target/ppc: 'PVR != host PVR' in KVM_SET_SREGS workaround
[qemu/rayw.git] / target / ppc / machine.c
blobe36b7100cb6628fe528c9949281afb8949cec97c
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
16 PowerPCCPU *cpu = opaque;
17 CPUPPCState *env = &cpu->env;
18 unsigned int i, j;
19 target_ulong sdr1;
20 uint32_t fpscr;
21 target_ulong xer;
23 for (i = 0; i < 32; i++)
24 qemu_get_betls(f, &env->gpr[i]);
25 #if !defined(TARGET_PPC64)
26 for (i = 0; i < 32; i++)
27 qemu_get_betls(f, &env->gprh[i]);
28 #endif
29 qemu_get_betls(f, &env->lr);
30 qemu_get_betls(f, &env->ctr);
31 for (i = 0; i < 8; i++)
32 qemu_get_be32s(f, &env->crf[i]);
33 qemu_get_betls(f, &xer);
34 cpu_write_xer(env, xer);
35 qemu_get_betls(f, &env->reserve_addr);
36 qemu_get_betls(f, &env->msr);
37 for (i = 0; i < 4; i++)
38 qemu_get_betls(f, &env->tgpr[i]);
39 for (i = 0; i < 32; i++) {
40 union {
41 float64 d;
42 uint64_t l;
43 } u;
44 u.l = qemu_get_be64(f);
45 env->fpr[i] = u.d;
47 qemu_get_be32s(f, &fpscr);
48 env->fpscr = fpscr;
49 qemu_get_sbe32s(f, &env->access_type);
50 #if defined(TARGET_PPC64)
51 qemu_get_betls(f, &env->spr[SPR_ASR]);
52 qemu_get_sbe32s(f, &env->slb_nr);
53 #endif
54 qemu_get_betls(f, &sdr1);
55 for (i = 0; i < 32; i++)
56 qemu_get_betls(f, &env->sr[i]);
57 for (i = 0; i < 2; i++)
58 for (j = 0; j < 8; j++)
59 qemu_get_betls(f, &env->DBAT[i][j]);
60 for (i = 0; i < 2; i++)
61 for (j = 0; j < 8; j++)
62 qemu_get_betls(f, &env->IBAT[i][j]);
63 qemu_get_sbe32s(f, &env->nb_tlb);
64 qemu_get_sbe32s(f, &env->tlb_per_way);
65 qemu_get_sbe32s(f, &env->nb_ways);
66 qemu_get_sbe32s(f, &env->last_way);
67 qemu_get_sbe32s(f, &env->id_tlbs);
68 qemu_get_sbe32s(f, &env->nb_pids);
69 if (env->tlb.tlb6) {
70 // XXX assumes 6xx
71 for (i = 0; i < env->nb_tlb; i++) {
72 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
73 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
74 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
77 for (i = 0; i < 4; i++)
78 qemu_get_betls(f, &env->pb[i]);
79 for (i = 0; i < 1024; i++)
80 qemu_get_betls(f, &env->spr[i]);
81 if (!cpu->vhyp) {
82 ppc_store_sdr1(env, sdr1);
84 qemu_get_be32s(f, &env->vscr);
85 qemu_get_be64s(f, &env->spe_acc);
86 qemu_get_be32s(f, &env->spe_fscr);
87 qemu_get_betls(f, &env->msr_mask);
88 qemu_get_be32s(f, &env->flags);
89 qemu_get_sbe32s(f, &env->error_code);
90 qemu_get_be32s(f, &env->pending_interrupts);
91 qemu_get_be32s(f, &env->irq_input_state);
92 for (i = 0; i < POWERPC_EXCP_NB; i++)
93 qemu_get_betls(f, &env->excp_vectors[i]);
94 qemu_get_betls(f, &env->excp_prefix);
95 qemu_get_betls(f, &env->ivor_mask);
96 qemu_get_betls(f, &env->ivpr_mask);
97 qemu_get_betls(f, &env->hreset_vector);
98 qemu_get_betls(f, &env->nip);
99 qemu_get_betls(f, &env->hflags);
100 qemu_get_betls(f, &env->hflags_nmsr);
101 qemu_get_sbe32(f); /* Discard unused mmu_idx */
102 qemu_get_sbe32(f); /* Discard unused power_mode */
104 /* Recompute mmu indices */
105 hreg_compute_mem_idx(env);
107 return 0;
110 static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
112 ppc_avr_t *v = pv;
114 v->u64[0] = qemu_get_be64(f);
115 v->u64[1] = qemu_get_be64(f);
117 return 0;
120 static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
121 QJSON *vmdesc)
123 ppc_avr_t *v = pv;
125 qemu_put_be64(f, v->u64[0]);
126 qemu_put_be64(f, v->u64[1]);
127 return 0;
130 static const VMStateInfo vmstate_info_avr = {
131 .name = "avr",
132 .get = get_avr,
133 .put = put_avr,
136 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
137 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
139 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
140 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
142 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
144 PowerPCCPU *cpu = opaque;
146 return cpu->pre_2_8_migration;
149 static void cpu_pre_save(void *opaque)
151 PowerPCCPU *cpu = opaque;
152 CPUPPCState *env = &cpu->env;
153 int i;
154 uint64_t insns_compat_mask =
155 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
156 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
157 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
158 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
159 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
160 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
161 | PPC_64B | PPC_64BX | PPC_ALTIVEC
162 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
163 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
164 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
165 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
166 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
167 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
168 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
170 env->spr[SPR_LR] = env->lr;
171 env->spr[SPR_CTR] = env->ctr;
172 env->spr[SPR_XER] = cpu_read_xer(env);
173 #if defined(TARGET_PPC64)
174 env->spr[SPR_CFAR] = env->cfar;
175 #endif
176 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
178 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
179 env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
180 env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
181 env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
182 env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
184 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
185 env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
186 env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
187 env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
188 env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
191 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
192 if (cpu->pre_2_8_migration) {
193 cpu->mig_msr_mask = env->msr_mask;
194 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
195 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
196 cpu->mig_nb_BATs = env->nb_BATs;
201 * Determine if a given PVR is a "close enough" match to the CPU
202 * object. For TCG and KVM PR it would probably be sufficient to
203 * require an exact PVR match. However for KVM HV the user is
204 * restricted to a PVR exactly matching the host CPU. The correct way
205 * to handle this is to put the guest into an architected
206 * compatibility mode. However, to allow a more forgiving transition
207 * and migration from before this was widely done, we allow migration
208 * between sufficiently similar PVRs, as determined by the CPU class's
209 * pvr_match() hook.
211 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
213 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
215 if (pvr == pcc->pvr) {
216 return true;
218 return pcc->pvr_match(pcc, pvr);
221 static int cpu_post_load(void *opaque, int version_id)
223 PowerPCCPU *cpu = opaque;
224 CPUPPCState *env = &cpu->env;
225 int i;
226 target_ulong msr;
229 * If we're operating in compat mode, we should be ok as long as
230 * the destination supports the same compatiblity mode.
232 * Otherwise, however, we require that the destination has exactly
233 * the same CPU model as the source.
236 #if defined(TARGET_PPC64)
237 if (cpu->compat_pvr) {
238 Error *local_err = NULL;
240 ppc_set_compat(cpu, cpu->compat_pvr, &local_err);
241 if (local_err) {
242 error_report_err(local_err);
243 return -1;
245 } else
246 #endif
248 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
249 return -1;
254 * If we're running with KVM HV, there is a chance that the guest
255 * is running with KVM HV and its kernel does not have the
256 * capability of dealing with a different PVR other than this
257 * exact host PVR in KVM_SET_SREGS. If that happens, the
258 * guest freezes after migration.
260 * The function kvmppc_pvr_workaround_required does this verification
261 * by first checking if the kernel has the cap, returning true immediately
262 * if that is the case. Otherwise, it checks if we're running in KVM PR.
263 * If the guest kernel does not have the cap and we're not running KVM-PR
264 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
265 * receive the PVR it expects as a workaround.
268 #if defined(CONFIG_KVM)
269 if (kvmppc_pvr_workaround_required(cpu)) {
270 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
272 #endif
274 env->lr = env->spr[SPR_LR];
275 env->ctr = env->spr[SPR_CTR];
276 cpu_write_xer(env, env->spr[SPR_XER]);
277 #if defined(TARGET_PPC64)
278 env->cfar = env->spr[SPR_CFAR];
279 #endif
280 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
282 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
283 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
284 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
285 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
286 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
288 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
289 env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
290 env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
291 env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
292 env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
295 if (!cpu->vhyp) {
296 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
299 /* Invalidate all msr bits except MSR_TGPR/MSR_HVB before restoring */
300 msr = env->msr;
301 env->msr ^= ~((1ULL << MSR_TGPR) | MSR_HVB);
302 ppc_store_msr(env, msr);
304 hreg_compute_mem_idx(env);
306 return 0;
309 static bool fpu_needed(void *opaque)
311 PowerPCCPU *cpu = opaque;
313 return (cpu->env.insns_flags & PPC_FLOAT);
316 static const VMStateDescription vmstate_fpu = {
317 .name = "cpu/fpu",
318 .version_id = 1,
319 .minimum_version_id = 1,
320 .needed = fpu_needed,
321 .fields = (VMStateField[]) {
322 VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
323 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
324 VMSTATE_END_OF_LIST()
328 static bool altivec_needed(void *opaque)
330 PowerPCCPU *cpu = opaque;
332 return (cpu->env.insns_flags & PPC_ALTIVEC);
335 static const VMStateDescription vmstate_altivec = {
336 .name = "cpu/altivec",
337 .version_id = 1,
338 .minimum_version_id = 1,
339 .needed = altivec_needed,
340 .fields = (VMStateField[]) {
341 VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
342 VMSTATE_UINT32(env.vscr, PowerPCCPU),
343 VMSTATE_END_OF_LIST()
347 static bool vsx_needed(void *opaque)
349 PowerPCCPU *cpu = opaque;
351 return (cpu->env.insns_flags2 & PPC2_VSX);
354 static const VMStateDescription vmstate_vsx = {
355 .name = "cpu/vsx",
356 .version_id = 1,
357 .minimum_version_id = 1,
358 .needed = vsx_needed,
359 .fields = (VMStateField[]) {
360 VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
361 VMSTATE_END_OF_LIST()
365 #ifdef TARGET_PPC64
366 /* Transactional memory state */
367 static bool tm_needed(void *opaque)
369 PowerPCCPU *cpu = opaque;
370 CPUPPCState *env = &cpu->env;
371 return msr_ts;
374 static const VMStateDescription vmstate_tm = {
375 .name = "cpu/tm",
376 .version_id = 1,
377 .minimum_version_id = 1,
378 .minimum_version_id_old = 1,
379 .needed = tm_needed,
380 .fields = (VMStateField []) {
381 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
382 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
383 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
384 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
385 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
386 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
387 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
388 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
389 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
390 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
391 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
392 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
393 VMSTATE_END_OF_LIST()
396 #endif
398 static bool sr_needed(void *opaque)
400 #ifdef TARGET_PPC64
401 PowerPCCPU *cpu = opaque;
403 return !(cpu->env.mmu_model & POWERPC_MMU_64);
404 #else
405 return true;
406 #endif
409 static const VMStateDescription vmstate_sr = {
410 .name = "cpu/sr",
411 .version_id = 1,
412 .minimum_version_id = 1,
413 .needed = sr_needed,
414 .fields = (VMStateField[]) {
415 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
416 VMSTATE_END_OF_LIST()
420 #ifdef TARGET_PPC64
421 static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
423 ppc_slb_t *v = pv;
425 v->esid = qemu_get_be64(f);
426 v->vsid = qemu_get_be64(f);
428 return 0;
431 static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
432 QJSON *vmdesc)
434 ppc_slb_t *v = pv;
436 qemu_put_be64(f, v->esid);
437 qemu_put_be64(f, v->vsid);
438 return 0;
441 static const VMStateInfo vmstate_info_slbe = {
442 .name = "slbe",
443 .get = get_slbe,
444 .put = put_slbe,
447 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
448 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
450 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
451 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
453 static bool slb_needed(void *opaque)
455 PowerPCCPU *cpu = opaque;
457 /* We don't support any of the old segment table based 64-bit CPUs */
458 return (cpu->env.mmu_model & POWERPC_MMU_64);
461 static int slb_post_load(void *opaque, int version_id)
463 PowerPCCPU *cpu = opaque;
464 CPUPPCState *env = &cpu->env;
465 int i;
467 /* We've pulled in the raw esid and vsid values from the migration
468 * stream, but we need to recompute the page size pointers */
469 for (i = 0; i < env->slb_nr; i++) {
470 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
471 /* Migration source had bad values in its SLB */
472 return -1;
476 return 0;
479 static const VMStateDescription vmstate_slb = {
480 .name = "cpu/slb",
481 .version_id = 1,
482 .minimum_version_id = 1,
483 .needed = slb_needed,
484 .post_load = slb_post_load,
485 .fields = (VMStateField[]) {
486 VMSTATE_INT32_EQUAL(env.slb_nr, PowerPCCPU, NULL),
487 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
488 VMSTATE_END_OF_LIST()
491 #endif /* TARGET_PPC64 */
493 static const VMStateDescription vmstate_tlb6xx_entry = {
494 .name = "cpu/tlb6xx_entry",
495 .version_id = 1,
496 .minimum_version_id = 1,
497 .fields = (VMStateField[]) {
498 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
499 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
500 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
501 VMSTATE_END_OF_LIST()
505 static bool tlb6xx_needed(void *opaque)
507 PowerPCCPU *cpu = opaque;
508 CPUPPCState *env = &cpu->env;
510 return env->nb_tlb && (env->tlb_type == TLB_6XX);
513 static const VMStateDescription vmstate_tlb6xx = {
514 .name = "cpu/tlb6xx",
515 .version_id = 1,
516 .minimum_version_id = 1,
517 .needed = tlb6xx_needed,
518 .fields = (VMStateField[]) {
519 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
520 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
521 env.nb_tlb,
522 vmstate_tlb6xx_entry,
523 ppc6xx_tlb_t),
524 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
525 VMSTATE_END_OF_LIST()
529 static const VMStateDescription vmstate_tlbemb_entry = {
530 .name = "cpu/tlbemb_entry",
531 .version_id = 1,
532 .minimum_version_id = 1,
533 .fields = (VMStateField[]) {
534 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
535 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
536 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
537 VMSTATE_UINTTL(size, ppcemb_tlb_t),
538 VMSTATE_UINT32(prot, ppcemb_tlb_t),
539 VMSTATE_UINT32(attr, ppcemb_tlb_t),
540 VMSTATE_END_OF_LIST()
544 static bool tlbemb_needed(void *opaque)
546 PowerPCCPU *cpu = opaque;
547 CPUPPCState *env = &cpu->env;
549 return env->nb_tlb && (env->tlb_type == TLB_EMB);
552 static bool pbr403_needed(void *opaque)
554 PowerPCCPU *cpu = opaque;
555 uint32_t pvr = cpu->env.spr[SPR_PVR];
557 return (pvr & 0xffff0000) == 0x00200000;
560 static const VMStateDescription vmstate_pbr403 = {
561 .name = "cpu/pbr403",
562 .version_id = 1,
563 .minimum_version_id = 1,
564 .needed = pbr403_needed,
565 .fields = (VMStateField[]) {
566 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
567 VMSTATE_END_OF_LIST()
571 static const VMStateDescription vmstate_tlbemb = {
572 .name = "cpu/tlb6xx",
573 .version_id = 1,
574 .minimum_version_id = 1,
575 .needed = tlbemb_needed,
576 .fields = (VMStateField[]) {
577 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
578 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
579 env.nb_tlb,
580 vmstate_tlbemb_entry,
581 ppcemb_tlb_t),
582 /* 403 protection registers */
583 VMSTATE_END_OF_LIST()
585 .subsections = (const VMStateDescription*[]) {
586 &vmstate_pbr403,
587 NULL
591 static const VMStateDescription vmstate_tlbmas_entry = {
592 .name = "cpu/tlbmas_entry",
593 .version_id = 1,
594 .minimum_version_id = 1,
595 .fields = (VMStateField[]) {
596 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
597 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
598 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
599 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
600 VMSTATE_END_OF_LIST()
604 static bool tlbmas_needed(void *opaque)
606 PowerPCCPU *cpu = opaque;
607 CPUPPCState *env = &cpu->env;
609 return env->nb_tlb && (env->tlb_type == TLB_MAS);
612 static const VMStateDescription vmstate_tlbmas = {
613 .name = "cpu/tlbmas",
614 .version_id = 1,
615 .minimum_version_id = 1,
616 .needed = tlbmas_needed,
617 .fields = (VMStateField[]) {
618 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
619 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
620 env.nb_tlb,
621 vmstate_tlbmas_entry,
622 ppcmas_tlb_t),
623 VMSTATE_END_OF_LIST()
627 static bool compat_needed(void *opaque)
629 PowerPCCPU *cpu = opaque;
631 assert(!(cpu->compat_pvr && !cpu->vhyp));
632 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
635 static const VMStateDescription vmstate_compat = {
636 .name = "cpu/compat",
637 .version_id = 1,
638 .minimum_version_id = 1,
639 .needed = compat_needed,
640 .fields = (VMStateField[]) {
641 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
642 VMSTATE_END_OF_LIST()
646 const VMStateDescription vmstate_ppc_cpu = {
647 .name = "cpu",
648 .version_id = 5,
649 .minimum_version_id = 5,
650 .minimum_version_id_old = 4,
651 .load_state_old = cpu_load_old,
652 .pre_save = cpu_pre_save,
653 .post_load = cpu_post_load,
654 .fields = (VMStateField[]) {
655 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
657 /* User mode architected state */
658 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
659 #if !defined(TARGET_PPC64)
660 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
661 #endif
662 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
663 VMSTATE_UINTTL(env.nip, PowerPCCPU),
665 /* SPRs */
666 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
667 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
669 /* Reservation */
670 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
672 /* Supervisor mode architected state */
673 VMSTATE_UINTTL(env.msr, PowerPCCPU),
675 /* Internal state */
676 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
677 /* FIXME: access_type? */
679 /* Sanity checking */
680 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
681 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
682 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
683 cpu_pre_2_8_migration),
684 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
685 VMSTATE_END_OF_LIST()
687 .subsections = (const VMStateDescription*[]) {
688 &vmstate_fpu,
689 &vmstate_altivec,
690 &vmstate_vsx,
691 &vmstate_sr,
692 #ifdef TARGET_PPC64
693 &vmstate_tm,
694 &vmstate_slb,
695 #endif /* TARGET_PPC64 */
696 &vmstate_tlb6xx,
697 &vmstate_tlbemb,
698 &vmstate_tlbmas,
699 &vmstate_compat,
700 NULL