4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
14 #include "internals.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
24 #include "semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/cpu-timers.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
35 #include "exec/cpu_ldst.h"
36 #include "semihosting/common-semi.h"
39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
40 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
42 #ifndef CONFIG_USER_ONLY
44 static bool get_phys_addr_lpae(CPUARMState
*env
, uint64_t address
,
45 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
47 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
48 target_ulong
*page_size_ptr
,
49 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
50 __attribute__((nonnull
));
53 static void switch_mode(CPUARMState
*env
, int mode
);
54 static int aa64_va_parameter_tbi(uint64_t tcr
, ARMMMUIdx mmu_idx
);
56 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
58 assert(ri
->fieldoffset
);
59 if (cpreg_field_is_64bit(ri
)) {
60 return CPREG_FIELD64(env
, ri
);
62 return CPREG_FIELD32(env
, ri
);
66 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
69 assert(ri
->fieldoffset
);
70 if (cpreg_field_is_64bit(ri
)) {
71 CPREG_FIELD64(env
, ri
) = value
;
73 CPREG_FIELD32(env
, ri
) = value
;
77 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
79 return (char *)env
+ ri
->fieldoffset
;
82 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
84 /* Raw read of a coprocessor register (as needed for migration, etc). */
85 if (ri
->type
& ARM_CP_CONST
) {
86 return ri
->resetvalue
;
87 } else if (ri
->raw_readfn
) {
88 return ri
->raw_readfn(env
, ri
);
89 } else if (ri
->readfn
) {
90 return ri
->readfn(env
, ri
);
92 return raw_read(env
, ri
);
96 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
99 /* Raw write of a coprocessor register (as needed for migration, etc).
100 * Note that constant registers are treated as write-ignored; the
101 * caller should check for success by whether a readback gives the
104 if (ri
->type
& ARM_CP_CONST
) {
106 } else if (ri
->raw_writefn
) {
107 ri
->raw_writefn(env
, ri
, v
);
108 } else if (ri
->writefn
) {
109 ri
->writefn(env
, ri
, v
);
111 raw_write(env
, ri
, v
);
115 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
117 /* Return true if the regdef would cause an assertion if you called
118 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
119 * program bug for it not to have the NO_RAW flag).
120 * NB that returning false here doesn't necessarily mean that calling
121 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
122 * read/write access functions which are safe for raw use" from "has
123 * read/write access functions which have side effects but has forgotten
124 * to provide raw access functions".
125 * The tests here line up with the conditions in read/write_raw_cp_reg()
126 * and assertions in raw_read()/raw_write().
128 if ((ri
->type
& ARM_CP_CONST
) ||
130 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
136 bool write_cpustate_to_list(ARMCPU
*cpu
, bool kvm_sync
)
138 /* Write the coprocessor state from cpu->env to the (index,value) list. */
142 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
143 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
144 const ARMCPRegInfo
*ri
;
147 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
152 if (ri
->type
& ARM_CP_NO_RAW
) {
156 newval
= read_raw_cp_reg(&cpu
->env
, ri
);
159 * Only sync if the previous list->cpustate sync succeeded.
160 * Rather than tracking the success/failure state for every
161 * item in the list, we just recheck "does the raw write we must
162 * have made in write_list_to_cpustate() read back OK" here.
164 uint64_t oldval
= cpu
->cpreg_values
[i
];
166 if (oldval
== newval
) {
170 write_raw_cp_reg(&cpu
->env
, ri
, oldval
);
171 if (read_raw_cp_reg(&cpu
->env
, ri
) != oldval
) {
175 write_raw_cp_reg(&cpu
->env
, ri
, newval
);
177 cpu
->cpreg_values
[i
] = newval
;
182 bool write_list_to_cpustate(ARMCPU
*cpu
)
187 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
188 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
189 uint64_t v
= cpu
->cpreg_values
[i
];
190 const ARMCPRegInfo
*ri
;
192 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
197 if (ri
->type
& ARM_CP_NO_RAW
) {
200 /* Write value and confirm it reads back as written
201 * (to catch read-only registers and partially read-only
202 * registers where the incoming migration value doesn't match)
204 write_raw_cp_reg(&cpu
->env
, ri
, v
);
205 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
212 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
214 ARMCPU
*cpu
= opaque
;
216 const ARMCPRegInfo
*ri
;
218 regidx
= *(uint32_t *)key
;
219 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
221 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
222 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
223 /* The value array need not be initialized at this point */
224 cpu
->cpreg_array_len
++;
228 static void count_cpreg(gpointer key
, gpointer opaque
)
230 ARMCPU
*cpu
= opaque
;
232 const ARMCPRegInfo
*ri
;
234 regidx
= *(uint32_t *)key
;
235 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
237 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
238 cpu
->cpreg_array_len
++;
242 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
244 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
245 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
256 void init_cpreg_list(ARMCPU
*cpu
)
258 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
259 * Note that we require cpreg_tuples[] to be sorted by key ID.
264 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
265 keys
= g_list_sort(keys
, cpreg_key_compare
);
267 cpu
->cpreg_array_len
= 0;
269 g_list_foreach(keys
, count_cpreg
, cpu
);
271 arraylen
= cpu
->cpreg_array_len
;
272 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
273 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
274 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
275 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
276 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
277 cpu
->cpreg_array_len
= 0;
279 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
281 assert(cpu
->cpreg_array_len
== arraylen
);
287 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
289 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
290 const ARMCPRegInfo
*ri
,
293 if (!is_a64(env
) && arm_current_el(env
) == 3 &&
294 arm_is_secure_below_el3(env
)) {
295 return CP_ACCESS_TRAP_UNCATEGORIZED
;
300 /* Some secure-only AArch32 registers trap to EL3 if used from
301 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
302 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
303 * We assume that the .access field is set to PL1_RW.
305 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
306 const ARMCPRegInfo
*ri
,
309 if (arm_current_el(env
) == 3) {
312 if (arm_is_secure_below_el3(env
)) {
313 if (env
->cp15
.scr_el3
& SCR_EEL2
) {
314 return CP_ACCESS_TRAP_EL2
;
316 return CP_ACCESS_TRAP_EL3
;
318 /* This will be EL1 NS and EL2 NS, which just UNDEF */
319 return CP_ACCESS_TRAP_UNCATEGORIZED
;
322 static uint64_t arm_mdcr_el2_eff(CPUARMState
*env
)
324 return arm_is_el2_enabled(env
) ? env
->cp15
.mdcr_el2
: 0;
327 /* Check for traps to "powerdown debug" registers, which are controlled
330 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
333 int el
= arm_current_el(env
);
334 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
335 bool mdcr_el2_tdosa
= (mdcr_el2
& MDCR_TDOSA
) || (mdcr_el2
& MDCR_TDE
) ||
336 (arm_hcr_el2_eff(env
) & HCR_TGE
);
338 if (el
< 2 && mdcr_el2_tdosa
) {
339 return CP_ACCESS_TRAP_EL2
;
341 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
342 return CP_ACCESS_TRAP_EL3
;
347 /* Check for traps to "debug ROM" registers, which are controlled
348 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
350 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
353 int el
= arm_current_el(env
);
354 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
355 bool mdcr_el2_tdra
= (mdcr_el2
& MDCR_TDRA
) || (mdcr_el2
& MDCR_TDE
) ||
356 (arm_hcr_el2_eff(env
) & HCR_TGE
);
358 if (el
< 2 && mdcr_el2_tdra
) {
359 return CP_ACCESS_TRAP_EL2
;
361 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
362 return CP_ACCESS_TRAP_EL3
;
367 /* Check for traps to general debug registers, which are controlled
368 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
370 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
373 int el
= arm_current_el(env
);
374 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
375 bool mdcr_el2_tda
= (mdcr_el2
& MDCR_TDA
) || (mdcr_el2
& MDCR_TDE
) ||
376 (arm_hcr_el2_eff(env
) & HCR_TGE
);
378 if (el
< 2 && mdcr_el2_tda
) {
379 return CP_ACCESS_TRAP_EL2
;
381 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
382 return CP_ACCESS_TRAP_EL3
;
387 /* Check for traps to performance monitor registers, which are controlled
388 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
390 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
393 int el
= arm_current_el(env
);
394 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
396 if (el
< 2 && (mdcr_el2
& MDCR_TPM
)) {
397 return CP_ACCESS_TRAP_EL2
;
399 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
400 return CP_ACCESS_TRAP_EL3
;
405 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
406 static CPAccessResult
access_tvm_trvm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
409 if (arm_current_el(env
) == 1) {
410 uint64_t trap
= isread
? HCR_TRVM
: HCR_TVM
;
411 if (arm_hcr_el2_eff(env
) & trap
) {
412 return CP_ACCESS_TRAP_EL2
;
418 /* Check for traps from EL1 due to HCR_EL2.TSW. */
419 static CPAccessResult
access_tsw(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
422 if (arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_TSW
)) {
423 return CP_ACCESS_TRAP_EL2
;
428 /* Check for traps from EL1 due to HCR_EL2.TACR. */
429 static CPAccessResult
access_tacr(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
432 if (arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_TACR
)) {
433 return CP_ACCESS_TRAP_EL2
;
438 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
439 static CPAccessResult
access_ttlb(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
442 if (arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_TTLB
)) {
443 return CP_ACCESS_TRAP_EL2
;
448 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
450 ARMCPU
*cpu
= env_archcpu(env
);
452 raw_write(env
, ri
, value
);
453 tlb_flush(CPU(cpu
)); /* Flush TLB as domain not tracked in TLB */
456 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
458 ARMCPU
*cpu
= env_archcpu(env
);
460 if (raw_read(env
, ri
) != value
) {
461 /* Unlike real hardware the qemu TLB uses virtual addresses,
462 * not modified virtual addresses, so this causes a TLB flush.
465 raw_write(env
, ri
, value
);
469 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
472 ARMCPU
*cpu
= env_archcpu(env
);
474 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_PMSA
)
475 && !extended_addresses_enabled(env
)) {
476 /* For VMSA (when not using the LPAE long descriptor page table
477 * format) this register includes the ASID, so do a TLB flush.
478 * For PMSA it is purely a process ID and no action is needed.
482 raw_write(env
, ri
, value
);
485 /* IS variants of TLB operations must affect all cores */
486 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
489 CPUState
*cs
= env_cpu(env
);
491 tlb_flush_all_cpus_synced(cs
);
494 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
497 CPUState
*cs
= env_cpu(env
);
499 tlb_flush_all_cpus_synced(cs
);
502 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
505 CPUState
*cs
= env_cpu(env
);
507 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
510 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
513 CPUState
*cs
= env_cpu(env
);
515 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
519 * Non-IS variants of TLB operations are upgraded to
520 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
521 * force broadcast of these operations.
523 static bool tlb_force_broadcast(CPUARMState
*env
)
525 return arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_FB
);
528 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
531 /* Invalidate all (TLBIALL) */
532 CPUState
*cs
= env_cpu(env
);
534 if (tlb_force_broadcast(env
)) {
535 tlb_flush_all_cpus_synced(cs
);
541 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
544 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
545 CPUState
*cs
= env_cpu(env
);
547 value
&= TARGET_PAGE_MASK
;
548 if (tlb_force_broadcast(env
)) {
549 tlb_flush_page_all_cpus_synced(cs
, value
);
551 tlb_flush_page(cs
, value
);
555 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
558 /* Invalidate by ASID (TLBIASID) */
559 CPUState
*cs
= env_cpu(env
);
561 if (tlb_force_broadcast(env
)) {
562 tlb_flush_all_cpus_synced(cs
);
568 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
571 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
572 CPUState
*cs
= env_cpu(env
);
574 value
&= TARGET_PAGE_MASK
;
575 if (tlb_force_broadcast(env
)) {
576 tlb_flush_page_all_cpus_synced(cs
, value
);
578 tlb_flush_page(cs
, value
);
582 static void tlbiall_nsnh_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
585 CPUState
*cs
= env_cpu(env
);
587 tlb_flush_by_mmuidx(cs
,
589 ARMMMUIdxBit_E10_1_PAN
|
593 static void tlbiall_nsnh_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
596 CPUState
*cs
= env_cpu(env
);
598 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
600 ARMMMUIdxBit_E10_1_PAN
|
605 static void tlbiall_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
608 CPUState
*cs
= env_cpu(env
);
610 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_E2
);
613 static void tlbiall_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
616 CPUState
*cs
= env_cpu(env
);
618 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_E2
);
621 static void tlbimva_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
624 CPUState
*cs
= env_cpu(env
);
625 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
627 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_E2
);
630 static void tlbimva_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
633 CPUState
*cs
= env_cpu(env
);
634 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
636 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
640 static const ARMCPRegInfo cp_reginfo
[] = {
641 /* Define the secure and non-secure FCSE identifier CP registers
642 * separately because there is no secure bank in V8 (no _EL3). This allows
643 * the secure register to be properly reset and migrated. There is also no
644 * v8 EL1 version of the register so the non-secure instance stands alone.
647 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
648 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
649 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
650 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
651 { .name
= "FCSEIDR_S",
652 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
653 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
654 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
655 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
656 /* Define the secure and non-secure context identifier CP registers
657 * separately because there is no secure bank in V8 (no _EL3). This allows
658 * the secure register to be properly reset and migrated. In the
659 * non-secure case, the 32-bit register will have reset and migration
660 * disabled during registration as it is handled by the 64-bit instance.
662 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
663 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
664 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
665 .secure
= ARM_CP_SECSTATE_NS
,
666 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
667 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
668 { .name
= "CONTEXTIDR_S", .state
= ARM_CP_STATE_AA32
,
669 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
670 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
671 .secure
= ARM_CP_SECSTATE_S
,
672 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
673 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
677 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
678 /* NB: Some of these registers exist in v8 but with more precise
679 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
681 /* MMU Domain access control / MPU write buffer control */
683 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
684 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
, .resetvalue
= 0,
685 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
686 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
687 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
688 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
689 * For v6 and v5, these mappings are overly broad.
691 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
692 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
693 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
694 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
695 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
696 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
697 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
698 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
699 /* Cache maintenance ops; some of this space may be overridden later. */
700 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
701 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
702 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
706 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
707 /* Not all pre-v6 cores implemented this WFI, so this is slightly
710 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
711 .access
= PL1_W
, .type
= ARM_CP_WFI
},
715 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
716 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
717 * is UNPREDICTABLE; we choose to NOP as most implementations do).
719 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
720 .access
= PL1_W
, .type
= ARM_CP_WFI
},
721 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
722 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
723 * OMAPCP will override this space.
725 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
726 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
728 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
729 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
731 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
732 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
733 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
735 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
736 * implementing it as RAZ means the "debug architecture version" bits
737 * will read as a reserved value, which should cause Linux to not try
738 * to use the debug hardware.
740 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
741 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
742 /* MMU TLB control. Note that the wildcarding means we cover not just
743 * the unified TLB ops but also the dside/iside/inner-shareable variants.
745 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
746 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
747 .type
= ARM_CP_NO_RAW
},
748 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
749 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
750 .type
= ARM_CP_NO_RAW
},
751 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
752 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
753 .type
= ARM_CP_NO_RAW
},
754 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
755 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
756 .type
= ARM_CP_NO_RAW
},
757 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
758 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
759 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
760 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
764 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
769 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
770 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
771 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
772 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
773 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
775 if (cpu_isar_feature(aa32_vfp_simd
, env_archcpu(env
))) {
776 /* VFP coprocessor: cp10 & cp11 [23:20] */
777 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
779 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
780 /* ASEDIS [31] bit is RAO/WI */
784 /* VFPv3 and upwards with NEON implement 32 double precision
785 * registers (D0-D31).
787 if (!cpu_isar_feature(aa32_simd_r32
, env_archcpu(env
))) {
788 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
796 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
797 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
799 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
800 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
801 value
&= ~(0xf << 20);
802 value
|= env
->cp15
.cpacr_el1
& (0xf << 20);
805 env
->cp15
.cpacr_el1
= value
;
808 static uint64_t cpacr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
811 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
812 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
814 uint64_t value
= env
->cp15
.cpacr_el1
;
816 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
817 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
818 value
&= ~(0xf << 20);
824 static void cpacr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
826 /* Call cpacr_write() so that we reset with the correct RAO bits set
827 * for our CPU features.
829 cpacr_write(env
, ri
, 0);
832 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
835 if (arm_feature(env
, ARM_FEATURE_V8
)) {
836 /* Check if CPACR accesses are to be trapped to EL2 */
837 if (arm_current_el(env
) == 1 && arm_is_el2_enabled(env
) &&
838 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
)) {
839 return CP_ACCESS_TRAP_EL2
;
840 /* Check if CPACR accesses are to be trapped to EL3 */
841 } else if (arm_current_el(env
) < 3 &&
842 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
843 return CP_ACCESS_TRAP_EL3
;
850 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
853 /* Check if CPTR accesses are set to trap to EL3 */
854 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
855 return CP_ACCESS_TRAP_EL3
;
861 static const ARMCPRegInfo v6_cp_reginfo
[] = {
862 /* prefetch by MVA in v6, NOP in v7 */
863 { .name
= "MVA_prefetch",
864 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
865 .access
= PL1_W
, .type
= ARM_CP_NOP
},
866 /* We need to break the TB after ISB to execute self-modifying code
867 * correctly and also to take any pending interrupts immediately.
868 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
870 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
871 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
872 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
873 .access
= PL0_W
, .type
= ARM_CP_NOP
},
874 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
875 .access
= PL0_W
, .type
= ARM_CP_NOP
},
876 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
877 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
878 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
879 offsetof(CPUARMState
, cp15
.ifar_ns
) },
881 /* Watchpoint Fault Address Register : should actually only be present
882 * for 1136, 1176, 11MPCore.
884 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
885 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
886 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
887 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
888 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
889 .resetfn
= cpacr_reset
, .writefn
= cpacr_write
, .readfn
= cpacr_read
},
893 typedef struct pm_event
{
894 uint16_t number
; /* PMEVTYPER.evtCount is 16 bits wide */
895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896 bool (*supported
)(CPUARMState
*);
898 * Retrieve the current count of the underlying event. The programmed
899 * counters hold a difference from the return value from this function
901 uint64_t (*get_count
)(CPUARMState
*);
903 * Return how many nanoseconds it will take (at a minimum) for count events
904 * to occur. A negative value indicates the counter will never overflow, or
905 * that the counter has otherwise arranged for the overflow bit to be set
906 * and the PMU interrupt to be raised on overflow.
908 int64_t (*ns_per_count
)(uint64_t);
911 static bool event_always_supported(CPUARMState
*env
)
916 static uint64_t swinc_get_count(CPUARMState
*env
)
919 * SW_INCR events are written directly to the pmevcntr's by writes to
920 * PMSWINC, so there is no underlying count maintained by the PMU itself
925 static int64_t swinc_ns_per(uint64_t ignored
)
931 * Return the underlying cycle count for the PMU cycle counters. If we're in
932 * usermode, simply return 0.
934 static uint64_t cycles_get_count(CPUARMState
*env
)
936 #ifndef CONFIG_USER_ONLY
937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
938 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
940 return cpu_get_host_ticks();
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles
)
947 return (ARM_CPU_FREQ
/ NANOSECONDS_PER_SECOND
) * cycles
;
950 static bool instructions_supported(CPUARMState
*env
)
952 return icount_enabled() == 1; /* Precise instruction counting */
955 static uint64_t instructions_get_count(CPUARMState
*env
)
957 return (uint64_t)icount_get_raw();
960 static int64_t instructions_ns_per(uint64_t icount
)
962 return icount_to_ns((int64_t)icount
);
966 static bool pmu_8_1_events_supported(CPUARMState
*env
)
968 /* For events which are supported in any v8.1 PMU */
969 return cpu_isar_feature(any_pmu_8_1
, env_archcpu(env
));
972 static bool pmu_8_4_events_supported(CPUARMState
*env
)
974 /* For events which are supported in any v8.1 PMU */
975 return cpu_isar_feature(any_pmu_8_4
, env_archcpu(env
));
978 static uint64_t zero_event_get_count(CPUARMState
*env
)
980 /* For events which on QEMU never fire, so their count is always zero */
984 static int64_t zero_event_ns_per(uint64_t cycles
)
986 /* An event which never fires can never overflow */
990 static const pm_event pm_events
[] = {
991 { .number
= 0x000, /* SW_INCR */
992 .supported
= event_always_supported
,
993 .get_count
= swinc_get_count
,
994 .ns_per_count
= swinc_ns_per
,
996 #ifndef CONFIG_USER_ONLY
997 { .number
= 0x008, /* INST_RETIRED, Instruction architecturally executed */
998 .supported
= instructions_supported
,
999 .get_count
= instructions_get_count
,
1000 .ns_per_count
= instructions_ns_per
,
1002 { .number
= 0x011, /* CPU_CYCLES, Cycle */
1003 .supported
= event_always_supported
,
1004 .get_count
= cycles_get_count
,
1005 .ns_per_count
= cycles_ns_per
,
1008 { .number
= 0x023, /* STALL_FRONTEND */
1009 .supported
= pmu_8_1_events_supported
,
1010 .get_count
= zero_event_get_count
,
1011 .ns_per_count
= zero_event_ns_per
,
1013 { .number
= 0x024, /* STALL_BACKEND */
1014 .supported
= pmu_8_1_events_supported
,
1015 .get_count
= zero_event_get_count
,
1016 .ns_per_count
= zero_event_ns_per
,
1018 { .number
= 0x03c, /* STALL */
1019 .supported
= pmu_8_4_events_supported
,
1020 .get_count
= zero_event_get_count
,
1021 .ns_per_count
= zero_event_ns_per
,
1026 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1027 * events (i.e. the statistical profiling extension), this implementation
1028 * should first be updated to something sparse instead of the current
1029 * supported_event_map[] array.
1031 #define MAX_EVENT_ID 0x3c
1032 #define UNSUPPORTED_EVENT UINT16_MAX
1033 static uint16_t supported_event_map
[MAX_EVENT_ID
+ 1];
1036 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1037 * of ARM event numbers to indices in our pm_events array.
1039 * Note: Events in the 0x40XX range are not currently supported.
1041 void pmu_init(ARMCPU
*cpu
)
1046 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1049 for (i
= 0; i
< ARRAY_SIZE(supported_event_map
); i
++) {
1050 supported_event_map
[i
] = UNSUPPORTED_EVENT
;
1055 for (i
= 0; i
< ARRAY_SIZE(pm_events
); i
++) {
1056 const pm_event
*cnt
= &pm_events
[i
];
1057 assert(cnt
->number
<= MAX_EVENT_ID
);
1058 /* We do not currently support events in the 0x40xx range */
1059 assert(cnt
->number
<= 0x3f);
1061 if (cnt
->supported(&cpu
->env
)) {
1062 supported_event_map
[cnt
->number
] = i
;
1063 uint64_t event_mask
= 1ULL << (cnt
->number
& 0x1f);
1064 if (cnt
->number
& 0x20) {
1065 cpu
->pmceid1
|= event_mask
;
1067 cpu
->pmceid0
|= event_mask
;
1074 * Check at runtime whether a PMU event is supported for the current machine
1076 static bool event_supported(uint16_t number
)
1078 if (number
> MAX_EVENT_ID
) {
1081 return supported_event_map
[number
] != UNSUPPORTED_EVENT
;
1084 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1087 /* Performance monitor registers user accessibility is controlled
1088 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1089 * trapping to EL2 or EL3 for other accesses.
1091 int el
= arm_current_el(env
);
1092 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
1094 if (el
== 0 && !(env
->cp15
.c9_pmuserenr
& 1)) {
1095 return CP_ACCESS_TRAP
;
1097 if (el
< 2 && (mdcr_el2
& MDCR_TPM
)) {
1098 return CP_ACCESS_TRAP_EL2
;
1100 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
1101 return CP_ACCESS_TRAP_EL3
;
1104 return CP_ACCESS_OK
;
1107 static CPAccessResult
pmreg_access_xevcntr(CPUARMState
*env
,
1108 const ARMCPRegInfo
*ri
,
1111 /* ER: event counter read trap control */
1112 if (arm_feature(env
, ARM_FEATURE_V8
)
1113 && arm_current_el(env
) == 0
1114 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0
1116 return CP_ACCESS_OK
;
1119 return pmreg_access(env
, ri
, isread
);
1122 static CPAccessResult
pmreg_access_swinc(CPUARMState
*env
,
1123 const ARMCPRegInfo
*ri
,
1126 /* SW: software increment write trap control */
1127 if (arm_feature(env
, ARM_FEATURE_V8
)
1128 && arm_current_el(env
) == 0
1129 && (env
->cp15
.c9_pmuserenr
& (1 << 1)) != 0
1131 return CP_ACCESS_OK
;
1134 return pmreg_access(env
, ri
, isread
);
1137 static CPAccessResult
pmreg_access_selr(CPUARMState
*env
,
1138 const ARMCPRegInfo
*ri
,
1141 /* ER: event counter read trap control */
1142 if (arm_feature(env
, ARM_FEATURE_V8
)
1143 && arm_current_el(env
) == 0
1144 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0) {
1145 return CP_ACCESS_OK
;
1148 return pmreg_access(env
, ri
, isread
);
1151 static CPAccessResult
pmreg_access_ccntr(CPUARMState
*env
,
1152 const ARMCPRegInfo
*ri
,
1155 /* CR: cycle counter read trap control */
1156 if (arm_feature(env
, ARM_FEATURE_V8
)
1157 && arm_current_el(env
) == 0
1158 && (env
->cp15
.c9_pmuserenr
& (1 << 2)) != 0
1160 return CP_ACCESS_OK
;
1163 return pmreg_access(env
, ri
, isread
);
1166 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1167 * the current EL, security state, and register configuration.
1169 static bool pmu_counter_enabled(CPUARMState
*env
, uint8_t counter
)
1172 bool e
, p
, u
, nsk
, nsu
, nsh
, m
;
1173 bool enabled
, prohibited
, filtered
;
1174 bool secure
= arm_is_secure(env
);
1175 int el
= arm_current_el(env
);
1176 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
1177 uint8_t hpmn
= mdcr_el2
& MDCR_HPMN
;
1179 if (!arm_feature(env
, ARM_FEATURE_PMU
)) {
1183 if (!arm_feature(env
, ARM_FEATURE_EL2
) ||
1184 (counter
< hpmn
|| counter
== 31)) {
1185 e
= env
->cp15
.c9_pmcr
& PMCRE
;
1187 e
= mdcr_el2
& MDCR_HPME
;
1189 enabled
= e
&& (env
->cp15
.c9_pmcnten
& (1 << counter
));
1192 if (el
== 2 && (counter
< hpmn
|| counter
== 31)) {
1193 prohibited
= mdcr_el2
& MDCR_HPMD
;
1198 prohibited
= arm_feature(env
, ARM_FEATURE_EL3
) &&
1199 !(env
->cp15
.mdcr_el3
& MDCR_SPME
);
1202 if (prohibited
&& counter
== 31) {
1203 prohibited
= env
->cp15
.c9_pmcr
& PMCRDP
;
1206 if (counter
== 31) {
1207 filter
= env
->cp15
.pmccfiltr_el0
;
1209 filter
= env
->cp15
.c14_pmevtyper
[counter
];
1212 p
= filter
& PMXEVTYPER_P
;
1213 u
= filter
& PMXEVTYPER_U
;
1214 nsk
= arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_NSK
);
1215 nsu
= arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_NSU
);
1216 nsh
= arm_feature(env
, ARM_FEATURE_EL2
) && (filter
& PMXEVTYPER_NSH
);
1217 m
= arm_el_is_aa64(env
, 1) &&
1218 arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_M
);
1221 filtered
= secure
? u
: u
!= nsu
;
1222 } else if (el
== 1) {
1223 filtered
= secure
? p
: p
!= nsk
;
1224 } else if (el
== 2) {
1230 if (counter
!= 31) {
1232 * If not checking PMCCNTR, ensure the counter is setup to an event we
1235 uint16_t event
= filter
& PMXEVTYPER_EVTCOUNT
;
1236 if (!event_supported(event
)) {
1241 return enabled
&& !prohibited
&& !filtered
;
1244 static void pmu_update_irq(CPUARMState
*env
)
1246 ARMCPU
*cpu
= env_archcpu(env
);
1247 qemu_set_irq(cpu
->pmu_interrupt
, (env
->cp15
.c9_pmcr
& PMCRE
) &&
1248 (env
->cp15
.c9_pminten
& env
->cp15
.c9_pmovsr
));
1252 * Ensure c15_ccnt is the guest-visible count so that operations such as
1253 * enabling/disabling the counter or filtering, modifying the count itself,
1254 * etc. can be done logically. This is essentially a no-op if the counter is
1255 * not enabled at the time of the call.
1257 static void pmccntr_op_start(CPUARMState
*env
)
1259 uint64_t cycles
= cycles_get_count(env
);
1261 if (pmu_counter_enabled(env
, 31)) {
1262 uint64_t eff_cycles
= cycles
;
1263 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1264 /* Increment once every 64 processor clock cycles */
1268 uint64_t new_pmccntr
= eff_cycles
- env
->cp15
.c15_ccnt_delta
;
1270 uint64_t overflow_mask
= env
->cp15
.c9_pmcr
& PMCRLC
? \
1271 1ull << 63 : 1ull << 31;
1272 if (env
->cp15
.c15_ccnt
& ~new_pmccntr
& overflow_mask
) {
1273 env
->cp15
.c9_pmovsr
|= (1 << 31);
1274 pmu_update_irq(env
);
1277 env
->cp15
.c15_ccnt
= new_pmccntr
;
1279 env
->cp15
.c15_ccnt_delta
= cycles
;
1283 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1284 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1287 static void pmccntr_op_finish(CPUARMState
*env
)
1289 if (pmu_counter_enabled(env
, 31)) {
1290 #ifndef CONFIG_USER_ONLY
1291 /* Calculate when the counter will next overflow */
1292 uint64_t remaining_cycles
= -env
->cp15
.c15_ccnt
;
1293 if (!(env
->cp15
.c9_pmcr
& PMCRLC
)) {
1294 remaining_cycles
= (uint32_t)remaining_cycles
;
1296 int64_t overflow_in
= cycles_ns_per(remaining_cycles
);
1298 if (overflow_in
> 0) {
1299 int64_t overflow_at
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
1301 ARMCPU
*cpu
= env_archcpu(env
);
1302 timer_mod_anticipate_ns(cpu
->pmu_timer
, overflow_at
);
1306 uint64_t prev_cycles
= env
->cp15
.c15_ccnt_delta
;
1307 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1308 /* Increment once every 64 processor clock cycles */
1311 env
->cp15
.c15_ccnt_delta
= prev_cycles
- env
->cp15
.c15_ccnt
;
1315 static void pmevcntr_op_start(CPUARMState
*env
, uint8_t counter
)
1318 uint16_t event
= env
->cp15
.c14_pmevtyper
[counter
] & PMXEVTYPER_EVTCOUNT
;
1320 if (event_supported(event
)) {
1321 uint16_t event_idx
= supported_event_map
[event
];
1322 count
= pm_events
[event_idx
].get_count(env
);
1325 if (pmu_counter_enabled(env
, counter
)) {
1326 uint32_t new_pmevcntr
= count
- env
->cp15
.c14_pmevcntr_delta
[counter
];
1328 if (env
->cp15
.c14_pmevcntr
[counter
] & ~new_pmevcntr
& INT32_MIN
) {
1329 env
->cp15
.c9_pmovsr
|= (1 << counter
);
1330 pmu_update_irq(env
);
1332 env
->cp15
.c14_pmevcntr
[counter
] = new_pmevcntr
;
1334 env
->cp15
.c14_pmevcntr_delta
[counter
] = count
;
1337 static void pmevcntr_op_finish(CPUARMState
*env
, uint8_t counter
)
1339 if (pmu_counter_enabled(env
, counter
)) {
1340 #ifndef CONFIG_USER_ONLY
1341 uint16_t event
= env
->cp15
.c14_pmevtyper
[counter
] & PMXEVTYPER_EVTCOUNT
;
1342 uint16_t event_idx
= supported_event_map
[event
];
1343 uint64_t delta
= UINT32_MAX
-
1344 (uint32_t)env
->cp15
.c14_pmevcntr
[counter
] + 1;
1345 int64_t overflow_in
= pm_events
[event_idx
].ns_per_count(delta
);
1347 if (overflow_in
> 0) {
1348 int64_t overflow_at
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
1350 ARMCPU
*cpu
= env_archcpu(env
);
1351 timer_mod_anticipate_ns(cpu
->pmu_timer
, overflow_at
);
1355 env
->cp15
.c14_pmevcntr_delta
[counter
] -=
1356 env
->cp15
.c14_pmevcntr
[counter
];
1360 void pmu_op_start(CPUARMState
*env
)
1363 pmccntr_op_start(env
);
1364 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1365 pmevcntr_op_start(env
, i
);
1369 void pmu_op_finish(CPUARMState
*env
)
1372 pmccntr_op_finish(env
);
1373 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1374 pmevcntr_op_finish(env
, i
);
1378 void pmu_pre_el_change(ARMCPU
*cpu
, void *ignored
)
1380 pmu_op_start(&cpu
->env
);
1383 void pmu_post_el_change(ARMCPU
*cpu
, void *ignored
)
1385 pmu_op_finish(&cpu
->env
);
1388 void arm_pmu_timer_cb(void *opaque
)
1390 ARMCPU
*cpu
= opaque
;
1393 * Update all the counter values based on the current underlying counts,
1394 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1395 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1396 * counter may expire.
1398 pmu_op_start(&cpu
->env
);
1399 pmu_op_finish(&cpu
->env
);
1402 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1407 if (value
& PMCRC
) {
1408 /* The counter has been reset */
1409 env
->cp15
.c15_ccnt
= 0;
1412 if (value
& PMCRP
) {
1414 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1415 env
->cp15
.c14_pmevcntr
[i
] = 0;
1419 env
->cp15
.c9_pmcr
&= ~PMCR_WRITEABLE_MASK
;
1420 env
->cp15
.c9_pmcr
|= (value
& PMCR_WRITEABLE_MASK
);
1425 static void pmswinc_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1429 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1430 /* Increment a counter's count iff: */
1431 if ((value
& (1 << i
)) && /* counter's bit is set */
1432 /* counter is enabled and not filtered */
1433 pmu_counter_enabled(env
, i
) &&
1434 /* counter is SW_INCR */
1435 (env
->cp15
.c14_pmevtyper
[i
] & PMXEVTYPER_EVTCOUNT
) == 0x0) {
1436 pmevcntr_op_start(env
, i
);
1439 * Detect if this write causes an overflow since we can't predict
1440 * PMSWINC overflows like we can for other events
1442 uint32_t new_pmswinc
= env
->cp15
.c14_pmevcntr
[i
] + 1;
1444 if (env
->cp15
.c14_pmevcntr
[i
] & ~new_pmswinc
& INT32_MIN
) {
1445 env
->cp15
.c9_pmovsr
|= (1 << i
);
1446 pmu_update_irq(env
);
1449 env
->cp15
.c14_pmevcntr
[i
] = new_pmswinc
;
1451 pmevcntr_op_finish(env
, i
);
1456 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1459 pmccntr_op_start(env
);
1460 ret
= env
->cp15
.c15_ccnt
;
1461 pmccntr_op_finish(env
);
1465 static void pmselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1468 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1469 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1470 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1473 env
->cp15
.c9_pmselr
= value
& 0x1f;
1476 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1479 pmccntr_op_start(env
);
1480 env
->cp15
.c15_ccnt
= value
;
1481 pmccntr_op_finish(env
);
1484 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1487 uint64_t cur_val
= pmccntr_read(env
, NULL
);
1489 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
1492 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1495 pmccntr_op_start(env
);
1496 env
->cp15
.pmccfiltr_el0
= value
& PMCCFILTR_EL0
;
1497 pmccntr_op_finish(env
);
1500 static void pmccfiltr_write_a32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1503 pmccntr_op_start(env
);
1504 /* M is not accessible from AArch32 */
1505 env
->cp15
.pmccfiltr_el0
= (env
->cp15
.pmccfiltr_el0
& PMCCFILTR_M
) |
1506 (value
& PMCCFILTR
);
1507 pmccntr_op_finish(env
);
1510 static uint64_t pmccfiltr_read_a32(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1512 /* M is not visible in AArch32 */
1513 return env
->cp15
.pmccfiltr_el0
& PMCCFILTR
;
1516 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1519 value
&= pmu_counter_mask(env
);
1520 env
->cp15
.c9_pmcnten
|= value
;
1523 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1526 value
&= pmu_counter_mask(env
);
1527 env
->cp15
.c9_pmcnten
&= ~value
;
1530 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1533 value
&= pmu_counter_mask(env
);
1534 env
->cp15
.c9_pmovsr
&= ~value
;
1535 pmu_update_irq(env
);
1538 static void pmovsset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1541 value
&= pmu_counter_mask(env
);
1542 env
->cp15
.c9_pmovsr
|= value
;
1543 pmu_update_irq(env
);
1546 static void pmevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1547 uint64_t value
, const uint8_t counter
)
1549 if (counter
== 31) {
1550 pmccfiltr_write(env
, ri
, value
);
1551 } else if (counter
< pmu_num_counters(env
)) {
1552 pmevcntr_op_start(env
, counter
);
1555 * If this counter's event type is changing, store the current
1556 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1557 * pmevcntr_op_finish has the correct baseline when it converts back to
1560 uint16_t old_event
= env
->cp15
.c14_pmevtyper
[counter
] &
1561 PMXEVTYPER_EVTCOUNT
;
1562 uint16_t new_event
= value
& PMXEVTYPER_EVTCOUNT
;
1563 if (old_event
!= new_event
) {
1565 if (event_supported(new_event
)) {
1566 uint16_t event_idx
= supported_event_map
[new_event
];
1567 count
= pm_events
[event_idx
].get_count(env
);
1569 env
->cp15
.c14_pmevcntr_delta
[counter
] = count
;
1572 env
->cp15
.c14_pmevtyper
[counter
] = value
& PMXEVTYPER_MASK
;
1573 pmevcntr_op_finish(env
, counter
);
1575 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1576 * PMSELR value is equal to or greater than the number of implemented
1577 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1581 static uint64_t pmevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1582 const uint8_t counter
)
1584 if (counter
== 31) {
1585 return env
->cp15
.pmccfiltr_el0
;
1586 } else if (counter
< pmu_num_counters(env
)) {
1587 return env
->cp15
.c14_pmevtyper
[counter
];
1590 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1591 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1597 static void pmevtyper_writefn(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1600 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1601 pmevtyper_write(env
, ri
, value
, counter
);
1604 static void pmevtyper_rawwrite(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1607 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1608 env
->cp15
.c14_pmevtyper
[counter
] = value
;
1611 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1612 * pmu_op_finish calls when loading saved state for a migration. Because
1613 * we're potentially updating the type of event here, the value written to
1614 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1615 * different counter type. Therefore, we need to set this value to the
1616 * current count for the counter type we're writing so that pmu_op_finish
1617 * has the correct count for its calculation.
1619 uint16_t event
= value
& PMXEVTYPER_EVTCOUNT
;
1620 if (event_supported(event
)) {
1621 uint16_t event_idx
= supported_event_map
[event
];
1622 env
->cp15
.c14_pmevcntr_delta
[counter
] =
1623 pm_events
[event_idx
].get_count(env
);
1627 static uint64_t pmevtyper_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1629 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1630 return pmevtyper_read(env
, ri
, counter
);
1633 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1636 pmevtyper_write(env
, ri
, value
, env
->cp15
.c9_pmselr
& 31);
1639 static uint64_t pmxevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1641 return pmevtyper_read(env
, ri
, env
->cp15
.c9_pmselr
& 31);
1644 static void pmevcntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1645 uint64_t value
, uint8_t counter
)
1647 if (counter
< pmu_num_counters(env
)) {
1648 pmevcntr_op_start(env
, counter
);
1649 env
->cp15
.c14_pmevcntr
[counter
] = value
;
1650 pmevcntr_op_finish(env
, counter
);
1653 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1654 * are CONSTRAINED UNPREDICTABLE.
1658 static uint64_t pmevcntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1661 if (counter
< pmu_num_counters(env
)) {
1663 pmevcntr_op_start(env
, counter
);
1664 ret
= env
->cp15
.c14_pmevcntr
[counter
];
1665 pmevcntr_op_finish(env
, counter
);
1668 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1669 * are CONSTRAINED UNPREDICTABLE. */
1674 static void pmevcntr_writefn(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1677 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1678 pmevcntr_write(env
, ri
, value
, counter
);
1681 static uint64_t pmevcntr_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1683 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1684 return pmevcntr_read(env
, ri
, counter
);
1687 static void pmevcntr_rawwrite(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1690 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1691 assert(counter
< pmu_num_counters(env
));
1692 env
->cp15
.c14_pmevcntr
[counter
] = value
;
1693 pmevcntr_write(env
, ri
, value
, counter
);
1696 static uint64_t pmevcntr_rawread(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1698 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1699 assert(counter
< pmu_num_counters(env
));
1700 return env
->cp15
.c14_pmevcntr
[counter
];
1703 static void pmxevcntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1706 pmevcntr_write(env
, ri
, value
, env
->cp15
.c9_pmselr
& 31);
1709 static uint64_t pmxevcntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1711 return pmevcntr_read(env
, ri
, env
->cp15
.c9_pmselr
& 31);
1714 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1717 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1718 env
->cp15
.c9_pmuserenr
= value
& 0xf;
1720 env
->cp15
.c9_pmuserenr
= value
& 1;
1724 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1727 /* We have no event counters so only the C bit can be changed */
1728 value
&= pmu_counter_mask(env
);
1729 env
->cp15
.c9_pminten
|= value
;
1730 pmu_update_irq(env
);
1733 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1736 value
&= pmu_counter_mask(env
);
1737 env
->cp15
.c9_pminten
&= ~value
;
1738 pmu_update_irq(env
);
1741 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1744 /* Note that even though the AArch64 view of this register has bits
1745 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1746 * architectural requirements for bits which are RES0 only in some
1747 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1748 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1750 raw_write(env
, ri
, value
& ~0x1FULL
);
1753 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1755 /* Begin with base v8.0 state. */
1756 uint32_t valid_mask
= 0x3fff;
1757 ARMCPU
*cpu
= env_archcpu(env
);
1759 if (ri
->state
== ARM_CP_STATE_AA64
) {
1760 if (arm_feature(env
, ARM_FEATURE_AARCH64
) &&
1761 !cpu_isar_feature(aa64_aa32_el1
, cpu
)) {
1762 value
|= SCR_FW
| SCR_AW
; /* these two bits are RES1. */
1764 valid_mask
&= ~SCR_NET
;
1766 if (cpu_isar_feature(aa64_lor
, cpu
)) {
1767 valid_mask
|= SCR_TLOR
;
1769 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
1770 valid_mask
|= SCR_API
| SCR_APK
;
1772 if (cpu_isar_feature(aa64_sel2
, cpu
)) {
1773 valid_mask
|= SCR_EEL2
;
1775 if (cpu_isar_feature(aa64_mte
, cpu
)) {
1776 valid_mask
|= SCR_ATA
;
1779 valid_mask
&= ~(SCR_RW
| SCR_ST
);
1782 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1783 valid_mask
&= ~SCR_HCE
;
1785 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1786 * supported if EL2 exists. The bit is UNK/SBZP when
1787 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1788 * when EL2 is unavailable.
1789 * On ARMv8, this bit is always available.
1791 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1792 !arm_feature(env
, ARM_FEATURE_V8
)) {
1793 valid_mask
&= ~SCR_SMD
;
1797 /* Clear all-context RES0 bits. */
1798 value
&= valid_mask
;
1799 raw_write(env
, ri
, value
);
1802 static void scr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1805 * scr_write will set the RES1 bits on an AArch64-only CPU.
1806 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1808 scr_write(env
, ri
, 0);
1811 static CPAccessResult
access_aa64_tid2(CPUARMState
*env
,
1812 const ARMCPRegInfo
*ri
,
1815 if (arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_TID2
)) {
1816 return CP_ACCESS_TRAP_EL2
;
1819 return CP_ACCESS_OK
;
1822 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1824 ARMCPU
*cpu
= env_archcpu(env
);
1826 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1829 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1830 ri
->secure
& ARM_CP_SECSTATE_S
);
1832 return cpu
->ccsidr
[index
];
1835 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1838 raw_write(env
, ri
, value
& 0xf);
1841 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1843 CPUState
*cs
= env_cpu(env
);
1844 bool el1
= arm_current_el(env
) == 1;
1845 uint64_t hcr_el2
= el1
? arm_hcr_el2_eff(env
) : 0;
1848 if (hcr_el2
& HCR_IMO
) {
1849 if (cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) {
1853 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1858 if (hcr_el2
& HCR_FMO
) {
1859 if (cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) {
1863 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1868 /* External aborts are not possible in QEMU so A bit is always clear */
1872 static CPAccessResult
access_aa64_tid1(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1875 if (arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_TID1
)) {
1876 return CP_ACCESS_TRAP_EL2
;
1879 return CP_ACCESS_OK
;
1882 static CPAccessResult
access_aa32_tid1(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1885 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1886 return access_aa64_tid1(env
, ri
, isread
);
1889 return CP_ACCESS_OK
;
1892 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1893 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1894 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1895 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1896 /* Performance monitors are implementation defined in v7,
1897 * but with an ARM recommended set of registers, which we
1900 * Performance registers fall into three categories:
1901 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1902 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1903 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1904 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1905 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1907 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1908 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1909 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1910 .writefn
= pmcntenset_write
,
1911 .accessfn
= pmreg_access
,
1912 .raw_writefn
= raw_write
},
1913 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1914 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1915 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1916 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1917 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1918 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1920 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1921 .accessfn
= pmreg_access
,
1922 .writefn
= pmcntenclr_write
,
1923 .type
= ARM_CP_ALIAS
},
1924 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1925 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1926 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1927 .type
= ARM_CP_ALIAS
,
1928 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1929 .writefn
= pmcntenclr_write
},
1930 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
1931 .access
= PL0_RW
, .type
= ARM_CP_IO
,
1932 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmovsr
),
1933 .accessfn
= pmreg_access
,
1934 .writefn
= pmovsr_write
,
1935 .raw_writefn
= raw_write
},
1936 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1937 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
1938 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1939 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
1940 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1941 .writefn
= pmovsr_write
,
1942 .raw_writefn
= raw_write
},
1943 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
1944 .access
= PL0_W
, .accessfn
= pmreg_access_swinc
,
1945 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1946 .writefn
= pmswinc_write
},
1947 { .name
= "PMSWINC_EL0", .state
= ARM_CP_STATE_AA64
,
1948 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 4,
1949 .access
= PL0_W
, .accessfn
= pmreg_access_swinc
,
1950 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1951 .writefn
= pmswinc_write
},
1952 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
1953 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1954 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmselr
),
1955 .accessfn
= pmreg_access_selr
, .writefn
= pmselr_write
,
1956 .raw_writefn
= raw_write
},
1957 { .name
= "PMSELR_EL0", .state
= ARM_CP_STATE_AA64
,
1958 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 5,
1959 .access
= PL0_RW
, .accessfn
= pmreg_access_selr
,
1960 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmselr
),
1961 .writefn
= pmselr_write
, .raw_writefn
= raw_write
, },
1962 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
1963 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
1964 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
1965 .accessfn
= pmreg_access_ccntr
},
1966 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1967 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
1968 .access
= PL0_RW
, .accessfn
= pmreg_access_ccntr
,
1970 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ccnt
),
1971 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
,
1972 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
, },
1973 { .name
= "PMCCFILTR", .cp
= 15, .opc1
= 0, .crn
= 14, .crm
= 15, .opc2
= 7,
1974 .writefn
= pmccfiltr_write_a32
, .readfn
= pmccfiltr_read_a32
,
1975 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1976 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
1978 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1979 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1980 .writefn
= pmccfiltr_write
, .raw_writefn
= raw_write
,
1981 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1983 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1985 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1986 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1987 .accessfn
= pmreg_access
,
1988 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
1989 { .name
= "PMXEVTYPER_EL0", .state
= ARM_CP_STATE_AA64
,
1990 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 1,
1991 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1992 .accessfn
= pmreg_access
,
1993 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
1994 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1995 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1996 .accessfn
= pmreg_access_xevcntr
,
1997 .writefn
= pmxevcntr_write
, .readfn
= pmxevcntr_read
},
1998 { .name
= "PMXEVCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1999 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 2,
2000 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2001 .accessfn
= pmreg_access_xevcntr
,
2002 .writefn
= pmxevcntr_write
, .readfn
= pmxevcntr_read
},
2003 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
2004 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
2005 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmuserenr
),
2007 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
2008 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
2009 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
2010 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
2011 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
2013 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
2014 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
2015 .access
= PL1_RW
, .accessfn
= access_tpm
,
2016 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2017 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pminten
),
2019 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
2020 { .name
= "PMINTENSET_EL1", .state
= ARM_CP_STATE_AA64
,
2021 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 1,
2022 .access
= PL1_RW
, .accessfn
= access_tpm
,
2024 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2025 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
,
2026 .resetvalue
= 0x0 },
2027 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
2028 .access
= PL1_RW
, .accessfn
= access_tpm
,
2029 .type
= ARM_CP_ALIAS
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2030 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2031 .writefn
= pmintenclr_write
, },
2032 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
2033 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
2034 .access
= PL1_RW
, .accessfn
= access_tpm
,
2035 .type
= ARM_CP_ALIAS
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2036 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2037 .writefn
= pmintenclr_write
},
2038 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
2039 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
2041 .accessfn
= access_aa64_tid2
,
2042 .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
2043 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
2044 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
2046 .accessfn
= access_aa64_tid2
,
2047 .writefn
= csselr_write
, .resetvalue
= 0,
2048 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
2049 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
2050 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2051 * just RAZ for all cores:
2053 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
2054 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
2055 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2056 .accessfn
= access_aa64_tid1
,
2058 /* Auxiliary fault status registers: these also are IMPDEF, and we
2059 * choose to RAZ/WI for all cores.
2061 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2062 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
2063 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
2064 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2065 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2066 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
2067 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
2068 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2069 /* MAIR can just read-as-written because we don't implement caches
2070 * and so don't need to care about memory attributes.
2072 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
2073 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
2074 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
2075 .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
2077 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
2078 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
2079 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
2081 /* For non-long-descriptor page tables these are PRRR and NMRR;
2082 * regardless they still act as reads-as-written for QEMU.
2084 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2085 * allows them to assign the correct fieldoffset based on the endianness
2086 * handled in the field definitions.
2088 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
2089 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
2090 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
2091 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
2092 offsetof(CPUARMState
, cp15
.mair0_ns
) },
2093 .resetfn
= arm_cp_reset_ignore
},
2094 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
2095 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1,
2096 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
2097 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
2098 offsetof(CPUARMState
, cp15
.mair1_ns
) },
2099 .resetfn
= arm_cp_reset_ignore
},
2100 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
2101 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
2102 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
2103 /* 32 bit ITLB invalidates */
2104 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
2105 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2106 .writefn
= tlbiall_write
},
2107 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
2108 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2109 .writefn
= tlbimva_write
},
2110 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
2111 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2112 .writefn
= tlbiasid_write
},
2113 /* 32 bit DTLB invalidates */
2114 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
2115 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2116 .writefn
= tlbiall_write
},
2117 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
2118 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2119 .writefn
= tlbimva_write
},
2120 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
2121 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2122 .writefn
= tlbiasid_write
},
2123 /* 32 bit TLB invalidates */
2124 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2125 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2126 .writefn
= tlbiall_write
},
2127 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2128 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2129 .writefn
= tlbimva_write
},
2130 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2131 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2132 .writefn
= tlbiasid_write
},
2133 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2134 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2135 .writefn
= tlbimvaa_write
},
2139 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
2140 /* 32 bit TLB invalidates, Inner Shareable */
2141 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2142 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2143 .writefn
= tlbiall_is_write
},
2144 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2145 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2146 .writefn
= tlbimva_is_write
},
2147 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2148 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2149 .writefn
= tlbiasid_is_write
},
2150 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2151 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
2152 .writefn
= tlbimvaa_is_write
},
2156 static const ARMCPRegInfo pmovsset_cp_reginfo
[] = {
2157 /* PMOVSSET is not implemented in v7 before v7ve */
2158 { .name
= "PMOVSSET", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 3,
2159 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2160 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2161 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmovsr
),
2162 .writefn
= pmovsset_write
,
2163 .raw_writefn
= raw_write
},
2164 { .name
= "PMOVSSET_EL0", .state
= ARM_CP_STATE_AA64
,
2165 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 3,
2166 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2167 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2168 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
2169 .writefn
= pmovsset_write
,
2170 .raw_writefn
= raw_write
},
2174 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2181 static CPAccessResult
teecr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2185 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2186 * at all, so we don't need to check whether we're v8A.
2188 if (arm_current_el(env
) < 2 && !arm_is_secure_below_el3(env
) &&
2189 (env
->cp15
.hstr_el2
& HSTR_TTEE
)) {
2190 return CP_ACCESS_TRAP_EL2
;
2192 return CP_ACCESS_OK
;
2195 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2198 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
2199 return CP_ACCESS_TRAP
;
2201 return teecr_access(env
, ri
, isread
);
2204 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
2205 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
2206 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
2208 .writefn
= teecr_write
, .accessfn
= teecr_access
},
2209 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
2210 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
2211 .accessfn
= teehbr_access
, .resetvalue
= 0 },
2215 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
2216 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
2217 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
2219 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
2220 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
2222 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
2223 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
2224 .resetfn
= arm_cp_reset_ignore
},
2225 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
2226 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
2227 .access
= PL0_R
|PL1_W
,
2228 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
2230 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
2231 .access
= PL0_R
|PL1_W
,
2232 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
2233 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
2234 .resetfn
= arm_cp_reset_ignore
},
2235 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
2236 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
2238 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
2239 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
2241 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
2242 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
2247 #ifndef CONFIG_USER_ONLY
2249 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2252 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2253 * Writable only at the highest implemented exception level.
2255 int el
= arm_current_el(env
);
2261 hcr
= arm_hcr_el2_eff(env
);
2262 if ((hcr
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
2263 cntkctl
= env
->cp15
.cnthctl_el2
;
2265 cntkctl
= env
->cp15
.c14_cntkctl
;
2267 if (!extract32(cntkctl
, 0, 2)) {
2268 return CP_ACCESS_TRAP
;
2272 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
2273 arm_is_secure_below_el3(env
)) {
2274 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2275 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2283 if (!isread
&& el
< arm_highest_el(env
)) {
2284 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2287 return CP_ACCESS_OK
;
2290 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
2293 unsigned int cur_el
= arm_current_el(env
);
2294 bool has_el2
= arm_is_el2_enabled(env
);
2295 uint64_t hcr
= arm_hcr_el2_eff(env
);
2299 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2300 if ((hcr
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
2301 return (extract32(env
->cp15
.cnthctl_el2
, timeridx
, 1)
2302 ? CP_ACCESS_OK
: CP_ACCESS_TRAP_EL2
);
2305 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2306 if (!extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
2307 return CP_ACCESS_TRAP
;
2310 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2311 if (hcr
& HCR_E2H
) {
2312 if (timeridx
== GTIMER_PHYS
&&
2313 !extract32(env
->cp15
.cnthctl_el2
, 10, 1)) {
2314 return CP_ACCESS_TRAP_EL2
;
2317 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2318 if (has_el2
&& timeridx
== GTIMER_PHYS
&&
2319 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
2320 return CP_ACCESS_TRAP_EL2
;
2326 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2327 if (has_el2
&& timeridx
== GTIMER_PHYS
&&
2329 ? !extract32(env
->cp15
.cnthctl_el2
, 10, 1)
2330 : !extract32(env
->cp15
.cnthctl_el2
, 0, 1))) {
2331 return CP_ACCESS_TRAP_EL2
;
2335 return CP_ACCESS_OK
;
2338 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
2341 unsigned int cur_el
= arm_current_el(env
);
2342 bool has_el2
= arm_is_el2_enabled(env
);
2343 uint64_t hcr
= arm_hcr_el2_eff(env
);
2347 if ((hcr
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
2348 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2349 return (extract32(env
->cp15
.cnthctl_el2
, 9 - timeridx
, 1)
2350 ? CP_ACCESS_OK
: CP_ACCESS_TRAP_EL2
);
2354 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2355 * EL0 if EL0[PV]TEN is zero.
2357 if (!extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
2358 return CP_ACCESS_TRAP
;
2363 if (has_el2
&& timeridx
== GTIMER_PHYS
) {
2364 if (hcr
& HCR_E2H
) {
2365 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2366 if (!extract32(env
->cp15
.cnthctl_el2
, 11, 1)) {
2367 return CP_ACCESS_TRAP_EL2
;
2370 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2371 if (!extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
2372 return CP_ACCESS_TRAP_EL2
;
2378 return CP_ACCESS_OK
;
2381 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
2382 const ARMCPRegInfo
*ri
,
2385 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
2388 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
2389 const ARMCPRegInfo
*ri
,
2392 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
2395 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2398 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
2401 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2404 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
2407 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
2408 const ARMCPRegInfo
*ri
,
2411 /* The AArch64 register view of the secure physical timer is
2412 * always accessible from EL3, and configurably accessible from
2415 switch (arm_current_el(env
)) {
2417 if (!arm_is_secure(env
)) {
2418 return CP_ACCESS_TRAP
;
2420 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
2421 return CP_ACCESS_TRAP_EL3
;
2423 return CP_ACCESS_OK
;
2426 return CP_ACCESS_TRAP
;
2428 return CP_ACCESS_OK
;
2430 g_assert_not_reached();
2434 static uint64_t gt_get_countervalue(CPUARMState
*env
)
2436 ARMCPU
*cpu
= env_archcpu(env
);
2438 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / gt_cntfrq_period_ns(cpu
);
2441 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
2443 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
2446 /* Timer enabled: calculate and set current ISTATUS, irq, and
2447 * reset timer to when ISTATUS next has to change
2449 uint64_t offset
= timeridx
== GTIMER_VIRT
?
2450 cpu
->env
.cp15
.cntvoff_el2
: 0;
2451 uint64_t count
= gt_get_countervalue(&cpu
->env
);
2452 /* Note that this must be unsigned 64 bit arithmetic: */
2453 int istatus
= count
- offset
>= gt
->cval
;
2457 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
2459 irqstate
= (istatus
&& !(gt
->ctl
& 2));
2460 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
2463 /* Next transition is when count rolls back over to zero */
2464 nexttick
= UINT64_MAX
;
2466 /* Next transition is when we hit cval */
2467 nexttick
= gt
->cval
+ offset
;
2469 /* Note that the desired next expiry time might be beyond the
2470 * signed-64-bit range of a QEMUTimer -- in this case we just
2471 * set the timer for as far in the future as possible. When the
2472 * timer expires we will reset the timer for any remaining period.
2474 if (nexttick
> INT64_MAX
/ gt_cntfrq_period_ns(cpu
)) {
2475 timer_mod_ns(cpu
->gt_timer
[timeridx
], INT64_MAX
);
2477 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
2479 trace_arm_gt_recalc(timeridx
, irqstate
, nexttick
);
2481 /* Timer disabled: ISTATUS and timer output always clear */
2483 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
2484 timer_del(cpu
->gt_timer
[timeridx
]);
2485 trace_arm_gt_recalc_disabled(timeridx
);
2489 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2492 ARMCPU
*cpu
= env_archcpu(env
);
2494 timer_del(cpu
->gt_timer
[timeridx
]);
2497 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2499 return gt_get_countervalue(env
);
2502 static uint64_t gt_virt_cnt_offset(CPUARMState
*env
)
2506 switch (arm_current_el(env
)) {
2508 hcr
= arm_hcr_el2_eff(env
);
2509 if (hcr
& HCR_E2H
) {
2514 hcr
= arm_hcr_el2_eff(env
);
2515 if ((hcr
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
2521 return env
->cp15
.cntvoff_el2
;
2524 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2526 return gt_get_countervalue(env
) - gt_virt_cnt_offset(env
);
2529 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2533 trace_arm_gt_cval_write(timeridx
, value
);
2534 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
2535 gt_recalc_timer(env_archcpu(env
), timeridx
);
2538 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2541 uint64_t offset
= 0;
2545 case GTIMER_HYPVIRT
:
2546 offset
= gt_virt_cnt_offset(env
);
2550 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
2551 (gt_get_countervalue(env
) - offset
));
2554 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2558 uint64_t offset
= 0;
2562 case GTIMER_HYPVIRT
:
2563 offset
= gt_virt_cnt_offset(env
);
2567 trace_arm_gt_tval_write(timeridx
, value
);
2568 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
2569 sextract64(value
, 0, 32);
2570 gt_recalc_timer(env_archcpu(env
), timeridx
);
2573 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2577 ARMCPU
*cpu
= env_archcpu(env
);
2578 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
2580 trace_arm_gt_ctl_write(timeridx
, value
);
2581 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
2582 if ((oldval
^ value
) & 1) {
2583 /* Enable toggled */
2584 gt_recalc_timer(cpu
, timeridx
);
2585 } else if ((oldval
^ value
) & 2) {
2586 /* IMASK toggled: don't need to recalculate,
2587 * just set the interrupt line based on ISTATUS
2589 int irqstate
= (oldval
& 4) && !(value
& 2);
2591 trace_arm_gt_imask_toggle(timeridx
, irqstate
);
2592 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
2596 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2598 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
2601 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2604 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
2607 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2609 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
2612 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2615 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
2618 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2621 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
2624 static int gt_phys_redir_timeridx(CPUARMState
*env
)
2626 switch (arm_mmu_idx(env
)) {
2627 case ARMMMUIdx_E20_0
:
2628 case ARMMMUIdx_E20_2
:
2629 case ARMMMUIdx_E20_2_PAN
:
2630 case ARMMMUIdx_SE20_0
:
2631 case ARMMMUIdx_SE20_2
:
2632 case ARMMMUIdx_SE20_2_PAN
:
2639 static int gt_virt_redir_timeridx(CPUARMState
*env
)
2641 switch (arm_mmu_idx(env
)) {
2642 case ARMMMUIdx_E20_0
:
2643 case ARMMMUIdx_E20_2
:
2644 case ARMMMUIdx_E20_2_PAN
:
2645 case ARMMMUIdx_SE20_0
:
2646 case ARMMMUIdx_SE20_2
:
2647 case ARMMMUIdx_SE20_2_PAN
:
2648 return GTIMER_HYPVIRT
;
2654 static uint64_t gt_phys_redir_cval_read(CPUARMState
*env
,
2655 const ARMCPRegInfo
*ri
)
2657 int timeridx
= gt_phys_redir_timeridx(env
);
2658 return env
->cp15
.c14_timer
[timeridx
].cval
;
2661 static void gt_phys_redir_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2664 int timeridx
= gt_phys_redir_timeridx(env
);
2665 gt_cval_write(env
, ri
, timeridx
, value
);
2668 static uint64_t gt_phys_redir_tval_read(CPUARMState
*env
,
2669 const ARMCPRegInfo
*ri
)
2671 int timeridx
= gt_phys_redir_timeridx(env
);
2672 return gt_tval_read(env
, ri
, timeridx
);
2675 static void gt_phys_redir_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2678 int timeridx
= gt_phys_redir_timeridx(env
);
2679 gt_tval_write(env
, ri
, timeridx
, value
);
2682 static uint64_t gt_phys_redir_ctl_read(CPUARMState
*env
,
2683 const ARMCPRegInfo
*ri
)
2685 int timeridx
= gt_phys_redir_timeridx(env
);
2686 return env
->cp15
.c14_timer
[timeridx
].ctl
;
2689 static void gt_phys_redir_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2692 int timeridx
= gt_phys_redir_timeridx(env
);
2693 gt_ctl_write(env
, ri
, timeridx
, value
);
2696 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2698 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
2701 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2704 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
2707 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2709 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
2712 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2715 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
2718 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2721 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
2724 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2727 ARMCPU
*cpu
= env_archcpu(env
);
2729 trace_arm_gt_cntvoff_write(value
);
2730 raw_write(env
, ri
, value
);
2731 gt_recalc_timer(cpu
, GTIMER_VIRT
);
2734 static uint64_t gt_virt_redir_cval_read(CPUARMState
*env
,
2735 const ARMCPRegInfo
*ri
)
2737 int timeridx
= gt_virt_redir_timeridx(env
);
2738 return env
->cp15
.c14_timer
[timeridx
].cval
;
2741 static void gt_virt_redir_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2744 int timeridx
= gt_virt_redir_timeridx(env
);
2745 gt_cval_write(env
, ri
, timeridx
, value
);
2748 static uint64_t gt_virt_redir_tval_read(CPUARMState
*env
,
2749 const ARMCPRegInfo
*ri
)
2751 int timeridx
= gt_virt_redir_timeridx(env
);
2752 return gt_tval_read(env
, ri
, timeridx
);
2755 static void gt_virt_redir_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2758 int timeridx
= gt_virt_redir_timeridx(env
);
2759 gt_tval_write(env
, ri
, timeridx
, value
);
2762 static uint64_t gt_virt_redir_ctl_read(CPUARMState
*env
,
2763 const ARMCPRegInfo
*ri
)
2765 int timeridx
= gt_virt_redir_timeridx(env
);
2766 return env
->cp15
.c14_timer
[timeridx
].ctl
;
2769 static void gt_virt_redir_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2772 int timeridx
= gt_virt_redir_timeridx(env
);
2773 gt_ctl_write(env
, ri
, timeridx
, value
);
2776 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2778 gt_timer_reset(env
, ri
, GTIMER_HYP
);
2781 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2784 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
2787 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2789 return gt_tval_read(env
, ri
, GTIMER_HYP
);
2792 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2795 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
2798 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2801 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
2804 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2806 gt_timer_reset(env
, ri
, GTIMER_SEC
);
2809 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2812 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
2815 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2817 return gt_tval_read(env
, ri
, GTIMER_SEC
);
2820 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2823 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
2826 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2829 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
2832 static void gt_hv_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2834 gt_timer_reset(env
, ri
, GTIMER_HYPVIRT
);
2837 static void gt_hv_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2840 gt_cval_write(env
, ri
, GTIMER_HYPVIRT
, value
);
2843 static uint64_t gt_hv_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2845 return gt_tval_read(env
, ri
, GTIMER_HYPVIRT
);
2848 static void gt_hv_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2851 gt_tval_write(env
, ri
, GTIMER_HYPVIRT
, value
);
2854 static void gt_hv_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2857 gt_ctl_write(env
, ri
, GTIMER_HYPVIRT
, value
);
2860 void arm_gt_ptimer_cb(void *opaque
)
2862 ARMCPU
*cpu
= opaque
;
2864 gt_recalc_timer(cpu
, GTIMER_PHYS
);
2867 void arm_gt_vtimer_cb(void *opaque
)
2869 ARMCPU
*cpu
= opaque
;
2871 gt_recalc_timer(cpu
, GTIMER_VIRT
);
2874 void arm_gt_htimer_cb(void *opaque
)
2876 ARMCPU
*cpu
= opaque
;
2878 gt_recalc_timer(cpu
, GTIMER_HYP
);
2881 void arm_gt_stimer_cb(void *opaque
)
2883 ARMCPU
*cpu
= opaque
;
2885 gt_recalc_timer(cpu
, GTIMER_SEC
);
2888 void arm_gt_hvtimer_cb(void *opaque
)
2890 ARMCPU
*cpu
= opaque
;
2892 gt_recalc_timer(cpu
, GTIMER_HYPVIRT
);
2895 static void arm_gt_cntfrq_reset(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
2897 ARMCPU
*cpu
= env_archcpu(env
);
2899 cpu
->env
.cp15
.c14_cntfrq
= cpu
->gt_cntfrq_hz
;
2902 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2903 /* Note that CNTFRQ is purely reads-as-written for the benefit
2904 * of software; writing it doesn't actually change the timer frequency.
2905 * Our reset value matches the fixed frequency we implement the timer at.
2907 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
2908 .type
= ARM_CP_ALIAS
,
2909 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2910 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
2912 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
2913 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
2914 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2915 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
2916 .resetfn
= arm_gt_cntfrq_reset
,
2918 /* overall control: mostly access permissions */
2919 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
2920 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
2922 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
2925 /* per-timer control */
2926 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2927 .secure
= ARM_CP_SECSTATE_NS
,
2928 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL0_RW
,
2929 .accessfn
= gt_ptimer_access
,
2930 .fieldoffset
= offsetoflow32(CPUARMState
,
2931 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2932 .readfn
= gt_phys_redir_ctl_read
, .raw_readfn
= raw_read
,
2933 .writefn
= gt_phys_redir_ctl_write
, .raw_writefn
= raw_write
,
2935 { .name
= "CNTP_CTL_S",
2936 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2937 .secure
= ARM_CP_SECSTATE_S
,
2938 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL0_RW
,
2939 .accessfn
= gt_ptimer_access
,
2940 .fieldoffset
= offsetoflow32(CPUARMState
,
2941 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2942 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2944 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2945 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
2946 .type
= ARM_CP_IO
, .access
= PL0_RW
,
2947 .accessfn
= gt_ptimer_access
,
2948 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2950 .readfn
= gt_phys_redir_ctl_read
, .raw_readfn
= raw_read
,
2951 .writefn
= gt_phys_redir_ctl_write
, .raw_writefn
= raw_write
,
2953 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
2954 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL0_RW
,
2955 .accessfn
= gt_vtimer_access
,
2956 .fieldoffset
= offsetoflow32(CPUARMState
,
2957 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2958 .readfn
= gt_virt_redir_ctl_read
, .raw_readfn
= raw_read
,
2959 .writefn
= gt_virt_redir_ctl_write
, .raw_writefn
= raw_write
,
2961 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2962 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
2963 .type
= ARM_CP_IO
, .access
= PL0_RW
,
2964 .accessfn
= gt_vtimer_access
,
2965 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2967 .readfn
= gt_virt_redir_ctl_read
, .raw_readfn
= raw_read
,
2968 .writefn
= gt_virt_redir_ctl_write
, .raw_writefn
= raw_write
,
2970 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2971 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2972 .secure
= ARM_CP_SECSTATE_NS
,
2973 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2974 .accessfn
= gt_ptimer_access
,
2975 .readfn
= gt_phys_redir_tval_read
, .writefn
= gt_phys_redir_tval_write
,
2977 { .name
= "CNTP_TVAL_S",
2978 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2979 .secure
= ARM_CP_SECSTATE_S
,
2980 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2981 .accessfn
= gt_ptimer_access
,
2982 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
2984 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2985 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
2986 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2987 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
2988 .readfn
= gt_phys_redir_tval_read
, .writefn
= gt_phys_redir_tval_write
,
2990 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
2991 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2992 .accessfn
= gt_vtimer_access
,
2993 .readfn
= gt_virt_redir_tval_read
, .writefn
= gt_virt_redir_tval_write
,
2995 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2996 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
2997 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2998 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
2999 .readfn
= gt_virt_redir_tval_read
, .writefn
= gt_virt_redir_tval_write
,
3001 /* The counter itself */
3002 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
3003 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
3004 .accessfn
= gt_pct_access
,
3005 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
3007 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
3008 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
3009 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
3010 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
3012 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
3013 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
3014 .accessfn
= gt_vct_access
,
3015 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
3017 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
3018 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
3019 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
3020 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
3022 /* Comparison value, indicating when the timer goes off */
3023 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
3024 .secure
= ARM_CP_SECSTATE_NS
,
3026 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
3027 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
3028 .accessfn
= gt_ptimer_access
,
3029 .readfn
= gt_phys_redir_cval_read
, .raw_readfn
= raw_read
,
3030 .writefn
= gt_phys_redir_cval_write
, .raw_writefn
= raw_write
,
3032 { .name
= "CNTP_CVAL_S", .cp
= 15, .crm
= 14, .opc1
= 2,
3033 .secure
= ARM_CP_SECSTATE_S
,
3035 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
3036 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
3037 .accessfn
= gt_ptimer_access
,
3038 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
3040 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
3041 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
3044 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
3045 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
3046 .readfn
= gt_phys_redir_cval_read
, .raw_readfn
= raw_read
,
3047 .writefn
= gt_phys_redir_cval_write
, .raw_writefn
= raw_write
,
3049 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
3051 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
3052 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
3053 .accessfn
= gt_vtimer_access
,
3054 .readfn
= gt_virt_redir_cval_read
, .raw_readfn
= raw_read
,
3055 .writefn
= gt_virt_redir_cval_write
, .raw_writefn
= raw_write
,
3057 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
3058 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
3061 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
3062 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
3063 .readfn
= gt_virt_redir_cval_read
, .raw_readfn
= raw_read
,
3064 .writefn
= gt_virt_redir_cval_write
, .raw_writefn
= raw_write
,
3066 /* Secure timer -- this is actually restricted to only EL3
3067 * and configurably Secure-EL1 via the accessfn.
3069 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
3070 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
3071 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
3072 .accessfn
= gt_stimer_access
,
3073 .readfn
= gt_sec_tval_read
,
3074 .writefn
= gt_sec_tval_write
,
3075 .resetfn
= gt_sec_timer_reset
,
3077 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
3078 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
3079 .type
= ARM_CP_IO
, .access
= PL1_RW
,
3080 .accessfn
= gt_stimer_access
,
3081 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
3083 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
3085 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
3086 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
3087 .type
= ARM_CP_IO
, .access
= PL1_RW
,
3088 .accessfn
= gt_stimer_access
,
3089 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
3090 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
3095 static CPAccessResult
e2h_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3098 if (!(arm_hcr_el2_eff(env
) & HCR_E2H
)) {
3099 return CP_ACCESS_TRAP
;
3101 return CP_ACCESS_OK
;
3106 /* In user-mode most of the generic timer registers are inaccessible
3107 * however modern kernels (4.12+) allow access to cntvct_el0
3110 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3112 ARMCPU
*cpu
= env_archcpu(env
);
3114 /* Currently we have no support for QEMUTimer in linux-user so we
3115 * can't call gt_get_countervalue(env), instead we directly
3116 * call the lower level functions.
3118 return cpu_get_clock() / gt_cntfrq_period_ns(cpu
);
3121 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
3122 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
3123 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
3124 .type
= ARM_CP_CONST
, .access
= PL0_R
/* no PL1_RW in linux-user */,
3125 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
3126 .resetvalue
= NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
,
3128 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
3129 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
3130 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
3131 .readfn
= gt_virt_cnt_read
,
3138 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3140 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3141 raw_write(env
, ri
, value
);
3142 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
3143 raw_write(env
, ri
, value
& 0xfffff6ff);
3145 raw_write(env
, ri
, value
& 0xfffff1ff);
3149 #ifndef CONFIG_USER_ONLY
3150 /* get_phys_addr() isn't present for user-mode-only targets */
3152 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3156 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3157 * Secure EL1 (which can only happen if EL3 is AArch64).
3158 * They are simply UNDEF if executed from NS EL1.
3159 * They function normally from EL2 or EL3.
3161 if (arm_current_el(env
) == 1) {
3162 if (arm_is_secure_below_el3(env
)) {
3163 if (env
->cp15
.scr_el3
& SCR_EEL2
) {
3164 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2
;
3166 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
3168 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3171 return CP_ACCESS_OK
;
3175 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
3176 MMUAccessType access_type
, ARMMMUIdx mmu_idx
)
3179 target_ulong page_size
;
3183 bool format64
= false;
3184 MemTxAttrs attrs
= {};
3185 ARMMMUFaultInfo fi
= {};
3186 ARMCacheAttrs cacheattrs
= {};
3188 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
, &phys_addr
, &attrs
,
3189 &prot
, &page_size
, &fi
, &cacheattrs
);
3193 * Some kinds of translation fault must cause exceptions rather
3194 * than being reported in the PAR.
3196 int current_el
= arm_current_el(env
);
3198 uint32_t syn
, fsr
, fsc
;
3199 bool take_exc
= false;
3201 if (fi
.s1ptw
&& current_el
== 1
3202 && arm_mmu_idx_is_stage1_of_2(mmu_idx
)) {
3204 * Synchronous stage 2 fault on an access made as part of the
3205 * translation table walk for AT S1E0* or AT S1E1* insn
3206 * executed from NS EL1. If this is a synchronous external abort
3207 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3208 * to EL3. Otherwise the fault is taken as an exception to EL2,
3209 * and HPFAR_EL2 holds the faulting IPA.
3211 if (fi
.type
== ARMFault_SyncExternalOnWalk
&&
3212 (env
->cp15
.scr_el3
& SCR_EA
)) {
3215 env
->cp15
.hpfar_el2
= extract64(fi
.s2addr
, 12, 47) << 4;
3216 if (arm_is_secure_below_el3(env
) && fi
.s1ns
) {
3217 env
->cp15
.hpfar_el2
|= HPFAR_NS
;
3222 } else if (fi
.type
== ARMFault_SyncExternalOnWalk
) {
3224 * Synchronous external aborts during a translation table walk
3225 * are taken as Data Abort exceptions.
3228 if (current_el
== 3) {
3234 target_el
= exception_target_el(env
);
3240 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3241 if (target_el
== 2 || arm_el_is_aa64(env
, target_el
) ||
3242 arm_s1_regime_using_lpae_format(env
, mmu_idx
)) {
3243 fsr
= arm_fi_to_lfsc(&fi
);
3244 fsc
= extract32(fsr
, 0, 6);
3246 fsr
= arm_fi_to_sfsc(&fi
);
3250 * Report exception with ESR indicating a fault due to a
3251 * translation table walk for a cache maintenance instruction.
3253 syn
= syn_data_abort_no_iss(current_el
== target_el
, 0,
3254 fi
.ea
, 1, fi
.s1ptw
, 1, fsc
);
3255 env
->exception
.vaddress
= value
;
3256 env
->exception
.fsr
= fsr
;
3257 raise_exception(env
, EXCP_DATA_ABORT
, syn
, target_el
);
3263 } else if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3266 * * TTBCR.EAE determines whether the result is returned using the
3267 * 32-bit or the 64-bit PAR format
3268 * * Instructions executed in Hyp mode always use the 64bit format
3270 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3271 * * The Non-secure TTBCR.EAE bit is set to 1
3272 * * The implementation includes EL2, and the value of HCR.VM is 1
3274 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3276 * ATS1Hx always uses the 64bit format.
3278 format64
= arm_s1_regime_using_lpae_format(env
, mmu_idx
);
3280 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3281 if (mmu_idx
== ARMMMUIdx_E10_0
||
3282 mmu_idx
== ARMMMUIdx_E10_1
||
3283 mmu_idx
== ARMMMUIdx_E10_1_PAN
) {
3284 format64
|= env
->cp15
.hcr_el2
& (HCR_VM
| HCR_DC
);
3286 format64
|= arm_current_el(env
) == 2;
3292 /* Create a 64-bit PAR */
3293 par64
= (1 << 11); /* LPAE bit always set */
3295 par64
|= phys_addr
& ~0xfffULL
;
3296 if (!attrs
.secure
) {
3297 par64
|= (1 << 9); /* NS */
3299 par64
|= (uint64_t)cacheattrs
.attrs
<< 56; /* ATTR */
3300 par64
|= cacheattrs
.shareability
<< 7; /* SH */
3302 uint32_t fsr
= arm_fi_to_lfsc(&fi
);
3305 par64
|= (fsr
& 0x3f) << 1; /* FS */
3307 par64
|= (1 << 9); /* S */
3310 par64
|= (1 << 8); /* PTW */
3314 /* fsr is a DFSR/IFSR value for the short descriptor
3315 * translation table format (with WnR always clear).
3316 * Convert it to a 32-bit PAR.
3319 /* We do not set any attribute bits in the PAR */
3320 if (page_size
== (1 << 24)
3321 && arm_feature(env
, ARM_FEATURE_V7
)) {
3322 par64
= (phys_addr
& 0xff000000) | (1 << 1);
3324 par64
= phys_addr
& 0xfffff000;
3326 if (!attrs
.secure
) {
3327 par64
|= (1 << 9); /* NS */
3330 uint32_t fsr
= arm_fi_to_sfsc(&fi
);
3332 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
3333 ((fsr
& 0xf) << 1) | 1;
3338 #endif /* CONFIG_TCG */
3340 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3343 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3346 int el
= arm_current_el(env
);
3347 bool secure
= arm_is_secure_below_el3(env
);
3349 switch (ri
->opc2
& 6) {
3351 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3354 mmu_idx
= ARMMMUIdx_SE3
;
3357 g_assert(!secure
); /* ARMv8.4-SecEL2 is 64-bit only */
3360 if (ri
->crm
== 9 && (env
->uncached_cpsr
& CPSR_PAN
)) {
3361 mmu_idx
= (secure
? ARMMMUIdx_Stage1_SE1_PAN
3362 : ARMMMUIdx_Stage1_E1_PAN
);
3364 mmu_idx
= secure
? ARMMMUIdx_Stage1_SE1
: ARMMMUIdx_Stage1_E1
;
3368 g_assert_not_reached();
3372 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3375 mmu_idx
= ARMMMUIdx_SE10_0
;
3378 g_assert(!secure
); /* ARMv8.4-SecEL2 is 64-bit only */
3379 mmu_idx
= ARMMMUIdx_Stage1_E0
;
3382 mmu_idx
= secure
? ARMMMUIdx_Stage1_SE0
: ARMMMUIdx_Stage1_E0
;
3385 g_assert_not_reached();
3389 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3390 mmu_idx
= ARMMMUIdx_E10_1
;
3393 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3394 mmu_idx
= ARMMMUIdx_E10_0
;
3397 g_assert_not_reached();
3400 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
3402 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
3404 /* Handled by hardware accelerator. */
3405 g_assert_not_reached();
3406 #endif /* CONFIG_TCG */
3409 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3413 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3416 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_E2
);
3418 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
3420 /* Handled by hardware accelerator. */
3421 g_assert_not_reached();
3422 #endif /* CONFIG_TCG */
3425 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3428 if (arm_current_el(env
) == 3 &&
3429 !(env
->cp15
.scr_el3
& (SCR_NS
| SCR_EEL2
))) {
3430 return CP_ACCESS_TRAP
;
3432 return CP_ACCESS_OK
;
3435 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3439 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3441 int secure
= arm_is_secure_below_el3(env
);
3443 switch (ri
->opc2
& 6) {
3446 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3447 if (ri
->crm
== 9 && (env
->pstate
& PSTATE_PAN
)) {
3448 mmu_idx
= (secure
? ARMMMUIdx_Stage1_SE1_PAN
3449 : ARMMMUIdx_Stage1_E1_PAN
);
3451 mmu_idx
= secure
? ARMMMUIdx_Stage1_SE1
: ARMMMUIdx_Stage1_E1
;
3454 case 4: /* AT S1E2R, AT S1E2W */
3455 mmu_idx
= secure
? ARMMMUIdx_SE2
: ARMMMUIdx_E2
;
3457 case 6: /* AT S1E3R, AT S1E3W */
3458 mmu_idx
= ARMMMUIdx_SE3
;
3461 g_assert_not_reached();
3464 case 2: /* AT S1E0R, AT S1E0W */
3465 mmu_idx
= secure
? ARMMMUIdx_Stage1_SE0
: ARMMMUIdx_Stage1_E0
;
3467 case 4: /* AT S12E1R, AT S12E1W */
3468 mmu_idx
= secure
? ARMMMUIdx_SE10_1
: ARMMMUIdx_E10_1
;
3470 case 6: /* AT S12E0R, AT S12E0W */
3471 mmu_idx
= secure
? ARMMMUIdx_SE10_0
: ARMMMUIdx_E10_0
;
3474 g_assert_not_reached();
3477 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
3479 /* Handled by hardware accelerator. */
3480 g_assert_not_reached();
3481 #endif /* CONFIG_TCG */
3485 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
3486 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
3487 .access
= PL1_RW
, .resetvalue
= 0,
3488 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
3489 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
3490 .writefn
= par_write
},
3491 #ifndef CONFIG_USER_ONLY
3492 /* This underdecoding is safe because the reginfo is NO_RAW. */
3493 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
3494 .access
= PL1_W
, .accessfn
= ats_access
,
3495 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
},
3500 /* Return basic MPU access permission bits. */
3501 static uint32_t simple_mpu_ap_bits(uint32_t val
)
3508 for (i
= 0; i
< 16; i
+= 2) {
3509 ret
|= (val
>> i
) & mask
;
3515 /* Pad basic MPU access permission bits to extended format. */
3516 static uint32_t extended_mpu_ap_bits(uint32_t val
)
3523 for (i
= 0; i
< 16; i
+= 2) {
3524 ret
|= (val
& mask
) << i
;
3530 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3533 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
3536 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3538 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
3541 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3544 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
3547 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3549 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
3552 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3554 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
3560 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
3564 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3567 ARMCPU
*cpu
= env_archcpu(env
);
3568 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
3574 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
3575 tlb_flush(CPU(cpu
)); /* Mappings may have changed - purge! */
3579 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3582 ARMCPU
*cpu
= env_archcpu(env
);
3583 uint32_t nrgs
= cpu
->pmsav7_dregion
;
3585 if (value
>= nrgs
) {
3586 qemu_log_mask(LOG_GUEST_ERROR
,
3587 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3588 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
3592 raw_write(env
, ri
, value
);
3595 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
3596 /* Reset for all these registers is handled in arm_cpu_reset(),
3597 * because the PMSAv7 is also used by M-profile CPUs, which do
3598 * not register cpregs but still need the state to be reset.
3600 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
3601 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3602 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
3603 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3604 .resetfn
= arm_cp_reset_ignore
},
3605 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
3606 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3607 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
3608 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3609 .resetfn
= arm_cp_reset_ignore
},
3610 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
3611 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3612 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
3613 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3614 .resetfn
= arm_cp_reset_ignore
},
3615 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
3617 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.rnr
[M_REG_NS
]),
3618 .writefn
= pmsav7_rgnr_write
,
3619 .resetfn
= arm_cp_reset_ignore
},
3623 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
3624 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
3625 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3626 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
3627 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
3628 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
3629 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3630 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
3631 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
3632 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
3634 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
3636 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
3638 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
3640 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3642 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
3643 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
3645 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
3646 /* Protection region base and size registers */
3647 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
3648 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3649 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
3650 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
3651 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3652 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
3653 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
3654 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3655 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
3656 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
3657 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3658 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
3659 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
3660 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3661 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
3662 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
3663 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3664 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
3665 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
3666 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3667 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
3668 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
3669 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3670 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
3674 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3677 TCR
*tcr
= raw_ptr(env
, ri
);
3678 int maskshift
= extract32(value
, 0, 3);
3680 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
3681 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
3682 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3683 * using Long-desciptor translation table format */
3684 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
3685 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3686 /* In an implementation that includes the Security Extensions
3687 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3688 * Short-descriptor translation table format.
3690 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
3696 /* Update the masks corresponding to the TCR bank being written
3697 * Note that we always calculate mask and base_mask, but
3698 * they are only used for short-descriptor tables (ie if EAE is 0);
3699 * for long-descriptor tables the TCR fields are used differently
3700 * and the mask and base_mask values are meaningless.
3702 tcr
->raw_tcr
= value
;
3703 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
3704 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
3707 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3710 ARMCPU
*cpu
= env_archcpu(env
);
3711 TCR
*tcr
= raw_ptr(env
, ri
);
3713 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3714 /* With LPAE the TTBCR could result in a change of ASID
3715 * via the TTBCR.A1 bit, so do a TLB flush.
3717 tlb_flush(CPU(cpu
));
3719 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3720 value
= deposit64(tcr
->raw_tcr
, 0, 32, value
);
3721 vmsa_ttbcr_raw_write(env
, ri
, value
);
3724 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3726 TCR
*tcr
= raw_ptr(env
, ri
);
3728 /* Reset both the TCR as well as the masks corresponding to the bank of
3729 * the TCR being reset.
3733 tcr
->base_mask
= 0xffffc000u
;
3736 static void vmsa_tcr_el12_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3739 ARMCPU
*cpu
= env_archcpu(env
);
3740 TCR
*tcr
= raw_ptr(env
, ri
);
3742 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3743 tlb_flush(CPU(cpu
));
3744 tcr
->raw_tcr
= value
;
3747 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3750 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3751 if (cpreg_field_is_64bit(ri
) &&
3752 extract64(raw_read(env
, ri
) ^ value
, 48, 16) != 0) {
3753 ARMCPU
*cpu
= env_archcpu(env
);
3754 tlb_flush(CPU(cpu
));
3756 raw_write(env
, ri
, value
);
3759 static void vmsa_tcr_ttbr_el2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3763 * If we are running with E2&0 regime, then an ASID is active.
3764 * Flush if that might be changing. Note we're not checking
3765 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3766 * holds the active ASID, only checking the field that might.
3768 if (extract64(raw_read(env
, ri
) ^ value
, 48, 16) &&
3769 (arm_hcr_el2_eff(env
) & HCR_E2H
)) {
3770 uint16_t mask
= ARMMMUIdxBit_E20_2
|
3771 ARMMMUIdxBit_E20_2_PAN
|
3774 if (arm_is_secure_below_el3(env
)) {
3775 mask
>>= ARM_MMU_IDX_A_NS
;
3778 tlb_flush_by_mmuidx(env_cpu(env
), mask
);
3780 raw_write(env
, ri
, value
);
3783 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3786 ARMCPU
*cpu
= env_archcpu(env
);
3787 CPUState
*cs
= CPU(cpu
);
3790 * A change in VMID to the stage2 page table (Stage2) invalidates
3791 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3793 if (raw_read(env
, ri
) != value
) {
3794 uint16_t mask
= ARMMMUIdxBit_E10_1
|
3795 ARMMMUIdxBit_E10_1_PAN
|
3798 if (arm_is_secure_below_el3(env
)) {
3799 mask
>>= ARM_MMU_IDX_A_NS
;
3802 tlb_flush_by_mmuidx(cs
, mask
);
3803 raw_write(env
, ri
, value
);
3807 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
3808 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
3809 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
, .type
= ARM_CP_ALIAS
,
3810 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
3811 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
3812 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
3813 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
, .resetvalue
= 0,
3814 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
3815 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
3816 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
3817 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
, .resetvalue
= 0,
3818 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
3819 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
3820 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
3821 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
3822 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
3823 .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
3828 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
3829 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
3830 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
3831 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
3832 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
3833 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
3834 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
3835 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
3836 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3837 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
3838 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
3839 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
3840 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
3841 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
3842 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3843 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
3844 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
3845 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
3846 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
3847 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
3848 .writefn
= vmsa_tcr_el12_write
,
3849 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3850 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
3851 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
3852 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
3853 .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
3854 .raw_writefn
= vmsa_ttbcr_raw_write
,
3855 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3856 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.tcr_el
[3]),
3857 offsetof(CPUARMState
, cp15
.tcr_el
[1])} },
3861 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3862 * qemu tlbs nor adjusting cached masks.
3864 static const ARMCPRegInfo ttbcr2_reginfo
= {
3865 .name
= "TTBCR2", .cp
= 15, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 3,
3866 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
3867 .type
= ARM_CP_ALIAS
,
3868 .bank_fieldoffsets
= {
3869 offsetofhigh32(CPUARMState
, cp15
.tcr_el
[3].raw_tcr
),
3870 offsetofhigh32(CPUARMState
, cp15
.tcr_el
[1].raw_tcr
),
3874 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3877 env
->cp15
.c15_ticonfig
= value
& 0xe7;
3878 /* The OS_TYPE bit in this register changes the reported CPUID! */
3879 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
3880 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
3883 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3886 env
->cp15
.c15_threadid
= value
& 0xffff;
3889 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3892 /* Wait-for-interrupt (deprecated) */
3893 cpu_interrupt(env_cpu(env
), CPU_INTERRUPT_HALT
);
3896 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3899 /* On OMAP there are registers indicating the max/min index of dcache lines
3900 * containing a dirty line; cache flush operations have to reset these.
3902 env
->cp15
.c15_i_max
= 0x000;
3903 env
->cp15
.c15_i_min
= 0xff0;
3906 static const ARMCPRegInfo omap_cp_reginfo
[] = {
3907 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
3908 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
3909 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
3911 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
3912 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3913 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
3915 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
3916 .writefn
= omap_ticonfig_write
},
3917 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
3919 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
3920 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
3921 .access
= PL1_RW
, .resetvalue
= 0xff0,
3922 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
3923 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
3925 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
3926 .writefn
= omap_threadid_write
},
3927 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
3928 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
3929 .type
= ARM_CP_NO_RAW
,
3930 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
3931 /* TODO: Peripheral port remap register:
3932 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3933 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3936 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
3937 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
3938 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
3939 .writefn
= omap_cachemaint_write
},
3940 { .name
= "C9", .cp
= 15, .crn
= 9,
3941 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
3942 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
3946 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3949 env
->cp15
.c15_cpar
= value
& 0x3fff;
3952 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
3953 { .name
= "XSCALE_CPAR",
3954 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
3955 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
3956 .writefn
= xscale_cpar_write
, },
3957 { .name
= "XSCALE_AUXCR",
3958 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
3959 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
3961 /* XScale specific cache-lockdown: since we have no cache we NOP these
3962 * and hope the guest does not really rely on cache behaviour.
3964 { .name
= "XSCALE_LOCK_ICACHE_LINE",
3965 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
3966 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3967 { .name
= "XSCALE_UNLOCK_ICACHE",
3968 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
3969 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3970 { .name
= "XSCALE_DCACHE_LOCK",
3971 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
3972 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3973 { .name
= "XSCALE_UNLOCK_DCACHE",
3974 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
3975 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3979 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
3980 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3981 * implementation of this implementation-defined space.
3982 * Ideally this should eventually disappear in favour of actually
3983 * implementing the correct behaviour for all cores.
3985 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
3986 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
3988 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
3993 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
3994 /* Cache status: RAZ because we have no cache so it's always clean */
3995 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
3996 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
4001 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
4002 /* We never have a a block transfer operation in progress */
4003 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
4004 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
4006 /* The cache ops themselves: these all NOP for QEMU */
4007 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
4008 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
4009 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
4010 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
4011 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
4012 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
4013 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
4014 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
4015 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
4016 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
4017 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
4018 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
4022 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
4023 /* The cache test-and-clean instructions always return (1 << 30)
4024 * to indicate that there are no dirty cache lines.
4026 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
4027 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
4028 .resetvalue
= (1 << 30) },
4029 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
4030 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
4031 .resetvalue
= (1 << 30) },
4035 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
4036 /* Ignore ReadBuffer accesses */
4037 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
4038 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
4039 .access
= PL1_RW
, .resetvalue
= 0,
4040 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
4044 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4046 unsigned int cur_el
= arm_current_el(env
);
4048 if (arm_is_el2_enabled(env
) && cur_el
== 1) {
4049 return env
->cp15
.vpidr_el2
;
4051 return raw_read(env
, ri
);
4054 static uint64_t mpidr_read_val(CPUARMState
*env
)
4056 ARMCPU
*cpu
= env_archcpu(env
);
4057 uint64_t mpidr
= cpu
->mp_affinity
;
4059 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
4060 mpidr
|= (1U << 31);
4061 /* Cores which are uniprocessor (non-coherent)
4062 * but still implement the MP extensions set
4063 * bit 30. (For instance, Cortex-R5).
4065 if (cpu
->mp_is_up
) {
4066 mpidr
|= (1u << 30);
4072 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4074 unsigned int cur_el
= arm_current_el(env
);
4076 if (arm_is_el2_enabled(env
) && cur_el
== 1) {
4077 return env
->cp15
.vmpidr_el2
;
4079 return mpidr_read_val(env
);
4082 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
4084 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
4085 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
4086 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
4087 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4088 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4089 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
4090 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
4091 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4092 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
4093 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
4094 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
4095 offsetof(CPUARMState
, cp15
.par_ns
)} },
4096 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
4097 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
4098 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4099 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
4100 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
4101 .writefn
= vmsa_ttbr_write
, },
4102 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
4103 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
4104 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4105 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
4106 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
4107 .writefn
= vmsa_ttbr_write
, },
4111 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4113 return vfp_get_fpcr(env
);
4116 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4119 vfp_set_fpcr(env
, value
);
4122 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4124 return vfp_get_fpsr(env
);
4127 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4130 vfp_set_fpsr(env
, value
);
4133 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4136 if (arm_current_el(env
) == 0 && !(arm_sctlr(env
, 0) & SCTLR_UMA
)) {
4137 return CP_ACCESS_TRAP
;
4139 return CP_ACCESS_OK
;
4142 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4145 env
->daif
= value
& PSTATE_DAIF
;
4148 static uint64_t aa64_pan_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4150 return env
->pstate
& PSTATE_PAN
;
4153 static void aa64_pan_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4156 env
->pstate
= (env
->pstate
& ~PSTATE_PAN
) | (value
& PSTATE_PAN
);
4159 static const ARMCPRegInfo pan_reginfo
= {
4160 .name
= "PAN", .state
= ARM_CP_STATE_AA64
,
4161 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 3,
4162 .type
= ARM_CP_NO_RAW
, .access
= PL1_RW
,
4163 .readfn
= aa64_pan_read
, .writefn
= aa64_pan_write
4166 static uint64_t aa64_uao_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4168 return env
->pstate
& PSTATE_UAO
;
4171 static void aa64_uao_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4174 env
->pstate
= (env
->pstate
& ~PSTATE_UAO
) | (value
& PSTATE_UAO
);
4177 static const ARMCPRegInfo uao_reginfo
= {
4178 .name
= "UAO", .state
= ARM_CP_STATE_AA64
,
4179 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 4,
4180 .type
= ARM_CP_NO_RAW
, .access
= PL1_RW
,
4181 .readfn
= aa64_uao_read
, .writefn
= aa64_uao_write
4184 static uint64_t aa64_dit_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4186 return env
->pstate
& PSTATE_DIT
;
4189 static void aa64_dit_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4192 env
->pstate
= (env
->pstate
& ~PSTATE_DIT
) | (value
& PSTATE_DIT
);
4195 static const ARMCPRegInfo dit_reginfo
= {
4196 .name
= "DIT", .state
= ARM_CP_STATE_AA64
,
4197 .opc0
= 3, .opc1
= 3, .crn
= 4, .crm
= 2, .opc2
= 5,
4198 .type
= ARM_CP_NO_RAW
, .access
= PL0_RW
,
4199 .readfn
= aa64_dit_read
, .writefn
= aa64_dit_write
4202 static uint64_t aa64_ssbs_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4204 return env
->pstate
& PSTATE_SSBS
;
4207 static void aa64_ssbs_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4210 env
->pstate
= (env
->pstate
& ~PSTATE_SSBS
) | (value
& PSTATE_SSBS
);
4213 static const ARMCPRegInfo ssbs_reginfo
= {
4214 .name
= "SSBS", .state
= ARM_CP_STATE_AA64
,
4215 .opc0
= 3, .opc1
= 3, .crn
= 4, .crm
= 2, .opc2
= 6,
4216 .type
= ARM_CP_NO_RAW
, .access
= PL0_RW
,
4217 .readfn
= aa64_ssbs_read
, .writefn
= aa64_ssbs_write
4220 static CPAccessResult
aa64_cacheop_poc_access(CPUARMState
*env
,
4221 const ARMCPRegInfo
*ri
,
4224 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4225 switch (arm_current_el(env
)) {
4227 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4228 if (!(arm_sctlr(env
, 0) & SCTLR_UCI
)) {
4229 return CP_ACCESS_TRAP
;
4233 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4234 if (arm_hcr_el2_eff(env
) & HCR_TPCP
) {
4235 return CP_ACCESS_TRAP_EL2
;
4239 return CP_ACCESS_OK
;
4242 static CPAccessResult
aa64_cacheop_pou_access(CPUARMState
*env
,
4243 const ARMCPRegInfo
*ri
,
4246 /* Cache invalidate/clean to Point of Unification... */
4247 switch (arm_current_el(env
)) {
4249 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4250 if (!(arm_sctlr(env
, 0) & SCTLR_UCI
)) {
4251 return CP_ACCESS_TRAP
;
4255 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4256 if (arm_hcr_el2_eff(env
) & HCR_TPU
) {
4257 return CP_ACCESS_TRAP_EL2
;
4261 return CP_ACCESS_OK
;
4264 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4265 * Page D4-1736 (DDI0487A.b)
4268 static int vae1_tlbmask(CPUARMState
*env
)
4270 uint64_t hcr
= arm_hcr_el2_eff(env
);
4273 if ((hcr
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
4274 mask
= ARMMMUIdxBit_E20_2
|
4275 ARMMMUIdxBit_E20_2_PAN
|
4278 mask
= ARMMMUIdxBit_E10_1
|
4279 ARMMMUIdxBit_E10_1_PAN
|
4283 if (arm_is_secure_below_el3(env
)) {
4284 mask
>>= ARM_MMU_IDX_A_NS
;
4290 /* Return 56 if TBI is enabled, 64 otherwise. */
4291 static int tlbbits_for_regime(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
4294 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
4295 int tbi
= aa64_va_parameter_tbi(tcr
, mmu_idx
);
4296 int select
= extract64(addr
, 55, 1);
4298 return (tbi
>> select
) & 1 ? 56 : 64;
4301 static int vae1_tlbbits(CPUARMState
*env
, uint64_t addr
)
4303 uint64_t hcr
= arm_hcr_el2_eff(env
);
4306 /* Only the regime of the mmu_idx below is significant. */
4307 if ((hcr
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
4308 mmu_idx
= ARMMMUIdx_E20_0
;
4310 mmu_idx
= ARMMMUIdx_E10_0
;
4313 if (arm_is_secure_below_el3(env
)) {
4314 mmu_idx
&= ~ARM_MMU_IDX_A_NS
;
4317 return tlbbits_for_regime(env
, mmu_idx
, addr
);
4320 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4323 CPUState
*cs
= env_cpu(env
);
4324 int mask
= vae1_tlbmask(env
);
4326 tlb_flush_by_mmuidx_all_cpus_synced(cs
, mask
);
4329 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4332 CPUState
*cs
= env_cpu(env
);
4333 int mask
= vae1_tlbmask(env
);
4335 if (tlb_force_broadcast(env
)) {
4336 tlb_flush_by_mmuidx_all_cpus_synced(cs
, mask
);
4338 tlb_flush_by_mmuidx(cs
, mask
);
4342 static int alle1_tlbmask(CPUARMState
*env
)
4345 * Note that the 'ALL' scope must invalidate both stage 1 and
4346 * stage 2 translations, whereas most other scopes only invalidate
4347 * stage 1 translations.
4349 if (arm_is_secure_below_el3(env
)) {
4350 return ARMMMUIdxBit_SE10_1
|
4351 ARMMMUIdxBit_SE10_1_PAN
|
4352 ARMMMUIdxBit_SE10_0
;
4354 return ARMMMUIdxBit_E10_1
|
4355 ARMMMUIdxBit_E10_1_PAN
|
4360 static int e2_tlbmask(CPUARMState
*env
)
4362 if (arm_is_secure_below_el3(env
)) {
4363 return ARMMMUIdxBit_SE20_0
|
4364 ARMMMUIdxBit_SE20_2
|
4365 ARMMMUIdxBit_SE20_2_PAN
|
4368 return ARMMMUIdxBit_E20_0
|
4369 ARMMMUIdxBit_E20_2
|
4370 ARMMMUIdxBit_E20_2_PAN
|
4375 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4378 CPUState
*cs
= env_cpu(env
);
4379 int mask
= alle1_tlbmask(env
);
4381 tlb_flush_by_mmuidx(cs
, mask
);
4384 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4387 CPUState
*cs
= env_cpu(env
);
4388 int mask
= e2_tlbmask(env
);
4390 tlb_flush_by_mmuidx(cs
, mask
);
4393 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4396 ARMCPU
*cpu
= env_archcpu(env
);
4397 CPUState
*cs
= CPU(cpu
);
4399 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_SE3
);
4402 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4405 CPUState
*cs
= env_cpu(env
);
4406 int mask
= alle1_tlbmask(env
);
4408 tlb_flush_by_mmuidx_all_cpus_synced(cs
, mask
);
4411 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4414 CPUState
*cs
= env_cpu(env
);
4415 int mask
= e2_tlbmask(env
);
4417 tlb_flush_by_mmuidx_all_cpus_synced(cs
, mask
);
4420 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4423 CPUState
*cs
= env_cpu(env
);
4425 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_SE3
);
4428 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4431 /* Invalidate by VA, EL2
4432 * Currently handles both VAE2 and VALE2, since we don't support
4433 * flush-last-level-only.
4435 CPUState
*cs
= env_cpu(env
);
4436 int mask
= e2_tlbmask(env
);
4437 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4439 tlb_flush_page_by_mmuidx(cs
, pageaddr
, mask
);
4442 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4445 /* Invalidate by VA, EL3
4446 * Currently handles both VAE3 and VALE3, since we don't support
4447 * flush-last-level-only.
4449 ARMCPU
*cpu
= env_archcpu(env
);
4450 CPUState
*cs
= CPU(cpu
);
4451 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4453 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_SE3
);
4456 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4459 CPUState
*cs
= env_cpu(env
);
4460 int mask
= vae1_tlbmask(env
);
4461 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4462 int bits
= vae1_tlbbits(env
, pageaddr
);
4464 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs
, pageaddr
, mask
, bits
);
4467 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4470 /* Invalidate by VA, EL1&0 (AArch64 version).
4471 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4472 * since we don't support flush-for-specific-ASID-only or
4473 * flush-last-level-only.
4475 CPUState
*cs
= env_cpu(env
);
4476 int mask
= vae1_tlbmask(env
);
4477 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4478 int bits
= vae1_tlbbits(env
, pageaddr
);
4480 if (tlb_force_broadcast(env
)) {
4481 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs
, pageaddr
, mask
, bits
);
4483 tlb_flush_page_bits_by_mmuidx(cs
, pageaddr
, mask
, bits
);
4487 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4490 CPUState
*cs
= env_cpu(env
);
4491 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4492 bool secure
= arm_is_secure_below_el3(env
);
4493 int mask
= secure
? ARMMMUIdxBit_SE2
: ARMMMUIdxBit_E2
;
4494 int bits
= tlbbits_for_regime(env
, secure
? ARMMMUIdx_SE2
: ARMMMUIdx_E2
,
4497 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs
, pageaddr
, mask
, bits
);
4500 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4503 CPUState
*cs
= env_cpu(env
);
4504 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4505 int bits
= tlbbits_for_regime(env
, ARMMMUIdx_SE3
, pageaddr
);
4507 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
4508 ARMMMUIdxBit_SE3
, bits
);
4511 #ifdef TARGET_AARCH64
4512 static uint64_t tlbi_aa64_range_get_length(CPUARMState
*env
,
4515 unsigned int page_shift
;
4516 unsigned int page_size_granule
;
4522 num
= extract64(value
, 39, 4);
4523 scale
= extract64(value
, 44, 2);
4524 page_size_granule
= extract64(value
, 46, 2);
4526 page_shift
= page_size_granule
* 2 + 12;
4528 if (page_size_granule
== 0) {
4529 qemu_log_mask(LOG_GUEST_ERROR
, "Invalid page size granule %d\n",
4534 exponent
= (5 * scale
) + 1;
4535 length
= (num
+ 1) << (exponent
+ page_shift
);
4540 static uint64_t tlbi_aa64_range_get_base(CPUARMState
*env
, uint64_t value
,
4543 /* TODO: ARMv8.7 FEAT_LPA2 */
4547 pageaddr
= sextract64(value
, 0, 37) << TARGET_PAGE_BITS
;
4549 pageaddr
= extract64(value
, 0, 37) << TARGET_PAGE_BITS
;
4555 static void do_rvae_write(CPUARMState
*env
, uint64_t value
,
4556 int idxmap
, bool synced
)
4558 ARMMMUIdx one_idx
= ARM_MMU_IDX_A
| ctz32(idxmap
);
4559 bool two_ranges
= regime_has_2_ranges(one_idx
);
4560 uint64_t baseaddr
, length
;
4563 baseaddr
= tlbi_aa64_range_get_base(env
, value
, two_ranges
);
4564 length
= tlbi_aa64_range_get_length(env
, value
);
4565 bits
= tlbbits_for_regime(env
, one_idx
, baseaddr
);
4568 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env
),
4574 tlb_flush_range_by_mmuidx(env_cpu(env
), baseaddr
,
4575 length
, idxmap
, bits
);
4579 static void tlbi_aa64_rvae1_write(CPUARMState
*env
,
4580 const ARMCPRegInfo
*ri
,
4584 * Invalidate by VA range, EL1&0.
4585 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4586 * since we don't support flush-for-specific-ASID-only or
4587 * flush-last-level-only.
4590 do_rvae_write(env
, value
, vae1_tlbmask(env
),
4591 tlb_force_broadcast(env
));
4594 static void tlbi_aa64_rvae1is_write(CPUARMState
*env
,
4595 const ARMCPRegInfo
*ri
,
4599 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4600 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4601 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4602 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4603 * shareable specific flushes.
4606 do_rvae_write(env
, value
, vae1_tlbmask(env
), true);
4609 static int vae2_tlbmask(CPUARMState
*env
)
4611 return (arm_is_secure_below_el3(env
)
4612 ? ARMMMUIdxBit_SE2
: ARMMMUIdxBit_E2
);
4615 static void tlbi_aa64_rvae2_write(CPUARMState
*env
,
4616 const ARMCPRegInfo
*ri
,
4620 * Invalidate by VA range, EL2.
4621 * Currently handles all of RVAE2 and RVALE2,
4622 * since we don't support flush-for-specific-ASID-only or
4623 * flush-last-level-only.
4626 do_rvae_write(env
, value
, vae2_tlbmask(env
),
4627 tlb_force_broadcast(env
));
4632 static void tlbi_aa64_rvae2is_write(CPUARMState
*env
,
4633 const ARMCPRegInfo
*ri
,
4637 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4638 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4639 * since we don't support flush-for-specific-ASID-only,
4640 * flush-last-level-only or inner/outer shareable specific flushes.
4643 do_rvae_write(env
, value
, vae2_tlbmask(env
), true);
4647 static void tlbi_aa64_rvae3_write(CPUARMState
*env
,
4648 const ARMCPRegInfo
*ri
,
4652 * Invalidate by VA range, EL3.
4653 * Currently handles all of RVAE3 and RVALE3,
4654 * since we don't support flush-for-specific-ASID-only or
4655 * flush-last-level-only.
4658 do_rvae_write(env
, value
, ARMMMUIdxBit_SE3
,
4659 tlb_force_broadcast(env
));
4662 static void tlbi_aa64_rvae3is_write(CPUARMState
*env
,
4663 const ARMCPRegInfo
*ri
,
4667 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4668 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4669 * since we don't support flush-for-specific-ASID-only,
4670 * flush-last-level-only or inner/outer specific flushes.
4673 do_rvae_write(env
, value
, ARMMMUIdxBit_SE3
, true);
4677 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4680 int cur_el
= arm_current_el(env
);
4683 uint64_t hcr
= arm_hcr_el2_eff(env
);
4686 if ((hcr
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
4687 if (!(env
->cp15
.sctlr_el
[2] & SCTLR_DZE
)) {
4688 return CP_ACCESS_TRAP_EL2
;
4691 if (!(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
4692 return CP_ACCESS_TRAP
;
4694 if (hcr
& HCR_TDZ
) {
4695 return CP_ACCESS_TRAP_EL2
;
4698 } else if (hcr
& HCR_TDZ
) {
4699 return CP_ACCESS_TRAP_EL2
;
4702 return CP_ACCESS_OK
;
4705 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4707 ARMCPU
*cpu
= env_archcpu(env
);
4708 int dzp_bit
= 1 << 4;
4710 /* DZP indicates whether DC ZVA access is allowed */
4711 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
4714 return cpu
->dcz_blocksize
| dzp_bit
;
4717 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4720 if (!(env
->pstate
& PSTATE_SP
)) {
4721 /* Access to SP_EL0 is undefined if it's being used as
4722 * the stack pointer.
4724 return CP_ACCESS_TRAP_UNCATEGORIZED
;
4726 return CP_ACCESS_OK
;
4729 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4731 return env
->pstate
& PSTATE_SP
;
4734 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
4736 update_spsel(env
, val
);
4739 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4742 ARMCPU
*cpu
= env_archcpu(env
);
4744 if (arm_feature(env
, ARM_FEATURE_PMSA
) && !cpu
->has_mpu
) {
4745 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4749 /* ??? Lots of these bits are not implemented. */
4751 if (ri
->state
== ARM_CP_STATE_AA64
&& !cpu_isar_feature(aa64_mte
, cpu
)) {
4752 if (ri
->opc1
== 6) { /* SCTLR_EL3 */
4753 value
&= ~(SCTLR_ITFSB
| SCTLR_TCF
| SCTLR_ATA
);
4755 value
&= ~(SCTLR_ITFSB
| SCTLR_TCF0
| SCTLR_TCF
|
4756 SCTLR_ATA0
| SCTLR_ATA
);
4760 if (raw_read(env
, ri
) == value
) {
4761 /* Skip the TLB flush if nothing actually changed; Linux likes
4762 * to do a lot of pointless SCTLR writes.
4767 raw_write(env
, ri
, value
);
4769 /* This may enable/disable the MMU, so do a TLB flush. */
4770 tlb_flush(CPU(cpu
));
4772 if (ri
->type
& ARM_CP_SUPPRESS_TB_END
) {
4774 * Normally we would always end the TB on an SCTLR write; see the
4775 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4776 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4777 * of hflags from the translator, so do it here.
4779 arm_rebuild_hflags(env
);
4783 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4786 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
4787 return CP_ACCESS_TRAP_FP_EL2
;
4789 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
4790 return CP_ACCESS_TRAP_FP_EL3
;
4792 return CP_ACCESS_OK
;
4795 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4798 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
4801 static const ARMCPRegInfo v8_cp_reginfo
[] = {
4802 /* Minimal set of EL0-visible registers. This will need to be expanded
4803 * significantly for system emulation of AArch64 CPUs.
4805 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
4806 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
4807 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
4808 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
4809 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
4810 .type
= ARM_CP_NO_RAW
,
4811 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
4812 .fieldoffset
= offsetof(CPUARMState
, daif
),
4813 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
4814 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
4815 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
4816 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
4817 .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
4818 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
4819 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
4820 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
4821 .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
4822 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
4823 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
4824 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
4825 .readfn
= aa64_dczid_read
},
4826 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
4827 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
4828 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
4829 #ifndef CONFIG_USER_ONLY
4830 /* Avoid overhead of an access check that always passes in user-mode */
4831 .accessfn
= aa64_zva_access
,
4834 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
4835 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
4836 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
4837 /* Cache ops: all NOPs since we don't emulate caches */
4838 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
4839 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
4840 .access
= PL1_W
, .type
= ARM_CP_NOP
,
4841 .accessfn
= aa64_cacheop_pou_access
},
4842 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
4843 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
4844 .access
= PL1_W
, .type
= ARM_CP_NOP
,
4845 .accessfn
= aa64_cacheop_pou_access
},
4846 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
4847 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
4848 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4849 .accessfn
= aa64_cacheop_pou_access
},
4850 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
4851 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
4852 .access
= PL1_W
, .accessfn
= aa64_cacheop_poc_access
,
4853 .type
= ARM_CP_NOP
},
4854 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
4855 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
4856 .access
= PL1_W
, .accessfn
= access_tsw
, .type
= ARM_CP_NOP
},
4857 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
4858 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
4859 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4860 .accessfn
= aa64_cacheop_poc_access
},
4861 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
4862 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
4863 .access
= PL1_W
, .accessfn
= access_tsw
, .type
= ARM_CP_NOP
},
4864 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
4865 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
4866 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4867 .accessfn
= aa64_cacheop_pou_access
},
4868 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
4869 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
4870 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4871 .accessfn
= aa64_cacheop_poc_access
},
4872 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
4873 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
4874 .access
= PL1_W
, .accessfn
= access_tsw
, .type
= ARM_CP_NOP
},
4875 /* TLBI operations */
4876 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
4877 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
4878 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4879 .writefn
= tlbi_aa64_vmalle1is_write
},
4880 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
4881 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
4882 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4883 .writefn
= tlbi_aa64_vae1is_write
},
4884 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
4885 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
4886 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4887 .writefn
= tlbi_aa64_vmalle1is_write
},
4888 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
4889 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
4890 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4891 .writefn
= tlbi_aa64_vae1is_write
},
4892 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
4893 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
4894 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4895 .writefn
= tlbi_aa64_vae1is_write
},
4896 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
4897 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
4898 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4899 .writefn
= tlbi_aa64_vae1is_write
},
4900 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
4901 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
4902 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4903 .writefn
= tlbi_aa64_vmalle1_write
},
4904 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
4905 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
4906 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4907 .writefn
= tlbi_aa64_vae1_write
},
4908 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
4909 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
4910 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4911 .writefn
= tlbi_aa64_vmalle1_write
},
4912 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
4913 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
4914 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4915 .writefn
= tlbi_aa64_vae1_write
},
4916 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
4917 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
4918 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4919 .writefn
= tlbi_aa64_vae1_write
},
4920 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
4921 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
4922 .access
= PL1_W
, .accessfn
= access_ttlb
, .type
= ARM_CP_NO_RAW
,
4923 .writefn
= tlbi_aa64_vae1_write
},
4924 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
4925 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
4926 .access
= PL2_W
, .type
= ARM_CP_NOP
},
4927 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
4928 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
4929 .access
= PL2_W
, .type
= ARM_CP_NOP
},
4930 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
4931 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
4932 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4933 .writefn
= tlbi_aa64_alle1is_write
},
4934 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
4935 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
4936 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4937 .writefn
= tlbi_aa64_alle1is_write
},
4938 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
4939 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
4940 .access
= PL2_W
, .type
= ARM_CP_NOP
},
4941 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
4942 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
4943 .access
= PL2_W
, .type
= ARM_CP_NOP
},
4944 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
4945 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
4946 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4947 .writefn
= tlbi_aa64_alle1_write
},
4948 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
4949 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
4950 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4951 .writefn
= tlbi_aa64_alle1is_write
},
4952 #ifndef CONFIG_USER_ONLY
4953 /* 64 bit address translation operations */
4954 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
4955 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
4956 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4957 .writefn
= ats_write64
},
4958 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
4959 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
4960 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4961 .writefn
= ats_write64
},
4962 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
4963 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
4964 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4965 .writefn
= ats_write64
},
4966 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
4967 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
4968 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4969 .writefn
= ats_write64
},
4970 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
4971 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
4972 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4973 .writefn
= ats_write64
},
4974 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
4975 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
4976 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4977 .writefn
= ats_write64
},
4978 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
4979 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
4980 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4981 .writefn
= ats_write64
},
4982 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
4983 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
4984 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4985 .writefn
= ats_write64
},
4986 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4987 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
4988 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
4989 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4990 .writefn
= ats_write64
},
4991 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
4992 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
4993 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
4994 .writefn
= ats_write64
},
4995 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
4996 .type
= ARM_CP_ALIAS
,
4997 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
4998 .access
= PL1_RW
, .resetvalue
= 0,
4999 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
5000 .writefn
= par_write
},
5002 /* TLB invalidate last level of translation table walk */
5003 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
5004 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
5005 .writefn
= tlbimva_is_write
},
5006 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
5007 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
5008 .writefn
= tlbimvaa_is_write
},
5009 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
5010 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
5011 .writefn
= tlbimva_write
},
5012 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
5013 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .accessfn
= access_ttlb
,
5014 .writefn
= tlbimvaa_write
},
5015 { .name
= "TLBIMVALH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
5016 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5017 .writefn
= tlbimva_hyp_write
},
5018 { .name
= "TLBIMVALHIS",
5019 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
5020 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5021 .writefn
= tlbimva_hyp_is_write
},
5022 { .name
= "TLBIIPAS2",
5023 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
5024 .type
= ARM_CP_NOP
, .access
= PL2_W
},
5025 { .name
= "TLBIIPAS2IS",
5026 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
5027 .type
= ARM_CP_NOP
, .access
= PL2_W
},
5028 { .name
= "TLBIIPAS2L",
5029 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
5030 .type
= ARM_CP_NOP
, .access
= PL2_W
},
5031 { .name
= "TLBIIPAS2LIS",
5032 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
5033 .type
= ARM_CP_NOP
, .access
= PL2_W
},
5034 /* 32 bit cache operations */
5035 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
5036 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= aa64_cacheop_pou_access
},
5037 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
5038 .type
= ARM_CP_NOP
, .access
= PL1_W
},
5039 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
5040 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= aa64_cacheop_pou_access
},
5041 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
5042 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= aa64_cacheop_pou_access
},
5043 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
5044 .type
= ARM_CP_NOP
, .access
= PL1_W
},
5045 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
5046 .type
= ARM_CP_NOP
, .access
= PL1_W
},
5047 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
5048 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= aa64_cacheop_poc_access
},
5049 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
5050 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= access_tsw
},
5051 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
5052 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= aa64_cacheop_poc_access
},
5053 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
5054 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= access_tsw
},
5055 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
5056 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= aa64_cacheop_pou_access
},
5057 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
5058 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= aa64_cacheop_poc_access
},
5059 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
5060 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= access_tsw
},
5061 /* MMU Domain access control / MPU write buffer control */
5062 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
5063 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
, .resetvalue
= 0,
5064 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
5065 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
5066 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
5067 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
5068 .type
= ARM_CP_ALIAS
,
5069 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
5071 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
5072 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
5073 .type
= ARM_CP_ALIAS
,
5074 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
5076 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
5077 /* We rely on the access checks not allowing the guest to write to the
5078 * state field when SPSel indicates that it's being used as the stack
5081 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
5082 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
5083 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
5084 .type
= ARM_CP_ALIAS
,
5085 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
5086 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
5087 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
5088 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
5089 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
5090 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
5091 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
5092 .type
= ARM_CP_NO_RAW
,
5093 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
5094 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
5095 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
5096 .type
= ARM_CP_ALIAS
,
5097 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
5098 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
5099 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
5100 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
5101 .access
= PL2_RW
, .resetvalue
= 0,
5102 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
5103 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
5104 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
5105 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
5106 .access
= PL2_RW
, .resetvalue
= 0,
5107 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
5108 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
5109 .type
= ARM_CP_ALIAS
,
5110 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
5112 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
5113 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
5114 .type
= ARM_CP_ALIAS
,
5115 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
5117 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
5118 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
5119 .type
= ARM_CP_ALIAS
,
5120 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
5122 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
5123 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
5124 .type
= ARM_CP_ALIAS
,
5125 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
5127 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
5128 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
5129 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
5131 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
5132 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
5133 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
5134 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
5135 .writefn
= sdcr_write
,
5136 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
5140 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5141 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
5142 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
5143 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
5145 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
5146 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
5147 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
5149 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5150 { .name
= "HACR_EL2", .state
= ARM_CP_STATE_BOTH
,
5151 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 7,
5152 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5153 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
5154 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
5156 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5157 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
5158 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
5159 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5160 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
5161 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
5162 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5164 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
5165 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
5166 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5167 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
5168 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
5169 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5171 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
5172 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
5173 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5175 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
5176 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
5177 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5179 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
5180 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
5181 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5183 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
5184 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
5185 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5186 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
5187 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
5188 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
5189 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5190 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
5191 .cp
= 15, .opc1
= 6, .crm
= 2,
5192 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
5193 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
5194 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
5195 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
5196 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5197 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
5198 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
5199 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5200 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
5201 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
5202 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5203 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
5204 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
5205 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5206 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
5207 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
5209 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
5210 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
5211 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5212 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
5213 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
5214 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5215 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
5216 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
5218 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
5219 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
5220 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5221 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
5222 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
5224 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
5225 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
5226 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5227 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
5228 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
5229 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5230 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
5231 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
5232 .access
= PL2_RW
, .accessfn
= access_tda
,
5233 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5234 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
5235 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
5236 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
5237 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5238 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
5239 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
5240 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5241 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
5242 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
5243 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5244 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
5245 .type
= ARM_CP_CONST
,
5246 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
5247 .access
= PL2_RW
, .resetvalue
= 0 },
5251 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5252 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo
[] = {
5253 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
5254 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
5256 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5260 static void do_hcr_write(CPUARMState
*env
, uint64_t value
, uint64_t valid_mask
)
5262 ARMCPU
*cpu
= env_archcpu(env
);
5264 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5265 valid_mask
|= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5267 valid_mask
|= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5270 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5271 valid_mask
&= ~HCR_HCD
;
5272 } else if (cpu
->psci_conduit
!= QEMU_PSCI_CONDUIT_SMC
) {
5273 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5274 * However, if we're using the SMC PSCI conduit then QEMU is
5275 * effectively acting like EL3 firmware and so the guest at
5276 * EL2 should retain the ability to prevent EL1 from being
5277 * able to make SMC calls into the ersatz firmware, so in
5278 * that case HCR.TSC should be read/write.
5280 valid_mask
&= ~HCR_TSC
;
5283 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
5284 if (cpu_isar_feature(aa64_vh
, cpu
)) {
5285 valid_mask
|= HCR_E2H
;
5287 if (cpu_isar_feature(aa64_lor
, cpu
)) {
5288 valid_mask
|= HCR_TLOR
;
5290 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
5291 valid_mask
|= HCR_API
| HCR_APK
;
5293 if (cpu_isar_feature(aa64_mte
, cpu
)) {
5294 valid_mask
|= HCR_ATA
| HCR_DCT
| HCR_TID5
;
5298 /* Clear RES0 bits. */
5299 value
&= valid_mask
;
5302 * These bits change the MMU setup:
5303 * HCR_VM enables stage 2 translation
5304 * HCR_PTW forbids certain page-table setups
5305 * HCR_DC disables stage1 and enables stage2 translation
5306 * HCR_DCT enables tagging on (disabled) stage1 translation
5308 if ((env
->cp15
.hcr_el2
^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
| HCR_DCT
)) {
5309 tlb_flush(CPU(cpu
));
5311 env
->cp15
.hcr_el2
= value
;
5314 * Updates to VI and VF require us to update the status of
5315 * virtual interrupts, which are the logical OR of these bits
5316 * and the state of the input lines from the GIC. (This requires
5317 * that we have the iothread lock, which is done by marking the
5318 * reginfo structs as ARM_CP_IO.)
5319 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5320 * possible for it to be taken immediately, because VIRQ and
5321 * VFIQ are masked unless running at EL0 or EL1, and HCR
5322 * can only be written at EL2.
5324 g_assert(qemu_mutex_iothread_locked());
5325 arm_cpu_update_virq(cpu
);
5326 arm_cpu_update_vfiq(cpu
);
5329 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
5331 do_hcr_write(env
, value
, 0);
5334 static void hcr_writehigh(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5337 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5338 value
= deposit64(env
->cp15
.hcr_el2
, 32, 32, value
);
5339 do_hcr_write(env
, value
, MAKE_64BIT_MASK(0, 32));
5342 static void hcr_writelow(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5345 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5346 value
= deposit64(env
->cp15
.hcr_el2
, 0, 32, value
);
5347 do_hcr_write(env
, value
, MAKE_64BIT_MASK(32, 32));
5351 * Return the effective value of HCR_EL2.
5352 * Bits that are not included here:
5353 * RW (read from SCR_EL3.RW as needed)
5355 uint64_t arm_hcr_el2_eff(CPUARMState
*env
)
5357 uint64_t ret
= env
->cp15
.hcr_el2
;
5359 if (!arm_is_el2_enabled(env
)) {
5361 * "This register has no effect if EL2 is not enabled in the
5362 * current Security state". This is ARMv8.4-SecEL2 speak for
5363 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5365 * Prior to that, the language was "In an implementation that
5366 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5367 * as if this field is 0 for all purposes other than a direct
5368 * read or write access of HCR_EL2". With lots of enumeration
5369 * on a per-field basis. In current QEMU, this is condition
5370 * is arm_is_secure_below_el3.
5372 * Since the v8.4 language applies to the entire register, and
5373 * appears to be backward compatible, use that.
5379 * For a cpu that supports both aarch64 and aarch32, we can set bits
5380 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5381 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5383 if (!arm_el_is_aa64(env
, 2)) {
5384 uint64_t aa32_valid
;
5387 * These bits are up-to-date as of ARMv8.6.
5388 * For HCR, it's easiest to list just the 2 bits that are invalid.
5389 * For HCR2, list those that are valid.
5391 aa32_valid
= MAKE_64BIT_MASK(0, 32) & ~(HCR_RW
| HCR_TDZ
);
5392 aa32_valid
|= (HCR_CD
| HCR_ID
| HCR_TERR
| HCR_TEA
| HCR_MIOCNCE
|
5393 HCR_TID4
| HCR_TICAB
| HCR_TOCU
| HCR_TTLBIS
);
5397 if (ret
& HCR_TGE
) {
5398 /* These bits are up-to-date as of ARMv8.6. */
5399 if (ret
& HCR_E2H
) {
5400 ret
&= ~(HCR_VM
| HCR_FMO
| HCR_IMO
| HCR_AMO
|
5401 HCR_BSU_MASK
| HCR_DC
| HCR_TWI
| HCR_TWE
|
5402 HCR_TID0
| HCR_TID2
| HCR_TPCP
| HCR_TPU
|
5403 HCR_TDZ
| HCR_CD
| HCR_ID
| HCR_MIOCNCE
|
5404 HCR_TID4
| HCR_TICAB
| HCR_TOCU
| HCR_ENSCXT
|
5405 HCR_TTLBIS
| HCR_TTLBOS
| HCR_TID5
);
5407 ret
|= HCR_FMO
| HCR_IMO
| HCR_AMO
;
5409 ret
&= ~(HCR_SWIO
| HCR_PTW
| HCR_VF
| HCR_VI
| HCR_VSE
|
5410 HCR_FB
| HCR_TID1
| HCR_TID3
| HCR_TSC
| HCR_TACR
|
5411 HCR_TSW
| HCR_TTLB
| HCR_TVM
| HCR_HCD
| HCR_TRVM
|
5418 static void cptr_el2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5422 * For A-profile AArch32 EL3, if NSACR.CP10
5423 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5425 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
5426 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
5427 value
&= ~(0x3 << 10);
5428 value
|= env
->cp15
.cptr_el
[2] & (0x3 << 10);
5430 env
->cp15
.cptr_el
[2] = value
;
5433 static uint64_t cptr_el2_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5436 * For A-profile AArch32 EL3, if NSACR.CP10
5437 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5439 uint64_t value
= env
->cp15
.cptr_el
[2];
5441 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
5442 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
5448 static const ARMCPRegInfo el2_cp_reginfo
[] = {
5449 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
5451 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
5452 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
5453 .writefn
= hcr_write
},
5454 { .name
= "HCR", .state
= ARM_CP_STATE_AA32
,
5455 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
5456 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
5457 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
5458 .writefn
= hcr_writelow
},
5459 { .name
= "HACR_EL2", .state
= ARM_CP_STATE_BOTH
,
5460 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 7,
5461 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5462 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
5463 .type
= ARM_CP_ALIAS
,
5464 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
5466 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
5467 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
5468 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
5469 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
5470 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
5471 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
5472 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
5473 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
5474 .type
= ARM_CP_ALIAS
,
5475 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
5477 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el
[2]) },
5478 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
5479 .type
= ARM_CP_ALIAS
,
5480 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
5482 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
5483 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
5484 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
5485 .access
= PL2_RW
, .writefn
= vbar_write
,
5486 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
5488 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
5489 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
5490 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
5491 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
5492 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
5493 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
5494 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
5495 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]),
5496 .readfn
= cptr_el2_read
, .writefn
= cptr_el2_write
},
5497 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
5498 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
5499 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
5501 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
5502 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
5503 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
5504 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
5505 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
5506 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
5507 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5509 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5510 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
5511 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
5512 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5514 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
5515 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
5516 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5518 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
5519 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
5520 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5522 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
5523 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
5524 .access
= PL2_RW
, .writefn
= vmsa_tcr_el12_write
,
5525 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5526 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
5527 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
5528 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
5529 .type
= ARM_CP_ALIAS
,
5530 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
5531 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
5532 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
5533 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
5535 /* no .writefn needed as this can't cause an ASID change;
5536 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5538 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
5539 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
5540 .cp
= 15, .opc1
= 6, .crm
= 2,
5541 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
5542 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
5543 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
5544 .writefn
= vttbr_write
},
5545 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
5546 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
5547 .access
= PL2_RW
, .writefn
= vttbr_write
,
5548 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
5549 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
5550 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
5551 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
5552 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
5553 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
5554 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
5555 .access
= PL2_RW
, .resetvalue
= 0,
5556 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
5557 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
5558 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
5559 .access
= PL2_RW
, .resetvalue
= 0, .writefn
= vmsa_tcr_ttbr_el2_write
,
5560 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
5561 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
5562 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
5563 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
5564 { .name
= "TLBIALLNSNH",
5565 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
5566 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5567 .writefn
= tlbiall_nsnh_write
},
5568 { .name
= "TLBIALLNSNHIS",
5569 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
5570 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5571 .writefn
= tlbiall_nsnh_is_write
},
5572 { .name
= "TLBIALLH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
5573 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5574 .writefn
= tlbiall_hyp_write
},
5575 { .name
= "TLBIALLHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
5576 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5577 .writefn
= tlbiall_hyp_is_write
},
5578 { .name
= "TLBIMVAH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
5579 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5580 .writefn
= tlbimva_hyp_write
},
5581 { .name
= "TLBIMVAHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
5582 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5583 .writefn
= tlbimva_hyp_is_write
},
5584 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
5585 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
5586 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5587 .writefn
= tlbi_aa64_alle2_write
},
5588 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
5589 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
5590 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5591 .writefn
= tlbi_aa64_vae2_write
},
5592 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
5593 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
5594 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
5595 .writefn
= tlbi_aa64_vae2_write
},
5596 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
5597 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
5598 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
5599 .writefn
= tlbi_aa64_alle2is_write
},
5600 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
5601 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
5602 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
5603 .writefn
= tlbi_aa64_vae2is_write
},
5604 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
5605 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
5606 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
5607 .writefn
= tlbi_aa64_vae2is_write
},
5608 #ifndef CONFIG_USER_ONLY
5609 /* Unlike the other EL2-related AT operations, these must
5610 * UNDEF from EL3 if EL2 is not implemented, which is why we
5611 * define them here rather than with the rest of the AT ops.
5613 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
5614 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
5615 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
5616 .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
, .writefn
= ats_write64
},
5617 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
5618 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
5619 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
5620 .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
, .writefn
= ats_write64
},
5621 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5622 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5623 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5624 * to behave as if SCR.NS was 1.
5626 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
5628 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
},
5629 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
5631 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
},
5632 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
5633 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
5634 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5635 * reset values as IMPDEF. We choose to reset to 3 to comply with
5636 * both ARMv7 and ARMv8.
5638 .access
= PL2_RW
, .resetvalue
= 3,
5639 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
5640 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
5641 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
5642 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
5643 .writefn
= gt_cntvoff_write
,
5644 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
5645 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
5646 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
5647 .writefn
= gt_cntvoff_write
,
5648 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
5649 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
5650 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
5651 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
5652 .type
= ARM_CP_IO
, .access
= PL2_RW
,
5653 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
5654 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
5655 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
5656 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
5657 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
5658 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
5659 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
5660 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
5661 .resetfn
= gt_hyp_timer_reset
,
5662 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
5663 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
5665 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
5667 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
5669 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
5671 /* The only field of MDCR_EL2 that has a defined architectural reset value
5672 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5674 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
5675 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
5676 .access
= PL2_RW
, .resetvalue
= PMCR_NUM_COUNTERS
,
5677 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
5678 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
5679 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
5680 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
5681 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
5682 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
5683 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
5685 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
5686 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
5687 .cp
= 15, .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
5689 .fieldoffset
= offsetof(CPUARMState
, cp15
.hstr_el2
) },
5693 static const ARMCPRegInfo el2_v8_cp_reginfo
[] = {
5694 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
5695 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
5696 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
5698 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.hcr_el2
),
5699 .writefn
= hcr_writehigh
},
5703 static CPAccessResult
sel2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5706 if (arm_current_el(env
) == 3 || arm_is_secure_below_el3(env
)) {
5707 return CP_ACCESS_OK
;
5709 return CP_ACCESS_TRAP_UNCATEGORIZED
;
5712 static const ARMCPRegInfo el2_sec_cp_reginfo
[] = {
5713 { .name
= "VSTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
5714 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 6, .opc2
= 0,
5715 .access
= PL2_RW
, .accessfn
= sel2_access
,
5716 .fieldoffset
= offsetof(CPUARMState
, cp15
.vsttbr_el2
) },
5717 { .name
= "VSTCR_EL2", .state
= ARM_CP_STATE_AA64
,
5718 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 6, .opc2
= 2,
5719 .access
= PL2_RW
, .accessfn
= sel2_access
,
5720 .fieldoffset
= offsetof(CPUARMState
, cp15
.vstcr_el2
) },
5724 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5727 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5728 * At Secure EL1 it traps to EL3 or EL2.
5730 if (arm_current_el(env
) == 3) {
5731 return CP_ACCESS_OK
;
5733 if (arm_is_secure_below_el3(env
)) {
5734 if (env
->cp15
.scr_el3
& SCR_EEL2
) {
5735 return CP_ACCESS_TRAP_EL2
;
5737 return CP_ACCESS_TRAP_EL3
;
5739 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5741 return CP_ACCESS_OK
;
5743 return CP_ACCESS_TRAP_UNCATEGORIZED
;
5746 static const ARMCPRegInfo el3_cp_reginfo
[] = {
5747 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
5748 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
5749 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
5750 .resetfn
= scr_reset
, .writefn
= scr_write
},
5751 { .name
= "SCR", .type
= ARM_CP_ALIAS
| ARM_CP_NEWEL
,
5752 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
5753 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
5754 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
5755 .writefn
= scr_write
},
5756 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
5757 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
5758 .access
= PL3_RW
, .resetvalue
= 0,
5759 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
5761 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
5762 .access
= PL3_RW
, .resetvalue
= 0,
5763 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
5764 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
5765 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
5766 .writefn
= vbar_write
, .resetvalue
= 0,
5767 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
5768 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
5769 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
5770 .access
= PL3_RW
, .resetvalue
= 0,
5771 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
5772 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
5773 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
5775 /* no .writefn needed as this can't cause an ASID change;
5776 * we must provide a .raw_writefn and .resetfn because we handle
5777 * reset and migration for the AArch32 TTBCR(S), which might be
5778 * using mask and base_mask.
5780 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
5781 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
5782 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
5783 .type
= ARM_CP_ALIAS
,
5784 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
5786 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
5787 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
5788 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
5789 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
5790 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
5791 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
5792 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
5793 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
5794 .type
= ARM_CP_ALIAS
,
5795 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
5797 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
5798 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
5799 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
5800 .access
= PL3_RW
, .writefn
= vbar_write
,
5801 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
5803 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
5804 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
5805 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
5806 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
5807 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
5808 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
5809 .access
= PL3_RW
, .resetvalue
= 0,
5810 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
5811 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
5812 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
5813 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5815 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
5816 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
5817 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5819 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
5820 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
5821 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5823 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
5824 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
5825 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5826 .writefn
= tlbi_aa64_alle3is_write
},
5827 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
5828 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
5829 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5830 .writefn
= tlbi_aa64_vae3is_write
},
5831 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
5832 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
5833 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5834 .writefn
= tlbi_aa64_vae3is_write
},
5835 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
5836 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
5837 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5838 .writefn
= tlbi_aa64_alle3_write
},
5839 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
5840 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
5841 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5842 .writefn
= tlbi_aa64_vae3_write
},
5843 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
5844 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
5845 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5846 .writefn
= tlbi_aa64_vae3_write
},
5850 #ifndef CONFIG_USER_ONLY
5851 /* Test if system register redirection is to occur in the current state. */
5852 static bool redirect_for_e2h(CPUARMState
*env
)
5854 return arm_current_el(env
) == 2 && (arm_hcr_el2_eff(env
) & HCR_E2H
);
5857 static uint64_t el2_e2h_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5861 if (redirect_for_e2h(env
)) {
5862 /* Switch to the saved EL2 version of the register. */
5864 readfn
= ri
->readfn
;
5866 readfn
= ri
->orig_readfn
;
5868 if (readfn
== NULL
) {
5871 return readfn(env
, ri
);
5874 static void el2_e2h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5879 if (redirect_for_e2h(env
)) {
5880 /* Switch to the saved EL2 version of the register. */
5882 writefn
= ri
->writefn
;
5884 writefn
= ri
->orig_writefn
;
5886 if (writefn
== NULL
) {
5887 writefn
= raw_write
;
5889 writefn(env
, ri
, value
);
5892 static void define_arm_vh_e2h_redirects_aliases(ARMCPU
*cpu
)
5895 uint32_t src_key
, dst_key
, new_key
;
5896 const char *src_name
, *dst_name
, *new_name
;
5897 bool (*feature
)(const ARMISARegisters
*id
);
5900 #define K(op0, op1, crn, crm, op2) \
5901 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5903 static const struct E2HAlias aliases
[] = {
5904 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5905 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5906 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5907 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5908 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5909 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5910 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5911 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5912 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5913 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5914 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5915 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5916 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5917 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5918 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5919 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5920 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5921 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5922 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5923 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5924 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5925 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5926 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5927 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5928 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5929 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5930 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5931 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5932 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5933 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5934 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5935 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5938 * Note that redirection of ZCR is mentioned in the description
5939 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5940 * not in the summary table.
5942 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5943 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve
},
5945 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5946 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte
},
5948 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5949 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5955 for (i
= 0; i
< ARRAY_SIZE(aliases
); i
++) {
5956 const struct E2HAlias
*a
= &aliases
[i
];
5957 ARMCPRegInfo
*src_reg
, *dst_reg
;
5959 if (a
->feature
&& !a
->feature(&cpu
->isar
)) {
5963 src_reg
= g_hash_table_lookup(cpu
->cp_regs
, &a
->src_key
);
5964 dst_reg
= g_hash_table_lookup(cpu
->cp_regs
, &a
->dst_key
);
5965 g_assert(src_reg
!= NULL
);
5966 g_assert(dst_reg
!= NULL
);
5968 /* Cross-compare names to detect typos in the keys. */
5969 g_assert(strcmp(src_reg
->name
, a
->src_name
) == 0);
5970 g_assert(strcmp(dst_reg
->name
, a
->dst_name
) == 0);
5972 /* None of the core system registers use opaque; we will. */
5973 g_assert(src_reg
->opaque
== NULL
);
5975 /* Create alias before redirection so we dup the right data. */
5977 ARMCPRegInfo
*new_reg
= g_memdup(src_reg
, sizeof(ARMCPRegInfo
));
5978 uint32_t *new_key
= g_memdup(&a
->new_key
, sizeof(uint32_t));
5981 new_reg
->name
= a
->new_name
;
5982 new_reg
->type
|= ARM_CP_ALIAS
;
5983 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5984 new_reg
->access
&= PL2_RW
| PL3_RW
;
5986 ok
= g_hash_table_insert(cpu
->cp_regs
, new_key
, new_reg
);
5990 src_reg
->opaque
= dst_reg
;
5991 src_reg
->orig_readfn
= src_reg
->readfn
?: raw_read
;
5992 src_reg
->orig_writefn
= src_reg
->writefn
?: raw_write
;
5993 if (!src_reg
->raw_readfn
) {
5994 src_reg
->raw_readfn
= raw_read
;
5996 if (!src_reg
->raw_writefn
) {
5997 src_reg
->raw_writefn
= raw_write
;
5999 src_reg
->readfn
= el2_e2h_read
;
6000 src_reg
->writefn
= el2_e2h_write
;
6005 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6008 int cur_el
= arm_current_el(env
);
6011 uint64_t hcr
= arm_hcr_el2_eff(env
);
6014 if ((hcr
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
6015 if (!(env
->cp15
.sctlr_el
[2] & SCTLR_UCT
)) {
6016 return CP_ACCESS_TRAP_EL2
;
6019 if (!(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
6020 return CP_ACCESS_TRAP
;
6022 if (hcr
& HCR_TID2
) {
6023 return CP_ACCESS_TRAP_EL2
;
6026 } else if (hcr
& HCR_TID2
) {
6027 return CP_ACCESS_TRAP_EL2
;
6031 if (arm_current_el(env
) < 2 && arm_hcr_el2_eff(env
) & HCR_TID2
) {
6032 return CP_ACCESS_TRAP_EL2
;
6035 return CP_ACCESS_OK
;
6038 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6041 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6042 * read via a bit in OSLSR_EL1.
6046 if (ri
->state
== ARM_CP_STATE_AA32
) {
6047 oslock
= (value
== 0xC5ACCE55);
6052 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
6055 static const ARMCPRegInfo debug_cp_reginfo
[] = {
6056 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6057 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6058 * unlike DBGDRAR it is never accessible from EL0.
6059 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6062 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
6063 .access
= PL0_R
, .accessfn
= access_tdra
,
6064 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6065 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
6066 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
6067 .access
= PL1_R
, .accessfn
= access_tdra
,
6068 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6069 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
6070 .access
= PL0_R
, .accessfn
= access_tdra
,
6071 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6072 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6073 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
6074 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
6075 .access
= PL1_RW
, .accessfn
= access_tda
,
6076 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
6079 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
6080 * Debug Communication Channel is not implemented.
6082 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_AA64
,
6083 .opc0
= 2, .opc1
= 3, .crn
= 0, .crm
= 1, .opc2
= 0,
6084 .access
= PL0_R
, .accessfn
= access_tda
,
6085 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6087 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
6088 * it is unlikely a guest will care.
6089 * We don't implement the configurable EL0 access.
6091 { .name
= "DBGDSCRint", .state
= ARM_CP_STATE_AA32
,
6092 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
6093 .type
= ARM_CP_ALIAS
,
6094 .access
= PL1_R
, .accessfn
= access_tda
,
6095 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
6096 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
6097 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
6098 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6099 .accessfn
= access_tdosa
,
6100 .writefn
= oslar_write
},
6101 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
6102 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
6103 .access
= PL1_R
, .resetvalue
= 10,
6104 .accessfn
= access_tdosa
,
6105 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
6106 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6107 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
6108 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
6109 .access
= PL1_RW
, .accessfn
= access_tdosa
,
6110 .type
= ARM_CP_NOP
},
6111 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6112 * implement vector catch debug events yet.
6115 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
6116 .access
= PL1_RW
, .accessfn
= access_tda
,
6117 .type
= ARM_CP_NOP
},
6118 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6119 * to save and restore a 32-bit guest's DBGVCR)
6121 { .name
= "DBGVCR32_EL2", .state
= ARM_CP_STATE_AA64
,
6122 .opc0
= 2, .opc1
= 4, .crn
= 0, .crm
= 7, .opc2
= 0,
6123 .access
= PL2_RW
, .accessfn
= access_tda
,
6124 .type
= ARM_CP_NOP
},
6125 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6126 * Channel but Linux may try to access this register. The 32-bit
6127 * alias is DBGDCCINT.
6129 { .name
= "MDCCINT_EL1", .state
= ARM_CP_STATE_BOTH
,
6130 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
6131 .access
= PL1_RW
, .accessfn
= access_tda
,
6132 .type
= ARM_CP_NOP
},
6136 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
6137 /* 64 bit access versions of the (dummy) debug registers */
6138 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
6139 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
6140 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
6141 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
6145 /* Return the exception level to which exceptions should be taken
6146 * via SVEAccessTrap. If an exception should be routed through
6147 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6148 * take care of raising that exception.
6149 * C.f. the ARM pseudocode function CheckSVEEnabled.
6151 int sve_exception_el(CPUARMState
*env
, int el
)
6153 #ifndef CONFIG_USER_ONLY
6154 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
6156 if (el
<= 1 && (hcr_el2
& (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
6157 bool disabled
= false;
6159 /* The CPACR.ZEN controls traps to EL1:
6160 * 0, 2 : trap EL0 and EL1 accesses
6161 * 1 : trap only EL0 accesses
6162 * 3 : trap no accesses
6164 if (!extract32(env
->cp15
.cpacr_el1
, 16, 1)) {
6166 } else if (!extract32(env
->cp15
.cpacr_el1
, 17, 1)) {
6171 return hcr_el2
& HCR_TGE
? 2 : 1;
6174 /* Check CPACR.FPEN. */
6175 if (!extract32(env
->cp15
.cpacr_el1
, 20, 1)) {
6177 } else if (!extract32(env
->cp15
.cpacr_el1
, 21, 1)) {
6185 /* CPTR_EL2. Since TZ and TFP are positive,
6186 * they will be zero when EL2 is not present.
6188 if (el
<= 2 && arm_is_el2_enabled(env
)) {
6189 if (env
->cp15
.cptr_el
[2] & CPTR_TZ
) {
6192 if (env
->cp15
.cptr_el
[2] & CPTR_TFP
) {
6197 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6198 if (arm_feature(env
, ARM_FEATURE_EL3
)
6199 && !(env
->cp15
.cptr_el
[3] & CPTR_EZ
)) {
6206 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU
*cpu
, uint32_t start_len
)
6210 start_len
= MIN(start_len
, ARM_MAX_VQ
- 1);
6211 end_len
= start_len
;
6213 if (!test_bit(start_len
, cpu
->sve_vq_map
)) {
6214 end_len
= find_last_bit(cpu
->sve_vq_map
, start_len
);
6215 assert(end_len
< start_len
);
6221 * Given that SVE is enabled, return the vector length for EL.
6223 uint32_t sve_zcr_len_for_el(CPUARMState
*env
, int el
)
6225 ARMCPU
*cpu
= env_archcpu(env
);
6226 uint32_t zcr_len
= cpu
->sve_max_vq
- 1;
6229 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[1]);
6231 if (el
<= 2 && arm_feature(env
, ARM_FEATURE_EL2
)) {
6232 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[2]);
6234 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6235 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[3]);
6238 return aarch64_sve_zcr_get_valid_len(cpu
, zcr_len
);
6241 static void zcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6244 int cur_el
= arm_current_el(env
);
6245 int old_len
= sve_zcr_len_for_el(env
, cur_el
);
6248 /* Bits other than [3:0] are RAZ/WI. */
6249 QEMU_BUILD_BUG_ON(ARM_MAX_VQ
> 16);
6250 raw_write(env
, ri
, value
& 0xf);
6253 * Because we arrived here, we know both FP and SVE are enabled;
6254 * otherwise we would have trapped access to the ZCR_ELn register.
6256 new_len
= sve_zcr_len_for_el(env
, cur_el
);
6257 if (new_len
< old_len
) {
6258 aarch64_sve_narrow_vq(env
, new_len
+ 1);
6262 static const ARMCPRegInfo zcr_el1_reginfo
= {
6263 .name
= "ZCR_EL1", .state
= ARM_CP_STATE_AA64
,
6264 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 2, .opc2
= 0,
6265 .access
= PL1_RW
, .type
= ARM_CP_SVE
,
6266 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[1]),
6267 .writefn
= zcr_write
, .raw_writefn
= raw_write
6270 static const ARMCPRegInfo zcr_el2_reginfo
= {
6271 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
6272 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
6273 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
6274 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[2]),
6275 .writefn
= zcr_write
, .raw_writefn
= raw_write
6278 static const ARMCPRegInfo zcr_no_el2_reginfo
= {
6279 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
6280 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
6281 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
6282 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
6285 static const ARMCPRegInfo zcr_el3_reginfo
= {
6286 .name
= "ZCR_EL3", .state
= ARM_CP_STATE_AA64
,
6287 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 2, .opc2
= 0,
6288 .access
= PL3_RW
, .type
= ARM_CP_SVE
,
6289 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[3]),
6290 .writefn
= zcr_write
, .raw_writefn
= raw_write
6293 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
6295 CPUARMState
*env
= &cpu
->env
;
6297 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
6298 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
6300 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
6302 if (env
->cpu_watchpoint
[n
]) {
6303 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
6304 env
->cpu_watchpoint
[n
] = NULL
;
6307 if (!extract64(wcr
, 0, 1)) {
6308 /* E bit clear : watchpoint disabled */
6312 switch (extract64(wcr
, 3, 2)) {
6314 /* LSC 00 is reserved and must behave as if the wp is disabled */
6317 flags
|= BP_MEM_READ
;
6320 flags
|= BP_MEM_WRITE
;
6323 flags
|= BP_MEM_ACCESS
;
6327 /* Attempts to use both MASK and BAS fields simultaneously are
6328 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6329 * thus generating a watchpoint for every byte in the masked region.
6331 mask
= extract64(wcr
, 24, 4);
6332 if (mask
== 1 || mask
== 2) {
6333 /* Reserved values of MASK; we must act as if the mask value was
6334 * some non-reserved value, or as if the watchpoint were disabled.
6335 * We choose the latter.
6339 /* Watchpoint covers an aligned area up to 2GB in size */
6341 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6342 * whether the watchpoint fires when the unmasked bits match; we opt
6343 * to generate the exceptions.
6347 /* Watchpoint covers bytes defined by the byte address select bits */
6348 int bas
= extract64(wcr
, 5, 8);
6351 if (extract64(wvr
, 2, 1)) {
6352 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6353 * ignored, and BAS[3:0] define which bytes to watch.
6359 /* This must act as if the watchpoint is disabled */
6363 /* The BAS bits are supposed to be programmed to indicate a contiguous
6364 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6365 * we fire for each byte in the word/doubleword addressed by the WVR.
6366 * We choose to ignore any non-zero bits after the first range of 1s.
6368 basstart
= ctz32(bas
);
6369 len
= cto32(bas
>> basstart
);
6373 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
6374 &env
->cpu_watchpoint
[n
]);
6377 void hw_watchpoint_update_all(ARMCPU
*cpu
)
6380 CPUARMState
*env
= &cpu
->env
;
6382 /* Completely clear out existing QEMU watchpoints and our array, to
6383 * avoid possible stale entries following migration load.
6385 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
6386 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
6388 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
6389 hw_watchpoint_update(cpu
, i
);
6393 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6396 ARMCPU
*cpu
= env_archcpu(env
);
6399 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6400 * register reads and behaves as if values written are sign extended.
6401 * Bits [1:0] are RES0.
6403 value
= sextract64(value
, 0, 49) & ~3ULL;
6405 raw_write(env
, ri
, value
);
6406 hw_watchpoint_update(cpu
, i
);
6409 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6412 ARMCPU
*cpu
= env_archcpu(env
);
6415 raw_write(env
, ri
, value
);
6416 hw_watchpoint_update(cpu
, i
);
6419 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
6421 CPUARMState
*env
= &cpu
->env
;
6422 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
6423 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
6428 if (env
->cpu_breakpoint
[n
]) {
6429 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
6430 env
->cpu_breakpoint
[n
] = NULL
;
6433 if (!extract64(bcr
, 0, 1)) {
6434 /* E bit clear : watchpoint disabled */
6438 bt
= extract64(bcr
, 20, 4);
6441 case 4: /* unlinked address mismatch (reserved if AArch64) */
6442 case 5: /* linked address mismatch (reserved if AArch64) */
6443 qemu_log_mask(LOG_UNIMP
,
6444 "arm: address mismatch breakpoint types not implemented\n");
6446 case 0: /* unlinked address match */
6447 case 1: /* linked address match */
6449 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6450 * we behave as if the register was sign extended. Bits [1:0] are
6451 * RES0. The BAS field is used to allow setting breakpoints on 16
6452 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6453 * a bp will fire if the addresses covered by the bp and the addresses
6454 * covered by the insn overlap but the insn doesn't start at the
6455 * start of the bp address range. We choose to require the insn and
6456 * the bp to have the same address. The constraints on writing to
6457 * BAS enforced in dbgbcr_write mean we have only four cases:
6458 * 0b0000 => no breakpoint
6459 * 0b0011 => breakpoint on addr
6460 * 0b1100 => breakpoint on addr + 2
6461 * 0b1111 => breakpoint on addr
6462 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6464 int bas
= extract64(bcr
, 5, 4);
6465 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
6474 case 2: /* unlinked context ID match */
6475 case 8: /* unlinked VMID match (reserved if no EL2) */
6476 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6477 qemu_log_mask(LOG_UNIMP
,
6478 "arm: unlinked context breakpoint types not implemented\n");
6480 case 9: /* linked VMID match (reserved if no EL2) */
6481 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6482 case 3: /* linked context ID match */
6484 /* We must generate no events for Linked context matches (unless
6485 * they are linked to by some other bp/wp, which is handled in
6486 * updates for the linking bp/wp). We choose to also generate no events
6487 * for reserved values.
6492 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
6495 void hw_breakpoint_update_all(ARMCPU
*cpu
)
6498 CPUARMState
*env
= &cpu
->env
;
6500 /* Completely clear out existing QEMU breakpoints and our array, to
6501 * avoid possible stale entries following migration load.
6503 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
6504 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
6506 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
6507 hw_breakpoint_update(cpu
, i
);
6511 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6514 ARMCPU
*cpu
= env_archcpu(env
);
6517 raw_write(env
, ri
, value
);
6518 hw_breakpoint_update(cpu
, i
);
6521 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6524 ARMCPU
*cpu
= env_archcpu(env
);
6527 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6530 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
6531 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
6533 raw_write(env
, ri
, value
);
6534 hw_breakpoint_update(cpu
, i
);
6537 static void define_debug_regs(ARMCPU
*cpu
)
6539 /* Define v7 and v8 architectural debug registers.
6540 * These are just dummy implementations for now.
6543 int wrps
, brps
, ctx_cmps
;
6546 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6547 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
6548 * the register must not exist for this cpu.
6550 if (cpu
->isar
.dbgdidr
!= 0) {
6551 ARMCPRegInfo dbgdidr
= {
6552 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0,
6553 .opc1
= 0, .opc2
= 0,
6554 .access
= PL0_R
, .accessfn
= access_tda
,
6555 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->isar
.dbgdidr
,
6557 define_one_arm_cp_reg(cpu
, &dbgdidr
);
6560 /* Note that all these register fields hold "number of Xs minus 1". */
6561 brps
= arm_num_brps(cpu
);
6562 wrps
= arm_num_wrps(cpu
);
6563 ctx_cmps
= arm_num_ctx_cmps(cpu
);
6565 assert(ctx_cmps
<= brps
);
6567 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
6569 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
6570 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
6573 for (i
= 0; i
< brps
; i
++) {
6574 ARMCPRegInfo dbgregs
[] = {
6575 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
6576 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
6577 .access
= PL1_RW
, .accessfn
= access_tda
,
6578 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
6579 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
6581 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
6582 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
6583 .access
= PL1_RW
, .accessfn
= access_tda
,
6584 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
6585 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
6589 define_arm_cp_regs(cpu
, dbgregs
);
6592 for (i
= 0; i
< wrps
; i
++) {
6593 ARMCPRegInfo dbgregs
[] = {
6594 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
6595 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
6596 .access
= PL1_RW
, .accessfn
= access_tda
,
6597 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
6598 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
6600 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
6601 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
6602 .access
= PL1_RW
, .accessfn
= access_tda
,
6603 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
6604 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
6608 define_arm_cp_regs(cpu
, dbgregs
);
6612 static void define_pmu_regs(ARMCPU
*cpu
)
6615 * v7 performance monitor control register: same implementor
6616 * field as main ID register, and we implement four counters in
6617 * addition to the cycle count register.
6619 unsigned int i
, pmcrn
= PMCR_NUM_COUNTERS
;
6620 ARMCPRegInfo pmcr
= {
6621 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
6623 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
6624 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
6625 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
6626 .raw_writefn
= raw_write
,
6628 ARMCPRegInfo pmcr64
= {
6629 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
6630 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
6631 .access
= PL0_RW
, .accessfn
= pmreg_access
,
6633 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
6634 .resetvalue
= (cpu
->midr
& 0xff000000) | (pmcrn
<< PMCRN_SHIFT
) |
6636 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
6638 define_one_arm_cp_reg(cpu
, &pmcr
);
6639 define_one_arm_cp_reg(cpu
, &pmcr64
);
6640 for (i
= 0; i
< pmcrn
; i
++) {
6641 char *pmevcntr_name
= g_strdup_printf("PMEVCNTR%d", i
);
6642 char *pmevcntr_el0_name
= g_strdup_printf("PMEVCNTR%d_EL0", i
);
6643 char *pmevtyper_name
= g_strdup_printf("PMEVTYPER%d", i
);
6644 char *pmevtyper_el0_name
= g_strdup_printf("PMEVTYPER%d_EL0", i
);
6645 ARMCPRegInfo pmev_regs
[] = {
6646 { .name
= pmevcntr_name
, .cp
= 15, .crn
= 14,
6647 .crm
= 8 | (3 & (i
>> 3)), .opc1
= 0, .opc2
= i
& 7,
6648 .access
= PL0_RW
, .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
6649 .readfn
= pmevcntr_readfn
, .writefn
= pmevcntr_writefn
,
6650 .accessfn
= pmreg_access
},
6651 { .name
= pmevcntr_el0_name
, .state
= ARM_CP_STATE_AA64
,
6652 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 8 | (3 & (i
>> 3)),
6653 .opc2
= i
& 7, .access
= PL0_RW
, .accessfn
= pmreg_access
,
6655 .readfn
= pmevcntr_readfn
, .writefn
= pmevcntr_writefn
,
6656 .raw_readfn
= pmevcntr_rawread
,
6657 .raw_writefn
= pmevcntr_rawwrite
},
6658 { .name
= pmevtyper_name
, .cp
= 15, .crn
= 14,
6659 .crm
= 12 | (3 & (i
>> 3)), .opc1
= 0, .opc2
= i
& 7,
6660 .access
= PL0_RW
, .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
6661 .readfn
= pmevtyper_readfn
, .writefn
= pmevtyper_writefn
,
6662 .accessfn
= pmreg_access
},
6663 { .name
= pmevtyper_el0_name
, .state
= ARM_CP_STATE_AA64
,
6664 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 12 | (3 & (i
>> 3)),
6665 .opc2
= i
& 7, .access
= PL0_RW
, .accessfn
= pmreg_access
,
6667 .readfn
= pmevtyper_readfn
, .writefn
= pmevtyper_writefn
,
6668 .raw_writefn
= pmevtyper_rawwrite
},
6671 define_arm_cp_regs(cpu
, pmev_regs
);
6672 g_free(pmevcntr_name
);
6673 g_free(pmevcntr_el0_name
);
6674 g_free(pmevtyper_name
);
6675 g_free(pmevtyper_el0_name
);
6677 if (cpu_isar_feature(aa32_pmu_8_1
, cpu
)) {
6678 ARMCPRegInfo v81_pmu_regs
[] = {
6679 { .name
= "PMCEID2", .state
= ARM_CP_STATE_AA32
,
6680 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 4,
6681 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6682 .resetvalue
= extract64(cpu
->pmceid0
, 32, 32) },
6683 { .name
= "PMCEID3", .state
= ARM_CP_STATE_AA32
,
6684 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 5,
6685 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6686 .resetvalue
= extract64(cpu
->pmceid1
, 32, 32) },
6689 define_arm_cp_regs(cpu
, v81_pmu_regs
);
6691 if (cpu_isar_feature(any_pmu_8_4
, cpu
)) {
6692 static const ARMCPRegInfo v84_pmmir
= {
6693 .name
= "PMMIR_EL1", .state
= ARM_CP_STATE_BOTH
,
6694 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 6,
6695 .access
= PL1_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6698 define_one_arm_cp_reg(cpu
, &v84_pmmir
);
6702 /* We don't know until after realize whether there's a GICv3
6703 * attached, and that is what registers the gicv3 sysregs.
6704 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6707 static uint64_t id_pfr1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
6709 ARMCPU
*cpu
= env_archcpu(env
);
6710 uint64_t pfr1
= cpu
->isar
.id_pfr1
;
6712 if (env
->gicv3state
) {
6718 #ifndef CONFIG_USER_ONLY
6719 static uint64_t id_aa64pfr0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
6721 ARMCPU
*cpu
= env_archcpu(env
);
6722 uint64_t pfr0
= cpu
->isar
.id_aa64pfr0
;
6724 if (env
->gicv3state
) {
6731 /* Shared logic between LORID and the rest of the LOR* registers.
6732 * Secure state exclusion has already been dealt with.
6734 static CPAccessResult
access_lor_ns(CPUARMState
*env
,
6735 const ARMCPRegInfo
*ri
, bool isread
)
6737 int el
= arm_current_el(env
);
6739 if (el
< 2 && (arm_hcr_el2_eff(env
) & HCR_TLOR
)) {
6740 return CP_ACCESS_TRAP_EL2
;
6742 if (el
< 3 && (env
->cp15
.scr_el3
& SCR_TLOR
)) {
6743 return CP_ACCESS_TRAP_EL3
;
6745 return CP_ACCESS_OK
;
6748 static CPAccessResult
access_lor_other(CPUARMState
*env
,
6749 const ARMCPRegInfo
*ri
, bool isread
)
6751 if (arm_is_secure_below_el3(env
)) {
6752 /* Access denied in secure mode. */
6753 return CP_ACCESS_TRAP
;
6755 return access_lor_ns(env
, ri
, isread
);
6759 * A trivial implementation of ARMv8.1-LOR leaves all of these
6760 * registers fixed at 0, which indicates that there are zero
6761 * supported Limited Ordering regions.
6763 static const ARMCPRegInfo lor_reginfo
[] = {
6764 { .name
= "LORSA_EL1", .state
= ARM_CP_STATE_AA64
,
6765 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 0,
6766 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6767 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6768 { .name
= "LOREA_EL1", .state
= ARM_CP_STATE_AA64
,
6769 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 1,
6770 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6771 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6772 { .name
= "LORN_EL1", .state
= ARM_CP_STATE_AA64
,
6773 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 2,
6774 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6775 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6776 { .name
= "LORC_EL1", .state
= ARM_CP_STATE_AA64
,
6777 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 3,
6778 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6779 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6780 { .name
= "LORID_EL1", .state
= ARM_CP_STATE_AA64
,
6781 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 7,
6782 .access
= PL1_R
, .accessfn
= access_lor_ns
,
6783 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6787 #ifdef TARGET_AARCH64
6788 static CPAccessResult
access_pauth(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6791 int el
= arm_current_el(env
);
6794 arm_feature(env
, ARM_FEATURE_EL2
) &&
6795 !(arm_hcr_el2_eff(env
) & HCR_APK
)) {
6796 return CP_ACCESS_TRAP_EL2
;
6799 arm_feature(env
, ARM_FEATURE_EL3
) &&
6800 !(env
->cp15
.scr_el3
& SCR_APK
)) {
6801 return CP_ACCESS_TRAP_EL3
;
6803 return CP_ACCESS_OK
;
6806 static const ARMCPRegInfo pauth_reginfo
[] = {
6807 { .name
= "APDAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
6808 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 0,
6809 .access
= PL1_RW
, .accessfn
= access_pauth
,
6810 .fieldoffset
= offsetof(CPUARMState
, keys
.apda
.lo
) },
6811 { .name
= "APDAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
6812 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 1,
6813 .access
= PL1_RW
, .accessfn
= access_pauth
,
6814 .fieldoffset
= offsetof(CPUARMState
, keys
.apda
.hi
) },
6815 { .name
= "APDBKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
6816 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 2,
6817 .access
= PL1_RW
, .accessfn
= access_pauth
,
6818 .fieldoffset
= offsetof(CPUARMState
, keys
.apdb
.lo
) },
6819 { .name
= "APDBKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
6820 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 3,
6821 .access
= PL1_RW
, .accessfn
= access_pauth
,
6822 .fieldoffset
= offsetof(CPUARMState
, keys
.apdb
.hi
) },
6823 { .name
= "APGAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
6824 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 3, .opc2
= 0,
6825 .access
= PL1_RW
, .accessfn
= access_pauth
,
6826 .fieldoffset
= offsetof(CPUARMState
, keys
.apga
.lo
) },
6827 { .name
= "APGAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
6828 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 3, .opc2
= 1,
6829 .access
= PL1_RW
, .accessfn
= access_pauth
,
6830 .fieldoffset
= offsetof(CPUARMState
, keys
.apga
.hi
) },
6831 { .name
= "APIAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
6832 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 0,
6833 .access
= PL1_RW
, .accessfn
= access_pauth
,
6834 .fieldoffset
= offsetof(CPUARMState
, keys
.apia
.lo
) },
6835 { .name
= "APIAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
6836 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 1,
6837 .access
= PL1_RW
, .accessfn
= access_pauth
,
6838 .fieldoffset
= offsetof(CPUARMState
, keys
.apia
.hi
) },
6839 { .name
= "APIBKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
6840 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 2,
6841 .access
= PL1_RW
, .accessfn
= access_pauth
,
6842 .fieldoffset
= offsetof(CPUARMState
, keys
.apib
.lo
) },
6843 { .name
= "APIBKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
6844 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 3,
6845 .access
= PL1_RW
, .accessfn
= access_pauth
,
6846 .fieldoffset
= offsetof(CPUARMState
, keys
.apib
.hi
) },
6850 static const ARMCPRegInfo tlbirange_reginfo
[] = {
6851 { .name
= "TLBI_RVAE1IS", .state
= ARM_CP_STATE_AA64
,
6852 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 2, .opc2
= 1,
6853 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6854 .writefn
= tlbi_aa64_rvae1is_write
},
6855 { .name
= "TLBI_RVAAE1IS", .state
= ARM_CP_STATE_AA64
,
6856 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 2, .opc2
= 3,
6857 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6858 .writefn
= tlbi_aa64_rvae1is_write
},
6859 { .name
= "TLBI_RVALE1IS", .state
= ARM_CP_STATE_AA64
,
6860 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 2, .opc2
= 5,
6861 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6862 .writefn
= tlbi_aa64_rvae1is_write
},
6863 { .name
= "TLBI_RVAALE1IS", .state
= ARM_CP_STATE_AA64
,
6864 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 2, .opc2
= 7,
6865 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6866 .writefn
= tlbi_aa64_rvae1is_write
},
6867 { .name
= "TLBI_RVAE1OS", .state
= ARM_CP_STATE_AA64
,
6868 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
6869 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6870 .writefn
= tlbi_aa64_rvae1is_write
},
6871 { .name
= "TLBI_RVAAE1OS", .state
= ARM_CP_STATE_AA64
,
6872 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 3,
6873 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6874 .writefn
= tlbi_aa64_rvae1is_write
},
6875 { .name
= "TLBI_RVALE1OS", .state
= ARM_CP_STATE_AA64
,
6876 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 5,
6877 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6878 .writefn
= tlbi_aa64_rvae1is_write
},
6879 { .name
= "TLBI_RVAALE1OS", .state
= ARM_CP_STATE_AA64
,
6880 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 7,
6881 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6882 .writefn
= tlbi_aa64_rvae1is_write
},
6883 { .name
= "TLBI_RVAE1", .state
= ARM_CP_STATE_AA64
,
6884 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
6885 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6886 .writefn
= tlbi_aa64_rvae1_write
},
6887 { .name
= "TLBI_RVAAE1", .state
= ARM_CP_STATE_AA64
,
6888 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 3,
6889 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6890 .writefn
= tlbi_aa64_rvae1_write
},
6891 { .name
= "TLBI_RVALE1", .state
= ARM_CP_STATE_AA64
,
6892 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 5,
6893 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6894 .writefn
= tlbi_aa64_rvae1_write
},
6895 { .name
= "TLBI_RVAALE1", .state
= ARM_CP_STATE_AA64
,
6896 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 7,
6897 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6898 .writefn
= tlbi_aa64_rvae1_write
},
6899 { .name
= "TLBI_RIPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
6900 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 2,
6901 .access
= PL2_W
, .type
= ARM_CP_NOP
},
6902 { .name
= "TLBI_RIPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
6903 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 6,
6904 .access
= PL2_W
, .type
= ARM_CP_NOP
},
6905 { .name
= "TLBI_RVAE2IS", .state
= ARM_CP_STATE_AA64
,
6906 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 2, .opc2
= 1,
6907 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
6908 .writefn
= tlbi_aa64_rvae2is_write
},
6909 { .name
= "TLBI_RVALE2IS", .state
= ARM_CP_STATE_AA64
,
6910 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 2, .opc2
= 5,
6911 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
6912 .writefn
= tlbi_aa64_rvae2is_write
},
6913 { .name
= "TLBI_RIPAS2E1", .state
= ARM_CP_STATE_AA64
,
6914 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 2,
6915 .access
= PL2_W
, .type
= ARM_CP_NOP
},
6916 { .name
= "TLBI_RIPAS2LE1", .state
= ARM_CP_STATE_AA64
,
6917 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 6,
6918 .access
= PL2_W
, .type
= ARM_CP_NOP
},
6919 { .name
= "TLBI_RVAE2OS", .state
= ARM_CP_STATE_AA64
,
6920 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 5, .opc2
= 1,
6921 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
6922 .writefn
= tlbi_aa64_rvae2is_write
},
6923 { .name
= "TLBI_RVALE2OS", .state
= ARM_CP_STATE_AA64
,
6924 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 5, .opc2
= 5,
6925 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
6926 .writefn
= tlbi_aa64_rvae2is_write
},
6927 { .name
= "TLBI_RVAE2", .state
= ARM_CP_STATE_AA64
,
6928 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 6, .opc2
= 1,
6929 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
6930 .writefn
= tlbi_aa64_rvae2_write
},
6931 { .name
= "TLBI_RVALE2", .state
= ARM_CP_STATE_AA64
,
6932 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 6, .opc2
= 5,
6933 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
6934 .writefn
= tlbi_aa64_rvae2_write
},
6935 { .name
= "TLBI_RVAE3IS", .state
= ARM_CP_STATE_AA64
,
6936 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 2, .opc2
= 1,
6937 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
6938 .writefn
= tlbi_aa64_rvae3is_write
},
6939 { .name
= "TLBI_RVALE3IS", .state
= ARM_CP_STATE_AA64
,
6940 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 2, .opc2
= 5,
6941 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
6942 .writefn
= tlbi_aa64_rvae3is_write
},
6943 { .name
= "TLBI_RVAE3OS", .state
= ARM_CP_STATE_AA64
,
6944 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 5, .opc2
= 1,
6945 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
6946 .writefn
= tlbi_aa64_rvae3is_write
},
6947 { .name
= "TLBI_RVALE3OS", .state
= ARM_CP_STATE_AA64
,
6948 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 5, .opc2
= 5,
6949 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
6950 .writefn
= tlbi_aa64_rvae3is_write
},
6951 { .name
= "TLBI_RVAE3", .state
= ARM_CP_STATE_AA64
,
6952 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 6, .opc2
= 1,
6953 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
6954 .writefn
= tlbi_aa64_rvae3_write
},
6955 { .name
= "TLBI_RVALE3", .state
= ARM_CP_STATE_AA64
,
6956 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 6, .opc2
= 5,
6957 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
6958 .writefn
= tlbi_aa64_rvae3_write
},
6962 static const ARMCPRegInfo tlbios_reginfo
[] = {
6963 { .name
= "TLBI_VMALLE1OS", .state
= ARM_CP_STATE_AA64
,
6964 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 1, .opc2
= 0,
6965 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6966 .writefn
= tlbi_aa64_vmalle1is_write
},
6967 { .name
= "TLBI_ASIDE1OS", .state
= ARM_CP_STATE_AA64
,
6968 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 1, .opc2
= 2,
6969 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
6970 .writefn
= tlbi_aa64_vmalle1is_write
},
6971 { .name
= "TLBI_ALLE2OS", .state
= ARM_CP_STATE_AA64
,
6972 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 1, .opc2
= 0,
6973 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
6974 .writefn
= tlbi_aa64_alle2is_write
},
6975 { .name
= "TLBI_ALLE1OS", .state
= ARM_CP_STATE_AA64
,
6976 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 1, .opc2
= 4,
6977 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
6978 .writefn
= tlbi_aa64_alle1is_write
},
6979 { .name
= "TLBI_VMALLS12E1OS", .state
= ARM_CP_STATE_AA64
,
6980 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 1, .opc2
= 6,
6981 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
6982 .writefn
= tlbi_aa64_alle1is_write
},
6983 { .name
= "TLBI_IPAS2E1OS", .state
= ARM_CP_STATE_AA64
,
6984 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 0,
6985 .access
= PL2_W
, .type
= ARM_CP_NOP
},
6986 { .name
= "TLBI_RIPAS2E1OS", .state
= ARM_CP_STATE_AA64
,
6987 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 3,
6988 .access
= PL2_W
, .type
= ARM_CP_NOP
},
6989 { .name
= "TLBI_IPAS2LE1OS", .state
= ARM_CP_STATE_AA64
,
6990 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 4,
6991 .access
= PL2_W
, .type
= ARM_CP_NOP
},
6992 { .name
= "TLBI_RIPAS2LE1OS", .state
= ARM_CP_STATE_AA64
,
6993 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 7,
6994 .access
= PL2_W
, .type
= ARM_CP_NOP
},
6995 { .name
= "TLBI_ALLE3OS", .state
= ARM_CP_STATE_AA64
,
6996 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 1, .opc2
= 0,
6997 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
6998 .writefn
= tlbi_aa64_alle3is_write
},
7002 static uint64_t rndr_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
7007 /* Success sets NZCV = 0000. */
7008 env
->NF
= env
->CF
= env
->VF
= 0, env
->ZF
= 1;
7010 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
7012 * ??? Failed, for unknown reasons in the crypto subsystem.
7013 * The best we can do is log the reason and return the
7014 * timed-out indication to the guest. There is no reason
7015 * we know to expect this failure to be transitory, so the
7016 * guest may well hang retrying the operation.
7018 qemu_log_mask(LOG_UNIMP
, "%s: Crypto failure: %s",
7019 ri
->name
, error_get_pretty(err
));
7022 env
->ZF
= 0; /* NZCF = 0100 */
7028 /* We do not support re-seeding, so the two registers operate the same. */
7029 static const ARMCPRegInfo rndr_reginfo
[] = {
7030 { .name
= "RNDR", .state
= ARM_CP_STATE_AA64
,
7031 .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
| ARM_CP_IO
,
7032 .opc0
= 3, .opc1
= 3, .crn
= 2, .crm
= 4, .opc2
= 0,
7033 .access
= PL0_R
, .readfn
= rndr_readfn
},
7034 { .name
= "RNDRRS", .state
= ARM_CP_STATE_AA64
,
7035 .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
| ARM_CP_IO
,
7036 .opc0
= 3, .opc1
= 3, .crn
= 2, .crm
= 4, .opc2
= 1,
7037 .access
= PL0_R
, .readfn
= rndr_readfn
},
7041 #ifndef CONFIG_USER_ONLY
7042 static void dccvap_writefn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
,
7045 ARMCPU
*cpu
= env_archcpu(env
);
7046 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7047 uint64_t dline_size
= 4 << ((cpu
->ctr
>> 16) & 0xF);
7048 uint64_t vaddr_in
= (uint64_t) value
;
7049 uint64_t vaddr
= vaddr_in
& ~(dline_size
- 1);
7051 int mem_idx
= cpu_mmu_index(env
, false);
7053 /* This won't be crossing page boundaries */
7054 haddr
= probe_read(env
, vaddr
, dline_size
, mem_idx
, GETPC());
7060 /* RCU lock is already being held */
7061 mr
= memory_region_from_host(haddr
, &offset
);
7064 memory_region_writeback(mr
, offset
, dline_size
);
7069 static const ARMCPRegInfo dcpop_reg
[] = {
7070 { .name
= "DC_CVAP", .state
= ARM_CP_STATE_AA64
,
7071 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 12, .opc2
= 1,
7072 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
,
7073 .accessfn
= aa64_cacheop_poc_access
, .writefn
= dccvap_writefn
},
7077 static const ARMCPRegInfo dcpodp_reg
[] = {
7078 { .name
= "DC_CVADP", .state
= ARM_CP_STATE_AA64
,
7079 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 13, .opc2
= 1,
7080 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
,
7081 .accessfn
= aa64_cacheop_poc_access
, .writefn
= dccvap_writefn
},
7084 #endif /*CONFIG_USER_ONLY*/
7086 static CPAccessResult
access_aa64_tid5(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
7089 if ((arm_current_el(env
) < 2) && (arm_hcr_el2_eff(env
) & HCR_TID5
)) {
7090 return CP_ACCESS_TRAP_EL2
;
7093 return CP_ACCESS_OK
;
7096 static CPAccessResult
access_mte(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
7099 int el
= arm_current_el(env
);
7101 if (el
< 2 && arm_feature(env
, ARM_FEATURE_EL2
)) {
7102 uint64_t hcr
= arm_hcr_el2_eff(env
);
7103 if (!(hcr
& HCR_ATA
) && (!(hcr
& HCR_E2H
) || !(hcr
& HCR_TGE
))) {
7104 return CP_ACCESS_TRAP_EL2
;
7108 arm_feature(env
, ARM_FEATURE_EL3
) &&
7109 !(env
->cp15
.scr_el3
& SCR_ATA
)) {
7110 return CP_ACCESS_TRAP_EL3
;
7112 return CP_ACCESS_OK
;
7115 static uint64_t tco_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
7117 return env
->pstate
& PSTATE_TCO
;
7120 static void tco_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
7122 env
->pstate
= (env
->pstate
& ~PSTATE_TCO
) | (val
& PSTATE_TCO
);
7125 static const ARMCPRegInfo mte_reginfo
[] = {
7126 { .name
= "TFSRE0_EL1", .state
= ARM_CP_STATE_AA64
,
7127 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 6, .opc2
= 1,
7128 .access
= PL1_RW
, .accessfn
= access_mte
,
7129 .fieldoffset
= offsetof(CPUARMState
, cp15
.tfsr_el
[0]) },
7130 { .name
= "TFSR_EL1", .state
= ARM_CP_STATE_AA64
,
7131 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 6, .opc2
= 0,
7132 .access
= PL1_RW
, .accessfn
= access_mte
,
7133 .fieldoffset
= offsetof(CPUARMState
, cp15
.tfsr_el
[1]) },
7134 { .name
= "TFSR_EL2", .state
= ARM_CP_STATE_AA64
,
7135 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 6, .opc2
= 0,
7136 .access
= PL2_RW
, .accessfn
= access_mte
,
7137 .fieldoffset
= offsetof(CPUARMState
, cp15
.tfsr_el
[2]) },
7138 { .name
= "TFSR_EL3", .state
= ARM_CP_STATE_AA64
,
7139 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 6, .opc2
= 0,
7141 .fieldoffset
= offsetof(CPUARMState
, cp15
.tfsr_el
[3]) },
7142 { .name
= "RGSR_EL1", .state
= ARM_CP_STATE_AA64
,
7143 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 5,
7144 .access
= PL1_RW
, .accessfn
= access_mte
,
7145 .fieldoffset
= offsetof(CPUARMState
, cp15
.rgsr_el1
) },
7146 { .name
= "GCR_EL1", .state
= ARM_CP_STATE_AA64
,
7147 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 6,
7148 .access
= PL1_RW
, .accessfn
= access_mte
,
7149 .fieldoffset
= offsetof(CPUARMState
, cp15
.gcr_el1
) },
7150 { .name
= "GMID_EL1", .state
= ARM_CP_STATE_AA64
,
7151 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 4,
7152 .access
= PL1_R
, .accessfn
= access_aa64_tid5
,
7153 .type
= ARM_CP_CONST
, .resetvalue
= GMID_EL1_BS
},
7154 { .name
= "TCO", .state
= ARM_CP_STATE_AA64
,
7155 .opc0
= 3, .opc1
= 3, .crn
= 4, .crm
= 2, .opc2
= 7,
7156 .type
= ARM_CP_NO_RAW
,
7157 .access
= PL0_RW
, .readfn
= tco_read
, .writefn
= tco_write
},
7158 { .name
= "DC_IGVAC", .state
= ARM_CP_STATE_AA64
,
7159 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 3,
7160 .type
= ARM_CP_NOP
, .access
= PL1_W
,
7161 .accessfn
= aa64_cacheop_poc_access
},
7162 { .name
= "DC_IGSW", .state
= ARM_CP_STATE_AA64
,
7163 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 4,
7164 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= access_tsw
},
7165 { .name
= "DC_IGDVAC", .state
= ARM_CP_STATE_AA64
,
7166 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 5,
7167 .type
= ARM_CP_NOP
, .access
= PL1_W
,
7168 .accessfn
= aa64_cacheop_poc_access
},
7169 { .name
= "DC_IGDSW", .state
= ARM_CP_STATE_AA64
,
7170 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 6,
7171 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= access_tsw
},
7172 { .name
= "DC_CGSW", .state
= ARM_CP_STATE_AA64
,
7173 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 4,
7174 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= access_tsw
},
7175 { .name
= "DC_CGDSW", .state
= ARM_CP_STATE_AA64
,
7176 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 6,
7177 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= access_tsw
},
7178 { .name
= "DC_CIGSW", .state
= ARM_CP_STATE_AA64
,
7179 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 4,
7180 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= access_tsw
},
7181 { .name
= "DC_CIGDSW", .state
= ARM_CP_STATE_AA64
,
7182 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 6,
7183 .type
= ARM_CP_NOP
, .access
= PL1_W
, .accessfn
= access_tsw
},
7187 static const ARMCPRegInfo mte_tco_ro_reginfo
[] = {
7188 { .name
= "TCO", .state
= ARM_CP_STATE_AA64
,
7189 .opc0
= 3, .opc1
= 3, .crn
= 4, .crm
= 2, .opc2
= 7,
7190 .type
= ARM_CP_CONST
, .access
= PL0_RW
, },
7194 static const ARMCPRegInfo mte_el0_cacheop_reginfo
[] = {
7195 { .name
= "DC_CGVAC", .state
= ARM_CP_STATE_AA64
,
7196 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 3,
7197 .type
= ARM_CP_NOP
, .access
= PL0_W
,
7198 .accessfn
= aa64_cacheop_poc_access
},
7199 { .name
= "DC_CGDVAC", .state
= ARM_CP_STATE_AA64
,
7200 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 5,
7201 .type
= ARM_CP_NOP
, .access
= PL0_W
,
7202 .accessfn
= aa64_cacheop_poc_access
},
7203 { .name
= "DC_CGVAP", .state
= ARM_CP_STATE_AA64
,
7204 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 12, .opc2
= 3,
7205 .type
= ARM_CP_NOP
, .access
= PL0_W
,
7206 .accessfn
= aa64_cacheop_poc_access
},
7207 { .name
= "DC_CGDVAP", .state
= ARM_CP_STATE_AA64
,
7208 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 12, .opc2
= 5,
7209 .type
= ARM_CP_NOP
, .access
= PL0_W
,
7210 .accessfn
= aa64_cacheop_poc_access
},
7211 { .name
= "DC_CGVADP", .state
= ARM_CP_STATE_AA64
,
7212 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 13, .opc2
= 3,
7213 .type
= ARM_CP_NOP
, .access
= PL0_W
,
7214 .accessfn
= aa64_cacheop_poc_access
},
7215 { .name
= "DC_CGDVADP", .state
= ARM_CP_STATE_AA64
,
7216 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 13, .opc2
= 5,
7217 .type
= ARM_CP_NOP
, .access
= PL0_W
,
7218 .accessfn
= aa64_cacheop_poc_access
},
7219 { .name
= "DC_CIGVAC", .state
= ARM_CP_STATE_AA64
,
7220 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 3,
7221 .type
= ARM_CP_NOP
, .access
= PL0_W
,
7222 .accessfn
= aa64_cacheop_poc_access
},
7223 { .name
= "DC_CIGDVAC", .state
= ARM_CP_STATE_AA64
,
7224 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 5,
7225 .type
= ARM_CP_NOP
, .access
= PL0_W
,
7226 .accessfn
= aa64_cacheop_poc_access
},
7227 { .name
= "DC_GVA", .state
= ARM_CP_STATE_AA64
,
7228 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 3,
7229 .access
= PL0_W
, .type
= ARM_CP_DC_GVA
,
7230 #ifndef CONFIG_USER_ONLY
7231 /* Avoid overhead of an access check that always passes in user-mode */
7232 .accessfn
= aa64_zva_access
,
7235 { .name
= "DC_GZVA", .state
= ARM_CP_STATE_AA64
,
7236 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 4,
7237 .access
= PL0_W
, .type
= ARM_CP_DC_GZVA
,
7238 #ifndef CONFIG_USER_ONLY
7239 /* Avoid overhead of an access check that always passes in user-mode */
7240 .accessfn
= aa64_zva_access
,
7248 static CPAccessResult
access_predinv(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
7251 int el
= arm_current_el(env
);
7254 uint64_t sctlr
= arm_sctlr(env
, el
);
7255 if (!(sctlr
& SCTLR_EnRCTX
)) {
7256 return CP_ACCESS_TRAP
;
7258 } else if (el
== 1) {
7259 uint64_t hcr
= arm_hcr_el2_eff(env
);
7261 return CP_ACCESS_TRAP_EL2
;
7264 return CP_ACCESS_OK
;
7267 static const ARMCPRegInfo predinv_reginfo
[] = {
7268 { .name
= "CFP_RCTX", .state
= ARM_CP_STATE_AA64
,
7269 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 3, .opc2
= 4,
7270 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
7271 { .name
= "DVP_RCTX", .state
= ARM_CP_STATE_AA64
,
7272 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 3, .opc2
= 5,
7273 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
7274 { .name
= "CPP_RCTX", .state
= ARM_CP_STATE_AA64
,
7275 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 3, .opc2
= 7,
7276 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
7278 * Note the AArch32 opcodes have a different OPC1.
7280 { .name
= "CFPRCTX", .state
= ARM_CP_STATE_AA32
,
7281 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 3, .opc2
= 4,
7282 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
7283 { .name
= "DVPRCTX", .state
= ARM_CP_STATE_AA32
,
7284 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 3, .opc2
= 5,
7285 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
7286 { .name
= "CPPRCTX", .state
= ARM_CP_STATE_AA32
,
7287 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 3, .opc2
= 7,
7288 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
7292 static uint64_t ccsidr2_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
7294 /* Read the high 32 bits of the current CCSIDR */
7295 return extract64(ccsidr_read(env
, ri
), 32, 32);
7298 static const ARMCPRegInfo ccsidr2_reginfo
[] = {
7299 { .name
= "CCSIDR2", .state
= ARM_CP_STATE_BOTH
,
7300 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 2,
7302 .accessfn
= access_aa64_tid2
,
7303 .readfn
= ccsidr2_read
, .type
= ARM_CP_NO_RAW
},
7307 static CPAccessResult
access_aa64_tid3(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
7310 if ((arm_current_el(env
) < 2) && (arm_hcr_el2_eff(env
) & HCR_TID3
)) {
7311 return CP_ACCESS_TRAP_EL2
;
7314 return CP_ACCESS_OK
;
7317 static CPAccessResult
access_aa32_tid3(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
7320 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7321 return access_aa64_tid3(env
, ri
, isread
);
7324 return CP_ACCESS_OK
;
7327 static CPAccessResult
access_jazelle(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
7330 if (arm_current_el(env
) == 1 && (arm_hcr_el2_eff(env
) & HCR_TID0
)) {
7331 return CP_ACCESS_TRAP_EL2
;
7334 return CP_ACCESS_OK
;
7337 static CPAccessResult
access_joscr_jmcr(CPUARMState
*env
,
7338 const ARMCPRegInfo
*ri
, bool isread
)
7341 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7342 * in v7A, not in v8A.
7344 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
7345 arm_current_el(env
) < 2 && !arm_is_secure_below_el3(env
) &&
7346 (env
->cp15
.hstr_el2
& HSTR_TJDBX
)) {
7347 return CP_ACCESS_TRAP_EL2
;
7349 return CP_ACCESS_OK
;
7352 static const ARMCPRegInfo jazelle_regs
[] = {
7354 .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 7, .opc2
= 0,
7355 .access
= PL1_R
, .accessfn
= access_jazelle
,
7356 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
7358 .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 7, .opc2
= 0,
7359 .accessfn
= access_joscr_jmcr
,
7360 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
7362 .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 7, .opc2
= 0,
7363 .accessfn
= access_joscr_jmcr
,
7364 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
7368 static const ARMCPRegInfo vhe_reginfo
[] = {
7369 { .name
= "CONTEXTIDR_EL2", .state
= ARM_CP_STATE_AA64
,
7370 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 1,
7372 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[2]) },
7373 { .name
= "TTBR1_EL2", .state
= ARM_CP_STATE_AA64
,
7374 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 1,
7375 .access
= PL2_RW
, .writefn
= vmsa_tcr_ttbr_el2_write
,
7376 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el
[2]) },
7377 #ifndef CONFIG_USER_ONLY
7378 { .name
= "CNTHV_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
7379 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 3, .opc2
= 2,
7381 offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYPVIRT
].cval
),
7382 .type
= ARM_CP_IO
, .access
= PL2_RW
,
7383 .writefn
= gt_hv_cval_write
, .raw_writefn
= raw_write
},
7384 { .name
= "CNTHV_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
7385 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 3, .opc2
= 0,
7386 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
7387 .resetfn
= gt_hv_timer_reset
,
7388 .readfn
= gt_hv_tval_read
, .writefn
= gt_hv_tval_write
},
7389 { .name
= "CNTHV_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
7391 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 3, .opc2
= 1,
7393 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYPVIRT
].ctl
),
7394 .writefn
= gt_hv_ctl_write
, .raw_writefn
= raw_write
},
7395 { .name
= "CNTP_CTL_EL02", .state
= ARM_CP_STATE_AA64
,
7396 .opc0
= 3, .opc1
= 5, .crn
= 14, .crm
= 2, .opc2
= 1,
7397 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
7398 .access
= PL2_RW
, .accessfn
= e2h_access
,
7399 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
7400 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
},
7401 { .name
= "CNTV_CTL_EL02", .state
= ARM_CP_STATE_AA64
,
7402 .opc0
= 3, .opc1
= 5, .crn
= 14, .crm
= 3, .opc2
= 1,
7403 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
7404 .access
= PL2_RW
, .accessfn
= e2h_access
,
7405 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
7406 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
},
7407 { .name
= "CNTP_TVAL_EL02", .state
= ARM_CP_STATE_AA64
,
7408 .opc0
= 3, .opc1
= 5, .crn
= 14, .crm
= 2, .opc2
= 0,
7409 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
| ARM_CP_ALIAS
,
7410 .access
= PL2_RW
, .accessfn
= e2h_access
,
7411 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
},
7412 { .name
= "CNTV_TVAL_EL02", .state
= ARM_CP_STATE_AA64
,
7413 .opc0
= 3, .opc1
= 5, .crn
= 14, .crm
= 3, .opc2
= 0,
7414 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
| ARM_CP_ALIAS
,
7415 .access
= PL2_RW
, .accessfn
= e2h_access
,
7416 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
},
7417 { .name
= "CNTP_CVAL_EL02", .state
= ARM_CP_STATE_AA64
,
7418 .opc0
= 3, .opc1
= 5, .crn
= 14, .crm
= 2, .opc2
= 2,
7419 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
7420 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
7421 .access
= PL2_RW
, .accessfn
= e2h_access
,
7422 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
},
7423 { .name
= "CNTV_CVAL_EL02", .state
= ARM_CP_STATE_AA64
,
7424 .opc0
= 3, .opc1
= 5, .crn
= 14, .crm
= 3, .opc2
= 2,
7425 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
7426 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
7427 .access
= PL2_RW
, .accessfn
= e2h_access
,
7428 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
},
7433 #ifndef CONFIG_USER_ONLY
7434 static const ARMCPRegInfo ats1e1_reginfo
[] = {
7435 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
7436 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 9, .opc2
= 0,
7437 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
7438 .writefn
= ats_write64
},
7439 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
7440 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 9, .opc2
= 1,
7441 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
7442 .writefn
= ats_write64
},
7446 static const ARMCPRegInfo ats1cp_reginfo
[] = {
7447 { .name
= "ATS1CPRP",
7448 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 9, .opc2
= 0,
7449 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
7450 .writefn
= ats_write
},
7451 { .name
= "ATS1CPWP",
7452 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 9, .opc2
= 1,
7453 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
| ARM_CP_RAISES_EXC
,
7454 .writefn
= ats_write
},
7460 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7461 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7462 * is non-zero, which is never for ARMv7, optionally in ARMv8
7463 * and mandatorily for ARMv8.2 and up.
7464 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7465 * implementation is RAZ/WI we can ignore this detail, as we
7468 static const ARMCPRegInfo actlr2_hactlr2_reginfo
[] = {
7469 { .name
= "ACTLR2", .state
= ARM_CP_STATE_AA32
,
7470 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 3,
7471 .access
= PL1_RW
, .accessfn
= access_tacr
,
7472 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
7473 { .name
= "HACTLR2", .state
= ARM_CP_STATE_AA32
,
7474 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 3,
7475 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
7480 void register_cp_regs_for_features(ARMCPU
*cpu
)
7482 /* Register all the coprocessor registers based on feature bits */
7483 CPUARMState
*env
= &cpu
->env
;
7484 if (arm_feature(env
, ARM_FEATURE_M
)) {
7485 /* M profile has no coprocessor registers */
7489 define_arm_cp_regs(cpu
, cp_reginfo
);
7490 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
7491 /* Must go early as it is full of wildcards that may be
7492 * overridden by later definitions.
7494 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
7497 if (arm_feature(env
, ARM_FEATURE_V6
)) {
7498 /* The ID registers all have impdef reset values */
7499 ARMCPRegInfo v6_idregs
[] = {
7500 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
7501 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
7502 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7503 .accessfn
= access_aa32_tid3
,
7504 .resetvalue
= cpu
->isar
.id_pfr0
},
7505 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7506 * the value of the GIC field until after we define these regs.
7508 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
7509 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
7510 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
,
7511 .accessfn
= access_aa32_tid3
,
7512 .readfn
= id_pfr1_read
,
7513 .writefn
= arm_cp_write_ignore
},
7514 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
7515 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
7516 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7517 .accessfn
= access_aa32_tid3
,
7518 .resetvalue
= cpu
->isar
.id_dfr0
},
7519 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
7520 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
7521 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7522 .accessfn
= access_aa32_tid3
,
7523 .resetvalue
= cpu
->id_afr0
},
7524 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
7525 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
7526 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7527 .accessfn
= access_aa32_tid3
,
7528 .resetvalue
= cpu
->isar
.id_mmfr0
},
7529 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
7530 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
7531 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7532 .accessfn
= access_aa32_tid3
,
7533 .resetvalue
= cpu
->isar
.id_mmfr1
},
7534 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
7535 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
7536 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7537 .accessfn
= access_aa32_tid3
,
7538 .resetvalue
= cpu
->isar
.id_mmfr2
},
7539 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
7540 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
7541 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7542 .accessfn
= access_aa32_tid3
,
7543 .resetvalue
= cpu
->isar
.id_mmfr3
},
7544 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
7545 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
7546 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7547 .accessfn
= access_aa32_tid3
,
7548 .resetvalue
= cpu
->isar
.id_isar0
},
7549 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
7550 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
7551 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7552 .accessfn
= access_aa32_tid3
,
7553 .resetvalue
= cpu
->isar
.id_isar1
},
7554 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
7555 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
7556 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7557 .accessfn
= access_aa32_tid3
,
7558 .resetvalue
= cpu
->isar
.id_isar2
},
7559 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
7560 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
7561 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7562 .accessfn
= access_aa32_tid3
,
7563 .resetvalue
= cpu
->isar
.id_isar3
},
7564 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
7565 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
7566 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7567 .accessfn
= access_aa32_tid3
,
7568 .resetvalue
= cpu
->isar
.id_isar4
},
7569 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
7570 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
7571 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7572 .accessfn
= access_aa32_tid3
,
7573 .resetvalue
= cpu
->isar
.id_isar5
},
7574 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
7575 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
7576 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7577 .accessfn
= access_aa32_tid3
,
7578 .resetvalue
= cpu
->isar
.id_mmfr4
},
7579 { .name
= "ID_ISAR6", .state
= ARM_CP_STATE_BOTH
,
7580 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
7581 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7582 .accessfn
= access_aa32_tid3
,
7583 .resetvalue
= cpu
->isar
.id_isar6
},
7586 define_arm_cp_regs(cpu
, v6_idregs
);
7587 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
7589 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
7591 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
7592 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
7594 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
7595 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
7596 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
7598 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
7599 define_arm_cp_regs(cpu
, pmovsset_cp_reginfo
);
7601 if (arm_feature(env
, ARM_FEATURE_V7
)) {
7602 ARMCPRegInfo clidr
= {
7603 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
7604 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
7605 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7606 .accessfn
= access_aa64_tid2
,
7607 .resetvalue
= cpu
->clidr
7609 define_one_arm_cp_reg(cpu
, &clidr
);
7610 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
7611 define_debug_regs(cpu
);
7612 define_pmu_regs(cpu
);
7614 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
7616 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7617 /* AArch64 ID registers, which all have impdef reset values.
7618 * Note that within the ID register ranges the unused slots
7619 * must all RAZ, not UNDEF; future architecture versions may
7620 * define new registers here.
7622 ARMCPRegInfo v8_idregs
[] = {
7624 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7625 * emulation because we don't know the right value for the
7626 * GIC field until after we define these regs.
7628 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
7629 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
7631 #ifdef CONFIG_USER_ONLY
7632 .type
= ARM_CP_CONST
,
7633 .resetvalue
= cpu
->isar
.id_aa64pfr0
7635 .type
= ARM_CP_NO_RAW
,
7636 .accessfn
= access_aa64_tid3
,
7637 .readfn
= id_aa64pfr0_read
,
7638 .writefn
= arm_cp_write_ignore
7641 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
7642 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
7643 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7644 .accessfn
= access_aa64_tid3
,
7645 .resetvalue
= cpu
->isar
.id_aa64pfr1
},
7646 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7647 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
7648 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7649 .accessfn
= access_aa64_tid3
,
7651 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7652 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
7653 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7654 .accessfn
= access_aa64_tid3
,
7656 { .name
= "ID_AA64ZFR0_EL1", .state
= ARM_CP_STATE_AA64
,
7657 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
7658 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7659 .accessfn
= access_aa64_tid3
,
7660 .resetvalue
= cpu
->isar
.id_aa64zfr0
},
7661 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7662 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
7663 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7664 .accessfn
= access_aa64_tid3
,
7666 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7667 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
7668 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7669 .accessfn
= access_aa64_tid3
,
7671 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7672 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
7673 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7674 .accessfn
= access_aa64_tid3
,
7676 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
7677 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
7678 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7679 .accessfn
= access_aa64_tid3
,
7680 .resetvalue
= cpu
->isar
.id_aa64dfr0
},
7681 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
7682 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
7683 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7684 .accessfn
= access_aa64_tid3
,
7685 .resetvalue
= cpu
->isar
.id_aa64dfr1
},
7686 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7687 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
7688 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7689 .accessfn
= access_aa64_tid3
,
7691 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7692 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
7693 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7694 .accessfn
= access_aa64_tid3
,
7696 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
7697 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
7698 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7699 .accessfn
= access_aa64_tid3
,
7700 .resetvalue
= cpu
->id_aa64afr0
},
7701 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
7702 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
7703 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7704 .accessfn
= access_aa64_tid3
,
7705 .resetvalue
= cpu
->id_aa64afr1
},
7706 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7707 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
7708 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7709 .accessfn
= access_aa64_tid3
,
7711 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7712 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
7713 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7714 .accessfn
= access_aa64_tid3
,
7716 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
7717 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
7718 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7719 .accessfn
= access_aa64_tid3
,
7720 .resetvalue
= cpu
->isar
.id_aa64isar0
},
7721 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
7722 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
7723 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7724 .accessfn
= access_aa64_tid3
,
7725 .resetvalue
= cpu
->isar
.id_aa64isar1
},
7726 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7727 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
7728 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7729 .accessfn
= access_aa64_tid3
,
7731 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7732 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
7733 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7734 .accessfn
= access_aa64_tid3
,
7736 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7737 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
7738 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7739 .accessfn
= access_aa64_tid3
,
7741 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7742 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
7743 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7744 .accessfn
= access_aa64_tid3
,
7746 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7747 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
7748 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7749 .accessfn
= access_aa64_tid3
,
7751 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7752 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
7753 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7754 .accessfn
= access_aa64_tid3
,
7756 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
7757 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
7758 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7759 .accessfn
= access_aa64_tid3
,
7760 .resetvalue
= cpu
->isar
.id_aa64mmfr0
},
7761 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
7762 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
7763 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7764 .accessfn
= access_aa64_tid3
,
7765 .resetvalue
= cpu
->isar
.id_aa64mmfr1
},
7766 { .name
= "ID_AA64MMFR2_EL1", .state
= ARM_CP_STATE_AA64
,
7767 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
7768 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7769 .accessfn
= access_aa64_tid3
,
7770 .resetvalue
= cpu
->isar
.id_aa64mmfr2
},
7771 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7772 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
7773 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7774 .accessfn
= access_aa64_tid3
,
7776 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7777 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
7778 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7779 .accessfn
= access_aa64_tid3
,
7781 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7782 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
7783 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7784 .accessfn
= access_aa64_tid3
,
7786 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7787 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
7788 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7789 .accessfn
= access_aa64_tid3
,
7791 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7792 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
7793 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7794 .accessfn
= access_aa64_tid3
,
7796 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
7797 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
7798 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7799 .accessfn
= access_aa64_tid3
,
7800 .resetvalue
= cpu
->isar
.mvfr0
},
7801 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
7802 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
7803 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7804 .accessfn
= access_aa64_tid3
,
7805 .resetvalue
= cpu
->isar
.mvfr1
},
7806 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
7807 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
7808 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7809 .accessfn
= access_aa64_tid3
,
7810 .resetvalue
= cpu
->isar
.mvfr2
},
7811 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7812 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
7813 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7814 .accessfn
= access_aa64_tid3
,
7816 { .name
= "ID_PFR2", .state
= ARM_CP_STATE_BOTH
,
7817 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
7818 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7819 .accessfn
= access_aa64_tid3
,
7820 .resetvalue
= cpu
->isar
.id_pfr2
},
7821 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7822 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
7823 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7824 .accessfn
= access_aa64_tid3
,
7826 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7827 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
7828 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7829 .accessfn
= access_aa64_tid3
,
7831 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
7832 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
7833 .access
= PL1_R
, .type
= ARM_CP_CONST
,
7834 .accessfn
= access_aa64_tid3
,
7836 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
7837 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
7838 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
7839 .resetvalue
= extract64(cpu
->pmceid0
, 0, 32) },
7840 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
7841 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
7842 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
7843 .resetvalue
= cpu
->pmceid0
},
7844 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
7845 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
7846 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
7847 .resetvalue
= extract64(cpu
->pmceid1
, 0, 32) },
7848 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
7849 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
7850 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
7851 .resetvalue
= cpu
->pmceid1
},
7854 #ifdef CONFIG_USER_ONLY
7855 ARMCPRegUserSpaceInfo v8_user_idregs
[] = {
7856 { .name
= "ID_AA64PFR0_EL1",
7857 .exported_bits
= 0x000f000f00ff0000,
7858 .fixed_bits
= 0x0000000000000011 },
7859 { .name
= "ID_AA64PFR1_EL1",
7860 .exported_bits
= 0x00000000000000f0 },
7861 { .name
= "ID_AA64PFR*_EL1_RESERVED",
7863 { .name
= "ID_AA64ZFR0_EL1" },
7864 { .name
= "ID_AA64MMFR0_EL1",
7865 .fixed_bits
= 0x00000000ff000000 },
7866 { .name
= "ID_AA64MMFR1_EL1" },
7867 { .name
= "ID_AA64MMFR*_EL1_RESERVED",
7869 { .name
= "ID_AA64DFR0_EL1",
7870 .fixed_bits
= 0x0000000000000006 },
7871 { .name
= "ID_AA64DFR1_EL1" },
7872 { .name
= "ID_AA64DFR*_EL1_RESERVED",
7874 { .name
= "ID_AA64AFR*",
7876 { .name
= "ID_AA64ISAR0_EL1",
7877 .exported_bits
= 0x00fffffff0fffff0 },
7878 { .name
= "ID_AA64ISAR1_EL1",
7879 .exported_bits
= 0x000000f0ffffffff },
7880 { .name
= "ID_AA64ISAR*_EL1_RESERVED",
7882 REGUSERINFO_SENTINEL
7884 modify_arm_cp_regs(v8_idregs
, v8_user_idregs
);
7886 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7887 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
7888 !arm_feature(env
, ARM_FEATURE_EL2
)) {
7889 ARMCPRegInfo rvbar
= {
7890 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
7891 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
7892 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
7894 define_one_arm_cp_reg(cpu
, &rvbar
);
7896 define_arm_cp_regs(cpu
, v8_idregs
);
7897 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
7899 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
7900 uint64_t vmpidr_def
= mpidr_read_val(env
);
7901 ARMCPRegInfo vpidr_regs
[] = {
7902 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
7903 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
7904 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
7905 .resetvalue
= cpu
->midr
, .type
= ARM_CP_ALIAS
,
7906 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vpidr_el2
) },
7907 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
7908 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
7909 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
7910 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
7911 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
7912 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
7913 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
7914 .resetvalue
= vmpidr_def
, .type
= ARM_CP_ALIAS
,
7915 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vmpidr_el2
) },
7916 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
7917 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
7919 .resetvalue
= vmpidr_def
,
7920 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
7923 define_arm_cp_regs(cpu
, vpidr_regs
);
7924 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
7925 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7926 define_arm_cp_regs(cpu
, el2_v8_cp_reginfo
);
7928 if (cpu_isar_feature(aa64_sel2
, cpu
)) {
7929 define_arm_cp_regs(cpu
, el2_sec_cp_reginfo
);
7931 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7932 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
7933 ARMCPRegInfo rvbar
= {
7934 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
7935 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
7936 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
7938 define_one_arm_cp_reg(cpu
, &rvbar
);
7941 /* If EL2 is missing but higher ELs are enabled, we need to
7942 * register the no_el2 reginfos.
7944 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
7945 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7946 * of MIDR_EL1 and MPIDR_EL1.
7948 ARMCPRegInfo vpidr_regs
[] = {
7949 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
7950 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
7951 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
7952 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
7953 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
7954 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
7955 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
7956 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
7957 .type
= ARM_CP_NO_RAW
,
7958 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
7961 define_arm_cp_regs(cpu
, vpidr_regs
);
7962 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
7963 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7964 define_arm_cp_regs(cpu
, el3_no_el2_v8_cp_reginfo
);
7968 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
7969 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
7970 ARMCPRegInfo el3_regs
[] = {
7971 { .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
7972 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
7973 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
},
7974 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
7975 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
7977 .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
7978 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]),
7979 .resetvalue
= cpu
->reset_sctlr
},
7983 define_arm_cp_regs(cpu
, el3_regs
);
7985 /* The behaviour of NSACR is sufficiently various that we don't
7986 * try to describe it in a single reginfo:
7987 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7988 * reads as constant 0xc00 from NS EL1 and NS EL2
7989 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7990 * if v7 without EL3, register doesn't exist
7991 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7993 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
7994 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
7995 ARMCPRegInfo nsacr
= {
7996 .name
= "NSACR", .type
= ARM_CP_CONST
,
7997 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
7998 .access
= PL1_RW
, .accessfn
= nsacr_access
,
8001 define_one_arm_cp_reg(cpu
, &nsacr
);
8003 ARMCPRegInfo nsacr
= {
8005 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
8006 .access
= PL3_RW
| PL1_R
,
8008 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
8010 define_one_arm_cp_reg(cpu
, &nsacr
);
8013 if (arm_feature(env
, ARM_FEATURE_V8
)) {
8014 ARMCPRegInfo nsacr
= {
8015 .name
= "NSACR", .type
= ARM_CP_CONST
,
8016 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
8020 define_one_arm_cp_reg(cpu
, &nsacr
);
8024 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
8025 if (arm_feature(env
, ARM_FEATURE_V6
)) {
8026 /* PMSAv6 not implemented */
8027 assert(arm_feature(env
, ARM_FEATURE_V7
));
8028 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
8029 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
8031 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
8034 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
8035 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
8036 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8037 if (cpu_isar_feature(aa32_hpd
, cpu
)) {
8038 define_one_arm_cp_reg(cpu
, &ttbcr2_reginfo
);
8041 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
8042 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
8044 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
8045 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
8047 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
8048 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
8050 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
8051 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
8053 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
8054 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
8056 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
8057 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
8059 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
8060 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
8062 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
8063 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
8065 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
8066 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
8068 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
8069 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
8071 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
8072 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
8074 if (cpu_isar_feature(aa32_jazelle
, cpu
)) {
8075 define_arm_cp_regs(cpu
, jazelle_regs
);
8077 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8078 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8079 * be read-only (ie write causes UNDEF exception).
8082 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
8083 /* Pre-v8 MIDR space.
8084 * Note that the MIDR isn't a simple constant register because
8085 * of the TI925 behaviour where writes to another register can
8086 * cause the MIDR value to change.
8088 * Unimplemented registers in the c15 0 0 0 space default to
8089 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8090 * and friends override accordingly.
8093 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
8094 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
8095 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
8096 .readfn
= midr_read
,
8097 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
8098 .type
= ARM_CP_OVERRIDE
},
8099 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8101 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
8102 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
8104 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
8105 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
8107 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
8108 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
8110 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
8111 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
8113 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
8114 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
8117 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
8118 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
8119 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
8120 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
8121 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
8122 .readfn
= midr_read
},
8123 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8124 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
8125 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
8126 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
8127 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
8128 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
8129 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
8130 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
8131 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
8133 .accessfn
= access_aa64_tid1
,
8134 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
8137 ARMCPRegInfo id_cp_reginfo
[] = {
8138 /* These are common to v8 and pre-v8 */
8140 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
8141 .access
= PL1_R
, .accessfn
= ctr_el0_access
,
8142 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
8143 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
8144 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
8145 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
8146 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
8147 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8149 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
8151 .accessfn
= access_aa32_tid1
,
8152 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
8155 /* TLBTR is specific to VMSA */
8156 ARMCPRegInfo id_tlbtr_reginfo
= {
8158 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
8160 .accessfn
= access_aa32_tid1
,
8161 .type
= ARM_CP_CONST
, .resetvalue
= 0,
8163 /* MPUIR is specific to PMSA V6+ */
8164 ARMCPRegInfo id_mpuir_reginfo
= {
8166 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
8167 .access
= PL1_R
, .type
= ARM_CP_CONST
,
8168 .resetvalue
= cpu
->pmsav7_dregion
<< 8
8170 ARMCPRegInfo crn0_wi_reginfo
= {
8171 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
8172 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
8173 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
8175 #ifdef CONFIG_USER_ONLY
8176 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo
[] = {
8177 { .name
= "MIDR_EL1",
8178 .exported_bits
= 0x00000000ffffffff },
8179 { .name
= "REVIDR_EL1" },
8180 REGUSERINFO_SENTINEL
8182 modify_arm_cp_regs(id_v8_midr_cp_reginfo
, id_v8_user_midr_cp_reginfo
);
8184 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
8185 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
8187 /* Register the blanket "writes ignored" value first to cover the
8188 * whole space. Then update the specific ID registers to allow write
8189 * access, so that they ignore writes rather than causing them to
8192 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
8193 for (r
= id_pre_v8_midr_cp_reginfo
;
8194 r
->type
!= ARM_CP_SENTINEL
; r
++) {
8197 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
8200 id_mpuir_reginfo
.access
= PL1_RW
;
8201 id_tlbtr_reginfo
.access
= PL1_RW
;
8203 if (arm_feature(env
, ARM_FEATURE_V8
)) {
8204 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
8206 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
8208 define_arm_cp_regs(cpu
, id_cp_reginfo
);
8209 if (!arm_feature(env
, ARM_FEATURE_PMSA
)) {
8210 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
8211 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
8212 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
8216 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
8217 ARMCPRegInfo mpidr_cp_reginfo
[] = {
8218 { .name
= "MPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
8219 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
8220 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
8223 #ifdef CONFIG_USER_ONLY
8224 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo
[] = {
8225 { .name
= "MPIDR_EL1",
8226 .fixed_bits
= 0x0000000080000000 },
8227 REGUSERINFO_SENTINEL
8229 modify_arm_cp_regs(mpidr_cp_reginfo
, mpidr_user_cp_reginfo
);
8231 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
8234 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
8235 ARMCPRegInfo auxcr_reginfo
[] = {
8236 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
8237 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
8238 .access
= PL1_RW
, .accessfn
= access_tacr
,
8239 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->reset_auxcr
},
8240 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
8241 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
8242 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
8244 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
8245 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
8246 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
8250 define_arm_cp_regs(cpu
, auxcr_reginfo
);
8251 if (cpu_isar_feature(aa32_ac2
, cpu
)) {
8252 define_arm_cp_regs(cpu
, actlr2_hactlr2_reginfo
);
8256 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
8258 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8259 * There are two flavours:
8260 * (1) older 32-bit only cores have a simple 32-bit CBAR
8261 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8262 * 32-bit register visible to AArch32 at a different encoding
8263 * to the "flavour 1" register and with the bits rearranged to
8264 * be able to squash a 64-bit address into the 32-bit view.
8265 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8266 * in future if we support AArch32-only configs of some of the
8267 * AArch64 cores we might need to add a specific feature flag
8268 * to indicate cores with "flavour 2" CBAR.
8270 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
8271 /* 32 bit view is [31:18] 0...0 [43:32]. */
8272 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
8273 | extract64(cpu
->reset_cbar
, 32, 12);
8274 ARMCPRegInfo cbar_reginfo
[] = {
8276 .type
= ARM_CP_CONST
,
8277 .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 1, .opc2
= 0,
8278 .access
= PL1_R
, .resetvalue
= cbar32
},
8279 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
8280 .type
= ARM_CP_CONST
,
8281 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
8282 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
8285 /* We don't implement a r/w 64 bit CBAR currently */
8286 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
8287 define_arm_cp_regs(cpu
, cbar_reginfo
);
8289 ARMCPRegInfo cbar
= {
8291 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
8292 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
8293 .fieldoffset
= offsetof(CPUARMState
,
8294 cp15
.c15_config_base_address
)
8296 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
8297 cbar
.access
= PL1_R
;
8298 cbar
.fieldoffset
= 0;
8299 cbar
.type
= ARM_CP_CONST
;
8301 define_one_arm_cp_reg(cpu
, &cbar
);
8305 if (arm_feature(env
, ARM_FEATURE_VBAR
)) {
8306 ARMCPRegInfo vbar_cp_reginfo
[] = {
8307 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
8308 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
8309 .access
= PL1_RW
, .writefn
= vbar_write
,
8310 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
8311 offsetof(CPUARMState
, cp15
.vbar_ns
) },
8315 define_arm_cp_regs(cpu
, vbar_cp_reginfo
);
8318 /* Generic registers whose values depend on the implementation */
8320 ARMCPRegInfo sctlr
= {
8321 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
8322 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
8323 .access
= PL1_RW
, .accessfn
= access_tvm_trvm
,
8324 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
8325 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
8326 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
8327 .raw_writefn
= raw_write
,
8329 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
8330 /* Normally we would always end the TB on an SCTLR write, but Linux
8331 * arch/arm/mach-pxa/sleep.S expects two instructions following
8332 * an MMU enable to execute from cache. Imitate this behaviour.
8334 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
8336 define_one_arm_cp_reg(cpu
, &sctlr
);
8339 if (cpu_isar_feature(aa64_lor
, cpu
)) {
8340 define_arm_cp_regs(cpu
, lor_reginfo
);
8342 if (cpu_isar_feature(aa64_pan
, cpu
)) {
8343 define_one_arm_cp_reg(cpu
, &pan_reginfo
);
8345 #ifndef CONFIG_USER_ONLY
8346 if (cpu_isar_feature(aa64_ats1e1
, cpu
)) {
8347 define_arm_cp_regs(cpu
, ats1e1_reginfo
);
8349 if (cpu_isar_feature(aa32_ats1e1
, cpu
)) {
8350 define_arm_cp_regs(cpu
, ats1cp_reginfo
);
8353 if (cpu_isar_feature(aa64_uao
, cpu
)) {
8354 define_one_arm_cp_reg(cpu
, &uao_reginfo
);
8357 if (cpu_isar_feature(aa64_dit
, cpu
)) {
8358 define_one_arm_cp_reg(cpu
, &dit_reginfo
);
8360 if (cpu_isar_feature(aa64_ssbs
, cpu
)) {
8361 define_one_arm_cp_reg(cpu
, &ssbs_reginfo
);
8364 if (arm_feature(env
, ARM_FEATURE_EL2
) && cpu_isar_feature(aa64_vh
, cpu
)) {
8365 define_arm_cp_regs(cpu
, vhe_reginfo
);
8368 if (cpu_isar_feature(aa64_sve
, cpu
)) {
8369 define_one_arm_cp_reg(cpu
, &zcr_el1_reginfo
);
8370 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
8371 define_one_arm_cp_reg(cpu
, &zcr_el2_reginfo
);
8373 define_one_arm_cp_reg(cpu
, &zcr_no_el2_reginfo
);
8375 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
8376 define_one_arm_cp_reg(cpu
, &zcr_el3_reginfo
);
8380 #ifdef TARGET_AARCH64
8381 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
8382 define_arm_cp_regs(cpu
, pauth_reginfo
);
8384 if (cpu_isar_feature(aa64_rndr
, cpu
)) {
8385 define_arm_cp_regs(cpu
, rndr_reginfo
);
8387 if (cpu_isar_feature(aa64_tlbirange
, cpu
)) {
8388 define_arm_cp_regs(cpu
, tlbirange_reginfo
);
8390 if (cpu_isar_feature(aa64_tlbios
, cpu
)) {
8391 define_arm_cp_regs(cpu
, tlbios_reginfo
);
8393 #ifndef CONFIG_USER_ONLY
8394 /* Data Cache clean instructions up to PoP */
8395 if (cpu_isar_feature(aa64_dcpop
, cpu
)) {
8396 define_one_arm_cp_reg(cpu
, dcpop_reg
);
8398 if (cpu_isar_feature(aa64_dcpodp
, cpu
)) {
8399 define_one_arm_cp_reg(cpu
, dcpodp_reg
);
8402 #endif /*CONFIG_USER_ONLY*/
8405 * If full MTE is enabled, add all of the system registers.
8406 * If only "instructions available at EL0" are enabled,
8407 * then define only a RAZ/WI version of PSTATE.TCO.
8409 if (cpu_isar_feature(aa64_mte
, cpu
)) {
8410 define_arm_cp_regs(cpu
, mte_reginfo
);
8411 define_arm_cp_regs(cpu
, mte_el0_cacheop_reginfo
);
8412 } else if (cpu_isar_feature(aa64_mte_insn_reg
, cpu
)) {
8413 define_arm_cp_regs(cpu
, mte_tco_ro_reginfo
);
8414 define_arm_cp_regs(cpu
, mte_el0_cacheop_reginfo
);
8418 if (cpu_isar_feature(any_predinv
, cpu
)) {
8419 define_arm_cp_regs(cpu
, predinv_reginfo
);
8422 if (cpu_isar_feature(any_ccidx
, cpu
)) {
8423 define_arm_cp_regs(cpu
, ccsidr2_reginfo
);
8426 #ifndef CONFIG_USER_ONLY
8428 * Register redirections and aliases must be done last,
8429 * after the registers from the other extensions have been defined.
8431 if (arm_feature(env
, ARM_FEATURE_EL2
) && cpu_isar_feature(aa64_vh
, cpu
)) {
8432 define_arm_vh_e2h_redirects_aliases(cpu
);
8437 /* Sort alphabetically by type name, except for "any". */
8438 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
8440 ObjectClass
*class_a
= (ObjectClass
*)a
;
8441 ObjectClass
*class_b
= (ObjectClass
*)b
;
8442 const char *name_a
, *name_b
;
8444 name_a
= object_class_get_name(class_a
);
8445 name_b
= object_class_get_name(class_b
);
8446 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
8448 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
8451 return strcmp(name_a
, name_b
);
8455 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
8457 ObjectClass
*oc
= data
;
8458 const char *typename
;
8461 typename
= object_class_get_name(oc
);
8462 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
8463 qemu_printf(" %s\n", name
);
8467 void arm_cpu_list(void)
8471 list
= object_class_get_list(TYPE_ARM_CPU
, false);
8472 list
= g_slist_sort(list
, arm_cpu_list_compare
);
8473 qemu_printf("Available CPUs:\n");
8474 g_slist_foreach(list
, arm_cpu_list_entry
, NULL
);
8478 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
8480 ObjectClass
*oc
= data
;
8481 CpuDefinitionInfoList
**cpu_list
= user_data
;
8482 CpuDefinitionInfo
*info
;
8483 const char *typename
;
8485 typename
= object_class_get_name(oc
);
8486 info
= g_malloc0(sizeof(*info
));
8487 info
->name
= g_strndup(typename
,
8488 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
8489 info
->q_typename
= g_strdup(typename
);
8491 QAPI_LIST_PREPEND(*cpu_list
, info
);
8494 CpuDefinitionInfoList
*qmp_query_cpu_definitions(Error
**errp
)
8496 CpuDefinitionInfoList
*cpu_list
= NULL
;
8499 list
= object_class_get_list(TYPE_ARM_CPU
, false);
8500 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
8506 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
8507 void *opaque
, int state
, int secstate
,
8508 int crm
, int opc1
, int opc2
,
8511 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8512 * add a single reginfo struct to the hash table.
8514 uint32_t *key
= g_new(uint32_t, 1);
8515 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
8516 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
8517 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
8519 r2
->name
= g_strdup(name
);
8520 /* Reset the secure state to the specific incoming state. This is
8521 * necessary as the register may have been defined with both states.
8523 r2
->secure
= secstate
;
8525 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
8526 /* Register is banked (using both entries in array).
8527 * Overwriting fieldoffset as the array is only used to define
8528 * banked registers but later only fieldoffset is used.
8530 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
8533 if (state
== ARM_CP_STATE_AA32
) {
8534 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
8535 /* If the register is banked then we don't need to migrate or
8536 * reset the 32-bit instance in certain cases:
8538 * 1) If the register has both 32-bit and 64-bit instances then we
8539 * can count on the 64-bit instance taking care of the
8541 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8542 * taking care of the secure bank. This requires that separate
8543 * 32 and 64-bit definitions are provided.
8545 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
8546 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
8547 r2
->type
|= ARM_CP_ALIAS
;
8549 } else if ((secstate
!= r
->secure
) && !ns
) {
8550 /* The register is not banked so we only want to allow migration of
8551 * the non-secure instance.
8553 r2
->type
|= ARM_CP_ALIAS
;
8556 if (r
->state
== ARM_CP_STATE_BOTH
) {
8557 /* We assume it is a cp15 register if the .cp field is left unset.
8563 #ifdef HOST_WORDS_BIGENDIAN
8564 if (r2
->fieldoffset
) {
8565 r2
->fieldoffset
+= sizeof(uint32_t);
8570 if (state
== ARM_CP_STATE_AA64
) {
8571 /* To allow abbreviation of ARMCPRegInfo
8572 * definitions, we treat cp == 0 as equivalent to
8573 * the value for "standard guest-visible sysreg".
8574 * STATE_BOTH definitions are also always "standard
8575 * sysreg" in their AArch64 view (the .cp value may
8576 * be non-zero for the benefit of the AArch32 view).
8578 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
8579 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
8581 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
8582 r2
->opc0
, opc1
, opc2
);
8584 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
8587 r2
->opaque
= opaque
;
8589 /* reginfo passed to helpers is correct for the actual access,
8590 * and is never ARM_CP_STATE_BOTH:
8593 /* Make sure reginfo passed to helpers for wildcarded regs
8594 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8599 /* By convention, for wildcarded registers only the first
8600 * entry is used for migration; the others are marked as
8601 * ALIAS so we don't try to transfer the register
8602 * multiple times. Special registers (ie NOP/WFI) are
8603 * never migratable and not even raw-accessible.
8605 if ((r
->type
& ARM_CP_SPECIAL
)) {
8606 r2
->type
|= ARM_CP_NO_RAW
;
8608 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
8609 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
8610 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
8611 r2
->type
|= ARM_CP_ALIAS
| ARM_CP_NO_GDB
;
8614 /* Check that raw accesses are either forbidden or handled. Note that
8615 * we can't assert this earlier because the setup of fieldoffset for
8616 * banked registers has to be done first.
8618 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
8619 assert(!raw_accessors_invalid(r2
));
8622 /* Overriding of an existing definition must be explicitly
8625 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
8626 ARMCPRegInfo
*oldreg
;
8627 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
8628 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
8629 fprintf(stderr
, "Register redefined: cp=%d %d bit "
8630 "crn=%d crm=%d opc1=%d opc2=%d, "
8631 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
8632 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
8633 oldreg
->name
, r2
->name
);
8634 g_assert_not_reached();
8637 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
8641 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
8642 const ARMCPRegInfo
*r
, void *opaque
)
8644 /* Define implementations of coprocessor registers.
8645 * We store these in a hashtable because typically
8646 * there are less than 150 registers in a space which
8647 * is 16*16*16*8*8 = 262144 in size.
8648 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8649 * If a register is defined twice then the second definition is
8650 * used, so this can be used to define some generic registers and
8651 * then override them with implementation specific variations.
8652 * At least one of the original and the second definition should
8653 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8654 * against accidental use.
8656 * The state field defines whether the register is to be
8657 * visible in the AArch32 or AArch64 execution state. If the
8658 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8659 * reginfo structure for the AArch32 view, which sees the lower
8660 * 32 bits of the 64 bit register.
8662 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8663 * be wildcarded. AArch64 registers are always considered to be 64
8664 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8665 * the register, if any.
8667 int crm
, opc1
, opc2
, state
;
8668 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
8669 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
8670 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
8671 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
8672 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
8673 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
8674 /* 64 bit registers have only CRm and Opc1 fields */
8675 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
8676 /* op0 only exists in the AArch64 encodings */
8677 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
8678 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8679 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
8681 * This API is only for Arm's system coprocessors (14 and 15) or
8682 * (M-profile or v7A-and-earlier only) for implementation defined
8683 * coprocessors in the range 0..7. Our decode assumes this, since
8684 * 8..13 can be used for other insns including VFP and Neon. See
8685 * valid_cp() in translate.c. Assert here that we haven't tried
8686 * to use an invalid coprocessor number.
8689 case ARM_CP_STATE_BOTH
:
8690 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8695 case ARM_CP_STATE_AA32
:
8696 if (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) &&
8697 !arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
8698 assert(r
->cp
>= 14 && r
->cp
<= 15);
8700 assert(r
->cp
< 8 || (r
->cp
>= 14 && r
->cp
<= 15));
8703 case ARM_CP_STATE_AA64
:
8704 assert(r
->cp
== 0 || r
->cp
== CP_REG_ARM64_SYSREG_CP
);
8707 g_assert_not_reached();
8709 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8710 * encodes a minimum access level for the register. We roll this
8711 * runtime check into our general permission check code, so check
8712 * here that the reginfo's specified permissions are strict enough
8713 * to encompass the generic architectural permission check.
8715 if (r
->state
!= ARM_CP_STATE_AA32
) {
8719 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8720 mask
= PL0U_R
| PL1_RW
;
8740 /* min_EL EL1, secure mode only (we don't check the latter) */
8744 /* broken reginfo with out-of-range opc1 */
8748 /* assert our permissions are not too lax (stricter is fine) */
8749 assert((r
->access
& ~mask
) == 0);
8752 /* Check that the register definition has enough info to handle
8753 * reads and writes if they are permitted.
8755 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
8756 if (r
->access
& PL3_R
) {
8757 assert((r
->fieldoffset
||
8758 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
8761 if (r
->access
& PL3_W
) {
8762 assert((r
->fieldoffset
||
8763 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
8767 /* Bad type field probably means missing sentinel at end of reg list */
8768 assert(cptype_valid(r
->type
));
8769 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
8770 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
8771 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
8772 for (state
= ARM_CP_STATE_AA32
;
8773 state
<= ARM_CP_STATE_AA64
; state
++) {
8774 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
8777 if (state
== ARM_CP_STATE_AA32
) {
8778 /* Under AArch32 CP registers can be common
8779 * (same for secure and non-secure world) or banked.
8783 switch (r
->secure
) {
8784 case ARM_CP_SECSTATE_S
:
8785 case ARM_CP_SECSTATE_NS
:
8786 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
8787 r
->secure
, crm
, opc1
, opc2
,
8791 name
= g_strdup_printf("%s_S", r
->name
);
8792 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
8794 crm
, opc1
, opc2
, name
);
8796 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
8798 crm
, opc1
, opc2
, r
->name
);
8802 /* AArch64 registers get mapped to non-secure instance
8804 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
8806 crm
, opc1
, opc2
, r
->name
);
8814 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
8815 const ARMCPRegInfo
*regs
, void *opaque
)
8817 /* Define a whole list of registers */
8818 const ARMCPRegInfo
*r
;
8819 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
8820 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
8825 * Modify ARMCPRegInfo for access from userspace.
8827 * This is a data driven modification directed by
8828 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8829 * user-space cannot alter any values and dynamic values pertaining to
8830 * execution state are hidden from user space view anyway.
8832 void modify_arm_cp_regs(ARMCPRegInfo
*regs
, const ARMCPRegUserSpaceInfo
*mods
)
8834 const ARMCPRegUserSpaceInfo
*m
;
8837 for (m
= mods
; m
->name
; m
++) {
8838 GPatternSpec
*pat
= NULL
;
8840 pat
= g_pattern_spec_new(m
->name
);
8842 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
8843 if (pat
&& g_pattern_match_string(pat
, r
->name
)) {
8844 r
->type
= ARM_CP_CONST
;
8848 } else if (strcmp(r
->name
, m
->name
) == 0) {
8849 r
->type
= ARM_CP_CONST
;
8851 r
->resetvalue
&= m
->exported_bits
;
8852 r
->resetvalue
|= m
->fixed_bits
;
8857 g_pattern_spec_free(pat
);
8862 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
8864 return g_hash_table_lookup(cpregs
, &encoded_cp
);
8867 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
8870 /* Helper coprocessor write function for write-ignore registers */
8873 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
8875 /* Helper coprocessor write function for read-as-zero registers */
8879 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
8881 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8884 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
8886 /* Return true if it is not valid for us to switch to
8887 * this CPU mode (ie all the UNPREDICTABLE cases in
8888 * the ARM ARM CPSRWriteByInstr pseudocode).
8891 /* Changes to or from Hyp via MSR and CPS are illegal. */
8892 if (write_type
== CPSRWriteByInstr
&&
8893 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
8894 mode
== ARM_CPU_MODE_HYP
)) {
8899 case ARM_CPU_MODE_USR
:
8901 case ARM_CPU_MODE_SYS
:
8902 case ARM_CPU_MODE_SVC
:
8903 case ARM_CPU_MODE_ABT
:
8904 case ARM_CPU_MODE_UND
:
8905 case ARM_CPU_MODE_IRQ
:
8906 case ARM_CPU_MODE_FIQ
:
8907 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8908 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8910 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8911 * and CPS are treated as illegal mode changes.
8913 if (write_type
== CPSRWriteByInstr
&&
8914 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
8915 (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
8919 case ARM_CPU_MODE_HYP
:
8920 return !arm_is_el2_enabled(env
) || arm_current_el(env
) < 2;
8921 case ARM_CPU_MODE_MON
:
8922 return arm_current_el(env
) < 3;
8928 uint32_t cpsr_read(CPUARMState
*env
)
8931 ZF
= (env
->ZF
== 0);
8932 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
8933 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
8934 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
8935 | ((env
->condexec_bits
& 0xfc) << 8)
8936 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
8939 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
8940 CPSRWriteType write_type
)
8942 uint32_t changed_daif
;
8943 bool rebuild_hflags
= (write_type
!= CPSRWriteRaw
) &&
8944 (mask
& (CPSR_M
| CPSR_E
| CPSR_IL
));
8946 if (mask
& CPSR_NZCV
) {
8947 env
->ZF
= (~val
) & CPSR_Z
;
8949 env
->CF
= (val
>> 29) & 1;
8950 env
->VF
= (val
<< 3) & 0x80000000;
8953 env
->QF
= ((val
& CPSR_Q
) != 0);
8955 env
->thumb
= ((val
& CPSR_T
) != 0);
8956 if (mask
& CPSR_IT_0_1
) {
8957 env
->condexec_bits
&= ~3;
8958 env
->condexec_bits
|= (val
>> 25) & 3;
8960 if (mask
& CPSR_IT_2_7
) {
8961 env
->condexec_bits
&= 3;
8962 env
->condexec_bits
|= (val
>> 8) & 0xfc;
8964 if (mask
& CPSR_GE
) {
8965 env
->GE
= (val
>> 16) & 0xf;
8968 /* In a V7 implementation that includes the security extensions but does
8969 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8970 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8971 * bits respectively.
8973 * In a V8 implementation, it is permitted for privileged software to
8974 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8976 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
8977 arm_feature(env
, ARM_FEATURE_EL3
) &&
8978 !arm_feature(env
, ARM_FEATURE_EL2
) &&
8979 !arm_is_secure(env
)) {
8981 changed_daif
= (env
->daif
^ val
) & mask
;
8983 if (changed_daif
& CPSR_A
) {
8984 /* Check to see if we are allowed to change the masking of async
8985 * abort exceptions from a non-secure state.
8987 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
8988 qemu_log_mask(LOG_GUEST_ERROR
,
8989 "Ignoring attempt to switch CPSR_A flag from "
8990 "non-secure world with SCR.AW bit clear\n");
8995 if (changed_daif
& CPSR_F
) {
8996 /* Check to see if we are allowed to change the masking of FIQ
8997 * exceptions from a non-secure state.
8999 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
9000 qemu_log_mask(LOG_GUEST_ERROR
,
9001 "Ignoring attempt to switch CPSR_F flag from "
9002 "non-secure world with SCR.FW bit clear\n");
9006 /* Check whether non-maskable FIQ (NMFI) support is enabled.
9007 * If this bit is set software is not allowed to mask
9008 * FIQs, but is allowed to set CPSR_F to 0.
9010 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
9012 qemu_log_mask(LOG_GUEST_ERROR
,
9013 "Ignoring attempt to enable CPSR_F flag "
9014 "(non-maskable FIQ [NMFI] support enabled)\n");
9020 env
->daif
&= ~(CPSR_AIF
& mask
);
9021 env
->daif
|= val
& CPSR_AIF
& mask
;
9023 if (write_type
!= CPSRWriteRaw
&&
9024 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
9025 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
) {
9026 /* Note that we can only get here in USR mode if this is a
9027 * gdb stub write; for this case we follow the architectural
9028 * behaviour for guest writes in USR mode of ignoring an attempt
9029 * to switch mode. (Those are caught by translate.c for writes
9030 * triggered by guest instructions.)
9033 } else if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
9034 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9035 * v7, and has defined behaviour in v8:
9036 * + leave CPSR.M untouched
9037 * + allow changes to the other CPSR fields
9039 * For user changes via the GDB stub, we don't set PSTATE.IL,
9040 * as this would be unnecessarily harsh for a user error.
9043 if (write_type
!= CPSRWriteByGDBStub
&&
9044 arm_feature(env
, ARM_FEATURE_V8
)) {
9048 qemu_log_mask(LOG_GUEST_ERROR
,
9049 "Illegal AArch32 mode switch attempt from %s to %s\n",
9050 aarch32_mode_name(env
->uncached_cpsr
),
9051 aarch32_mode_name(val
));
9053 qemu_log_mask(CPU_LOG_INT
, "%s %s to %s PC 0x%" PRIx32
"\n",
9054 write_type
== CPSRWriteExceptionReturn
?
9055 "Exception return from AArch32" :
9056 "AArch32 mode switch from",
9057 aarch32_mode_name(env
->uncached_cpsr
),
9058 aarch32_mode_name(val
), env
->regs
[15]);
9059 switch_mode(env
, val
& CPSR_M
);
9062 mask
&= ~CACHED_CPSR_BITS
;
9063 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
9064 if (rebuild_hflags
) {
9065 arm_rebuild_hflags(env
);
9069 /* Sign/zero extend */
9070 uint32_t HELPER(sxtb16
)(uint32_t x
)
9073 res
= (uint16_t)(int8_t)x
;
9074 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
9078 static void handle_possible_div0_trap(CPUARMState
*env
, uintptr_t ra
)
9081 * Take a division-by-zero exception if necessary; otherwise return
9082 * to get the usual non-trapping division behaviour (result of 0)
9084 if (arm_feature(env
, ARM_FEATURE_M
)
9085 && (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_DIV_0_TRP_MASK
)) {
9086 raise_exception_ra(env
, EXCP_DIVBYZERO
, 0, 1, ra
);
9090 uint32_t HELPER(uxtb16
)(uint32_t x
)
9093 res
= (uint16_t)(uint8_t)x
;
9094 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
9098 int32_t HELPER(sdiv
)(CPUARMState
*env
, int32_t num
, int32_t den
)
9101 handle_possible_div0_trap(env
, GETPC());
9104 if (num
== INT_MIN
&& den
== -1) {
9110 uint32_t HELPER(udiv
)(CPUARMState
*env
, uint32_t num
, uint32_t den
)
9113 handle_possible_div0_trap(env
, GETPC());
9119 uint32_t HELPER(rbit
)(uint32_t x
)
9124 #ifdef CONFIG_USER_ONLY
9126 static void switch_mode(CPUARMState
*env
, int mode
)
9128 ARMCPU
*cpu
= env_archcpu(env
);
9130 if (mode
!= ARM_CPU_MODE_USR
) {
9131 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
9135 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
9136 uint32_t cur_el
, bool secure
)
9141 void aarch64_sync_64_to_32(CPUARMState
*env
)
9143 g_assert_not_reached();
9148 static void switch_mode(CPUARMState
*env
, int mode
)
9153 old_mode
= env
->uncached_cpsr
& CPSR_M
;
9154 if (mode
== old_mode
)
9157 if (old_mode
== ARM_CPU_MODE_FIQ
) {
9158 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
9159 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
9160 } else if (mode
== ARM_CPU_MODE_FIQ
) {
9161 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
9162 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
9165 i
= bank_number(old_mode
);
9166 env
->banked_r13
[i
] = env
->regs
[13];
9167 env
->banked_spsr
[i
] = env
->spsr
;
9169 i
= bank_number(mode
);
9170 env
->regs
[13] = env
->banked_r13
[i
];
9171 env
->spsr
= env
->banked_spsr
[i
];
9173 env
->banked_r14
[r14_bank_number(old_mode
)] = env
->regs
[14];
9174 env
->regs
[14] = env
->banked_r14
[r14_bank_number(mode
)];
9177 /* Physical Interrupt Target EL Lookup Table
9179 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9181 * The below multi-dimensional table is used for looking up the target
9182 * exception level given numerous condition criteria. Specifically, the
9183 * target EL is based on SCR and HCR routing controls as well as the
9184 * currently executing EL and secure state.
9187 * target_el_table[2][2][2][2][2][4]
9188 * | | | | | +--- Current EL
9189 * | | | | +------ Non-secure(0)/Secure(1)
9190 * | | | +--------- HCR mask override
9191 * | | +------------ SCR exec state control
9192 * | +--------------- SCR mask override
9193 * +------------------ 32-bit(0)/64-bit(1) EL3
9195 * The table values are as such:
9199 * The ARM ARM target EL table includes entries indicating that an "exception
9200 * is not taken". The two cases where this is applicable are:
9201 * 1) An exception is taken from EL3 but the SCR does not have the exception
9203 * 2) An exception is taken from EL2 but the HCR does not have the exception
9205 * In these two cases, the below table contain a target of EL1. This value is
9206 * returned as it is expected that the consumer of the table data will check
9207 * for "target EL >= current EL" to ensure the exception is not taken.
9211 * BIT IRQ IMO Non-secure Secure
9212 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9214 static const int8_t target_el_table
[2][2][2][2][2][4] = {
9215 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9216 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9217 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9218 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9219 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9220 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9221 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9222 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9223 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9224 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9225 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9226 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9227 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9228 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9229 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9230 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9234 * Determine the target EL for physical exceptions
9236 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
9237 uint32_t cur_el
, bool secure
)
9239 CPUARMState
*env
= cs
->env_ptr
;
9244 /* Is the highest EL AArch64? */
9245 bool is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
9248 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
9249 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
9251 /* Either EL2 is the highest EL (and so the EL2 register width
9252 * is given by is64); or there is no EL2 or EL3, in which case
9253 * the value of 'rw' does not affect the table lookup anyway.
9258 hcr_el2
= arm_hcr_el2_eff(env
);
9261 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
9262 hcr
= hcr_el2
& HCR_IMO
;
9265 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
9266 hcr
= hcr_el2
& HCR_FMO
;
9269 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
9270 hcr
= hcr_el2
& HCR_AMO
;
9275 * For these purposes, TGE and AMO/IMO/FMO both force the
9276 * interrupt to EL2. Fold TGE into the bit extracted above.
9278 hcr
|= (hcr_el2
& HCR_TGE
) != 0;
9280 /* Perform a table-lookup for the target EL given the current state */
9281 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
9283 assert(target_el
> 0);
9288 void arm_log_exception(int idx
)
9290 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
9291 const char *exc
= NULL
;
9292 static const char * const excnames
[] = {
9293 [EXCP_UDEF
] = "Undefined Instruction",
9295 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
9296 [EXCP_DATA_ABORT
] = "Data Abort",
9299 [EXCP_BKPT
] = "Breakpoint",
9300 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
9301 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
9302 [EXCP_HVC
] = "Hypervisor Call",
9303 [EXCP_HYP_TRAP
] = "Hypervisor Trap",
9304 [EXCP_SMC
] = "Secure Monitor Call",
9305 [EXCP_VIRQ
] = "Virtual IRQ",
9306 [EXCP_VFIQ
] = "Virtual FIQ",
9307 [EXCP_SEMIHOST
] = "Semihosting call",
9308 [EXCP_NOCP
] = "v7M NOCP UsageFault",
9309 [EXCP_INVSTATE
] = "v7M INVSTATE UsageFault",
9310 [EXCP_STKOF
] = "v8M STKOF UsageFault",
9311 [EXCP_LAZYFP
] = "v7M exception during lazy FP stacking",
9312 [EXCP_LSERR
] = "v8M LSERR UsageFault",
9313 [EXCP_UNALIGNED
] = "v7M UNALIGNED UsageFault",
9314 [EXCP_DIVBYZERO
] = "v7M DIVBYZERO UsageFault",
9317 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
9318 exc
= excnames
[idx
];
9323 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
9328 * Function used to synchronize QEMU's AArch64 register set with AArch32
9329 * register set. This is necessary when switching between AArch32 and AArch64
9332 void aarch64_sync_32_to_64(CPUARMState
*env
)
9335 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
9337 /* We can blanket copy R[0:7] to X[0:7] */
9338 for (i
= 0; i
< 8; i
++) {
9339 env
->xregs
[i
] = env
->regs
[i
];
9343 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9344 * Otherwise, they come from the banked user regs.
9346 if (mode
== ARM_CPU_MODE_FIQ
) {
9347 for (i
= 8; i
< 13; i
++) {
9348 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
9351 for (i
= 8; i
< 13; i
++) {
9352 env
->xregs
[i
] = env
->regs
[i
];
9357 * Registers x13-x23 are the various mode SP and FP registers. Registers
9358 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9359 * from the mode banked register.
9361 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
9362 env
->xregs
[13] = env
->regs
[13];
9363 env
->xregs
[14] = env
->regs
[14];
9365 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
9366 /* HYP is an exception in that it is copied from r14 */
9367 if (mode
== ARM_CPU_MODE_HYP
) {
9368 env
->xregs
[14] = env
->regs
[14];
9370 env
->xregs
[14] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)];
9374 if (mode
== ARM_CPU_MODE_HYP
) {
9375 env
->xregs
[15] = env
->regs
[13];
9377 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
9380 if (mode
== ARM_CPU_MODE_IRQ
) {
9381 env
->xregs
[16] = env
->regs
[14];
9382 env
->xregs
[17] = env
->regs
[13];
9384 env
->xregs
[16] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)];
9385 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
9388 if (mode
== ARM_CPU_MODE_SVC
) {
9389 env
->xregs
[18] = env
->regs
[14];
9390 env
->xregs
[19] = env
->regs
[13];
9392 env
->xregs
[18] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)];
9393 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
9396 if (mode
== ARM_CPU_MODE_ABT
) {
9397 env
->xregs
[20] = env
->regs
[14];
9398 env
->xregs
[21] = env
->regs
[13];
9400 env
->xregs
[20] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)];
9401 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
9404 if (mode
== ARM_CPU_MODE_UND
) {
9405 env
->xregs
[22] = env
->regs
[14];
9406 env
->xregs
[23] = env
->regs
[13];
9408 env
->xregs
[22] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)];
9409 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
9413 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9414 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9415 * FIQ bank for r8-r14.
9417 if (mode
== ARM_CPU_MODE_FIQ
) {
9418 for (i
= 24; i
< 31; i
++) {
9419 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
9422 for (i
= 24; i
< 29; i
++) {
9423 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
9425 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
9426 env
->xregs
[30] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)];
9429 env
->pc
= env
->regs
[15];
9433 * Function used to synchronize QEMU's AArch32 register set with AArch64
9434 * register set. This is necessary when switching between AArch32 and AArch64
9437 void aarch64_sync_64_to_32(CPUARMState
*env
)
9440 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
9442 /* We can blanket copy X[0:7] to R[0:7] */
9443 for (i
= 0; i
< 8; i
++) {
9444 env
->regs
[i
] = env
->xregs
[i
];
9448 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9449 * Otherwise, we copy x8-x12 into the banked user regs.
9451 if (mode
== ARM_CPU_MODE_FIQ
) {
9452 for (i
= 8; i
< 13; i
++) {
9453 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
9456 for (i
= 8; i
< 13; i
++) {
9457 env
->regs
[i
] = env
->xregs
[i
];
9462 * Registers r13 & r14 depend on the current mode.
9463 * If we are in a given mode, we copy the corresponding x registers to r13
9464 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9467 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
9468 env
->regs
[13] = env
->xregs
[13];
9469 env
->regs
[14] = env
->xregs
[14];
9471 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
9474 * HYP is an exception in that it does not have its own banked r14 but
9475 * shares the USR r14
9477 if (mode
== ARM_CPU_MODE_HYP
) {
9478 env
->regs
[14] = env
->xregs
[14];
9480 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
9484 if (mode
== ARM_CPU_MODE_HYP
) {
9485 env
->regs
[13] = env
->xregs
[15];
9487 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
9490 if (mode
== ARM_CPU_MODE_IRQ
) {
9491 env
->regs
[14] = env
->xregs
[16];
9492 env
->regs
[13] = env
->xregs
[17];
9494 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
9495 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
9498 if (mode
== ARM_CPU_MODE_SVC
) {
9499 env
->regs
[14] = env
->xregs
[18];
9500 env
->regs
[13] = env
->xregs
[19];
9502 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
9503 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
9506 if (mode
== ARM_CPU_MODE_ABT
) {
9507 env
->regs
[14] = env
->xregs
[20];
9508 env
->regs
[13] = env
->xregs
[21];
9510 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
9511 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
9514 if (mode
== ARM_CPU_MODE_UND
) {
9515 env
->regs
[14] = env
->xregs
[22];
9516 env
->regs
[13] = env
->xregs
[23];
9518 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
9519 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
9522 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9523 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9524 * FIQ bank for r8-r14.
9526 if (mode
== ARM_CPU_MODE_FIQ
) {
9527 for (i
= 24; i
< 31; i
++) {
9528 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
9531 for (i
= 24; i
< 29; i
++) {
9532 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
9534 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
9535 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
9538 env
->regs
[15] = env
->pc
;
9541 static void take_aarch32_exception(CPUARMState
*env
, int new_mode
,
9542 uint32_t mask
, uint32_t offset
,
9547 /* Change the CPU state so as to actually take the exception. */
9548 switch_mode(env
, new_mode
);
9551 * For exceptions taken to AArch32 we must clear the SS bit in both
9552 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9554 env
->pstate
&= ~PSTATE_SS
;
9555 env
->spsr
= cpsr_read(env
);
9556 /* Clear IT bits. */
9557 env
->condexec_bits
= 0;
9558 /* Switch to the new mode, and to the correct instruction set. */
9559 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
9561 /* This must be after mode switching. */
9562 new_el
= arm_current_el(env
);
9564 /* Set new mode endianness */
9565 env
->uncached_cpsr
&= ~CPSR_E
;
9566 if (env
->cp15
.sctlr_el
[new_el
] & SCTLR_EE
) {
9567 env
->uncached_cpsr
|= CPSR_E
;
9569 /* J and IL must always be cleared for exception entry */
9570 env
->uncached_cpsr
&= ~(CPSR_IL
| CPSR_J
);
9573 if (cpu_isar_feature(aa32_ssbs
, env_archcpu(env
))) {
9574 if (env
->cp15
.sctlr_el
[new_el
] & SCTLR_DSSBS_32
) {
9575 env
->uncached_cpsr
|= CPSR_SSBS
;
9577 env
->uncached_cpsr
&= ~CPSR_SSBS
;
9581 if (new_mode
== ARM_CPU_MODE_HYP
) {
9582 env
->thumb
= (env
->cp15
.sctlr_el
[2] & SCTLR_TE
) != 0;
9583 env
->elr_el
[2] = env
->regs
[15];
9585 /* CPSR.PAN is normally preserved preserved unless... */
9586 if (cpu_isar_feature(aa32_pan
, env_archcpu(env
))) {
9589 if (!arm_is_secure_below_el3(env
)) {
9590 /* ... the target is EL3, from non-secure state. */
9591 env
->uncached_cpsr
&= ~CPSR_PAN
;
9594 /* ... the target is EL3, from secure state ... */
9597 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9598 if (!(env
->cp15
.sctlr_el
[new_el
] & SCTLR_SPAN
)) {
9599 env
->uncached_cpsr
|= CPSR_PAN
;
9605 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9606 * and we should just guard the thumb mode on V4
9608 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
9610 (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
9612 env
->regs
[14] = env
->regs
[15] + offset
;
9614 env
->regs
[15] = newpc
;
9615 arm_rebuild_hflags(env
);
9618 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState
*cs
)
9621 * Handle exception entry to Hyp mode; this is sufficiently
9622 * different to entry to other AArch32 modes that we handle it
9625 * The vector table entry used is always the 0x14 Hyp mode entry point,
9626 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9627 * The offset applied to the preferred return address is always zero
9628 * (see DDI0487C.a section G1.12.3).
9629 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9631 uint32_t addr
, mask
;
9632 ARMCPU
*cpu
= ARM_CPU(cs
);
9633 CPUARMState
*env
= &cpu
->env
;
9635 switch (cs
->exception_index
) {
9643 /* Fall through to prefetch abort. */
9644 case EXCP_PREFETCH_ABORT
:
9645 env
->cp15
.ifar_s
= env
->exception
.vaddress
;
9646 qemu_log_mask(CPU_LOG_INT
, "...with HIFAR 0x%x\n",
9647 (uint32_t)env
->exception
.vaddress
);
9650 case EXCP_DATA_ABORT
:
9651 env
->cp15
.dfar_s
= env
->exception
.vaddress
;
9652 qemu_log_mask(CPU_LOG_INT
, "...with HDFAR 0x%x\n",
9653 (uint32_t)env
->exception
.vaddress
);
9669 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
9672 if (cs
->exception_index
!= EXCP_IRQ
&& cs
->exception_index
!= EXCP_FIQ
) {
9673 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
9675 * QEMU syndrome values are v8-style. v7 has the IL bit
9676 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9677 * If this is a v7 CPU, squash the IL bit in those cases.
9679 if (cs
->exception_index
== EXCP_PREFETCH_ABORT
||
9680 (cs
->exception_index
== EXCP_DATA_ABORT
&&
9681 !(env
->exception
.syndrome
& ARM_EL_ISV
)) ||
9682 syn_get_ec(env
->exception
.syndrome
) == EC_UNCATEGORIZED
) {
9683 env
->exception
.syndrome
&= ~ARM_EL_IL
;
9686 env
->cp15
.esr_el
[2] = env
->exception
.syndrome
;
9689 if (arm_current_el(env
) != 2 && addr
< 0x14) {
9694 if (!(env
->cp15
.scr_el3
& SCR_EA
)) {
9697 if (!(env
->cp15
.scr_el3
& SCR_IRQ
)) {
9700 if (!(env
->cp15
.scr_el3
& SCR_FIQ
)) {
9704 addr
+= env
->cp15
.hvbar
;
9706 take_aarch32_exception(env
, ARM_CPU_MODE_HYP
, mask
, 0, addr
);
9709 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
9711 ARMCPU
*cpu
= ARM_CPU(cs
);
9712 CPUARMState
*env
= &cpu
->env
;
9719 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9720 switch (syn_get_ec(env
->exception
.syndrome
)) {
9722 case EC_BREAKPOINT_SAME_EL
:
9726 case EC_WATCHPOINT_SAME_EL
:
9732 case EC_VECTORCATCH
:
9741 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
9744 if (env
->exception
.target_el
== 2) {
9745 arm_cpu_do_interrupt_aarch32_hyp(cs
);
9749 switch (cs
->exception_index
) {
9751 new_mode
= ARM_CPU_MODE_UND
;
9760 new_mode
= ARM_CPU_MODE_SVC
;
9763 /* The PC already points to the next instruction. */
9767 /* Fall through to prefetch abort. */
9768 case EXCP_PREFETCH_ABORT
:
9769 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
9770 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
9771 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
9772 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
9773 new_mode
= ARM_CPU_MODE_ABT
;
9775 mask
= CPSR_A
| CPSR_I
;
9778 case EXCP_DATA_ABORT
:
9779 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
9780 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
9781 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
9783 (uint32_t)env
->exception
.vaddress
);
9784 new_mode
= ARM_CPU_MODE_ABT
;
9786 mask
= CPSR_A
| CPSR_I
;
9790 new_mode
= ARM_CPU_MODE_IRQ
;
9792 /* Disable IRQ and imprecise data aborts. */
9793 mask
= CPSR_A
| CPSR_I
;
9795 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
9796 /* IRQ routed to monitor mode */
9797 new_mode
= ARM_CPU_MODE_MON
;
9802 new_mode
= ARM_CPU_MODE_FIQ
;
9804 /* Disable FIQ, IRQ and imprecise data aborts. */
9805 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
9806 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
9807 /* FIQ routed to monitor mode */
9808 new_mode
= ARM_CPU_MODE_MON
;
9813 new_mode
= ARM_CPU_MODE_IRQ
;
9815 /* Disable IRQ and imprecise data aborts. */
9816 mask
= CPSR_A
| CPSR_I
;
9820 new_mode
= ARM_CPU_MODE_FIQ
;
9822 /* Disable FIQ, IRQ and imprecise data aborts. */
9823 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
9827 new_mode
= ARM_CPU_MODE_MON
;
9829 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
9833 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
9834 return; /* Never happens. Keep compiler happy. */
9837 if (new_mode
== ARM_CPU_MODE_MON
) {
9838 addr
+= env
->cp15
.mvbar
;
9839 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
9840 /* High vectors. When enabled, base address cannot be remapped. */
9843 /* ARM v7 architectures provide a vector base address register to remap
9844 * the interrupt vector table.
9845 * This register is only followed in non-monitor mode, and is banked.
9846 * Note: only bits 31:5 are valid.
9848 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
9851 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
9852 env
->cp15
.scr_el3
&= ~SCR_NS
;
9855 take_aarch32_exception(env
, new_mode
, mask
, offset
, addr
);
9858 static int aarch64_regnum(CPUARMState
*env
, int aarch32_reg
)
9861 * Return the register number of the AArch64 view of the AArch32
9862 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9863 * be that of the AArch32 mode the exception came from.
9865 int mode
= env
->uncached_cpsr
& CPSR_M
;
9867 switch (aarch32_reg
) {
9871 return mode
== ARM_CPU_MODE_FIQ
? aarch32_reg
+ 16 : aarch32_reg
;
9874 case ARM_CPU_MODE_USR
:
9875 case ARM_CPU_MODE_SYS
:
9877 case ARM_CPU_MODE_HYP
:
9879 case ARM_CPU_MODE_IRQ
:
9881 case ARM_CPU_MODE_SVC
:
9883 case ARM_CPU_MODE_ABT
:
9885 case ARM_CPU_MODE_UND
:
9887 case ARM_CPU_MODE_FIQ
:
9890 g_assert_not_reached();
9894 case ARM_CPU_MODE_USR
:
9895 case ARM_CPU_MODE_SYS
:
9896 case ARM_CPU_MODE_HYP
:
9898 case ARM_CPU_MODE_IRQ
:
9900 case ARM_CPU_MODE_SVC
:
9902 case ARM_CPU_MODE_ABT
:
9904 case ARM_CPU_MODE_UND
:
9906 case ARM_CPU_MODE_FIQ
:
9909 g_assert_not_reached();
9914 g_assert_not_reached();
9918 static uint32_t cpsr_read_for_spsr_elx(CPUARMState
*env
)
9920 uint32_t ret
= cpsr_read(env
);
9922 /* Move DIT to the correct location for SPSR_ELx */
9923 if (ret
& CPSR_DIT
) {
9927 /* Merge PSTATE.SS into SPSR_ELx */
9928 ret
|= env
->pstate
& PSTATE_SS
;
9933 /* Handle exception entry to a target EL which is using AArch64 */
9934 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
9936 ARMCPU
*cpu
= ARM_CPU(cs
);
9937 CPUARMState
*env
= &cpu
->env
;
9938 unsigned int new_el
= env
->exception
.target_el
;
9939 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
9940 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
9941 unsigned int old_mode
;
9942 unsigned int cur_el
= arm_current_el(env
);
9946 * Note that new_el can never be 0. If cur_el is 0, then
9947 * el0_a64 is is_a64(), else el0_a64 is ignored.
9949 aarch64_sve_change_el(env
, cur_el
, new_el
, is_a64(env
));
9951 if (cur_el
< new_el
) {
9952 /* Entry vector offset depends on whether the implemented EL
9953 * immediately lower than the target level is using AArch32 or AArch64
9960 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
9963 hcr
= arm_hcr_el2_eff(env
);
9964 if ((hcr
& (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
9965 is_aa64
= (hcr
& HCR_RW
) != 0;
9970 is_aa64
= is_a64(env
);
9973 g_assert_not_reached();
9981 } else if (pstate_read(env
) & PSTATE_SP
) {
9985 switch (cs
->exception_index
) {
9986 case EXCP_PREFETCH_ABORT
:
9987 case EXCP_DATA_ABORT
:
9988 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
9989 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
9990 env
->cp15
.far_el
[new_el
]);
9998 switch (syn_get_ec(env
->exception
.syndrome
)) {
9999 case EC_ADVSIMDFPACCESSTRAP
:
10001 * QEMU internal FP/SIMD syndromes from AArch32 include the
10002 * TA and coproc fields which are only exposed if the exception
10003 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10004 * AArch64 format syndrome.
10006 env
->exception
.syndrome
&= ~MAKE_64BIT_MASK(0, 20);
10008 case EC_CP14RTTRAP
:
10009 case EC_CP15RTTRAP
:
10010 case EC_CP14DTTRAP
:
10012 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10013 * the raw register field from the insn; when taking this to
10014 * AArch64 we must convert it to the AArch64 view of the register
10015 * number. Notice that we read a 4-bit AArch32 register number and
10016 * write back a 5-bit AArch64 one.
10018 rt
= extract32(env
->exception
.syndrome
, 5, 4);
10019 rt
= aarch64_regnum(env
, rt
);
10020 env
->exception
.syndrome
= deposit32(env
->exception
.syndrome
,
10023 case EC_CP15RRTTRAP
:
10024 case EC_CP14RRTTRAP
:
10025 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10026 rt
= extract32(env
->exception
.syndrome
, 5, 4);
10027 rt
= aarch64_regnum(env
, rt
);
10028 env
->exception
.syndrome
= deposit32(env
->exception
.syndrome
,
10030 rt
= extract32(env
->exception
.syndrome
, 10, 4);
10031 rt
= aarch64_regnum(env
, rt
);
10032 env
->exception
.syndrome
= deposit32(env
->exception
.syndrome
,
10036 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
10047 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
10051 old_mode
= pstate_read(env
);
10052 aarch64_save_sp(env
, arm_current_el(env
));
10053 env
->elr_el
[new_el
] = env
->pc
;
10055 old_mode
= cpsr_read_for_spsr_elx(env
);
10056 env
->elr_el
[new_el
] = env
->regs
[15];
10058 aarch64_sync_32_to_64(env
);
10060 env
->condexec_bits
= 0;
10062 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = old_mode
;
10064 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
10065 env
->elr_el
[new_el
]);
10067 if (cpu_isar_feature(aa64_pan
, cpu
)) {
10068 /* The value of PSTATE.PAN is normally preserved, except when ... */
10069 new_mode
|= old_mode
& PSTATE_PAN
;
10072 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10073 if ((arm_hcr_el2_eff(env
) & (HCR_E2H
| HCR_TGE
))
10074 != (HCR_E2H
| HCR_TGE
)) {
10079 /* ... the target is EL1 ... */
10080 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10081 if ((env
->cp15
.sctlr_el
[new_el
] & SCTLR_SPAN
) == 0) {
10082 new_mode
|= PSTATE_PAN
;
10087 if (cpu_isar_feature(aa64_mte
, cpu
)) {
10088 new_mode
|= PSTATE_TCO
;
10091 if (cpu_isar_feature(aa64_ssbs
, cpu
)) {
10092 if (env
->cp15
.sctlr_el
[new_el
] & SCTLR_DSSBS_64
) {
10093 new_mode
|= PSTATE_SSBS
;
10095 new_mode
&= ~PSTATE_SSBS
;
10099 pstate_write(env
, PSTATE_DAIF
| new_mode
);
10101 aarch64_restore_sp(env
, new_el
);
10102 helper_rebuild_hflags_a64(env
, new_el
);
10106 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
10107 new_el
, env
->pc
, pstate_read(env
));
10111 * Do semihosting call and set the appropriate return value. All the
10112 * permission and validity checks have been done at translate time.
10114 * We only see semihosting exceptions in TCG only as they are not
10115 * trapped to the hypervisor in KVM.
10118 static void handle_semihosting(CPUState
*cs
)
10120 ARMCPU
*cpu
= ARM_CPU(cs
);
10121 CPUARMState
*env
= &cpu
->env
;
10124 qemu_log_mask(CPU_LOG_INT
,
10125 "...handling as semihosting call 0x%" PRIx64
"\n",
10127 env
->xregs
[0] = do_common_semihosting(cs
);
10130 qemu_log_mask(CPU_LOG_INT
,
10131 "...handling as semihosting call 0x%x\n",
10133 env
->regs
[0] = do_common_semihosting(cs
);
10134 env
->regs
[15] += env
->thumb
? 2 : 4;
10139 /* Handle a CPU exception for A and R profile CPUs.
10140 * Do any appropriate logging, handle PSCI calls, and then hand off
10141 * to the AArch64-entry or AArch32-entry function depending on the
10142 * target exception level's register width.
10144 * Note: this is used for both TCG (as the do_interrupt tcg op),
10145 * and KVM to re-inject guest debug exceptions, and to
10146 * inject a Synchronous-External-Abort.
10148 void arm_cpu_do_interrupt(CPUState
*cs
)
10150 ARMCPU
*cpu
= ARM_CPU(cs
);
10151 CPUARMState
*env
= &cpu
->env
;
10152 unsigned int new_el
= env
->exception
.target_el
;
10154 assert(!arm_feature(env
, ARM_FEATURE_M
));
10156 arm_log_exception(cs
->exception_index
);
10157 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
10159 if (qemu_loglevel_mask(CPU_LOG_INT
)
10160 && !excp_is_internal(cs
->exception_index
)) {
10161 qemu_log_mask(CPU_LOG_INT
, "...with ESR 0x%x/0x%" PRIx32
"\n",
10162 syn_get_ec(env
->exception
.syndrome
),
10163 env
->exception
.syndrome
);
10166 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
10167 arm_handle_psci_call(cpu
);
10168 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
10173 * Semihosting semantics depend on the register width of the code
10174 * that caused the exception, not the target exception level, so
10175 * must be handled here.
10178 if (cs
->exception_index
== EXCP_SEMIHOST
) {
10179 handle_semihosting(cs
);
10184 /* Hooks may change global state so BQL should be held, also the
10185 * BQL needs to be held for any modification of
10186 * cs->interrupt_request.
10188 g_assert(qemu_mutex_iothread_locked());
10190 arm_call_pre_el_change_hook(cpu
);
10192 assert(!excp_is_internal(cs
->exception_index
));
10193 if (arm_el_is_aa64(env
, new_el
)) {
10194 arm_cpu_do_interrupt_aarch64(cs
);
10196 arm_cpu_do_interrupt_aarch32(cs
);
10199 arm_call_el_change_hook(cpu
);
10201 if (!kvm_enabled()) {
10202 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
10205 #endif /* !CONFIG_USER_ONLY */
10207 uint64_t arm_sctlr(CPUARMState
*env
, int el
)
10209 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10211 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, 0);
10212 el
= (mmu_idx
== ARMMMUIdx_E20_0
|| mmu_idx
== ARMMMUIdx_SE20_0
)
10215 return env
->cp15
.sctlr_el
[el
];
10218 /* Return the SCTLR value which controls this address translation regime */
10219 static inline uint64_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
10221 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
10224 #ifndef CONFIG_USER_ONLY
10226 /* Return true if the specified stage of address translation is disabled */
10227 static inline bool regime_translation_disabled(CPUARMState
*env
,
10232 if (arm_feature(env
, ARM_FEATURE_M
)) {
10233 switch (env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)] &
10234 (R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
)) {
10235 case R_V7M_MPU_CTRL_ENABLE_MASK
:
10236 /* Enabled, but not for HardFault and NMI */
10237 return mmu_idx
& ARM_MMU_IDX_M_NEGPRI
;
10238 case R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
:
10239 /* Enabled for all cases */
10243 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10244 * we warned about that in armv7m_nvic.c when the guest set it.
10250 hcr_el2
= arm_hcr_el2_eff(env
);
10252 if (mmu_idx
== ARMMMUIdx_Stage2
|| mmu_idx
== ARMMMUIdx_Stage2_S
) {
10253 /* HCR.DC means HCR.VM behaves as 1 */
10254 return (hcr_el2
& (HCR_DC
| HCR_VM
)) == 0;
10257 if (hcr_el2
& HCR_TGE
) {
10258 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10259 if (!regime_is_secure(env
, mmu_idx
) && regime_el(env
, mmu_idx
) == 1) {
10264 if ((hcr_el2
& HCR_DC
) && arm_mmu_idx_is_stage1_of_2(mmu_idx
)) {
10265 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10269 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
10272 static inline bool regime_translation_big_endian(CPUARMState
*env
,
10275 return (regime_sctlr(env
, mmu_idx
) & SCTLR_EE
) != 0;
10278 /* Return the TTBR associated with this translation regime */
10279 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
10282 if (mmu_idx
== ARMMMUIdx_Stage2
) {
10283 return env
->cp15
.vttbr_el2
;
10285 if (mmu_idx
== ARMMMUIdx_Stage2_S
) {
10286 return env
->cp15
.vsttbr_el2
;
10289 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
10291 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
10295 #endif /* !CONFIG_USER_ONLY */
10297 /* Convert a possible stage1+2 MMU index into the appropriate
10298 * stage 1 MMU index
10300 static inline ARMMMUIdx
stage_1_mmu_idx(ARMMMUIdx mmu_idx
)
10303 case ARMMMUIdx_SE10_0
:
10304 return ARMMMUIdx_Stage1_SE0
;
10305 case ARMMMUIdx_SE10_1
:
10306 return ARMMMUIdx_Stage1_SE1
;
10307 case ARMMMUIdx_SE10_1_PAN
:
10308 return ARMMMUIdx_Stage1_SE1_PAN
;
10309 case ARMMMUIdx_E10_0
:
10310 return ARMMMUIdx_Stage1_E0
;
10311 case ARMMMUIdx_E10_1
:
10312 return ARMMMUIdx_Stage1_E1
;
10313 case ARMMMUIdx_E10_1_PAN
:
10314 return ARMMMUIdx_Stage1_E1_PAN
;
10320 /* Return true if the translation regime is using LPAE format page tables */
10321 static inline bool regime_using_lpae_format(CPUARMState
*env
,
10324 int el
= regime_el(env
, mmu_idx
);
10325 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
10328 if (arm_feature(env
, ARM_FEATURE_LPAE
)
10329 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
10335 /* Returns true if the stage 1 translation regime is using LPAE format page
10336 * tables. Used when raising alignment exceptions, whose FSR changes depending
10337 * on whether the long or short descriptor format is in use. */
10338 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
10340 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
10342 return regime_using_lpae_format(env
, mmu_idx
);
10345 #ifndef CONFIG_USER_ONLY
10346 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
10349 case ARMMMUIdx_SE10_0
:
10350 case ARMMMUIdx_E20_0
:
10351 case ARMMMUIdx_SE20_0
:
10352 case ARMMMUIdx_Stage1_E0
:
10353 case ARMMMUIdx_Stage1_SE0
:
10354 case ARMMMUIdx_MUser
:
10355 case ARMMMUIdx_MSUser
:
10356 case ARMMMUIdx_MUserNegPri
:
10357 case ARMMMUIdx_MSUserNegPri
:
10361 case ARMMMUIdx_E10_0
:
10362 case ARMMMUIdx_E10_1
:
10363 case ARMMMUIdx_E10_1_PAN
:
10364 g_assert_not_reached();
10368 /* Translate section/page access permissions to page
10369 * R/W protection flags
10371 * @env: CPUARMState
10372 * @mmu_idx: MMU index indicating required translation regime
10373 * @ap: The 3-bit access permissions (AP[2:0])
10374 * @domain_prot: The 2-bit domain access permissions
10376 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
10377 int ap
, int domain_prot
)
10379 bool is_user
= regime_is_user(env
, mmu_idx
);
10381 if (domain_prot
== 3) {
10382 return PAGE_READ
| PAGE_WRITE
;
10387 if (arm_feature(env
, ARM_FEATURE_V7
)) {
10390 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
10392 return is_user
? 0 : PAGE_READ
;
10399 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
10404 return PAGE_READ
| PAGE_WRITE
;
10407 return PAGE_READ
| PAGE_WRITE
;
10408 case 4: /* Reserved. */
10411 return is_user
? 0 : PAGE_READ
;
10415 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
10420 g_assert_not_reached();
10424 /* Translate section/page access permissions to page
10425 * R/W protection flags.
10427 * @ap: The 2-bit simple AP (AP[2:1])
10428 * @is_user: TRUE if accessing from PL0
10430 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
10434 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
10436 return PAGE_READ
| PAGE_WRITE
;
10438 return is_user
? 0 : PAGE_READ
;
10442 g_assert_not_reached();
10447 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
10449 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
10452 /* Translate S2 section/page access permissions to protection flags
10454 * @env: CPUARMState
10455 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10456 * @xn: XN (execute-never) bits
10457 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10459 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
, bool s1_is_el0
)
10467 prot
|= PAGE_WRITE
;
10470 if (cpu_isar_feature(any_tts2uxn
, env_archcpu(env
))) {
10488 g_assert_not_reached();
10491 if (!extract32(xn
, 1, 1)) {
10492 if (arm_el_is_aa64(env
, 2) || prot
& PAGE_READ
) {
10500 /* Translate section/page access permissions to protection flags
10502 * @env: CPUARMState
10503 * @mmu_idx: MMU index indicating required translation regime
10504 * @is_aa64: TRUE if AArch64
10505 * @ap: The 2-bit simple AP (AP[2:1])
10506 * @ns: NS (non-secure) bit
10507 * @xn: XN (execute-never) bit
10508 * @pxn: PXN (privileged execute-never) bit
10510 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
10511 int ap
, int ns
, int xn
, int pxn
)
10513 bool is_user
= regime_is_user(env
, mmu_idx
);
10514 int prot_rw
, user_rw
;
10518 assert(mmu_idx
!= ARMMMUIdx_Stage2
);
10519 assert(mmu_idx
!= ARMMMUIdx_Stage2_S
);
10521 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
10525 if (user_rw
&& regime_is_pan(env
, mmu_idx
)) {
10526 /* PAN forbids data accesses but doesn't affect insn fetch */
10529 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
10533 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
10537 /* TODO have_wxn should be replaced with
10538 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10539 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10540 * compatible processors have EL2, which is required for [U]WXN.
10542 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
10545 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
10549 if (regime_has_2_ranges(mmu_idx
) && !is_user
) {
10550 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
10552 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
10553 switch (regime_el(env
, mmu_idx
)) {
10557 xn
= xn
|| !(user_rw
& PAGE_READ
);
10561 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
10563 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
10564 (uwxn
&& (user_rw
& PAGE_WRITE
));
10574 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
10577 return prot_rw
| PAGE_EXEC
;
10580 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
10581 uint32_t *table
, uint32_t address
)
10583 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10584 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
10586 if (address
& tcr
->mask
) {
10587 if (tcr
->raw_tcr
& TTBCR_PD1
) {
10588 /* Translation table walk disabled for TTBR1 */
10591 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
10593 if (tcr
->raw_tcr
& TTBCR_PD0
) {
10594 /* Translation table walk disabled for TTBR0 */
10597 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
10599 *table
|= (address
>> 18) & 0x3ffc;
10603 /* Translate a S1 pagetable walk through S2 if needed. */
10604 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
10605 hwaddr addr
, bool *is_secure
,
10606 ARMMMUFaultInfo
*fi
)
10608 if (arm_mmu_idx_is_stage1_of_2(mmu_idx
) &&
10609 !regime_translation_disabled(env
, ARMMMUIdx_Stage2
)) {
10610 target_ulong s2size
;
10614 ARMMMUIdx s2_mmu_idx
= *is_secure
? ARMMMUIdx_Stage2_S
10615 : ARMMMUIdx_Stage2
;
10616 ARMCacheAttrs cacheattrs
= {};
10617 MemTxAttrs txattrs
= {};
10619 ret
= get_phys_addr_lpae(env
, addr
, MMU_DATA_LOAD
, s2_mmu_idx
, false,
10620 &s2pa
, &txattrs
, &s2prot
, &s2size
, fi
,
10623 assert(fi
->type
!= ARMFault_None
);
10627 fi
->s1ns
= !*is_secure
;
10630 if ((arm_hcr_el2_eff(env
) & HCR_PTW
) &&
10631 (cacheattrs
.attrs
& 0xf0) == 0) {
10633 * PTW set and S1 walk touched S2 Device memory:
10634 * generate Permission fault.
10636 fi
->type
= ARMFault_Permission
;
10640 fi
->s1ns
= !*is_secure
;
10644 if (arm_is_secure_below_el3(env
)) {
10645 /* Check if page table walk is to secure or non-secure PA space. */
10647 *is_secure
= !(env
->cp15
.vstcr_el2
.raw_tcr
& VSTCR_SW
);
10649 *is_secure
= !(env
->cp15
.vtcr_el2
.raw_tcr
& VTCR_NSW
);
10652 assert(!*is_secure
);
10660 /* All loads done in the course of a page table walk go through here. */
10661 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
10662 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
10664 ARMCPU
*cpu
= ARM_CPU(cs
);
10665 CPUARMState
*env
= &cpu
->env
;
10666 MemTxAttrs attrs
= {};
10667 MemTxResult result
= MEMTX_OK
;
10671 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, &is_secure
, fi
);
10672 attrs
.secure
= is_secure
;
10673 as
= arm_addressspace(cs
, attrs
);
10677 if (regime_translation_big_endian(env
, mmu_idx
)) {
10678 data
= address_space_ldl_be(as
, addr
, attrs
, &result
);
10680 data
= address_space_ldl_le(as
, addr
, attrs
, &result
);
10682 if (result
== MEMTX_OK
) {
10685 fi
->type
= ARMFault_SyncExternalOnWalk
;
10686 fi
->ea
= arm_extabort_type(result
);
10690 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
10691 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
10693 ARMCPU
*cpu
= ARM_CPU(cs
);
10694 CPUARMState
*env
= &cpu
->env
;
10695 MemTxAttrs attrs
= {};
10696 MemTxResult result
= MEMTX_OK
;
10700 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, &is_secure
, fi
);
10701 attrs
.secure
= is_secure
;
10702 as
= arm_addressspace(cs
, attrs
);
10706 if (regime_translation_big_endian(env
, mmu_idx
)) {
10707 data
= address_space_ldq_be(as
, addr
, attrs
, &result
);
10709 data
= address_space_ldq_le(as
, addr
, attrs
, &result
);
10711 if (result
== MEMTX_OK
) {
10714 fi
->type
= ARMFault_SyncExternalOnWalk
;
10715 fi
->ea
= arm_extabort_type(result
);
10719 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
10720 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10721 hwaddr
*phys_ptr
, int *prot
,
10722 target_ulong
*page_size
,
10723 ARMMMUFaultInfo
*fi
)
10725 CPUState
*cs
= env_cpu(env
);
10736 /* Pagetable walk. */
10737 /* Lookup l1 descriptor. */
10738 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
10739 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10740 fi
->type
= ARMFault_Translation
;
10743 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
10745 if (fi
->type
!= ARMFault_None
) {
10749 domain
= (desc
>> 5) & 0x0f;
10750 if (regime_el(env
, mmu_idx
) == 1) {
10751 dacr
= env
->cp15
.dacr_ns
;
10753 dacr
= env
->cp15
.dacr_s
;
10755 domain_prot
= (dacr
>> (domain
* 2)) & 3;
10757 /* Section translation fault. */
10758 fi
->type
= ARMFault_Translation
;
10764 if (domain_prot
== 0 || domain_prot
== 2) {
10765 fi
->type
= ARMFault_Domain
;
10770 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
10771 ap
= (desc
>> 10) & 3;
10772 *page_size
= 1024 * 1024;
10774 /* Lookup l2 entry. */
10776 /* Coarse pagetable. */
10777 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
10779 /* Fine pagetable. */
10780 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
10782 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
10784 if (fi
->type
!= ARMFault_None
) {
10787 switch (desc
& 3) {
10788 case 0: /* Page translation fault. */
10789 fi
->type
= ARMFault_Translation
;
10791 case 1: /* 64k page. */
10792 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
10793 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
10794 *page_size
= 0x10000;
10796 case 2: /* 4k page. */
10797 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
10798 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
10799 *page_size
= 0x1000;
10801 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10803 /* ARMv6/XScale extended small page format */
10804 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
10805 || arm_feature(env
, ARM_FEATURE_V6
)) {
10806 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
10807 *page_size
= 0x1000;
10809 /* UNPREDICTABLE in ARMv5; we choose to take a
10810 * page translation fault.
10812 fi
->type
= ARMFault_Translation
;
10816 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
10817 *page_size
= 0x400;
10819 ap
= (desc
>> 4) & 3;
10822 /* Never happens, but compiler isn't smart enough to tell. */
10826 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
10827 *prot
|= *prot
? PAGE_EXEC
: 0;
10828 if (!(*prot
& (1 << access_type
))) {
10829 /* Access permission fault. */
10830 fi
->type
= ARMFault_Permission
;
10833 *phys_ptr
= phys_addr
;
10836 fi
->domain
= domain
;
10841 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
10842 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10843 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
10844 target_ulong
*page_size
, ARMMMUFaultInfo
*fi
)
10846 CPUState
*cs
= env_cpu(env
);
10847 ARMCPU
*cpu
= env_archcpu(env
);
10861 /* Pagetable walk. */
10862 /* Lookup l1 descriptor. */
10863 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
10864 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10865 fi
->type
= ARMFault_Translation
;
10868 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
10870 if (fi
->type
!= ARMFault_None
) {
10874 if (type
== 0 || (type
== 3 && !cpu_isar_feature(aa32_pxn
, cpu
))) {
10875 /* Section translation fault, or attempt to use the encoding
10876 * which is Reserved on implementations without PXN.
10878 fi
->type
= ARMFault_Translation
;
10881 if ((type
== 1) || !(desc
& (1 << 18))) {
10882 /* Page or Section. */
10883 domain
= (desc
>> 5) & 0x0f;
10885 if (regime_el(env
, mmu_idx
) == 1) {
10886 dacr
= env
->cp15
.dacr_ns
;
10888 dacr
= env
->cp15
.dacr_s
;
10893 domain_prot
= (dacr
>> (domain
* 2)) & 3;
10894 if (domain_prot
== 0 || domain_prot
== 2) {
10895 /* Section or Page domain fault */
10896 fi
->type
= ARMFault_Domain
;
10900 if (desc
& (1 << 18)) {
10901 /* Supersection. */
10902 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
10903 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
10904 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
10905 *page_size
= 0x1000000;
10908 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
10909 *page_size
= 0x100000;
10911 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
10912 xn
= desc
& (1 << 4);
10914 ns
= extract32(desc
, 19, 1);
10916 if (cpu_isar_feature(aa32_pxn
, cpu
)) {
10917 pxn
= (desc
>> 2) & 1;
10919 ns
= extract32(desc
, 3, 1);
10920 /* Lookup l2 entry. */
10921 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
10922 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
10924 if (fi
->type
!= ARMFault_None
) {
10927 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
10928 switch (desc
& 3) {
10929 case 0: /* Page translation fault. */
10930 fi
->type
= ARMFault_Translation
;
10932 case 1: /* 64k page. */
10933 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
10934 xn
= desc
& (1 << 15);
10935 *page_size
= 0x10000;
10937 case 2: case 3: /* 4k page. */
10938 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
10940 *page_size
= 0x1000;
10943 /* Never happens, but compiler isn't smart enough to tell. */
10947 if (domain_prot
== 3) {
10948 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10950 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
10953 if (xn
&& access_type
== MMU_INST_FETCH
) {
10954 fi
->type
= ARMFault_Permission
;
10958 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
10959 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
10960 /* The simplified model uses AP[0] as an access control bit. */
10961 if ((ap
& 1) == 0) {
10962 /* Access flag fault. */
10963 fi
->type
= ARMFault_AccessFlag
;
10966 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
10968 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
10970 if (*prot
&& !xn
) {
10971 *prot
|= PAGE_EXEC
;
10973 if (!(*prot
& (1 << access_type
))) {
10974 /* Access permission fault. */
10975 fi
->type
= ARMFault_Permission
;
10980 /* The NS bit will (as required by the architecture) have no effect if
10981 * the CPU doesn't support TZ or this is a non-secure translation
10982 * regime, because the attribute will already be non-secure.
10984 attrs
->secure
= false;
10986 *phys_ptr
= phys_addr
;
10989 fi
->domain
= domain
;
10995 * check_s2_mmu_setup
10997 * @is_aa64: True if the translation regime is in AArch64 state
10998 * @startlevel: Suggested starting level
10999 * @inputsize: Bitsize of IPAs
11000 * @stride: Page-table stride (See the ARM ARM)
11002 * Returns true if the suggested S2 translation parameters are OK and
11005 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
11006 int inputsize
, int stride
)
11008 const int grainsize
= stride
+ 3;
11009 int startsizecheck
;
11011 /* Negative levels are never allowed. */
11016 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
11017 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
11022 CPUARMState
*env
= &cpu
->env
;
11023 unsigned int pamax
= arm_pamax(cpu
);
11026 case 13: /* 64KB Pages. */
11027 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
11031 case 11: /* 16KB Pages. */
11032 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
11036 case 9: /* 4KB Pages. */
11037 if (level
== 0 && pamax
<= 42) {
11042 g_assert_not_reached();
11045 /* Inputsize checks. */
11046 if (inputsize
> pamax
&&
11047 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
11048 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
11052 /* AArch32 only supports 4KB pages. Assert on that. */
11053 assert(stride
== 9);
11062 /* Translate from the 4-bit stage 2 representation of
11063 * memory attributes (without cache-allocation hints) to
11064 * the 8-bit representation of the stage 1 MAIR registers
11065 * (which includes allocation hints).
11067 * ref: shared/translation/attrs/S2AttrDecode()
11068 * .../S2ConvertAttrsHints()
11070 static uint8_t convert_stage2_attrs(CPUARMState
*env
, uint8_t s2attrs
)
11072 uint8_t hiattr
= extract32(s2attrs
, 2, 2);
11073 uint8_t loattr
= extract32(s2attrs
, 0, 2);
11074 uint8_t hihint
= 0, lohint
= 0;
11076 if (hiattr
!= 0) { /* normal memory */
11077 if (arm_hcr_el2_eff(env
) & HCR_CD
) { /* cache disabled */
11078 hiattr
= loattr
= 1; /* non-cacheable */
11080 if (hiattr
!= 1) { /* Write-through or write-back */
11081 hihint
= 3; /* RW allocate */
11083 if (loattr
!= 1) { /* Write-through or write-back */
11084 lohint
= 3; /* RW allocate */
11089 return (hiattr
<< 6) | (hihint
<< 4) | (loattr
<< 2) | lohint
;
11091 #endif /* !CONFIG_USER_ONLY */
11093 static int aa64_va_parameter_tbi(uint64_t tcr
, ARMMMUIdx mmu_idx
)
11095 if (regime_has_2_ranges(mmu_idx
)) {
11096 return extract64(tcr
, 37, 2);
11097 } else if (mmu_idx
== ARMMMUIdx_Stage2
|| mmu_idx
== ARMMMUIdx_Stage2_S
) {
11098 return 0; /* VTCR_EL2 */
11100 /* Replicate the single TBI bit so we always have 2 bits. */
11101 return extract32(tcr
, 20, 1) * 3;
11105 static int aa64_va_parameter_tbid(uint64_t tcr
, ARMMMUIdx mmu_idx
)
11107 if (regime_has_2_ranges(mmu_idx
)) {
11108 return extract64(tcr
, 51, 2);
11109 } else if (mmu_idx
== ARMMMUIdx_Stage2
|| mmu_idx
== ARMMMUIdx_Stage2_S
) {
11110 return 0; /* VTCR_EL2 */
11112 /* Replicate the single TBID bit so we always have 2 bits. */
11113 return extract32(tcr
, 29, 1) * 3;
11117 static int aa64_va_parameter_tcma(uint64_t tcr
, ARMMMUIdx mmu_idx
)
11119 if (regime_has_2_ranges(mmu_idx
)) {
11120 return extract64(tcr
, 57, 2);
11122 /* Replicate the single TCMA bit so we always have 2 bits. */
11123 return extract32(tcr
, 30, 1) * 3;
11127 ARMVAParameters
aa64_va_parameters(CPUARMState
*env
, uint64_t va
,
11128 ARMMMUIdx mmu_idx
, bool data
)
11130 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
11131 bool epd
, hpd
, using16k
, using64k
;
11132 int select
, tsz
, tbi
, max_tsz
;
11134 if (!regime_has_2_ranges(mmu_idx
)) {
11136 tsz
= extract32(tcr
, 0, 6);
11137 using64k
= extract32(tcr
, 14, 1);
11138 using16k
= extract32(tcr
, 15, 1);
11139 if (mmu_idx
== ARMMMUIdx_Stage2
|| mmu_idx
== ARMMMUIdx_Stage2_S
) {
11143 hpd
= extract32(tcr
, 24, 1);
11148 * Bit 55 is always between the two regions, and is canonical for
11149 * determining if address tagging is enabled.
11151 select
= extract64(va
, 55, 1);
11153 tsz
= extract32(tcr
, 0, 6);
11154 epd
= extract32(tcr
, 7, 1);
11155 using64k
= extract32(tcr
, 14, 1);
11156 using16k
= extract32(tcr
, 15, 1);
11157 hpd
= extract64(tcr
, 41, 1);
11159 int tg
= extract32(tcr
, 30, 2);
11160 using16k
= tg
== 1;
11161 using64k
= tg
== 3;
11162 tsz
= extract32(tcr
, 16, 6);
11163 epd
= extract32(tcr
, 23, 1);
11164 hpd
= extract64(tcr
, 42, 1);
11168 if (cpu_isar_feature(aa64_st
, env_archcpu(env
))) {
11169 max_tsz
= 48 - using64k
;
11174 tsz
= MIN(tsz
, max_tsz
);
11175 tsz
= MAX(tsz
, 16); /* TODO: ARMv8.2-LVA */
11177 /* Present TBI as a composite with TBID. */
11178 tbi
= aa64_va_parameter_tbi(tcr
, mmu_idx
);
11180 tbi
&= ~aa64_va_parameter_tbid(tcr
, mmu_idx
);
11182 tbi
= (tbi
>> select
) & 1;
11184 return (ARMVAParameters
) {
11190 .using16k
= using16k
,
11191 .using64k
= using64k
,
11195 #ifndef CONFIG_USER_ONLY
11196 static ARMVAParameters
aa32_va_parameters(CPUARMState
*env
, uint32_t va
,
11199 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
11200 uint32_t el
= regime_el(env
, mmu_idx
);
11204 assert(mmu_idx
!= ARMMMUIdx_Stage2_S
);
11206 if (mmu_idx
== ARMMMUIdx_Stage2
) {
11208 bool sext
= extract32(tcr
, 4, 1);
11209 bool sign
= extract32(tcr
, 3, 1);
11212 * If the sign-extend bit is not the same as t0sz[3], the result
11213 * is unpredictable. Flag this as a guest error.
11215 if (sign
!= sext
) {
11216 qemu_log_mask(LOG_GUEST_ERROR
,
11217 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11219 tsz
= sextract32(tcr
, 0, 4) + 8;
11223 } else if (el
== 2) {
11225 tsz
= extract32(tcr
, 0, 3);
11227 hpd
= extract64(tcr
, 24, 1);
11230 int t0sz
= extract32(tcr
, 0, 3);
11231 int t1sz
= extract32(tcr
, 16, 3);
11234 select
= va
> (0xffffffffu
>> t0sz
);
11236 /* Note that we will detect errors later. */
11237 select
= va
>= ~(0xffffffffu
>> t1sz
);
11241 epd
= extract32(tcr
, 7, 1);
11242 hpd
= extract64(tcr
, 41, 1);
11245 epd
= extract32(tcr
, 23, 1);
11246 hpd
= extract64(tcr
, 42, 1);
11248 /* For aarch32, hpd0 is not enabled without t2e as well. */
11249 hpd
&= extract32(tcr
, 6, 1);
11252 return (ARMVAParameters
) {
11261 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11263 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11264 * prot and page_size may not be filled in, and the populated fsr value provides
11265 * information on why the translation aborted, in the format of a long-format
11266 * DFSR/IFSR fault register, with the following caveats:
11267 * * the WnR bit is never set (the caller must do this).
11269 * @env: CPUARMState
11270 * @address: virtual address to get physical address for
11271 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11272 * @mmu_idx: MMU index indicating required translation regime
11273 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11274 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
11275 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11276 * @phys_ptr: set to the physical address corresponding to the virtual address
11277 * @attrs: set to the memory transaction attributes to use
11278 * @prot: set to the permissions for the page containing phys_ptr
11279 * @page_size_ptr: set to the size of the page containing phys_ptr
11280 * @fi: set to fault info if the translation fails
11281 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11283 static bool get_phys_addr_lpae(CPUARMState
*env
, uint64_t address
,
11284 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
11286 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
11287 target_ulong
*page_size_ptr
,
11288 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
11290 ARMCPU
*cpu
= env_archcpu(env
);
11291 CPUState
*cs
= CPU(cpu
);
11292 /* Read an LPAE long-descriptor translation table. */
11293 ARMFaultType fault_type
= ARMFault_Translation
;
11295 ARMVAParameters param
;
11297 hwaddr descaddr
, indexmask
, indexmask_grainsize
;
11298 uint32_t tableattrs
;
11299 target_ulong page_size
;
11302 int addrsize
, inputsize
;
11303 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
11304 int ap
, ns
, xn
, pxn
;
11305 uint32_t el
= regime_el(env
, mmu_idx
);
11306 uint64_t descaddrmask
;
11307 bool aarch64
= arm_el_is_aa64(env
, el
);
11308 bool guarded
= false;
11310 /* TODO: This code does not support shareability levels. */
11312 param
= aa64_va_parameters(env
, address
, mmu_idx
,
11313 access_type
!= MMU_INST_FETCH
);
11315 addrsize
= 64 - 8 * param
.tbi
;
11316 inputsize
= 64 - param
.tsz
;
11318 param
= aa32_va_parameters(env
, address
, mmu_idx
);
11320 addrsize
= (mmu_idx
== ARMMMUIdx_Stage2
? 40 : 32);
11321 inputsize
= addrsize
- param
.tsz
;
11325 * We determined the region when collecting the parameters, but we
11326 * have not yet validated that the address is valid for the region.
11327 * Extract the top bits and verify that they all match select.
11329 * For aa32, if inputsize == addrsize, then we have selected the
11330 * region by exclusion in aa32_va_parameters and there is no more
11331 * validation to do here.
11333 if (inputsize
< addrsize
) {
11334 target_ulong top_bits
= sextract64(address
, inputsize
,
11335 addrsize
- inputsize
);
11336 if (-top_bits
!= param
.select
) {
11337 /* The gap between the two regions is a Translation fault */
11338 fault_type
= ARMFault_Translation
;
11343 if (param
.using64k
) {
11345 } else if (param
.using16k
) {
11351 /* Note that QEMU ignores shareability and cacheability attributes,
11352 * so we don't need to do anything with the SH, ORGN, IRGN fields
11353 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11354 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11355 * implement any ASID-like capability so we can ignore it (instead
11356 * we will always flush the TLB any time the ASID is changed).
11358 ttbr
= regime_ttbr(env
, mmu_idx
, param
.select
);
11360 /* Here we should have set up all the parameters for the translation:
11361 * inputsize, ttbr, epd, stride, tbi
11365 /* Translation table walk disabled => Translation fault on TLB miss
11366 * Note: This is always 0 on 64-bit EL2 and EL3.
11371 if (mmu_idx
!= ARMMMUIdx_Stage2
&& mmu_idx
!= ARMMMUIdx_Stage2_S
) {
11372 /* The starting level depends on the virtual address size (which can
11373 * be up to 48 bits) and the translation granule size. It indicates
11374 * the number of strides (stride bits at a time) needed to
11375 * consume the bits of the input address. In the pseudocode this is:
11376 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11377 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11378 * our 'stride + 3' and 'stride' is our 'stride'.
11379 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11380 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11381 * = 4 - (inputsize - 4) / stride;
11383 level
= 4 - (inputsize
- 4) / stride
;
11385 /* For stage 2 translations the starting level is specified by the
11386 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11388 uint32_t sl0
= extract32(tcr
->raw_tcr
, 6, 2);
11389 uint32_t startlevel
;
11392 if (!aarch64
|| stride
== 9) {
11393 /* AArch32 or 4KB pages */
11394 startlevel
= 2 - sl0
;
11396 if (cpu_isar_feature(aa64_st
, cpu
)) {
11400 /* 16KB or 64KB pages */
11401 startlevel
= 3 - sl0
;
11404 /* Check that the starting level is valid. */
11405 ok
= check_s2_mmu_setup(cpu
, aarch64
, startlevel
,
11406 inputsize
, stride
);
11408 fault_type
= ARMFault_Translation
;
11411 level
= startlevel
;
11414 indexmask_grainsize
= (1ULL << (stride
+ 3)) - 1;
11415 indexmask
= (1ULL << (inputsize
- (stride
* (4 - level
)))) - 1;
11417 /* Now we can extract the actual base address from the TTBR */
11418 descaddr
= extract64(ttbr
, 0, 48);
11420 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11421 * and also to mask out CnP (bit 0) which could validly be non-zero.
11423 descaddr
&= ~indexmask
;
11425 /* The address field in the descriptor goes up to bit 39 for ARMv7
11426 * but up to bit 47 for ARMv8, but we use the descaddrmask
11427 * up to bit 39 for AArch32, because we don't need other bits in that case
11428 * to construct next descriptor address (anyway they should be all zeroes).
11430 descaddrmask
= ((1ull << (aarch64
? 48 : 40)) - 1) &
11431 ~indexmask_grainsize
;
11433 /* Secure accesses start with the page table in secure memory and
11434 * can be downgraded to non-secure at any step. Non-secure accesses
11435 * remain non-secure. We implement this by just ORing in the NSTable/NS
11436 * bits at each step.
11438 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
11440 uint64_t descriptor
;
11443 descaddr
|= (address
>> (stride
* (4 - level
))) & indexmask
;
11445 nstable
= extract32(tableattrs
, 4, 1);
11446 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fi
);
11447 if (fi
->type
!= ARMFault_None
) {
11451 if (!(descriptor
& 1) ||
11452 (!(descriptor
& 2) && (level
== 3))) {
11453 /* Invalid, or the Reserved level 3 encoding */
11456 descaddr
= descriptor
& descaddrmask
;
11458 if ((descriptor
& 2) && (level
< 3)) {
11459 /* Table entry. The top five bits are attributes which may
11460 * propagate down through lower levels of the table (and
11461 * which are all arranged so that 0 means "no effect", so
11462 * we can gather them up by ORing in the bits at each level).
11464 tableattrs
|= extract64(descriptor
, 59, 5);
11466 indexmask
= indexmask_grainsize
;
11469 /* Block entry at level 1 or 2, or page entry at level 3.
11470 * These are basically the same thing, although the number
11471 * of bits we pull in from the vaddr varies.
11473 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
11474 descaddr
|= (address
& (page_size
- 1));
11475 /* Extract attributes from the descriptor */
11476 attrs
= extract64(descriptor
, 2, 10)
11477 | (extract64(descriptor
, 52, 12) << 10);
11479 if (mmu_idx
== ARMMMUIdx_Stage2
|| mmu_idx
== ARMMMUIdx_Stage2_S
) {
11480 /* Stage 2 table descriptors do not include any attribute fields */
11483 /* Merge in attributes from table descriptors */
11484 attrs
|= nstable
<< 3; /* NS */
11485 guarded
= extract64(descriptor
, 50, 1); /* GP */
11487 /* HPD disables all the table attributes except NSTable. */
11490 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
11491 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11492 * means "force PL1 access only", which means forcing AP[1] to 0.
11494 attrs
&= ~(extract32(tableattrs
, 2, 1) << 4); /* !APT[0] => AP[1] */
11495 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APT[1] => AP[2] */
11498 /* Here descaddr is the final physical address, and attributes
11499 * are all in attrs.
11501 fault_type
= ARMFault_AccessFlag
;
11502 if ((attrs
& (1 << 8)) == 0) {
11507 ap
= extract32(attrs
, 4, 2);
11509 if (mmu_idx
== ARMMMUIdx_Stage2
|| mmu_idx
== ARMMMUIdx_Stage2_S
) {
11510 ns
= mmu_idx
== ARMMMUIdx_Stage2
;
11511 xn
= extract32(attrs
, 11, 2);
11512 *prot
= get_S2prot(env
, ap
, xn
, s1_is_el0
);
11514 ns
= extract32(attrs
, 3, 1);
11515 xn
= extract32(attrs
, 12, 1);
11516 pxn
= extract32(attrs
, 11, 1);
11517 *prot
= get_S1prot(env
, mmu_idx
, aarch64
, ap
, ns
, xn
, pxn
);
11520 fault_type
= ARMFault_Permission
;
11521 if (!(*prot
& (1 << access_type
))) {
11526 /* The NS bit will (as required by the architecture) have no effect if
11527 * the CPU doesn't support TZ or this is a non-secure translation
11528 * regime, because the attribute will already be non-secure.
11530 txattrs
->secure
= false;
11532 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11533 if (aarch64
&& guarded
&& cpu_isar_feature(aa64_bti
, cpu
)) {
11534 arm_tlb_bti_gp(txattrs
) = true;
11537 if (mmu_idx
== ARMMMUIdx_Stage2
|| mmu_idx
== ARMMMUIdx_Stage2_S
) {
11538 cacheattrs
->attrs
= convert_stage2_attrs(env
, extract32(attrs
, 0, 4));
11540 /* Index into MAIR registers for cache attributes */
11541 uint8_t attrindx
= extract32(attrs
, 0, 3);
11542 uint64_t mair
= env
->cp15
.mair_el
[regime_el(env
, mmu_idx
)];
11543 assert(attrindx
<= 7);
11544 cacheattrs
->attrs
= extract64(mair
, attrindx
* 8, 8);
11546 cacheattrs
->shareability
= extract32(attrs
, 6, 2);
11548 *phys_ptr
= descaddr
;
11549 *page_size_ptr
= page_size
;
11553 fi
->type
= fault_type
;
11555 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11556 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_Stage2
||
11557 mmu_idx
== ARMMMUIdx_Stage2_S
);
11558 fi
->s1ns
= mmu_idx
== ARMMMUIdx_Stage2
;
11562 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
11564 int32_t address
, int *prot
)
11566 if (!arm_feature(env
, ARM_FEATURE_M
)) {
11567 *prot
= PAGE_READ
| PAGE_WRITE
;
11569 case 0xF0000000 ... 0xFFFFFFFF:
11570 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) {
11571 /* hivecs execing is ok */
11572 *prot
|= PAGE_EXEC
;
11575 case 0x00000000 ... 0x7FFFFFFF:
11576 *prot
|= PAGE_EXEC
;
11580 /* Default system address map for M profile cores.
11581 * The architecture specifies which regions are execute-never;
11582 * at the MPU level no other checks are defined.
11585 case 0x00000000 ... 0x1fffffff: /* ROM */
11586 case 0x20000000 ... 0x3fffffff: /* SRAM */
11587 case 0x60000000 ... 0x7fffffff: /* RAM */
11588 case 0x80000000 ... 0x9fffffff: /* RAM */
11589 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
11591 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11592 case 0xa0000000 ... 0xbfffffff: /* Device */
11593 case 0xc0000000 ... 0xdfffffff: /* Device */
11594 case 0xe0000000 ... 0xffffffff: /* System */
11595 *prot
= PAGE_READ
| PAGE_WRITE
;
11598 g_assert_not_reached();
11603 static bool pmsav7_use_background_region(ARMCPU
*cpu
,
11604 ARMMMUIdx mmu_idx
, bool is_user
)
11606 /* Return true if we should use the default memory map as a
11607 * "background" region if there are no hits against any MPU regions.
11609 CPUARMState
*env
= &cpu
->env
;
11615 if (arm_feature(env
, ARM_FEATURE_M
)) {
11616 return env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)]
11617 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK
;
11619 return regime_sctlr(env
, mmu_idx
) & SCTLR_BR
;
11623 static inline bool m_is_ppb_region(CPUARMState
*env
, uint32_t address
)
11625 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11626 return arm_feature(env
, ARM_FEATURE_M
) &&
11627 extract32(address
, 20, 12) == 0xe00;
11630 static inline bool m_is_system_region(CPUARMState
*env
, uint32_t address
)
11632 /* True if address is in the M profile system region
11633 * 0xe0000000 - 0xffffffff
11635 return arm_feature(env
, ARM_FEATURE_M
) && extract32(address
, 29, 3) == 0x7;
11638 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
11639 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
11640 hwaddr
*phys_ptr
, int *prot
,
11641 target_ulong
*page_size
,
11642 ARMMMUFaultInfo
*fi
)
11644 ARMCPU
*cpu
= env_archcpu(env
);
11646 bool is_user
= regime_is_user(env
, mmu_idx
);
11648 *phys_ptr
= address
;
11649 *page_size
= TARGET_PAGE_SIZE
;
11652 if (regime_translation_disabled(env
, mmu_idx
) ||
11653 m_is_ppb_region(env
, address
)) {
11654 /* MPU disabled or M profile PPB access: use default memory map.
11655 * The other case which uses the default memory map in the
11656 * v7M ARM ARM pseudocode is exception vector reads from the vector
11657 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11658 * which always does a direct read using address_space_ldl(), rather
11659 * than going via this function, so we don't need to check that here.
11661 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
11662 } else { /* MPU enabled */
11663 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
11664 /* region search */
11665 uint32_t base
= env
->pmsav7
.drbar
[n
];
11666 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
11668 bool srdis
= false;
11670 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
11675 qemu_log_mask(LOG_GUEST_ERROR
,
11676 "DRSR[%d]: Rsize field cannot be 0\n", n
);
11680 rmask
= (1ull << rsize
) - 1;
11682 if (base
& rmask
) {
11683 qemu_log_mask(LOG_GUEST_ERROR
,
11684 "DRBAR[%d]: 0x%" PRIx32
" misaligned "
11685 "to DRSR region size, mask = 0x%" PRIx32
"\n",
11690 if (address
< base
|| address
> base
+ rmask
) {
11692 * Address not in this region. We must check whether the
11693 * region covers addresses in the same page as our address.
11694 * In that case we must not report a size that covers the
11695 * whole page for a subsequent hit against a different MPU
11696 * region or the background region, because it would result in
11697 * incorrect TLB hits for subsequent accesses to addresses that
11698 * are in this MPU region.
11700 if (ranges_overlap(base
, rmask
,
11701 address
& TARGET_PAGE_MASK
,
11702 TARGET_PAGE_SIZE
)) {
11708 /* Region matched */
11710 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
11712 uint32_t srdis_mask
;
11714 rsize
-= 3; /* sub region size (power of 2) */
11715 snd
= ((address
- base
) >> rsize
) & 0x7;
11716 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
11718 srdis_mask
= srdis
? 0x3 : 0x0;
11719 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
11720 /* This will check in groups of 2, 4 and then 8, whether
11721 * the subregion bits are consistent. rsize is incremented
11722 * back up to give the region size, considering consistent
11723 * adjacent subregions as one region. Stop testing if rsize
11724 * is already big enough for an entire QEMU page.
11726 int snd_rounded
= snd
& ~(i
- 1);
11727 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
11728 snd_rounded
+ 8, i
);
11729 if (srdis_mask
^ srdis_multi
) {
11732 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
11739 if (rsize
< TARGET_PAGE_BITS
) {
11740 *page_size
= 1 << rsize
;
11745 if (n
== -1) { /* no hits */
11746 if (!pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
11747 /* background fault */
11748 fi
->type
= ARMFault_Background
;
11751 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
11752 } else { /* a MPU hit! */
11753 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
11754 uint32_t xn
= extract32(env
->pmsav7
.dracr
[n
], 12, 1);
11756 if (m_is_system_region(env
, address
)) {
11757 /* System space is always execute never */
11761 if (is_user
) { /* User mode AP bit decoding */
11766 break; /* no access */
11768 *prot
|= PAGE_WRITE
;
11772 *prot
|= PAGE_READ
| PAGE_EXEC
;
11775 /* for v7M, same as 6; for R profile a reserved value */
11776 if (arm_feature(env
, ARM_FEATURE_M
)) {
11777 *prot
|= PAGE_READ
| PAGE_EXEC
;
11782 qemu_log_mask(LOG_GUEST_ERROR
,
11783 "DRACR[%d]: Bad value for AP bits: 0x%"
11784 PRIx32
"\n", n
, ap
);
11786 } else { /* Priv. mode AP bits decoding */
11789 break; /* no access */
11793 *prot
|= PAGE_WRITE
;
11797 *prot
|= PAGE_READ
| PAGE_EXEC
;
11800 /* for v7M, same as 6; for R profile a reserved value */
11801 if (arm_feature(env
, ARM_FEATURE_M
)) {
11802 *prot
|= PAGE_READ
| PAGE_EXEC
;
11807 qemu_log_mask(LOG_GUEST_ERROR
,
11808 "DRACR[%d]: Bad value for AP bits: 0x%"
11809 PRIx32
"\n", n
, ap
);
11813 /* execute never */
11815 *prot
&= ~PAGE_EXEC
;
11820 fi
->type
= ARMFault_Permission
;
11822 return !(*prot
& (1 << access_type
));
11825 static bool v8m_is_sau_exempt(CPUARMState
*env
,
11826 uint32_t address
, MMUAccessType access_type
)
11828 /* The architecture specifies that certain address ranges are
11829 * exempt from v8M SAU/IDAU checks.
11832 (access_type
== MMU_INST_FETCH
&& m_is_system_region(env
, address
)) ||
11833 (address
>= 0xe0000000 && address
<= 0xe0002fff) ||
11834 (address
>= 0xe000e000 && address
<= 0xe000efff) ||
11835 (address
>= 0xe002e000 && address
<= 0xe002efff) ||
11836 (address
>= 0xe0040000 && address
<= 0xe0041fff) ||
11837 (address
>= 0xe00ff000 && address
<= 0xe00fffff);
11840 void v8m_security_lookup(CPUARMState
*env
, uint32_t address
,
11841 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
11842 V8M_SAttributes
*sattrs
)
11844 /* Look up the security attributes for this address. Compare the
11845 * pseudocode SecurityCheck() function.
11846 * We assume the caller has zero-initialized *sattrs.
11848 ARMCPU
*cpu
= env_archcpu(env
);
11850 bool idau_exempt
= false, idau_ns
= true, idau_nsc
= true;
11851 int idau_region
= IREGION_NOTVALID
;
11852 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
11853 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
11856 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_GET_CLASS(cpu
->idau
);
11857 IDAUInterface
*ii
= IDAU_INTERFACE(cpu
->idau
);
11859 iic
->check(ii
, address
, &idau_region
, &idau_exempt
, &idau_ns
,
11863 if (access_type
== MMU_INST_FETCH
&& extract32(address
, 28, 4) == 0xf) {
11864 /* 0xf0000000..0xffffffff is always S for insn fetches */
11868 if (idau_exempt
|| v8m_is_sau_exempt(env
, address
, access_type
)) {
11869 sattrs
->ns
= !regime_is_secure(env
, mmu_idx
);
11873 if (idau_region
!= IREGION_NOTVALID
) {
11874 sattrs
->irvalid
= true;
11875 sattrs
->iregion
= idau_region
;
11878 switch (env
->sau
.ctrl
& 3) {
11879 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11881 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11884 default: /* SAU.ENABLE == 1 */
11885 for (r
= 0; r
< cpu
->sau_sregion
; r
++) {
11886 if (env
->sau
.rlar
[r
] & 1) {
11887 uint32_t base
= env
->sau
.rbar
[r
] & ~0x1f;
11888 uint32_t limit
= env
->sau
.rlar
[r
] | 0x1f;
11890 if (base
<= address
&& limit
>= address
) {
11891 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
11892 sattrs
->subpage
= true;
11894 if (sattrs
->srvalid
) {
11895 /* If we hit in more than one region then we must report
11896 * as Secure, not NS-Callable, with no valid region
11899 sattrs
->ns
= false;
11900 sattrs
->nsc
= false;
11901 sattrs
->sregion
= 0;
11902 sattrs
->srvalid
= false;
11905 if (env
->sau
.rlar
[r
] & 2) {
11906 sattrs
->nsc
= true;
11910 sattrs
->srvalid
= true;
11911 sattrs
->sregion
= r
;
11915 * Address not in this region. We must check whether the
11916 * region covers addresses in the same page as our address.
11917 * In that case we must not report a size that covers the
11918 * whole page for a subsequent hit against a different MPU
11919 * region or the background region, because it would result
11920 * in incorrect TLB hits for subsequent accesses to
11921 * addresses that are in this MPU region.
11923 if (limit
>= base
&&
11924 ranges_overlap(base
, limit
- base
+ 1,
11926 TARGET_PAGE_SIZE
)) {
11927 sattrs
->subpage
= true;
11936 * The IDAU will override the SAU lookup results if it specifies
11937 * higher security than the SAU does.
11940 if (sattrs
->ns
|| (!idau_nsc
&& sattrs
->nsc
)) {
11941 sattrs
->ns
= false;
11942 sattrs
->nsc
= idau_nsc
;
11947 bool pmsav8_mpu_lookup(CPUARMState
*env
, uint32_t address
,
11948 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
11949 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
11950 int *prot
, bool *is_subpage
,
11951 ARMMMUFaultInfo
*fi
, uint32_t *mregion
)
11953 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11954 * that a full phys-to-virt translation does).
11955 * mregion is (if not NULL) set to the region number which matched,
11956 * or -1 if no region number is returned (MPU off, address did not
11957 * hit a region, address hit in multiple regions).
11958 * We set is_subpage to true if the region hit doesn't cover the
11959 * entire TARGET_PAGE the address is within.
11961 ARMCPU
*cpu
= env_archcpu(env
);
11962 bool is_user
= regime_is_user(env
, mmu_idx
);
11963 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
11965 int matchregion
= -1;
11967 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
11968 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
11970 *is_subpage
= false;
11971 *phys_ptr
= address
;
11977 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11978 * was an exception vector read from the vector table (which is always
11979 * done using the default system address map), because those accesses
11980 * are done in arm_v7m_load_vector(), which always does a direct
11981 * read using address_space_ldl(), rather than going via this function.
11983 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
11985 } else if (m_is_ppb_region(env
, address
)) {
11988 if (pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
11992 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
11993 /* region search */
11994 /* Note that the base address is bits [31:5] from the register
11995 * with bits [4:0] all zeroes, but the limit address is bits
11996 * [31:5] from the register with bits [4:0] all ones.
11998 uint32_t base
= env
->pmsav8
.rbar
[secure
][n
] & ~0x1f;
11999 uint32_t limit
= env
->pmsav8
.rlar
[secure
][n
] | 0x1f;
12001 if (!(env
->pmsav8
.rlar
[secure
][n
] & 0x1)) {
12002 /* Region disabled */
12006 if (address
< base
|| address
> limit
) {
12008 * Address not in this region. We must check whether the
12009 * region covers addresses in the same page as our address.
12010 * In that case we must not report a size that covers the
12011 * whole page for a subsequent hit against a different MPU
12012 * region or the background region, because it would result in
12013 * incorrect TLB hits for subsequent accesses to addresses that
12014 * are in this MPU region.
12016 if (limit
>= base
&&
12017 ranges_overlap(base
, limit
- base
+ 1,
12019 TARGET_PAGE_SIZE
)) {
12020 *is_subpage
= true;
12025 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
12026 *is_subpage
= true;
12029 if (matchregion
!= -1) {
12030 /* Multiple regions match -- always a failure (unlike
12031 * PMSAv7 where highest-numbered-region wins)
12033 fi
->type
= ARMFault_Permission
;
12044 /* background fault */
12045 fi
->type
= ARMFault_Background
;
12049 if (matchregion
== -1) {
12050 /* hit using the background region */
12051 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
12053 uint32_t ap
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 1, 2);
12054 uint32_t xn
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 0, 1);
12057 if (arm_feature(env
, ARM_FEATURE_V8_1M
)) {
12058 pxn
= extract32(env
->pmsav8
.rlar
[secure
][matchregion
], 4, 1);
12061 if (m_is_system_region(env
, address
)) {
12062 /* System space is always execute never */
12066 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
);
12067 if (*prot
&& !xn
&& !(pxn
&& !is_user
)) {
12068 *prot
|= PAGE_EXEC
;
12070 /* We don't need to look the attribute up in the MAIR0/MAIR1
12071 * registers because that only tells us about cacheability.
12074 *mregion
= matchregion
;
12078 fi
->type
= ARMFault_Permission
;
12080 return !(*prot
& (1 << access_type
));
12084 static bool get_phys_addr_pmsav8(CPUARMState
*env
, uint32_t address
,
12085 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
12086 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
12087 int *prot
, target_ulong
*page_size
,
12088 ARMMMUFaultInfo
*fi
)
12090 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
12091 V8M_SAttributes sattrs
= {};
12093 bool mpu_is_subpage
;
12095 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
12096 v8m_security_lookup(env
, address
, access_type
, mmu_idx
, &sattrs
);
12097 if (access_type
== MMU_INST_FETCH
) {
12098 /* Instruction fetches always use the MMU bank and the
12099 * transaction attribute determined by the fetch address,
12100 * regardless of CPU state. This is painful for QEMU
12101 * to handle, because it would mean we need to encode
12102 * into the mmu_idx not just the (user, negpri) information
12103 * for the current security state but also that for the
12104 * other security state, which would balloon the number
12105 * of mmu_idx values needed alarmingly.
12106 * Fortunately we can avoid this because it's not actually
12107 * possible to arbitrarily execute code from memory with
12108 * the wrong security attribute: it will always generate
12109 * an exception of some kind or another, apart from the
12110 * special case of an NS CPU executing an SG instruction
12111 * in S&NSC memory. So we always just fail the translation
12112 * here and sort things out in the exception handler
12113 * (including possibly emulating an SG instruction).
12115 if (sattrs
.ns
!= !secure
) {
12117 fi
->type
= ARMFault_QEMU_NSCExec
;
12119 fi
->type
= ARMFault_QEMU_SFault
;
12121 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
12122 *phys_ptr
= address
;
12127 /* For data accesses we always use the MMU bank indicated
12128 * by the current CPU state, but the security attributes
12129 * might downgrade a secure access to nonsecure.
12132 txattrs
->secure
= false;
12133 } else if (!secure
) {
12134 /* NS access to S memory must fault.
12135 * Architecturally we should first check whether the
12136 * MPU information for this address indicates that we
12137 * are doing an unaligned access to Device memory, which
12138 * should generate a UsageFault instead. QEMU does not
12139 * currently check for that kind of unaligned access though.
12140 * If we added it we would need to do so as a special case
12141 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12143 fi
->type
= ARMFault_QEMU_SFault
;
12144 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
12145 *phys_ptr
= address
;
12152 ret
= pmsav8_mpu_lookup(env
, address
, access_type
, mmu_idx
, phys_ptr
,
12153 txattrs
, prot
, &mpu_is_subpage
, fi
, NULL
);
12154 *page_size
= sattrs
.subpage
|| mpu_is_subpage
? 1 : TARGET_PAGE_SIZE
;
12158 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
12159 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
12160 hwaddr
*phys_ptr
, int *prot
,
12161 ARMMMUFaultInfo
*fi
)
12166 bool is_user
= regime_is_user(env
, mmu_idx
);
12168 if (regime_translation_disabled(env
, mmu_idx
)) {
12169 /* MPU disabled. */
12170 *phys_ptr
= address
;
12171 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
12175 *phys_ptr
= address
;
12176 for (n
= 7; n
>= 0; n
--) {
12177 base
= env
->cp15
.c6_region
[n
];
12178 if ((base
& 1) == 0) {
12181 mask
= 1 << ((base
>> 1) & 0x1f);
12182 /* Keep this shift separate from the above to avoid an
12183 (undefined) << 32. */
12184 mask
= (mask
<< 1) - 1;
12185 if (((base
^ address
) & ~mask
) == 0) {
12190 fi
->type
= ARMFault_Background
;
12194 if (access_type
== MMU_INST_FETCH
) {
12195 mask
= env
->cp15
.pmsav5_insn_ap
;
12197 mask
= env
->cp15
.pmsav5_data_ap
;
12199 mask
= (mask
>> (n
* 4)) & 0xf;
12202 fi
->type
= ARMFault_Permission
;
12207 fi
->type
= ARMFault_Permission
;
12211 *prot
= PAGE_READ
| PAGE_WRITE
;
12216 *prot
|= PAGE_WRITE
;
12220 *prot
= PAGE_READ
| PAGE_WRITE
;
12224 fi
->type
= ARMFault_Permission
;
12234 /* Bad permission. */
12235 fi
->type
= ARMFault_Permission
;
12239 *prot
|= PAGE_EXEC
;
12243 /* Combine either inner or outer cacheability attributes for normal
12244 * memory, according to table D4-42 and pseudocode procedure
12245 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12247 * NB: only stage 1 includes allocation hints (RW bits), leading to
12250 static uint8_t combine_cacheattr_nibble(uint8_t s1
, uint8_t s2
)
12252 if (s1
== 4 || s2
== 4) {
12253 /* non-cacheable has precedence */
12255 } else if (extract32(s1
, 2, 2) == 0 || extract32(s1
, 2, 2) == 2) {
12256 /* stage 1 write-through takes precedence */
12258 } else if (extract32(s2
, 2, 2) == 2) {
12259 /* stage 2 write-through takes precedence, but the allocation hint
12260 * is still taken from stage 1
12262 return (2 << 2) | extract32(s1
, 0, 2);
12263 } else { /* write-back */
12268 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12269 * and CombineS1S2Desc()
12271 * @s1: Attributes from stage 1 walk
12272 * @s2: Attributes from stage 2 walk
12274 static ARMCacheAttrs
combine_cacheattrs(ARMCacheAttrs s1
, ARMCacheAttrs s2
)
12276 uint8_t s1lo
, s2lo
, s1hi
, s2hi
;
12278 bool tagged
= false;
12280 if (s1
.attrs
== 0xf0) {
12285 s1lo
= extract32(s1
.attrs
, 0, 4);
12286 s2lo
= extract32(s2
.attrs
, 0, 4);
12287 s1hi
= extract32(s1
.attrs
, 4, 4);
12288 s2hi
= extract32(s2
.attrs
, 4, 4);
12290 /* Combine shareability attributes (table D4-43) */
12291 if (s1
.shareability
== 2 || s2
.shareability
== 2) {
12292 /* if either are outer-shareable, the result is outer-shareable */
12293 ret
.shareability
= 2;
12294 } else if (s1
.shareability
== 3 || s2
.shareability
== 3) {
12295 /* if either are inner-shareable, the result is inner-shareable */
12296 ret
.shareability
= 3;
12298 /* both non-shareable */
12299 ret
.shareability
= 0;
12302 /* Combine memory type and cacheability attributes */
12303 if (s1hi
== 0 || s2hi
== 0) {
12304 /* Device has precedence over normal */
12305 if (s1lo
== 0 || s2lo
== 0) {
12306 /* nGnRnE has precedence over anything */
12308 } else if (s1lo
== 4 || s2lo
== 4) {
12309 /* non-Reordering has precedence over Reordering */
12310 ret
.attrs
= 4; /* nGnRE */
12311 } else if (s1lo
== 8 || s2lo
== 8) {
12312 /* non-Gathering has precedence over Gathering */
12313 ret
.attrs
= 8; /* nGRE */
12315 ret
.attrs
= 0xc; /* GRE */
12318 /* Any location for which the resultant memory type is any
12319 * type of Device memory is always treated as Outer Shareable.
12321 ret
.shareability
= 2;
12322 } else { /* Normal memory */
12323 /* Outer/inner cacheability combine independently */
12324 ret
.attrs
= combine_cacheattr_nibble(s1hi
, s2hi
) << 4
12325 | combine_cacheattr_nibble(s1lo
, s2lo
);
12327 if (ret
.attrs
== 0x44) {
12328 /* Any location for which the resultant memory type is Normal
12329 * Inner Non-cacheable, Outer Non-cacheable is always treated
12330 * as Outer Shareable.
12332 ret
.shareability
= 2;
12336 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12337 if (tagged
&& ret
.attrs
== 0xff) {
12345 /* get_phys_addr - get the physical address for this virtual address
12347 * Find the physical address corresponding to the given virtual address,
12348 * by doing a translation table walk on MMU based systems or using the
12349 * MPU state on MPU based systems.
12351 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12352 * prot and page_size may not be filled in, and the populated fsr value provides
12353 * information on why the translation aborted, in the format of a
12354 * DFSR/IFSR fault register, with the following caveats:
12355 * * we honour the short vs long DFSR format differences.
12356 * * the WnR bit is never set (the caller must do this).
12357 * * for PSMAv5 based systems we don't bother to return a full FSR format
12360 * @env: CPUARMState
12361 * @address: virtual address to get physical address for
12362 * @access_type: 0 for read, 1 for write, 2 for execute
12363 * @mmu_idx: MMU index indicating required translation regime
12364 * @phys_ptr: set to the physical address corresponding to the virtual address
12365 * @attrs: set to the memory transaction attributes to use
12366 * @prot: set to the permissions for the page containing phys_ptr
12367 * @page_size: set to the size of the page containing phys_ptr
12368 * @fi: set to fault info if the translation fails
12369 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12371 bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
12372 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
12373 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
12374 target_ulong
*page_size
,
12375 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
12377 ARMMMUIdx s1_mmu_idx
= stage_1_mmu_idx(mmu_idx
);
12379 if (mmu_idx
!= s1_mmu_idx
) {
12380 /* Call ourselves recursively to do the stage 1 and then stage 2
12381 * translations if mmu_idx is a two-stage regime.
12383 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
12387 ARMCacheAttrs cacheattrs2
= {};
12388 ARMMMUIdx s2_mmu_idx
;
12391 ret
= get_phys_addr(env
, address
, access_type
, s1_mmu_idx
, &ipa
,
12392 attrs
, prot
, page_size
, fi
, cacheattrs
);
12394 /* If S1 fails or S2 is disabled, return early. */
12395 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_Stage2
)) {
12400 s2_mmu_idx
= attrs
->secure
? ARMMMUIdx_Stage2_S
: ARMMMUIdx_Stage2
;
12401 is_el0
= mmu_idx
== ARMMMUIdx_E10_0
|| mmu_idx
== ARMMMUIdx_SE10_0
;
12403 /* S1 is done. Now do S2 translation. */
12404 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, s2_mmu_idx
, is_el0
,
12405 phys_ptr
, attrs
, &s2_prot
,
12406 page_size
, fi
, &cacheattrs2
);
12408 /* Combine the S1 and S2 perms. */
12411 /* If S2 fails, return early. */
12416 /* Combine the S1 and S2 cache attributes. */
12417 if (arm_hcr_el2_eff(env
) & HCR_DC
) {
12419 * HCR.DC forces the first stage attributes to
12420 * Normal Non-Shareable,
12421 * Inner Write-Back Read-Allocate Write-Allocate,
12422 * Outer Write-Back Read-Allocate Write-Allocate.
12423 * Do not overwrite Tagged within attrs.
12425 if (cacheattrs
->attrs
!= 0xf0) {
12426 cacheattrs
->attrs
= 0xff;
12428 cacheattrs
->shareability
= 0;
12430 *cacheattrs
= combine_cacheattrs(*cacheattrs
, cacheattrs2
);
12432 /* Check if IPA translates to secure or non-secure PA space. */
12433 if (arm_is_secure_below_el3(env
)) {
12434 if (attrs
->secure
) {
12436 !(env
->cp15
.vstcr_el2
.raw_tcr
& (VSTCR_SA
| VSTCR_SW
));
12439 !((env
->cp15
.vtcr_el2
.raw_tcr
& (VTCR_NSA
| VTCR_NSW
))
12440 || (env
->cp15
.vstcr_el2
.raw_tcr
& VSTCR_SA
));
12446 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12448 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
12452 /* The page table entries may downgrade secure to non-secure, but
12453 * cannot upgrade an non-secure translation regime's attributes
12456 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
12457 attrs
->user
= regime_is_user(env
, mmu_idx
);
12459 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12460 * In v7 and earlier it affects all stage 1 translations.
12462 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_Stage2
12463 && !arm_feature(env
, ARM_FEATURE_V8
)) {
12464 if (regime_el(env
, mmu_idx
) == 3) {
12465 address
+= env
->cp15
.fcseidr_s
;
12467 address
+= env
->cp15
.fcseidr_ns
;
12471 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
12473 *page_size
= TARGET_PAGE_SIZE
;
12475 if (arm_feature(env
, ARM_FEATURE_V8
)) {
12477 ret
= get_phys_addr_pmsav8(env
, address
, access_type
, mmu_idx
,
12478 phys_ptr
, attrs
, prot
, page_size
, fi
);
12479 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
12481 ret
= get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
12482 phys_ptr
, prot
, page_size
, fi
);
12485 ret
= get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
12486 phys_ptr
, prot
, fi
);
12488 qemu_log_mask(CPU_LOG_MMU
, "PMSA MPU lookup for %s at 0x%08" PRIx32
12489 " mmu_idx %u -> %s (prot %c%c%c)\n",
12490 access_type
== MMU_DATA_LOAD
? "reading" :
12491 (access_type
== MMU_DATA_STORE
? "writing" : "execute"),
12492 (uint32_t)address
, mmu_idx
,
12493 ret
? "Miss" : "Hit",
12494 *prot
& PAGE_READ
? 'r' : '-',
12495 *prot
& PAGE_WRITE
? 'w' : '-',
12496 *prot
& PAGE_EXEC
? 'x' : '-');
12501 /* Definitely a real MMU, not an MPU */
12503 if (regime_translation_disabled(env
, mmu_idx
)) {
12508 * MMU disabled. S1 addresses within aa64 translation regimes are
12509 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12511 if (mmu_idx
!= ARMMMUIdx_Stage2
&& mmu_idx
!= ARMMMUIdx_Stage2_S
) {
12512 int r_el
= regime_el(env
, mmu_idx
);
12513 if (arm_el_is_aa64(env
, r_el
)) {
12514 int pamax
= arm_pamax(env_archcpu(env
));
12515 uint64_t tcr
= env
->cp15
.tcr_el
[r_el
].raw_tcr
;
12518 tbi
= aa64_va_parameter_tbi(tcr
, mmu_idx
);
12519 if (access_type
== MMU_INST_FETCH
) {
12520 tbi
&= ~aa64_va_parameter_tbid(tcr
, mmu_idx
);
12522 tbi
= (tbi
>> extract64(address
, 55, 1)) & 1;
12523 addrtop
= (tbi
? 55 : 63);
12525 if (extract64(address
, pamax
, addrtop
- pamax
+ 1) != 0) {
12526 fi
->type
= ARMFault_AddressSize
;
12528 fi
->stage2
= false;
12533 * When TBI is disabled, we've just validated that all of the
12534 * bits above PAMax are zero, so logically we only need to
12535 * clear the top byte for TBI. But it's clearer to follow
12536 * the pseudocode set of addrdesc.paddress.
12538 address
= extract64(address
, 0, 52);
12541 *phys_ptr
= address
;
12542 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
12543 *page_size
= TARGET_PAGE_SIZE
;
12545 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12546 hcr
= arm_hcr_el2_eff(env
);
12547 cacheattrs
->shareability
= 0;
12548 if (hcr
& HCR_DC
) {
12549 if (hcr
& HCR_DCT
) {
12550 memattr
= 0xf0; /* Tagged, Normal, WB, RWA */
12552 memattr
= 0xff; /* Normal, WB, RWA */
12554 } else if (access_type
== MMU_INST_FETCH
) {
12555 if (regime_sctlr(env
, mmu_idx
) & SCTLR_I
) {
12556 memattr
= 0xee; /* Normal, WT, RA, NT */
12558 memattr
= 0x44; /* Normal, NC, No */
12560 cacheattrs
->shareability
= 2; /* outer sharable */
12562 memattr
= 0x00; /* Device, nGnRnE */
12564 cacheattrs
->attrs
= memattr
;
12568 if (regime_using_lpae_format(env
, mmu_idx
)) {
12569 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, false,
12570 phys_ptr
, attrs
, prot
, page_size
,
12572 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
12573 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
,
12574 phys_ptr
, attrs
, prot
, page_size
, fi
);
12576 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
,
12577 phys_ptr
, prot
, page_size
, fi
);
12581 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
12584 ARMCPU
*cpu
= ARM_CPU(cs
);
12585 CPUARMState
*env
= &cpu
->env
;
12587 target_ulong page_size
;
12590 ARMMMUFaultInfo fi
= {};
12591 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
12592 ARMCacheAttrs cacheattrs
= {};
12594 *attrs
= (MemTxAttrs
) {};
12596 ret
= get_phys_addr(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &phys_addr
,
12597 attrs
, &prot
, &page_size
, &fi
, &cacheattrs
);
12607 /* Note that signed overflow is undefined in C. The following routines are
12608 careful to use unsigned types where modulo arithmetic is required.
12609 Failure to do so _will_ break on newer gcc. */
12611 /* Signed saturating arithmetic. */
12613 /* Perform 16-bit signed saturating addition. */
12614 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
12619 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
12628 /* Perform 8-bit signed saturating addition. */
12629 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
12634 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
12643 /* Perform 16-bit signed saturating subtraction. */
12644 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
12649 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
12658 /* Perform 8-bit signed saturating subtraction. */
12659 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
12664 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
12673 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12674 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12675 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12676 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12679 #include "op_addsub.h"
12681 /* Unsigned saturating arithmetic. */
12682 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
12691 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
12699 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
12708 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
12716 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12717 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12718 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12719 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12722 #include "op_addsub.h"
12724 /* Signed modulo arithmetic. */
12725 #define SARITH16(a, b, n, op) do { \
12727 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12728 RESULT(sum, n, 16); \
12730 ge |= 3 << (n * 2); \
12733 #define SARITH8(a, b, n, op) do { \
12735 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12736 RESULT(sum, n, 8); \
12742 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12743 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12744 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12745 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12749 #include "op_addsub.h"
12751 /* Unsigned modulo arithmetic. */
12752 #define ADD16(a, b, n) do { \
12754 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12755 RESULT(sum, n, 16); \
12756 if ((sum >> 16) == 1) \
12757 ge |= 3 << (n * 2); \
12760 #define ADD8(a, b, n) do { \
12762 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12763 RESULT(sum, n, 8); \
12764 if ((sum >> 8) == 1) \
12768 #define SUB16(a, b, n) do { \
12770 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12771 RESULT(sum, n, 16); \
12772 if ((sum >> 16) == 0) \
12773 ge |= 3 << (n * 2); \
12776 #define SUB8(a, b, n) do { \
12778 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12779 RESULT(sum, n, 8); \
12780 if ((sum >> 8) == 0) \
12787 #include "op_addsub.h"
12789 /* Halved signed arithmetic. */
12790 #define ADD16(a, b, n) \
12791 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12792 #define SUB16(a, b, n) \
12793 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12794 #define ADD8(a, b, n) \
12795 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12796 #define SUB8(a, b, n) \
12797 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12800 #include "op_addsub.h"
12802 /* Halved unsigned arithmetic. */
12803 #define ADD16(a, b, n) \
12804 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12805 #define SUB16(a, b, n) \
12806 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12807 #define ADD8(a, b, n) \
12808 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12809 #define SUB8(a, b, n) \
12810 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12813 #include "op_addsub.h"
12815 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
12823 /* Unsigned sum of absolute byte differences. */
12824 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
12827 sum
= do_usad(a
, b
);
12828 sum
+= do_usad(a
>> 8, b
>> 8);
12829 sum
+= do_usad(a
>> 16, b
>> 16);
12830 sum
+= do_usad(a
>> 24, b
>> 24);
12834 /* For ARMv6 SEL instruction. */
12835 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
12847 mask
|= 0xff000000;
12848 return (a
& mask
) | (b
& ~mask
);
12852 * The upper bytes of val (above the number specified by 'bytes') must have
12853 * been zeroed out by the caller.
12855 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
12859 stl_le_p(buf
, val
);
12861 /* zlib crc32 converts the accumulator and output to one's complement. */
12862 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
12865 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
12869 stl_le_p(buf
, val
);
12871 /* Linux crc32c converts the output to one's complement. */
12872 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;
12875 /* Return the exception level to which FP-disabled exceptions should
12876 * be taken, or 0 if FP is enabled.
12878 int fp_exception_el(CPUARMState
*env
, int cur_el
)
12880 #ifndef CONFIG_USER_ONLY
12881 /* CPACR and the CPTR registers don't exist before v6, so FP is
12882 * always accessible
12884 if (!arm_feature(env
, ARM_FEATURE_V6
)) {
12888 if (arm_feature(env
, ARM_FEATURE_M
)) {
12889 /* CPACR can cause a NOCP UsageFault taken to current security state */
12890 if (!v7m_cpacr_pass(env
, env
->v7m
.secure
, cur_el
!= 0)) {
12894 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) && !env
->v7m
.secure
) {
12895 if (!extract32(env
->v7m
.nsacr
, 10, 1)) {
12896 /* FP insns cause a NOCP UsageFault taken to Secure */
12904 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12905 * 0, 2 : trap EL0 and EL1/PL1 accesses
12906 * 1 : trap only EL0 accesses
12907 * 3 : trap no accesses
12908 * This register is ignored if E2H+TGE are both set.
12910 if ((arm_hcr_el2_eff(env
) & (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
12911 int fpen
= extract32(env
->cp15
.cpacr_el1
, 20, 2);
12916 if (cur_el
== 0 || cur_el
== 1) {
12917 /* Trap to PL1, which might be EL1 or EL3 */
12918 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3)) {
12923 if (cur_el
== 3 && !is_a64(env
)) {
12924 /* Secure PL1 running at EL3 */
12939 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12940 * to control non-secure access to the FPU. It doesn't have any
12941 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12943 if ((arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
12944 cur_el
<= 2 && !arm_is_secure_below_el3(env
))) {
12945 if (!extract32(env
->cp15
.nsacr
, 10, 1)) {
12946 /* FP insns act as UNDEF */
12947 return cur_el
== 2 ? 2 : 1;
12951 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12952 * check because zero bits in the registers mean "don't trap".
12955 /* CPTR_EL2 : present in v7VE or v8 */
12956 if (cur_el
<= 2 && extract32(env
->cp15
.cptr_el
[2], 10, 1)
12957 && arm_is_el2_enabled(env
)) {
12958 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12962 /* CPTR_EL3 : present in v8 */
12963 if (extract32(env
->cp15
.cptr_el
[3], 10, 1)) {
12964 /* Trap all FP ops to EL3 */
12971 /* Return the exception level we're running at if this is our mmu_idx */
12972 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx
)
12974 if (mmu_idx
& ARM_MMU_IDX_M
) {
12975 return mmu_idx
& ARM_MMU_IDX_M_PRIV
;
12979 case ARMMMUIdx_E10_0
:
12980 case ARMMMUIdx_E20_0
:
12981 case ARMMMUIdx_SE10_0
:
12982 case ARMMMUIdx_SE20_0
:
12984 case ARMMMUIdx_E10_1
:
12985 case ARMMMUIdx_E10_1_PAN
:
12986 case ARMMMUIdx_SE10_1
:
12987 case ARMMMUIdx_SE10_1_PAN
:
12990 case ARMMMUIdx_E20_2
:
12991 case ARMMMUIdx_E20_2_PAN
:
12992 case ARMMMUIdx_SE2
:
12993 case ARMMMUIdx_SE20_2
:
12994 case ARMMMUIdx_SE20_2_PAN
:
12996 case ARMMMUIdx_SE3
:
12999 g_assert_not_reached();
13004 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate(CPUARMState
*env
, bool secstate
)
13006 g_assert_not_reached();
13010 ARMMMUIdx
arm_mmu_idx_el(CPUARMState
*env
, int el
)
13015 if (arm_feature(env
, ARM_FEATURE_M
)) {
13016 return arm_v7m_mmu_idx_for_secstate(env
, env
->v7m
.secure
);
13019 /* See ARM pseudo-function ELIsInHost. */
13022 hcr
= arm_hcr_el2_eff(env
);
13023 if ((hcr
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
13024 idx
= ARMMMUIdx_E20_0
;
13026 idx
= ARMMMUIdx_E10_0
;
13030 if (env
->pstate
& PSTATE_PAN
) {
13031 idx
= ARMMMUIdx_E10_1_PAN
;
13033 idx
= ARMMMUIdx_E10_1
;
13037 /* Note that TGE does not apply at EL2. */
13038 if (arm_hcr_el2_eff(env
) & HCR_E2H
) {
13039 if (env
->pstate
& PSTATE_PAN
) {
13040 idx
= ARMMMUIdx_E20_2_PAN
;
13042 idx
= ARMMMUIdx_E20_2
;
13045 idx
= ARMMMUIdx_E2
;
13049 return ARMMMUIdx_SE3
;
13051 g_assert_not_reached();
13054 if (arm_is_secure_below_el3(env
)) {
13055 idx
&= ~ARM_MMU_IDX_A_NS
;
13061 ARMMMUIdx
arm_mmu_idx(CPUARMState
*env
)
13063 return arm_mmu_idx_el(env
, arm_current_el(env
));
13066 #ifndef CONFIG_USER_ONLY
13067 ARMMMUIdx
arm_stage1_mmu_idx(CPUARMState
*env
)
13069 return stage_1_mmu_idx(arm_mmu_idx(env
));
13073 static CPUARMTBFlags
rebuild_hflags_common(CPUARMState
*env
, int fp_el
,
13075 CPUARMTBFlags flags
)
13077 DP_TBFLAG_ANY(flags
, FPEXC_EL
, fp_el
);
13078 DP_TBFLAG_ANY(flags
, MMUIDX
, arm_to_core_mmu_idx(mmu_idx
));
13080 if (arm_singlestep_active(env
)) {
13081 DP_TBFLAG_ANY(flags
, SS_ACTIVE
, 1);
13086 static CPUARMTBFlags
rebuild_hflags_common_32(CPUARMState
*env
, int fp_el
,
13088 CPUARMTBFlags flags
)
13090 bool sctlr_b
= arm_sctlr_b(env
);
13093 DP_TBFLAG_A32(flags
, SCTLR__B
, 1);
13095 if (arm_cpu_data_is_big_endian_a32(env
, sctlr_b
)) {
13096 DP_TBFLAG_ANY(flags
, BE_DATA
, 1);
13098 DP_TBFLAG_A32(flags
, NS
, !access_secure_reg(env
));
13100 return rebuild_hflags_common(env
, fp_el
, mmu_idx
, flags
);
13103 static CPUARMTBFlags
rebuild_hflags_m32(CPUARMState
*env
, int fp_el
,
13106 CPUARMTBFlags flags
= {};
13107 uint32_t ccr
= env
->v7m
.ccr
[env
->v7m
.secure
];
13109 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13110 if (ccr
& R_V7M_CCR_UNALIGN_TRP_MASK
) {
13111 DP_TBFLAG_ANY(flags
, ALIGN_MEM
, 1);
13114 if (arm_v7m_is_handler_mode(env
)) {
13115 DP_TBFLAG_M32(flags
, HANDLER
, 1);
13119 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13120 * is suppressing them because the requested execution priority
13123 if (arm_feature(env
, ARM_FEATURE_V8
) &&
13124 !((mmu_idx
& ARM_MMU_IDX_M_NEGPRI
) &&
13125 (ccr
& R_V7M_CCR_STKOFHFNMIGN_MASK
))) {
13126 DP_TBFLAG_M32(flags
, STACKCHECK
, 1);
13129 return rebuild_hflags_common_32(env
, fp_el
, mmu_idx
, flags
);
13132 static CPUARMTBFlags
rebuild_hflags_aprofile(CPUARMState
*env
)
13134 CPUARMTBFlags flags
= {};
13136 DP_TBFLAG_ANY(flags
, DEBUG_TARGET_EL
, arm_debug_target_el(env
));
13140 static CPUARMTBFlags
rebuild_hflags_a32(CPUARMState
*env
, int fp_el
,
13143 CPUARMTBFlags flags
= rebuild_hflags_aprofile(env
);
13144 int el
= arm_current_el(env
);
13146 if (arm_sctlr(env
, el
) & SCTLR_A
) {
13147 DP_TBFLAG_ANY(flags
, ALIGN_MEM
, 1);
13150 if (arm_el_is_aa64(env
, 1)) {
13151 DP_TBFLAG_A32(flags
, VFPEN
, 1);
13154 if (el
< 2 && env
->cp15
.hstr_el2
&&
13155 (arm_hcr_el2_eff(env
) & (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
13156 DP_TBFLAG_A32(flags
, HSTR_ACTIVE
, 1);
13159 if (env
->uncached_cpsr
& CPSR_IL
) {
13160 DP_TBFLAG_ANY(flags
, PSTATE__IL
, 1);
13163 return rebuild_hflags_common_32(env
, fp_el
, mmu_idx
, flags
);
13166 static CPUARMTBFlags
rebuild_hflags_a64(CPUARMState
*env
, int el
, int fp_el
,
13169 CPUARMTBFlags flags
= rebuild_hflags_aprofile(env
);
13170 ARMMMUIdx stage1
= stage_1_mmu_idx(mmu_idx
);
13171 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
13175 DP_TBFLAG_ANY(flags
, AARCH64_STATE
, 1);
13177 /* Get control bits for tagged addresses. */
13178 tbid
= aa64_va_parameter_tbi(tcr
, mmu_idx
);
13179 tbii
= tbid
& ~aa64_va_parameter_tbid(tcr
, mmu_idx
);
13181 DP_TBFLAG_A64(flags
, TBII
, tbii
);
13182 DP_TBFLAG_A64(flags
, TBID
, tbid
);
13184 if (cpu_isar_feature(aa64_sve
, env_archcpu(env
))) {
13185 int sve_el
= sve_exception_el(env
, el
);
13189 * If SVE is disabled, but FP is enabled,
13190 * then the effective len is 0.
13192 if (sve_el
!= 0 && fp_el
== 0) {
13195 zcr_len
= sve_zcr_len_for_el(env
, el
);
13197 DP_TBFLAG_A64(flags
, SVEEXC_EL
, sve_el
);
13198 DP_TBFLAG_A64(flags
, ZCR_LEN
, zcr_len
);
13201 sctlr
= regime_sctlr(env
, stage1
);
13203 if (sctlr
& SCTLR_A
) {
13204 DP_TBFLAG_ANY(flags
, ALIGN_MEM
, 1);
13207 if (arm_cpu_data_is_big_endian_a64(el
, sctlr
)) {
13208 DP_TBFLAG_ANY(flags
, BE_DATA
, 1);
13211 if (cpu_isar_feature(aa64_pauth
, env_archcpu(env
))) {
13213 * In order to save space in flags, we record only whether
13214 * pauth is "inactive", meaning all insns are implemented as
13215 * a nop, or "active" when some action must be performed.
13216 * The decision of which action to take is left to a helper.
13218 if (sctlr
& (SCTLR_EnIA
| SCTLR_EnIB
| SCTLR_EnDA
| SCTLR_EnDB
)) {
13219 DP_TBFLAG_A64(flags
, PAUTH_ACTIVE
, 1);
13223 if (cpu_isar_feature(aa64_bti
, env_archcpu(env
))) {
13224 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13225 if (sctlr
& (el
== 0 ? SCTLR_BT0
: SCTLR_BT1
)) {
13226 DP_TBFLAG_A64(flags
, BT
, 1);
13230 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13231 if (!(env
->pstate
& PSTATE_UAO
)) {
13233 case ARMMMUIdx_E10_1
:
13234 case ARMMMUIdx_E10_1_PAN
:
13235 case ARMMMUIdx_SE10_1
:
13236 case ARMMMUIdx_SE10_1_PAN
:
13237 /* TODO: ARMv8.3-NV */
13238 DP_TBFLAG_A64(flags
, UNPRIV
, 1);
13240 case ARMMMUIdx_E20_2
:
13241 case ARMMMUIdx_E20_2_PAN
:
13242 case ARMMMUIdx_SE20_2
:
13243 case ARMMMUIdx_SE20_2_PAN
:
13245 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13246 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13248 if (env
->cp15
.hcr_el2
& HCR_TGE
) {
13249 DP_TBFLAG_A64(flags
, UNPRIV
, 1);
13257 if (env
->pstate
& PSTATE_IL
) {
13258 DP_TBFLAG_ANY(flags
, PSTATE__IL
, 1);
13261 if (cpu_isar_feature(aa64_mte
, env_archcpu(env
))) {
13263 * Set MTE_ACTIVE if any access may be Checked, and leave clear
13264 * if all accesses must be Unchecked:
13265 * 1) If no TBI, then there are no tags in the address to check,
13266 * 2) If Tag Check Override, then all accesses are Unchecked,
13267 * 3) If Tag Check Fail == 0, then Checked access have no effect,
13268 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13270 if (allocation_tag_access_enabled(env
, el
, sctlr
)) {
13271 DP_TBFLAG_A64(flags
, ATA
, 1);
13273 && !(env
->pstate
& PSTATE_TCO
)
13274 && (sctlr
& (el
== 0 ? SCTLR_TCF0
: SCTLR_TCF
))) {
13275 DP_TBFLAG_A64(flags
, MTE_ACTIVE
, 1);
13278 /* And again for unprivileged accesses, if required. */
13279 if (EX_TBFLAG_A64(flags
, UNPRIV
)
13281 && !(env
->pstate
& PSTATE_TCO
)
13282 && (sctlr
& SCTLR_TCF0
)
13283 && allocation_tag_access_enabled(env
, 0, sctlr
)) {
13284 DP_TBFLAG_A64(flags
, MTE0_ACTIVE
, 1);
13286 /* Cache TCMA as well as TBI. */
13287 DP_TBFLAG_A64(flags
, TCMA
, aa64_va_parameter_tcma(tcr
, mmu_idx
));
13290 return rebuild_hflags_common(env
, fp_el
, mmu_idx
, flags
);
13293 static CPUARMTBFlags
rebuild_hflags_internal(CPUARMState
*env
)
13295 int el
= arm_current_el(env
);
13296 int fp_el
= fp_exception_el(env
, el
);
13297 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
13300 return rebuild_hflags_a64(env
, el
, fp_el
, mmu_idx
);
13301 } else if (arm_feature(env
, ARM_FEATURE_M
)) {
13302 return rebuild_hflags_m32(env
, fp_el
, mmu_idx
);
13304 return rebuild_hflags_a32(env
, fp_el
, mmu_idx
);
13308 void arm_rebuild_hflags(CPUARMState
*env
)
13310 env
->hflags
= rebuild_hflags_internal(env
);
13314 * If we have triggered a EL state change we can't rely on the
13315 * translator having passed it to us, we need to recompute.
13317 void HELPER(rebuild_hflags_m32_newel
)(CPUARMState
*env
)
13319 int el
= arm_current_el(env
);
13320 int fp_el
= fp_exception_el(env
, el
);
13321 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
13323 env
->hflags
= rebuild_hflags_m32(env
, fp_el
, mmu_idx
);
13326 void HELPER(rebuild_hflags_m32
)(CPUARMState
*env
, int el
)
13328 int fp_el
= fp_exception_el(env
, el
);
13329 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
13331 env
->hflags
= rebuild_hflags_m32(env
, fp_el
, mmu_idx
);
13335 * If we have triggered a EL state change we can't rely on the
13336 * translator having passed it to us, we need to recompute.
13338 void HELPER(rebuild_hflags_a32_newel
)(CPUARMState
*env
)
13340 int el
= arm_current_el(env
);
13341 int fp_el
= fp_exception_el(env
, el
);
13342 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
13343 env
->hflags
= rebuild_hflags_a32(env
, fp_el
, mmu_idx
);
13346 void HELPER(rebuild_hflags_a32
)(CPUARMState
*env
, int el
)
13348 int fp_el
= fp_exception_el(env
, el
);
13349 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
13351 env
->hflags
= rebuild_hflags_a32(env
, fp_el
, mmu_idx
);
13354 void HELPER(rebuild_hflags_a64
)(CPUARMState
*env
, int el
)
13356 int fp_el
= fp_exception_el(env
, el
);
13357 ARMMMUIdx mmu_idx
= arm_mmu_idx_el(env
, el
);
13359 env
->hflags
= rebuild_hflags_a64(env
, el
, fp_el
, mmu_idx
);
13362 static inline void assert_hflags_rebuild_correctly(CPUARMState
*env
)
13364 #ifdef CONFIG_DEBUG_TCG
13365 CPUARMTBFlags c
= env
->hflags
;
13366 CPUARMTBFlags r
= rebuild_hflags_internal(env
);
13368 if (unlikely(c
.flags
!= r
.flags
|| c
.flags2
!= r
.flags2
)) {
13369 fprintf(stderr
, "TCG hflags mismatch "
13370 "(current:(0x%08x,0x" TARGET_FMT_lx
")"
13371 " rebuilt:(0x%08x,0x" TARGET_FMT_lx
")\n",
13372 c
.flags
, c
.flags2
, r
.flags
, r
.flags2
);
13378 static bool mve_no_pred(CPUARMState
*env
)
13381 * Return true if there is definitely no predication of MVE
13382 * instructions by VPR or LTPSIZE. (Returning false even if there
13383 * isn't any predication is OK; generated code will just be
13385 * If the CPU does not implement MVE then this TB flag is always 0.
13387 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13388 * logic in gen_update_fp_context() needs to be updated to match.
13390 * We do not include the effect of the ECI bits here -- they are
13391 * tracked in other TB flags. This simplifies the logic for
13392 * "when did we emit code that changes the MVE_NO_PRED TB flag
13393 * and thus need to end the TB?".
13395 if (cpu_isar_feature(aa32_mve
, env_archcpu(env
))) {
13398 if (env
->v7m
.vpr
) {
13401 if (env
->v7m
.ltpsize
< 4) {
13407 void cpu_get_tb_cpu_state(CPUARMState
*env
, target_ulong
*pc
,
13408 target_ulong
*cs_base
, uint32_t *pflags
)
13410 CPUARMTBFlags flags
;
13412 assert_hflags_rebuild_correctly(env
);
13413 flags
= env
->hflags
;
13415 if (EX_TBFLAG_ANY(flags
, AARCH64_STATE
)) {
13417 if (cpu_isar_feature(aa64_bti
, env_archcpu(env
))) {
13418 DP_TBFLAG_A64(flags
, BTYPE
, env
->btype
);
13421 *pc
= env
->regs
[15];
13423 if (arm_feature(env
, ARM_FEATURE_M
)) {
13424 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
13425 FIELD_EX32(env
->v7m
.fpccr
[M_REG_S
], V7M_FPCCR
, S
)
13426 != env
->v7m
.secure
) {
13427 DP_TBFLAG_M32(flags
, FPCCR_S_WRONG
, 1);
13430 if ((env
->v7m
.fpccr
[env
->v7m
.secure
] & R_V7M_FPCCR_ASPEN_MASK
) &&
13431 (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
) ||
13432 (env
->v7m
.secure
&&
13433 !(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)))) {
13435 * ASPEN is set, but FPCA/SFPA indicate that there is no
13436 * active FP context; we must create a new FP context before
13437 * executing any FP insn.
13439 DP_TBFLAG_M32(flags
, NEW_FP_CTXT_NEEDED
, 1);
13442 bool is_secure
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
13443 if (env
->v7m
.fpccr
[is_secure
] & R_V7M_FPCCR_LSPACT_MASK
) {
13444 DP_TBFLAG_M32(flags
, LSPACT
, 1);
13447 if (mve_no_pred(env
)) {
13448 DP_TBFLAG_M32(flags
, MVE_NO_PRED
, 1);
13452 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13453 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13455 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
13456 DP_TBFLAG_A32(flags
, XSCALE_CPAR
, env
->cp15
.c15_cpar
);
13458 DP_TBFLAG_A32(flags
, VECLEN
, env
->vfp
.vec_len
);
13459 DP_TBFLAG_A32(flags
, VECSTRIDE
, env
->vfp
.vec_stride
);
13461 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30)) {
13462 DP_TBFLAG_A32(flags
, VFPEN
, 1);
13466 DP_TBFLAG_AM32(flags
, THUMB
, env
->thumb
);
13467 DP_TBFLAG_AM32(flags
, CONDEXEC
, env
->condexec_bits
);
13471 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13472 * states defined in the ARM ARM for software singlestep:
13473 * SS_ACTIVE PSTATE.SS State
13474 * 0 x Inactive (the TB flag for SS is always 0)
13475 * 1 0 Active-pending
13476 * 1 1 Active-not-pending
13477 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13479 if (EX_TBFLAG_ANY(flags
, SS_ACTIVE
) && (env
->pstate
& PSTATE_SS
)) {
13480 DP_TBFLAG_ANY(flags
, PSTATE__SS
, 1);
13483 *pflags
= flags
.flags
;
13484 *cs_base
= flags
.flags2
;
13487 #ifdef TARGET_AARCH64
13489 * The manual says that when SVE is enabled and VQ is widened the
13490 * implementation is allowed to zero the previously inaccessible
13491 * portion of the registers. The corollary to that is that when
13492 * SVE is enabled and VQ is narrowed we are also allowed to zero
13493 * the now inaccessible portion of the registers.
13495 * The intent of this is that no predicate bit beyond VQ is ever set.
13496 * Which means that some operations on predicate registers themselves
13497 * may operate on full uint64_t or even unrolled across the maximum
13498 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13499 * may well be cheaper than conditionals to restrict the operation
13500 * to the relevant portion of a uint16_t[16].
13502 void aarch64_sve_narrow_vq(CPUARMState
*env
, unsigned vq
)
13507 assert(vq
>= 1 && vq
<= ARM_MAX_VQ
);
13508 assert(vq
<= env_archcpu(env
)->sve_max_vq
);
13510 /* Zap the high bits of the zregs. */
13511 for (i
= 0; i
< 32; i
++) {
13512 memset(&env
->vfp
.zregs
[i
].d
[2 * vq
], 0, 16 * (ARM_MAX_VQ
- vq
));
13515 /* Zap the high bits of the pregs and ffr. */
13518 pmask
= ~(-1ULL << (16 * (vq
& 3)));
13520 for (j
= vq
/ 4; j
< ARM_MAX_VQ
/ 4; j
++) {
13521 for (i
= 0; i
< 17; ++i
) {
13522 env
->vfp
.pregs
[i
].p
[j
] &= pmask
;
13529 * Notice a change in SVE vector size when changing EL.
13531 void aarch64_sve_change_el(CPUARMState
*env
, int old_el
,
13532 int new_el
, bool el0_a64
)
13534 ARMCPU
*cpu
= env_archcpu(env
);
13535 int old_len
, new_len
;
13536 bool old_a64
, new_a64
;
13538 /* Nothing to do if no SVE. */
13539 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
13543 /* Nothing to do if FP is disabled in either EL. */
13544 if (fp_exception_el(env
, old_el
) || fp_exception_el(env
, new_el
)) {
13549 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13550 * at ELx, or not available because the EL is in AArch32 state, then
13551 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13552 * has an effective value of 0".
13554 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13555 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13556 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13557 * we already have the correct register contents when encountering the
13558 * vq0->vq0 transition between EL0->EL1.
13560 old_a64
= old_el
? arm_el_is_aa64(env
, old_el
) : el0_a64
;
13561 old_len
= (old_a64
&& !sve_exception_el(env
, old_el
)
13562 ? sve_zcr_len_for_el(env
, old_el
) : 0);
13563 new_a64
= new_el
? arm_el_is_aa64(env
, new_el
) : el0_a64
;
13564 new_len
= (new_a64
&& !sve_exception_el(env
, new_el
)
13565 ? sve_zcr_len_for_el(env
, new_el
) : 0);
13567 /* When changing vector length, clear inaccessible state. */
13568 if (new_len
< old_len
) {
13569 aarch64_sve_narrow_vq(env
, new_len
+ 1);