target/mips: Convert MSA 3R instruction format to decodetree (part 3/4)
[qemu/rayw.git] / target / arm / gdbstub.c
blobe0dcb33e3258bf256a5cb5e0a22007c84c36584c
1 /*
2 * ARM gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 * Copyright (c) 2013 SUSE LINUX Products GmbH
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "exec/gdbstub.h"
25 typedef struct RegisterSysregXmlParam {
26 CPUState *cs;
27 GString *s;
28 int n;
29 } RegisterSysregXmlParam;
31 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
32 whatever the target description contains. Due to a historical mishap
33 the FPA registers appear in between core integer regs and the CPSR.
34 We hack round this by giving the FPA regs zero size when talking to a
35 newer gdb. */
37 int arm_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
39 ARMCPU *cpu = ARM_CPU(cs);
40 CPUARMState *env = &cpu->env;
42 if (n < 16) {
43 /* Core integer register. */
44 return gdb_get_reg32(mem_buf, env->regs[n]);
46 if (n < 24) {
47 /* FPA registers. */
48 if (gdb_has_xml) {
49 return 0;
51 return gdb_get_zeroes(mem_buf, 12);
53 switch (n) {
54 case 24:
55 /* FPA status register. */
56 if (gdb_has_xml) {
57 return 0;
59 return gdb_get_reg32(mem_buf, 0);
60 case 25:
61 /* CPSR, or XPSR for M-profile */
62 if (arm_feature(env, ARM_FEATURE_M)) {
63 return gdb_get_reg32(mem_buf, xpsr_read(env));
64 } else {
65 return gdb_get_reg32(mem_buf, cpsr_read(env));
68 /* Unknown register. */
69 return 0;
72 int arm_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
74 ARMCPU *cpu = ARM_CPU(cs);
75 CPUARMState *env = &cpu->env;
76 uint32_t tmp;
78 tmp = ldl_p(mem_buf);
80 /* Mask out low bit of PC to workaround gdb bugs. This will probably
81 cause problems if we ever implement the Jazelle DBX extensions. */
82 if (n == 15) {
83 tmp &= ~1;
86 if (n < 16) {
87 /* Core integer register. */
88 if (n == 13 && arm_feature(env, ARM_FEATURE_M)) {
89 /* M profile SP low bits are always 0 */
90 tmp &= ~3;
92 env->regs[n] = tmp;
93 return 4;
95 if (n < 24) { /* 16-23 */
96 /* FPA registers (ignored). */
97 if (gdb_has_xml) {
98 return 0;
100 return 12;
102 switch (n) {
103 case 24:
104 /* FPA status register (ignored). */
105 if (gdb_has_xml) {
106 return 0;
108 return 4;
109 case 25:
110 /* CPSR, or XPSR for M-profile */
111 if (arm_feature(env, ARM_FEATURE_M)) {
113 * Don't allow writing to XPSR.Exception as it can cause
114 * a transition into or out of handler mode (it's not
115 * writeable via the MSR insn so this is a reasonable
116 * restriction). Other fields are safe to update.
118 xpsr_write(env, tmp, ~XPSR_EXCP);
119 } else {
120 cpsr_write(env, tmp, 0xffffffff, CPSRWriteByGDBStub);
122 return 4;
124 /* Unknown register. */
125 return 0;
128 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
130 ARMCPU *cpu = env_archcpu(env);
131 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
133 /* VFP data registers are always little-endian. */
134 if (reg < nregs) {
135 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
137 if (arm_feature(env, ARM_FEATURE_NEON)) {
138 /* Aliases for Q regs. */
139 nregs += 16;
140 if (reg < nregs) {
141 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
142 return gdb_get_reg128(buf, q[0], q[1]);
145 switch (reg - nregs) {
146 case 0:
147 return gdb_get_reg32(buf, vfp_get_fpscr(env));
149 return 0;
152 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
154 ARMCPU *cpu = env_archcpu(env);
155 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
157 if (reg < nregs) {
158 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
159 return 8;
161 if (arm_feature(env, ARM_FEATURE_NEON)) {
162 nregs += 16;
163 if (reg < nregs) {
164 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
165 q[0] = ldq_le_p(buf);
166 q[1] = ldq_le_p(buf + 8);
167 return 16;
170 switch (reg - nregs) {
171 case 0:
172 vfp_set_fpscr(env, ldl_p(buf));
173 return 4;
175 return 0;
178 static int vfp_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
180 switch (reg) {
181 case 0:
182 return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]);
183 case 1:
184 return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]);
186 return 0;
189 static int vfp_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
191 switch (reg) {
192 case 0:
193 env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf);
194 return 4;
195 case 1:
196 env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30);
197 return 4;
199 return 0;
203 * arm_get/set_gdb_*: get/set a gdb register
204 * @env: the CPU state
205 * @buf: a buffer to copy to/from
206 * @reg: register number (offset from start of group)
208 * We return the number of bytes copied
211 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
213 ARMCPU *cpu = env_archcpu(env);
214 const ARMCPRegInfo *ri;
215 uint32_t key;
217 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
218 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219 if (ri) {
220 if (cpreg_field_is_64bit(ri)) {
221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222 } else {
223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
226 return 0;
229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
231 return 0;
234 static void arm_gen_one_xml_sysreg_tag(GString *s, DynamicGDBXMLInfo *dyn_xml,
235 ARMCPRegInfo *ri, uint32_t ri_key,
236 int bitsize, int regnum)
238 g_string_append_printf(s, "<reg name=\"%s\"", ri->name);
239 g_string_append_printf(s, " bitsize=\"%d\"", bitsize);
240 g_string_append_printf(s, " regnum=\"%d\"", regnum);
241 g_string_append_printf(s, " group=\"cp_regs\"/>");
242 dyn_xml->data.cpregs.keys[dyn_xml->num] = ri_key;
243 dyn_xml->num++;
246 static void arm_register_sysreg_for_xml(gpointer key, gpointer value,
247 gpointer p)
249 uint32_t ri_key = *(uint32_t *)key;
250 ARMCPRegInfo *ri = value;
251 RegisterSysregXmlParam *param = (RegisterSysregXmlParam *)p;
252 GString *s = param->s;
253 ARMCPU *cpu = ARM_CPU(param->cs);
254 CPUARMState *env = &cpu->env;
255 DynamicGDBXMLInfo *dyn_xml = &cpu->dyn_sysreg_xml;
257 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_NO_GDB))) {
258 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
259 if (ri->state == ARM_CP_STATE_AA64) {
260 arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64,
261 param->n++);
263 } else {
264 if (ri->state == ARM_CP_STATE_AA32) {
265 if (!arm_feature(env, ARM_FEATURE_EL3) &&
266 (ri->secure & ARM_CP_SECSTATE_S)) {
267 return;
269 if (ri->type & ARM_CP_64BIT) {
270 arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64,
271 param->n++);
272 } else {
273 arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 32,
274 param->n++);
281 int arm_gen_dynamic_sysreg_xml(CPUState *cs, int base_reg)
283 ARMCPU *cpu = ARM_CPU(cs);
284 GString *s = g_string_new(NULL);
285 RegisterSysregXmlParam param = {cs, s, base_reg};
287 cpu->dyn_sysreg_xml.num = 0;
288 cpu->dyn_sysreg_xml.data.cpregs.keys = g_new(uint32_t, g_hash_table_size(cpu->cp_regs));
289 g_string_printf(s, "<?xml version=\"1.0\"?>");
290 g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
291 g_string_append_printf(s, "<feature name=\"org.qemu.gdb.arm.sys.regs\">");
292 g_hash_table_foreach(cpu->cp_regs, arm_register_sysreg_for_xml, &param);
293 g_string_append_printf(s, "</feature>");
294 cpu->dyn_sysreg_xml.desc = g_string_free(s, false);
295 return cpu->dyn_sysreg_xml.num;
298 struct TypeSize {
299 const char *gdb_type;
300 int size;
301 const char sz, suffix;
304 static const struct TypeSize vec_lanes[] = {
305 /* quads */
306 { "uint128", 128, 'q', 'u' },
307 { "int128", 128, 'q', 's' },
308 /* 64 bit */
309 { "ieee_double", 64, 'd', 'f' },
310 { "uint64", 64, 'd', 'u' },
311 { "int64", 64, 'd', 's' },
312 /* 32 bit */
313 { "ieee_single", 32, 's', 'f' },
314 { "uint32", 32, 's', 'u' },
315 { "int32", 32, 's', 's' },
316 /* 16 bit */
317 { "ieee_half", 16, 'h', 'f' },
318 { "uint16", 16, 'h', 'u' },
319 { "int16", 16, 'h', 's' },
320 /* bytes */
321 { "uint8", 8, 'b', 'u' },
322 { "int8", 8, 'b', 's' },
326 int arm_gen_dynamic_svereg_xml(CPUState *cs, int base_reg)
328 ARMCPU *cpu = ARM_CPU(cs);
329 GString *s = g_string_new(NULL);
330 DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml;
331 g_autoptr(GString) ts = g_string_new("");
332 int i, j, bits, reg_width = (cpu->sve_max_vq * 128);
333 info->num = 0;
334 g_string_printf(s, "<?xml version=\"1.0\"?>");
335 g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
336 g_string_append_printf(s, "<feature name=\"org.gnu.gdb.aarch64.sve\">");
338 /* First define types and totals in a whole VL */
339 for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
340 int count = reg_width / vec_lanes[i].size;
341 g_string_printf(ts, "svev%c%c", vec_lanes[i].sz, vec_lanes[i].suffix);
342 g_string_append_printf(s,
343 "<vector id=\"%s\" type=\"%s\" count=\"%d\"/>",
344 ts->str, vec_lanes[i].gdb_type, count);
347 * Now define a union for each size group containing unsigned and
348 * signed and potentially float versions of each size from 128 to
349 * 8 bits.
351 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
352 const char suf[] = { 'q', 'd', 's', 'h', 'b' };
353 g_string_append_printf(s, "<union id=\"svevn%c\">", suf[i]);
354 for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
355 if (vec_lanes[j].size == bits) {
356 g_string_append_printf(s, "<field name=\"%c\" type=\"svev%c%c\"/>",
357 vec_lanes[j].suffix,
358 vec_lanes[j].sz, vec_lanes[j].suffix);
361 g_string_append(s, "</union>");
363 /* And now the final union of unions */
364 g_string_append(s, "<union id=\"svev\">");
365 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
366 const char suf[] = { 'q', 'd', 's', 'h', 'b' };
367 g_string_append_printf(s, "<field name=\"%c\" type=\"svevn%c\"/>",
368 suf[i], suf[i]);
370 g_string_append(s, "</union>");
372 /* Finally the sve prefix type */
373 g_string_append_printf(s,
374 "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
375 reg_width / 8);
377 /* Then define each register in parts for each vq */
378 for (i = 0; i < 32; i++) {
379 g_string_append_printf(s,
380 "<reg name=\"z%d\" bitsize=\"%d\""
381 " regnum=\"%d\" type=\"svev\"/>",
382 i, reg_width, base_reg++);
383 info->num++;
385 /* fpscr & status registers */
386 g_string_append_printf(s, "<reg name=\"fpsr\" bitsize=\"32\""
387 " regnum=\"%d\" group=\"float\""
388 " type=\"int\"/>", base_reg++);
389 g_string_append_printf(s, "<reg name=\"fpcr\" bitsize=\"32\""
390 " regnum=\"%d\" group=\"float\""
391 " type=\"int\"/>", base_reg++);
392 info->num += 2;
394 for (i = 0; i < 16; i++) {
395 g_string_append_printf(s,
396 "<reg name=\"p%d\" bitsize=\"%d\""
397 " regnum=\"%d\" type=\"svep\"/>",
398 i, cpu->sve_max_vq * 16, base_reg++);
399 info->num++;
401 g_string_append_printf(s,
402 "<reg name=\"ffr\" bitsize=\"%d\""
403 " regnum=\"%d\" group=\"vector\""
404 " type=\"svep\"/>",
405 cpu->sve_max_vq * 16, base_reg++);
406 g_string_append_printf(s,
407 "<reg name=\"vg\" bitsize=\"64\""
408 " regnum=\"%d\" type=\"int\"/>",
409 base_reg++);
410 info->num += 2;
411 g_string_append_printf(s, "</feature>");
412 cpu->dyn_svereg_xml.desc = g_string_free(s, false);
414 return cpu->dyn_svereg_xml.num;
418 const char *arm_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname)
420 ARMCPU *cpu = ARM_CPU(cs);
422 if (strcmp(xmlname, "system-registers.xml") == 0) {
423 return cpu->dyn_sysreg_xml.desc;
424 } else if (strcmp(xmlname, "sve-registers.xml") == 0) {
425 return cpu->dyn_svereg_xml.desc;
427 return NULL;
430 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
432 CPUState *cs = CPU(cpu);
433 CPUARMState *env = &cpu->env;
435 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
437 * The lower part of each SVE register aliases to the FPU
438 * registers so we don't need to include both.
440 #ifdef TARGET_AARCH64
441 if (isar_feature_aa64_sve(&cpu->isar)) {
442 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
443 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
444 "sve-registers.xml", 0);
445 } else {
446 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
447 aarch64_fpu_gdb_set_reg,
448 34, "aarch64-fpu.xml", 0);
450 #endif
451 } else {
452 if (arm_feature(env, ARM_FEATURE_NEON)) {
453 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
454 49, "arm-neon.xml", 0);
455 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
456 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
457 33, "arm-vfp3.xml", 0);
458 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
459 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
460 17, "arm-vfp.xml", 0);
462 if (!arm_feature(env, ARM_FEATURE_M)) {
464 * A and R profile have FP sysregs FPEXC and FPSID that we
465 * expose to gdb.
467 gdb_register_coprocessor(cs, vfp_gdb_get_sysreg, vfp_gdb_set_sysreg,
468 2, "arm-vfp-sysregs.xml", 0);
471 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
472 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
473 "system-registers.xml", 0);