MSI;
2029 kroute.flags = 0;
2030 kroute.u.msi.address_lo = (uint32_t)msg.address;
2031 kroute.u.msi.address_hi = msg.address >> 32;
2032 kroute.u.msi.data = le32_to_cpu(msg.data);
2033 if (pci_available && kvm_msi_devid_required()) {
2034 kroute.flags = KVM_MSI_VALID_DEVID;
2035 kroute.u.msi.devid = pci_requester_id(dev);
2037 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2038 return -EINVAL;
2041 trace_kvm_irqchip_update_msi_route(virq);
2043 return kvm_update_routing_entry(s, &kroute);
2046 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2047 EventNotifier *resample, int virq,
2048 bool assign)
2050 int fd = event_notifier_get_fd(event);
2051 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2053 struct kvm_irqfd irqfd = {
2054 .fd = fd,
2055 .gsi = virq,
2056 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2059 if (rfd != -1) {
2060 assert(assign);
2061 if (kvm_irqchip_is_split()) {
2063 * When the slow irqchip (e.g. IOAPIC) is in the
2064 * userspace, KVM kernel resamplefd will not work because
2065 * the EOI of the interrupt will be delivered to userspace
2066 * instead, so the KVM kernel resamplefd kick will be
2067 * skipped. The userspace here mimics what the kernel
2068 * provides with resamplefd, remember the resamplefd and
2069 * kick it when we receive EOI of this IRQ.
2071 * This is hackery because IOAPIC is mostly bypassed
2072 * (except EOI broadcasts) when irqfd is used. However
2073 * this can bring much performance back for split irqchip
2074 * with INTx IRQs (for VFIO, this gives 93% perf of the
2075 * full fast path, which is 46% perf boost comparing to
2076 * the INTx slow path).
2078 kvm_resample_fd_insert(virq, resample);
2079 } else {
2080 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2081 irqfd.resamplefd = rfd;
2083 } else if (!assign) {
2084 if (kvm_irqchip_is_split()) {
2085 kvm_resample_fd_remove(virq);
2089 if (!kvm_irqfds_enabled()) {
2090 return -ENOSYS;
2093 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2096 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2098 struct kvm_irq_routing_entry kroute = {};
2099 int virq;
2101 if (!kvm_gsi_routing_enabled()) {
2102 return -ENOSYS;
2105 virq = kvm_irqchip_get_virq(s);
2106 if (virq < 0) {
2107 return virq;
2110 kroute.gsi = virq;
2111 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2112 kroute.flags = 0;
2113 kroute.u.adapter.summary_addr = adapter->summary_addr;
2114 kroute.u.adapter.ind_addr = adapter->ind_addr;
2115 kroute.u.adapter.summary_offset = adapter->summary_offset;
2116 kroute.u.adapter.ind_offset = adapter->ind_offset;
2117 kroute.u.adapter.adapter_id = adapter->adapter_id;
2119 kvm_add_routing_entry(s, &kroute);
2121 return virq;
2124 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2126 struct kvm_irq_routing_entry kroute = {};
2127 int virq;
2129 if (!kvm_gsi_routing_enabled()) {
2130 return -ENOSYS;
2132 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2133 return -ENOSYS;
2135 virq = kvm_irqchip_get_virq(s);
2136 if (virq < 0) {
2137 return virq;
2140 kroute.gsi = virq;
2141 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2142 kroute.flags = 0;
2143 kroute.u.hv_sint.vcpu = vcpu;
2144 kroute.u.hv_sint.sint = sint;
2146 kvm_add_routing_entry(s, &kroute);
2147 kvm_irqchip_commit_routes(s);
2149 return virq;
2152 #else /* !KVM_CAP_IRQ_ROUTING */
2154 void kvm_init_irq_routing(KVMState *s)
2158 void kvm_irqchip_release_virq(KVMState *s, int virq)
2162 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2164 abort();
2167 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2169 return -ENOSYS;
2172 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2174 return -ENOSYS;
2177 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2179 return -ENOSYS;
2182 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2183 EventNotifier *resample, int virq,
2184 bool assign)
2186 abort();
2189 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2191 return -ENOSYS;
2193 #endif /* !KVM_CAP_IRQ_ROUTING */
2195 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2196 EventNotifier *rn, int virq)
2198 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2201 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2202 int virq)
2204 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2207 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2208 EventNotifier *rn, qemu_irq irq)
2210 gpointer key, gsi;
2211 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2213 if (!found) {
2214 return -ENXIO;
2216 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2219 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2220 qemu_irq irq)
2222 gpointer key, gsi;
2223 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2225 if (!found) {
2226 return -ENXIO;
2228 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2231 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2233 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2236 static void kvm_irqchip_create(KVMState *s)
2238 int ret;
2240 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2241 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2243 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2244 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2245 if (ret < 0) {
2246 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2247 exit(1);
2249 } else {
2250 return;
2253 /* First probe and see if there's a arch-specific hook to create the
2254 * in-kernel irqchip for us */
2255 ret = kvm_arch_irqchip_create(s);
2256 if (ret == 0) {
2257 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2258 perror("Split IRQ chip mode not supported.");
2259 exit(1);
2260 } else {
2261 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2264 if (ret < 0) {
2265 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2266 exit(1);
2269 kvm_kernel_irqchip = true;
2270 /* If we have an in-kernel IRQ chip then we must have asynchronous
2271 * interrupt delivery (though the reverse is not necessarily true)
2273 kvm_async_interrupts_allowed = true;
2274 kvm_halt_in_kernel_allowed = true;
2276 kvm_init_irq_routing(s);
2278 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2281 /* Find number of supported CPUs using the recommended
2282 * procedure from the kernel API documentation to cope with
2283 * older kernels that may be missing capabilities.
2285 static int kvm_recommended_vcpus(KVMState *s)
2287 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2288 return (ret) ? ret : 4;
2291 static int kvm_max_vcpus(KVMState *s)
2293 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2294 return (ret) ? ret : kvm_recommended_vcpus(s);
2297 static int kvm_max_vcpu_id(KVMState *s)
2299 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2300 return (ret) ? ret : kvm_max_vcpus(s);
2303 bool kvm_vcpu_id_is_valid(int vcpu_id)
2305 KVMState *s = KVM_STATE(current_accel());
2306 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2309 bool kvm_dirty_ring_enabled(void)
2311 return kvm_state->kvm_dirty_ring_size ? true : false;
2314 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2315 strList *names, strList *targets, Error **errp);
2316 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2318 static int kvm_init(MachineState *ms)
2320 MachineClass *mc = MACHINE_GET_CLASS(ms);
2321 static const char upgrade_note[] =
2322 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2323 "(see http://sourceforge.net/projects/kvm).\n";
2324 struct {
2325 const char *name;
2326 int num;
2327 } num_cpus[] = {
2328 { "SMP", ms->smp.cpus },
2329 { "hotpluggable", ms->smp.max_cpus },
2330 { NULL, }
2331 }, *nc = num_cpus;
2332 int soft_vcpus_limit, hard_vcpus_limit;
2333 KVMState *s;
2334 const KVMCapabilityInfo *missing_cap;
2335 int ret;
2336 int type = 0;
2337 uint64_t dirty_log_manual_caps;
2339 qemu_mutex_init(&kml_slots_lock);
2341 s = KVM_STATE(ms->accelerator);
2344 * On systems where the kernel can support different base page
2345 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2346 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2347 * page size for the system though.
2349 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2351 s->sigmask_len = 8;
2353 #ifdef KVM_CAP_SET_GUEST_DEBUG
2354 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2355 #endif
2356 QLIST_INIT(&s->kvm_parked_vcpus);
2357 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2358 if (s->fd == -1) {
2359 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2360 ret = -errno;
2361 goto err;
2364 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2365 if (ret < KVM_API_VERSION) {
2366 if (ret >= 0) {
2367 ret = -EINVAL;
2369 fprintf(stderr, "kvm version too old\n");
2370 goto err;
2373 if (ret > KVM_API_VERSION) {
2374 ret = -EINVAL;
2375 fprintf(stderr, "kvm version not supported\n");
2376 goto err;
2379 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2380 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2382 /* If unspecified, use the default value */
2383 if (!s->nr_slots) {
2384 s->nr_slots = 32;
2387 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2388 if (s->nr_as <= 1) {
2389 s->nr_as = 1;
2391 s->as = g_new0(struct KVMAs, s->nr_as);
2393 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2394 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2395 "kvm-type",
2396 &error_abort);
2397 type = mc->kvm_type(ms, kvm_type);
2398 } else if (mc->kvm_type) {
2399 type = mc->kvm_type(ms, NULL);
2402 do {
2403 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2404 } while (ret == -EINTR);
2406 if (ret < 0) {
2407 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2408 strerror(-ret));
2410 #ifdef TARGET_S390X
2411 if (ret == -EINVAL) {
2412 fprintf(stderr,
2413 "Host kernel setup problem detected. Please verify:\n");
2414 fprintf(stderr, "- for kernels supporting the switch_amode or"
2415 " user_mode parameters, whether\n");
2416 fprintf(stderr,
2417 " user space is running in primary address space\n");
2418 fprintf(stderr,
2419 "- for kernels supporting the vm.allocate_pgste sysctl, "
2420 "whether it is enabled\n");
2422 #elif defined(TARGET_PPC)
2423 if (ret == -EINVAL) {
2424 fprintf(stderr,
2425 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2426 (type == 2) ? "pr" : "hv");
2428 #endif
2429 goto err;
2432 s->vmfd = ret;
2434 /* check the vcpu limits */
2435 soft_vcpus_limit = kvm_recommended_vcpus(s);
2436 hard_vcpus_limit = kvm_max_vcpus(s);
2438 while (nc->name) {
2439 if (nc->num > soft_vcpus_limit) {
2440 warn_report("Number of %s cpus requested (%d) exceeds "
2441 "the recommended cpus supported by KVM (%d)",
2442 nc->name, nc->num, soft_vcpus_limit);
2444 if (nc->num > hard_vcpus_limit) {
2445 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2446 "the maximum cpus supported by KVM (%d)\n",
2447 nc->name, nc->num, hard_vcpus_limit);
2448 exit(1);
2451 nc++;
2454 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2455 if (!missing_cap) {
2456 missing_cap =
2457 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2459 if (missing_cap) {
2460 ret = -EINVAL;
2461 fprintf(stderr, "kvm does not support %s\n%s",
2462 missing_cap->name, upgrade_note);
2463 goto err;
2466 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2467 s->coalesced_pio = s->coalesced_mmio &&
2468 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2471 * Enable KVM dirty ring if supported, otherwise fall back to
2472 * dirty logging mode
2474 if (s->kvm_dirty_ring_size > 0) {
2475 uint64_t ring_bytes;
2477 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2479 /* Read the max supported pages */
2480 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2481 if (ret > 0) {
2482 if (ring_bytes > ret) {
2483 error_report("KVM dirty ring size %" PRIu32 " too big "
2484 "(maximum is %ld). Please use a smaller value.",
2485 s->kvm_dirty_ring_size,
2486 (long)ret / sizeof(struct kvm_dirty_gfn));
2487 ret = -EINVAL;
2488 goto err;
2491 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2492 if (ret) {
2493 error_report("Enabling of KVM dirty ring failed: %s. "
2494 "Suggested minimum value is 1024.", strerror(-ret));
2495 goto err;
2498 s->kvm_dirty_ring_bytes = ring_bytes;
2499 } else {
2500 warn_report("KVM dirty ring not available, using bitmap method");
2501 s->kvm_dirty_ring_size = 0;
2506 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2507 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2508 * page is wr-protected initially, which is against how kvm dirty ring is
2509 * usage - kvm dirty ring requires all pages are wr-protected at the very
2510 * beginning. Enabling this feature for dirty ring causes data corruption.
2512 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2513 * we may expect a higher stall time when starting the migration. In the
2514 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2515 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2516 * guest pages.
2518 if (!s->kvm_dirty_ring_size) {
2519 dirty_log_manual_caps =
2520 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2521 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2522 KVM_DIRTY_LOG_INITIALLY_SET);
2523 s->manual_dirty_log_protect = dirty_log_manual_caps;
2524 if (dirty_log_manual_caps) {
2525 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2526 dirty_log_manual_caps);
2527 if (ret) {
2528 warn_report("Trying to enable capability %"PRIu64" of "
2529 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2530 "Falling back to the legacy mode. ",
2531 dirty_log_manual_caps);
2532 s->manual_dirty_log_protect = 0;
2537 #ifdef KVM_CAP_VCPU_EVENTS
2538 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2539 #endif
2541 s->robust_singlestep =
2542 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2544 #ifdef KVM_CAP_DEBUGREGS
2545 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2546 #endif
2548 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2550 #ifdef KVM_CAP_IRQ_ROUTING
2551 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2552 #endif
2554 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2556 s->irq_set_ioctl = KVM_IRQ_LINE;
2557 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2558 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2561 kvm_readonly_mem_allowed =
2562 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2564 kvm_eventfds_allowed =
2565 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2567 kvm_irqfds_allowed =
2568 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2570 kvm_resamplefds_allowed =
2571 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2573 kvm_vm_attributes_allowed =
2574 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2576 kvm_ioeventfd_any_length_allowed =
2577 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2579 #ifdef KVM_CAP_SET_GUEST_DEBUG
2580 kvm_has_guest_debug =
2581 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2582 #endif
2584 kvm_sstep_flags = 0;
2585 if (kvm_has_guest_debug) {
2586 kvm_sstep_flags = SSTEP_ENABLE;
2588 #if defined KVM_CAP_SET_GUEST_DEBUG2
2589 int guest_debug_flags =
2590 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2592 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2593 kvm_sstep_flags |= SSTEP_NOIRQ;
2595 #endif
2598 kvm_state = s;
2600 ret = kvm_arch_init(ms, s);
2601 if (ret < 0) {
2602 goto err;
2605 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2606 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2609 qemu_register_reset(kvm_unpoison_all, NULL);
2611 if (s->kernel_irqchip_allowed) {
2612 kvm_irqchip_create(s);
2615 if (kvm_eventfds_allowed) {
2616 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2617 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2619 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2620 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2622 kvm_memory_listener_register(s, &s->memory_listener,
2623 &address_space_memory, 0, "kvm-memory");
2624 if (kvm_eventfds_allowed) {
2625 memory_listener_register(&kvm_io_listener,
2626 &address_space_io);
2628 memory_listener_register(&kvm_coalesced_pio_listener,
2629 &address_space_io);
2631 s->many_ioeventfds = kvm_check_many_ioeventfds();
2633 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2634 if (!s->sync_mmu) {
2635 ret = ram_block_discard_disable(true);
2636 assert(!ret);
2639 if (s->kvm_dirty_ring_size) {
2640 ret = kvm_dirty_ring_reaper_init(s);
2641 if (ret) {
2642 goto err;
2646 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2647 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2648 query_stats_schemas_cb);
2651 return 0;
2653 err:
2654 assert(ret < 0);
2655 if (s->vmfd >= 0) {
2656 close(s->vmfd);
2658 if (s->fd != -1) {
2659 close(s->fd);
2661 g_free(s->memory_listener.slots);
2663 return ret;
2666 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2668 s->sigmask_len = sigmask_len;
2671 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2672 int size, uint32_t count)
2674 int i;
2675 uint8_t *ptr = data;
2677 for (i = 0; i < count; i++) {
2678 address_space_rw(&address_space_io, port, attrs,
2679 ptr, size,
2680 direction == KVM_EXIT_IO_OUT);
2681 ptr += size;
2685 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2687 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2688 run->internal.suberror);
2690 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2691 int i;
2693 for (i = 0; i < run->internal.ndata; ++i) {
2694 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2695 i, (uint64_t)run->internal.data[i]);
2698 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2699 fprintf(stderr, "emulation failure\n");
2700 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2701 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2702 return EXCP_INTERRUPT;
2705 /* FIXME: Should trigger a qmp message to let management know
2706 * something went wrong.
2708 return -1;
2711 void kvm_flush_coalesced_mmio_buffer(void)
2713 KVMState *s = kvm_state;
2715 if (s->coalesced_flush_in_progress) {
2716 return;
2719 s->coalesced_flush_in_progress = true;
2721 if (s->coalesced_mmio_ring) {
2722 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2723 while (ring->first != ring->last) {
2724 struct kvm_coalesced_mmio *ent;
2726 ent = &ring->coalesced_mmio[ring->first];
2728 if (ent->pio == 1) {
2729 address_space_write(&address_space_io, ent->phys_addr,
2730 MEMTXATTRS_UNSPECIFIED, ent->data,
2731 ent->len);
2732 } else {
2733 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2735 smp_wmb();
2736 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2740 s->coalesced_flush_in_progress = false;
2743 bool kvm_cpu_check_are_resettable(void)
2745 return kvm_arch_cpu_check_are_resettable();
2748 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2750 if (!cpu->vcpu_dirty) {
2751 kvm_arch_get_registers(cpu);
2752 cpu->vcpu_dirty = true;
2756 void kvm_cpu_synchronize_state(CPUState *cpu)
2758 if (!cpu->vcpu_dirty) {
2759 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2763 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2765 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2766 cpu->vcpu_dirty = false;
2769 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2771 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2774 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2776 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2777 cpu->vcpu_dirty = false;
2780 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2782 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2785 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2787 cpu->vcpu_dirty = true;
2790 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2792 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2795 #ifdef KVM_HAVE_MCE_INJECTION
2796 static __thread void *pending_sigbus_addr;
2797 static __thread int pending_sigbus_code;
2798 static __thread bool have_sigbus_pending;
2799 #endif
2801 static void kvm_cpu_kick(CPUState *cpu)
2803 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2806 static void kvm_cpu_kick_self(void)
2808 if (kvm_immediate_exit) {
2809 kvm_cpu_kick(current_cpu);
2810 } else {
2811 qemu_cpu_kick_self();
2815 static void kvm_eat_signals(CPUState *cpu)
2817 struct timespec ts = { 0, 0 };
2818 siginfo_t siginfo;
2819 sigset_t waitset;
2820 sigset_t chkset;
2821 int r;
2823 if (kvm_immediate_exit) {
2824 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2825 /* Write kvm_run->immediate_exit before the cpu->exit_request
2826 * write in kvm_cpu_exec.
2828 smp_wmb();
2829 return;
2832 sigemptyset(&waitset);
2833 sigaddset(&waitset, SIG_IPI);
2835 do {
2836 r = sigtimedwait(&waitset, &siginfo, &ts);
2837 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2838 perror("sigtimedwait");
2839 exit(1);
2842 r = sigpending(&chkset);
2843 if (r == -1) {
2844 perror("sigpending");
2845 exit(1);
2847 } while (sigismember(&chkset, SIG_IPI));
2850 int kvm_cpu_exec(CPUState *cpu)
2852 struct kvm_run *run = cpu->kvm_run;
2853 int ret, run_ret;
2855 DPRINTF("kvm_cpu_exec()\n");
2857 if (kvm_arch_process_async_events(cpu)) {
2858 qatomic_set(&cpu->exit_request, 0);
2859 return EXCP_HLT;
2862 qemu_mutex_unlock_iothread();
2863 cpu_exec_start(cpu);
2865 do {
2866 MemTxAttrs attrs;
2868 if (cpu->vcpu_dirty) {
2869 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2870 cpu->vcpu_dirty = false;
2873 kvm_arch_pre_run(cpu, run);
2874 if (qatomic_read(&cpu->exit_request)) {
2875 DPRINTF("interrupt exit requested\n");
2877 * KVM requires us to reenter the kernel after IO exits to complete
2878 * instruction emulation. This self-signal will ensure that we
2879 * leave ASAP again.
2881 kvm_cpu_kick_self();
2884 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2885 * Matching barrier in kvm_eat_signals.
2887 smp_rmb();
2889 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2891 attrs = kvm_arch_post_run(cpu, run);
2893 #ifdef KVM_HAVE_MCE_INJECTION
2894 if (unlikely(have_sigbus_pending)) {
2895 qemu_mutex_lock_iothread();
2896 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2897 pending_sigbus_addr);
2898 have_sigbus_pending = false;
2899 qemu_mutex_unlock_iothread();
2901 #endif
2903 if (run_ret < 0) {
2904 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2905 DPRINTF("io window exit\n");
2906 kvm_eat_signals(cpu);
2907 ret = EXCP_INTERRUPT;
2908 break;
2910 fprintf(stderr, "error: kvm run failed %s\n",
2911 strerror(-run_ret));
2912 #ifdef TARGET_PPC
2913 if (run_ret == -EBUSY) {
2914 fprintf(stderr,
2915 "This is probably because your SMT is enabled.\n"
2916 "VCPU can only run on primary threads with all "
2917 "secondary threads offline.\n");
2919 #endif
2920 ret = -1;
2921 break;
2924 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2925 switch (run->exit_reason) {
2926 case KVM_EXIT_IO:
2927 DPRINTF("handle_io\n");
2928 /* Called outside BQL */
2929 kvm_handle_io(run->io.port, attrs,
2930 (uint8_t *)run + run->io.data_offset,
2931 run->io.direction,
2932 run->io.size,
2933 run->io.count);
2934 ret = 0;
2935 break;
2936 case KVM_EXIT_MMIO:
2937 DPRINTF("handle_mmio\n");
2938 /* Called outside BQL */
2939 address_space_rw(&address_space_memory,
2940 run->mmio.phys_addr, attrs,
2941 run->mmio.data,
2942 run->mmio.len,
2943 run->mmio.is_write);
2944 ret = 0;
2945 break;
2946 case KVM_EXIT_IRQ_WINDOW_OPEN:
2947 DPRINTF("irq_window_open\n");
2948 ret = EXCP_INTERRUPT;
2949 break;
2950 case KVM_EXIT_SHUTDOWN:
2951 DPRINTF("shutdown\n");
2952 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2953 ret = EXCP_INTERRUPT;
2954 break;
2955 case KVM_EXIT_UNKNOWN:
2956 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2957 (uint64_t)run->hw.hardware_exit_reason);
2958 ret = -1;
2959 break;
2960 case KVM_EXIT_INTERNAL_ERROR:
2961 ret = kvm_handle_internal_error(cpu, run);
2962 break;
2963 case KVM_EXIT_DIRTY_RING_FULL:
2965 * We shouldn't continue if the dirty ring of this vcpu is
2966 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
2968 trace_kvm_dirty_ring_full(cpu->cpu_index);
2969 qemu_mutex_lock_iothread();
2970 kvm_dirty_ring_reap(kvm_state);
2971 qemu_mutex_unlock_iothread();
2972 ret = 0;
2973 break;
2974 case KVM_EXIT_SYSTEM_EVENT:
2975 switch (run->system_event.type) {
2976 case KVM_SYSTEM_EVENT_SHUTDOWN:
2977 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2978 ret = EXCP_INTERRUPT;
2979 break;
2980 case KVM_SYSTEM_EVENT_RESET:
2981 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2982 ret = EXCP_INTERRUPT;
2983 break;
2984 case KVM_SYSTEM_EVENT_CRASH:
2985 kvm_cpu_synchronize_state(cpu);
2986 qemu_mutex_lock_iothread();
2987 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2988 qemu_mutex_unlock_iothread();
2989 ret = 0;
2990 break;
2991 default:
2992 DPRINTF("kvm_arch_handle_exit\n");
2993 ret = kvm_arch_handle_exit(cpu, run);
2994 break;
2996 break;
2997 default:
2998 DPRINTF("kvm_arch_handle_exit\n");
2999 ret = kvm_arch_handle_exit(cpu, run);
3000 break;
3002 } while (ret == 0);
3004 cpu_exec_end(cpu);
3005 qemu_mutex_lock_iothread();
3007 if (ret < 0) {
3008 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3009 vm_stop(RUN_STATE_INTERNAL_ERROR);
3012 qatomic_set(&cpu->exit_request, 0);
3013 return ret;
3016 int kvm_ioctl(KVMState *s, int type, ...)
3018 int ret;
3019 void *arg;
3020 va_list ap;
3022 va_start(ap, type);
3023 arg = va_arg(ap, void *);
3024 va_end(ap);
3026 trace_kvm_ioctl(type, arg);
3027 ret = ioctl(s->fd, type, arg);
3028 if (ret == -1) {
3029 ret = -errno;
3031 return ret;
3034 int kvm_vm_ioctl(KVMState *s, int type, ...)
3036 int ret;
3037 void *arg;
3038 va_list ap;
3040 va_start(ap, type);
3041 arg = va_arg(ap, void *);
3042 va_end(ap);
3044 trace_kvm_vm_ioctl(type, arg);
3045 ret = ioctl(s->vmfd, type, arg);
3046 if (ret == -1) {
3047 ret = -errno;
3049 return ret;
3052 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3054 int ret;
3055 void *arg;
3056 va_list ap;
3058 va_start(ap, type);
3059 arg = va_arg(ap, void *);
3060 va_end(ap);
3062 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3063 ret = ioctl(cpu->kvm_fd, type, arg);
3064 if (ret == -1) {
3065 ret = -errno;
3067 return ret;
3070 int kvm_device_ioctl(int fd, int type, ...)
3072 int ret;
3073 void *arg;
3074 va_list ap;
3076 va_start(ap, type);
3077 arg = va_arg(ap, void *);
3078 va_end(ap);
3080 trace_kvm_device_ioctl(fd, type, arg);
3081 ret = ioctl(fd, type, arg);
3082 if (ret == -1) {
3083 ret = -errno;
3085 return ret;
3088 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3090 int ret;
3091 struct kvm_device_attr attribute = {
3092 .group = group,
3093 .attr = attr,
3096 if (!kvm_vm_attributes_allowed) {
3097 return 0;
3100 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3101 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3102 return ret ? 0 : 1;
3105 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3107 struct kvm_device_attr attribute = {
3108 .group = group,
3109 .attr = attr,
3110 .flags = 0,
3113 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3116 int kvm_device_access(int fd, int group, uint64_t attr,
3117 void *val, bool write, Error **errp)
3119 struct kvm_device_attr kvmattr;
3120 int err;
3122 kvmattr.flags = 0;
3123 kvmattr.group = group;
3124 kvmattr.attr = attr;
3125 kvmattr.addr = (uintptr_t)val;
3127 err = kvm_device_ioctl(fd,
3128 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3129 &kvmattr);
3130 if (err < 0) {
3131 error_setg_errno(errp, -err,
3132 "KVM_%s_DEVICE_ATTR failed: Group %d "
3133 "attr 0x%016" PRIx64,
3134 write ? "SET" : "GET", group, attr);
3136 return err;
3139 bool kvm_has_sync_mmu(void)
3141 return kvm_state->sync_mmu;
3144 int kvm_has_vcpu_events(void)
3146 return kvm_state->vcpu_events;
3149 int kvm_has_robust_singlestep(void)
3151 return kvm_state->robust_singlestep;
3154 int kvm_has_debugregs(void)
3156 return kvm_state->debugregs;
3159 int kvm_max_nested_state_length(void)
3161 return kvm_state->max_nested_state_len;
3164 int kvm_has_many_ioeventfds(void)
3166 if (!kvm_enabled()) {
3167 return 0;
3169 return kvm_state->many_ioeventfds;
3172 int kvm_has_gsi_routing(void)
3174 #ifdef KVM_CAP_IRQ_ROUTING
3175 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3176 #else
3177 return false;
3178 #endif
3181 int kvm_has_intx_set_mask(void)
3183 return kvm_state->intx_set_mask;
3186 bool kvm_arm_supports_user_irq(void)
3188 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3191 #ifdef KVM_CAP_SET_GUEST_DEBUG
3192 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3193 target_ulong pc)
3195 struct kvm_sw_breakpoint *bp;
3197 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3198 if (bp->pc == pc) {
3199 return bp;
3202 return NULL;
3205 int kvm_sw_breakpoints_active(CPUState *cpu)
3207 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3210 struct kvm_set_guest_debug_data {
3211 struct kvm_guest_debug dbg;
3212 int err;
3215 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3217 struct kvm_set_guest_debug_data *dbg_data =
3218 (struct kvm_set_guest_debug_data *) data.host_ptr;
3220 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3221 &dbg_data->dbg);
3224 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3226 struct kvm_set_guest_debug_data data;
3228 data.dbg.control = reinject_trap;
3230 if (cpu->singlestep_enabled) {
3231 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3233 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3234 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3237 kvm_arch_update_guest_debug(cpu, &data.dbg);
3239 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3240 RUN_ON_CPU_HOST_PTR(&data));
3241 return data.err;
3244 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3245 target_ulong len, int type)
3247 struct kvm_sw_breakpoint *bp;
3248 int err;
3250 if (type == GDB_BREAKPOINT_SW) {
3251 bp = kvm_find_sw_breakpoint(cpu, addr);
3252 if (bp) {
3253 bp->use_count++;
3254 return 0;
3257 bp = g_new(struct kvm_sw_breakpoint, 1);
3258 bp->pc = addr;
3259 bp->use_count = 1;
3260 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3261 if (err) {
3262 g_free(bp);
3263 return err;
3266 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3267 } else {
3268 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3269 if (err) {
3270 return err;
3274 CPU_FOREACH(cpu) {
3275 err = kvm_update_guest_debug(cpu, 0);
3276 if (err) {
3277 return err;
3280 return 0;
3283 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3284 target_ulong len, int type)
3286 struct kvm_sw_breakpoint *bp;
3287 int err;
3289 if (type == GDB_BREAKPOINT_SW) {
3290 bp = kvm_find_sw_breakpoint(cpu, addr);
3291 if (!bp) {
3292 return -ENOENT;
3295 if (bp->use_count > 1) {
3296 bp->use_count--;
3297 return 0;
3300 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3301 if (err) {
3302 return err;
3305 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3306 g_free(bp);
3307 } else {
3308 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3309 if (err) {
3310 return err;
3314 CPU_FOREACH(cpu) {
3315 err = kvm_update_guest_debug(cpu, 0);
3316 if (err) {
3317 return err;
3320 return 0;
3323 void kvm_remove_all_breakpoints(CPUState *cpu)
3325 struct kvm_sw_breakpoint *bp, *next;
3326 KVMState *s = cpu->kvm_state;
3327 CPUState *tmpcpu;
3329 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3330 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3331 /* Try harder to find a CPU that currently sees the breakpoint. */
3332 CPU_FOREACH(tmpcpu) {
3333 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3334 break;
3338 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3339 g_free(bp);
3341 kvm_arch_remove_all_hw_breakpoints();
3343 CPU_FOREACH(cpu) {
3344 kvm_update_guest_debug(cpu, 0);
3348 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3350 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3352 return -EINVAL;
3355 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3356 target_ulong len, int type)
3358 return -EINVAL;
3361 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3362 target_ulong len, int type)
3364 return -EINVAL;
3367 void kvm_remove_all_breakpoints(CPUState *cpu)
3370 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3372 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3374 KVMState *s = kvm_state;
3375 struct kvm_signal_mask *sigmask;
3376 int r;
3378 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3380 sigmask->len = s->sigmask_len;
3381 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3382 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3383 g_free(sigmask);
3385 return r;
3388 static void kvm_ipi_signal(int sig)
3390 if (current_cpu) {
3391 assert(kvm_immediate_exit);
3392 kvm_cpu_kick(current_cpu);
3396 void kvm_init_cpu_signals(CPUState *cpu)
3398 int r;
3399 sigset_t set;
3400 struct sigaction sigact;
3402 memset(&sigact, 0, sizeof(sigact));
3403 sigact.sa_handler = kvm_ipi_signal;
3404 sigaction(SIG_IPI, &sigact, NULL);
3406 pthread_sigmask(SIG_BLOCK, NULL, &set);
3407 #if defined KVM_HAVE_MCE_INJECTION
3408 sigdelset(&set, SIGBUS);
3409 pthread_sigmask(SIG_SETMASK, &set, NULL);
3410 #endif
3411 sigdelset(&set, SIG_IPI);
3412 if (kvm_immediate_exit) {
3413 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3414 } else {
3415 r = kvm_set_signal_mask(cpu, &set);
3417 if (r) {
3418 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3419 exit(1);
3423 /* Called asynchronously in VCPU thread. */
3424 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3426 #ifdef KVM_HAVE_MCE_INJECTION
3427 if (have_sigbus_pending) {
3428 return 1;
3430 have_sigbus_pending = true;
3431 pending_sigbus_addr = addr;
3432 pending_sigbus_code = code;
3433 qatomic_set(&cpu->exit_request, 1);
3434 return 0;
3435 #else
3436 return 1;
3437 #endif
3440 /* Called synchronously (via signalfd) in main thread. */
3441 int kvm_on_sigbus(int code, void *addr)
3443 #ifdef KVM_HAVE_MCE_INJECTION
3444 /* Action required MCE kills the process if SIGBUS is blocked. Because
3445 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3446 * we can only get action optional here.
3448 assert(code != BUS_MCEERR_AR);
3449 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3450 return 0;
3451 #else
3452 return 1;
3453 #endif
3456 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3458 int ret;
3459 struct kvm_create_device create_dev;
3461 create_dev.type = type;
3462 create_dev.fd = -1;
3463 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3465 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3466 return -ENOTSUP;
3469 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3470 if (ret) {
3471 return ret;
3474 return test ? 0 : create_dev.fd;
3477 bool kvm_device_supported(int vmfd, uint64_t type)
3479 struct kvm_create_device create_dev = {
3480 .type = type,
3481 .fd = -1,
3482 .flags = KVM_CREATE_DEVICE_TEST,
3485 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3486 return false;
3489 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3492 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3494 struct kvm_one_reg reg;
3495 int r;
3497 reg.id = id;
3498 reg.addr = (uintptr_t) source;
3499 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3500 if (r) {
3501 trace_kvm_failed_reg_set(id, strerror(-r));
3503 return r;
3506 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3508 struct kvm_one_reg reg;
3509 int r;
3511 reg.id = id;
3512 reg.addr = (uintptr_t) target;
3513 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3514 if (r) {
3515 trace_kvm_failed_reg_get(id, strerror(-r));
3517 return r;
3520 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3521 hwaddr start_addr, hwaddr size)
3523 KVMState *kvm = KVM_STATE(ms->accelerator);
3524 int i;
3526 for (i = 0; i < kvm->nr_as; ++i) {
3527 if (kvm->as[i].as == as && kvm->as[i].ml) {
3528 size = MIN(kvm_max_slot_size, size);
3529 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3530 start_addr, size);
3534 return false;
3537 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3538 const char *name, void *opaque,
3539 Error **errp)
3541 KVMState *s = KVM_STATE(obj);
3542 int64_t value = s->kvm_shadow_mem;
3544 visit_type_int(v, name, &value, errp);
3547 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3548 const char *name, void *opaque,
3549 Error **errp)
3551 KVMState *s = KVM_STATE(obj);
3552 int64_t value;
3554 if (s->fd != -1) {
3555 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3556 return;
3559 if (!visit_type_int(v, name, &value, errp)) {
3560 return;
3563 s->kvm_shadow_mem = value;
3566 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3567 const char *name, void *opaque,
3568 Error **errp)
3570 KVMState *s = KVM_STATE(obj);
3571 OnOffSplit mode;
3573 if (s->fd != -1) {
3574 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3575 return;
3578 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3579 return;
3581 switch (mode) {
3582 case ON_OFF_SPLIT_ON:
3583 s->kernel_irqchip_allowed = true;
3584 s->kernel_irqchip_required = true;
3585 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3586 break;
3587 case ON_OFF_SPLIT_OFF:
3588 s->kernel_irqchip_allowed = false;
3589 s->kernel_irqchip_required = false;
3590 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3591 break;
3592 case ON_OFF_SPLIT_SPLIT:
3593 s->kernel_irqchip_allowed = true;
3594 s->kernel_irqchip_required = true;
3595 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3596 break;
3597 default:
3598 /* The value was checked in visit_type_OnOffSplit() above. If
3599 * we get here, then something is wrong in QEMU.
3601 abort();
3605 bool kvm_kernel_irqchip_allowed(void)
3607 return kvm_state->kernel_irqchip_allowed;
3610 bool kvm_kernel_irqchip_required(void)
3612 return kvm_state->kernel_irqchip_required;
3615 bool kvm_kernel_irqchip_split(void)
3617 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3620 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3621 const char *name, void *opaque,
3622 Error **errp)
3624 KVMState *s = KVM_STATE(obj);
3625 uint32_t value = s->kvm_dirty_ring_size;
3627 visit_type_uint32(v, name, &value, errp);
3630 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3631 const char *name, void *opaque,
3632 Error **errp)
3634 KVMState *s = KVM_STATE(obj);
3635 Error *error = NULL;
3636 uint32_t value;
3638 if (s->fd != -1) {
3639 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3640 return;
3643 visit_type_uint32(v, name, &value, &error);
3644 if (error) {
3645 error_propagate(errp, error);
3646 return;
3648 if (value & (value - 1)) {
3649 error_setg(errp, "dirty-ring-size must be a power of two.");
3650 return;
3653 s->kvm_dirty_ring_size = value;
3656 static void kvm_accel_instance_init(Object *obj)
3658 KVMState *s = KVM_STATE(obj);
3660 s->fd = -1;
3661 s->vmfd = -1;
3662 s->kvm_shadow_mem = -1;
3663 s->kernel_irqchip_allowed = true;
3664 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3665 /* KVM dirty ring is by default off */
3666 s->kvm_dirty_ring_size = 0;
3669 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3671 AccelClass *ac = ACCEL_CLASS(oc);
3672 ac->name = "KVM";
3673 ac->init_machine = kvm_init;
3674 ac->has_memory = kvm_accel_has_memory;
3675 ac->allowed = &kvm_allowed;
3677 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3678 NULL, kvm_set_kernel_irqchip,
3679 NULL, NULL);
3680 object_class_property_set_description(oc, "kernel-irqchip",
3681 "Configure KVM in-kernel irqchip");
3683 object_class_property_add(oc, "kvm-shadow-mem", "int",
3684 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3685 NULL, NULL);
3686 object_class_property_set_description(oc, "kvm-shadow-mem",
3687 "KVM shadow MMU size");
3689 object_class_property_add(oc, "dirty-ring-size", "uint32",
3690 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3691 NULL, NULL);
3692 object_class_property_set_description(oc, "dirty-ring-size",
3693 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3696 static const TypeInfo kvm_accel_type = {
3697 .name = TYPE_KVM_ACCEL,
3698 .parent = TYPE_ACCEL,
3699 .instance_init = kvm_accel_instance_init,
3700 .class_init = kvm_accel_class_init,
3701 .instance_size = sizeof(KVMState),
3704 static void kvm_type_init(void)
3706 type_register_static(&kvm_accel_type);
3709 type_init(kvm_type_init);
3711 typedef struct StatsArgs {
3712 union StatsResultsType {
3713 StatsResultList **stats;
3714 StatsSchemaList **schema;
3715 } result;
3716 strList *names;
3717 Error **errp;
3718 } StatsArgs;
3720 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3721 uint64_t *stats_data,
3722 StatsList *stats_list,
3723 Error **errp)
3726 Stats *stats;
3727 uint64List *val_list = NULL;
3729 /* Only add stats that we understand. */
3730 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3731 case KVM_STATS_TYPE_CUMULATIVE:
3732 case KVM_STATS_TYPE_INSTANT:
3733 case KVM_STATS_TYPE_PEAK:
3734 case KVM_STATS_TYPE_LINEAR_HIST:
3735 case KVM_STATS_TYPE_LOG_HIST:
3736 break;
3737 default:
3738 return stats_list;
3741 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3742 case KVM_STATS_UNIT_NONE:
3743 case KVM_STATS_UNIT_BYTES:
3744 case KVM_STATS_UNIT_CYCLES:
3745 case KVM_STATS_UNIT_SECONDS:
3746 break;
3747 default:
3748 return stats_list;
3751 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3752 case KVM_STATS_BASE_POW10:
3753 case KVM_STATS_BASE_POW2:
3754 break;
3755 default:
3756 return stats_list;
3759 /* Alloc and populate data list */
3760 stats = g_new0(Stats, 1);
3761 stats->name = g_strdup(pdesc->name);
3762 stats->value = g_new0(StatsValue, 1);;
3764 if (pdesc->size == 1) {
3765 stats->value->u.scalar = *stats_data;
3766 stats->value->type = QTYPE_QNUM;
3767 } else {
3768 int i;
3769 for (i = 0; i < pdesc->size; i++) {
3770 QAPI_LIST_PREPEND(val_list, stats_data[i]);
3772 stats->value->u.list = val_list;
3773 stats->value->type = QTYPE_QLIST;
3776 QAPI_LIST_PREPEND(stats_list, stats);
3777 return stats_list;
3780 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3781 StatsSchemaValueList *list,
3782 Error **errp)
3784 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3785 schema_entry->value = g_new0(StatsSchemaValue, 1);
3787 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3788 case KVM_STATS_TYPE_CUMULATIVE:
3789 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3790 break;
3791 case KVM_STATS_TYPE_INSTANT:
3792 schema_entry->value->type = STATS_TYPE_INSTANT;
3793 break;
3794 case KVM_STATS_TYPE_PEAK:
3795 schema_entry->value->type = STATS_TYPE_PEAK;
3796 break;
3797 case KVM_STATS_TYPE_LINEAR_HIST:
3798 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3799 schema_entry->value->bucket_size = pdesc->bucket_size;
3800 schema_entry->value->has_bucket_size = true;
3801 break;
3802 case KVM_STATS_TYPE_LOG_HIST:
3803 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3804 break;
3805 default:
3806 goto exit;
3809 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3810 case KVM_STATS_UNIT_NONE:
3811 break;
3812 case KVM_STATS_UNIT_BYTES:
3813 schema_entry->value->has_unit = true;
3814 schema_entry->value->unit = STATS_UNIT_BYTES;
3815 break;
3816 case KVM_STATS_UNIT_CYCLES:
3817 schema_entry->value->has_unit = true;
3818 schema_entry->value->unit = STATS_UNIT_CYCLES;
3819 break;
3820 case KVM_STATS_UNIT_SECONDS:
3821 schema_entry->value->has_unit = true;
3822 schema_entry->value->unit = STATS_UNIT_SECONDS;
3823 break;
3824 default:
3825 goto exit;
3828 schema_entry->value->exponent = pdesc->exponent;
3829 if (pdesc->exponent) {
3830 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3831 case KVM_STATS_BASE_POW10:
3832 schema_entry->value->has_base = true;
3833 schema_entry->value->base = 10;
3834 break;
3835 case KVM_STATS_BASE_POW2:
3836 schema_entry->value->has_base = true;
3837 schema_entry->value->base = 2;
3838 break;
3839 default:
3840 goto exit;
3844 schema_entry->value->name = g_strdup(pdesc->name);
3845 schema_entry->next = list;
3846 return schema_entry;
3847 exit:
3848 g_free(schema_entry->value);
3849 g_free(schema_entry);
3850 return list;
3853 /* Cached stats descriptors */
3854 typedef struct StatsDescriptors {
3855 const char *ident; /* cache key, currently the StatsTarget */
3856 struct kvm_stats_desc *kvm_stats_desc;
3857 struct kvm_stats_header *kvm_stats_header;
3858 QTAILQ_ENTRY(StatsDescriptors) next;
3859 } StatsDescriptors;
3861 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3862 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3865 * Return the descriptors for 'target', that either have already been read
3866 * or are retrieved from 'stats_fd'.
3868 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3869 Error **errp)
3871 StatsDescriptors *descriptors;
3872 const char *ident;
3873 struct kvm_stats_desc *kvm_stats_desc;
3874 struct kvm_stats_header *kvm_stats_header;
3875 size_t size_desc;
3876 ssize_t ret;
3878 ident = StatsTarget_str(target);
3879 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3880 if (g_str_equal(descriptors->ident, ident)) {
3881 return descriptors;
3885 descriptors = g_new0(StatsDescriptors, 1);
3887 /* Read stats header */
3888 kvm_stats_header = g_malloc(sizeof(*kvm_stats_header));
3889 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
3890 if (ret != sizeof(*kvm_stats_header)) {
3891 error_setg(errp, "KVM stats: failed to read stats header: "
3892 "expected %zu actual %zu",
3893 sizeof(*kvm_stats_header), ret);
3894 return NULL;
3896 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3898 /* Read stats descriptors */
3899 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3900 ret = pread(stats_fd, kvm_stats_desc,
3901 size_desc * kvm_stats_header->num_desc,
3902 kvm_stats_header->desc_offset);
3904 if (ret != size_desc * kvm_stats_header->num_desc) {
3905 error_setg(errp, "KVM stats: failed to read stats descriptors: "
3906 "expected %zu actual %zu",
3907 size_desc * kvm_stats_header->num_desc, ret);
3908 g_free(descriptors);
3909 g_free(kvm_stats_desc);
3910 return NULL;
3912 descriptors->kvm_stats_header = kvm_stats_header;
3913 descriptors->kvm_stats_desc = kvm_stats_desc;
3914 descriptors->ident = ident;
3915 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3916 return descriptors;
3919 static void query_stats(StatsResultList **result, StatsTarget target,
3920 strList *names, int stats_fd, Error **errp)
3922 struct kvm_stats_desc *kvm_stats_desc;
3923 struct kvm_stats_header *kvm_stats_header;
3924 StatsDescriptors *descriptors;
3925 g_autofree uint64_t *stats_data = NULL;
3926 struct kvm_stats_desc *pdesc;
3927 StatsList *stats_list = NULL;
3928 size_t size_desc, size_data = 0;
3929 ssize_t ret;
3930 int i;
3932 descriptors = find_stats_descriptors(target, stats_fd, errp);
3933 if (!descriptors) {
3934 return;
3937 kvm_stats_header = descriptors->kvm_stats_header;
3938 kvm_stats_desc = descriptors->kvm_stats_desc;
3939 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3941 /* Tally the total data size; read schema data */
3942 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3943 pdesc = (void *)kvm_stats_desc + i * size_desc;
3944 size_data += pdesc->size * sizeof(*stats_data);
3947 stats_data = g_malloc0(size_data);
3948 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3950 if (ret != size_data) {
3951 error_setg(errp, "KVM stats: failed to read data: "
3952 "expected %zu actual %zu", size_data, ret);
3953 return;
3956 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3957 uint64_t *stats;
3958 pdesc = (void *)kvm_stats_desc + i * size_desc;
3960 /* Add entry to the list */
3961 stats = (void *)stats_data + pdesc->offset;
3962 if (!apply_str_list_filter(pdesc->name, names)) {
3963 continue;
3965 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3968 if (!stats_list) {
3969 return;
3972 switch (target) {
3973 case STATS_TARGET_VM:
3974 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3975 break;
3976 case STATS_TARGET_VCPU:
3977 add_stats_entry(result, STATS_PROVIDER_KVM,
3978 current_cpu->parent_obj.canonical_path,
3979 stats_list);
3980 break;
3981 default:
3982 break;
3986 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
3987 int stats_fd, Error **errp)
3989 struct kvm_stats_desc *kvm_stats_desc;
3990 struct kvm_stats_header *kvm_stats_header;
3991 StatsDescriptors *descriptors;
3992 struct kvm_stats_desc *pdesc;
3993 StatsSchemaValueList *stats_list = NULL;
3994 size_t size_desc;
3995 int i;
3997 descriptors = find_stats_descriptors(target, stats_fd, errp);
3998 if (!descriptors) {
3999 return;
4002 kvm_stats_header = descriptors->kvm_stats_header;
4003 kvm_stats_desc = descriptors->kvm_stats_desc;
4004 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4006 /* Tally the total data size; read schema data */
4007 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4008 pdesc = (void *)kvm_stats_desc + i * size_desc;
4009 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4012 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4015 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
4017 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4018 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4019 Error *local_err = NULL;
4021 if (stats_fd == -1) {
4022 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4023 error_propagate(kvm_stats_args->errp, local_err);
4024 return;
4026 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4027 kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
4028 close(stats_fd);
4031 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
4033 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4034 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4035 Error *local_err = NULL;
4037 if (stats_fd == -1) {
4038 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4039 error_propagate(kvm_stats_args->errp, local_err);
4040 return;
4042 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4043 kvm_stats_args->errp);
4044 close(stats_fd);
4047 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4048 strList *names, strList *targets, Error **errp)
4050 KVMState *s = kvm_state;
4051 CPUState *cpu;
4052 int stats_fd;
4054 switch (target) {
4055 case STATS_TARGET_VM:
4057 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4058 if (stats_fd == -1) {
4059 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4060 return;
4062 query_stats(result, target, names, stats_fd, errp);
4063 close(stats_fd);
4064 break;
4066 case STATS_TARGET_VCPU:
4068 StatsArgs stats_args;
4069 stats_args.result.stats = result;
4070 stats_args.names = names;
4071 stats_args.errp = errp;
4072 CPU_FOREACH(cpu) {
4073 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4074 continue;
4076 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4078 break;
4080 default:
4081 break;
4085 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4087 StatsArgs stats_args;
4088 KVMState *s = kvm_state;
4089 int stats_fd;
4091 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4092 if (stats_fd == -1) {
4093 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4094 return;
4096 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4097 close(stats_fd);
4099 stats_args.result.schema = result;
4100 stats_args.errp = errp;
4101 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));