1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
4 #include "exec/exec-all.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
14 static int cpu_load_old(QEMUFile
*f
, void *opaque
, int version_id
)
16 PowerPCCPU
*cpu
= opaque
;
17 CPUPPCState
*env
= &cpu
->env
;
23 for (i
= 0; i
< 32; i
++)
24 qemu_get_betls(f
, &env
->gpr
[i
]);
25 #if !defined(TARGET_PPC64)
26 for (i
= 0; i
< 32; i
++)
27 qemu_get_betls(f
, &env
->gprh
[i
]);
29 qemu_get_betls(f
, &env
->lr
);
30 qemu_get_betls(f
, &env
->ctr
);
31 for (i
= 0; i
< 8; i
++)
32 qemu_get_be32s(f
, &env
->crf
[i
]);
33 qemu_get_betls(f
, &xer
);
34 cpu_write_xer(env
, xer
);
35 qemu_get_betls(f
, &env
->reserve_addr
);
36 qemu_get_betls(f
, &env
->msr
);
37 for (i
= 0; i
< 4; i
++)
38 qemu_get_betls(f
, &env
->tgpr
[i
]);
39 for (i
= 0; i
< 32; i
++) {
44 u
.l
= qemu_get_be64(f
);
47 qemu_get_be32s(f
, &fpscr
);
49 qemu_get_sbe32s(f
, &env
->access_type
);
50 #if defined(TARGET_PPC64)
51 qemu_get_betls(f
, &env
->spr
[SPR_ASR
]);
52 qemu_get_sbe32s(f
, &env
->slb_nr
);
54 qemu_get_betls(f
, &sdr1
);
55 for (i
= 0; i
< 32; i
++)
56 qemu_get_betls(f
, &env
->sr
[i
]);
57 for (i
= 0; i
< 2; i
++)
58 for (j
= 0; j
< 8; j
++)
59 qemu_get_betls(f
, &env
->DBAT
[i
][j
]);
60 for (i
= 0; i
< 2; i
++)
61 for (j
= 0; j
< 8; j
++)
62 qemu_get_betls(f
, &env
->IBAT
[i
][j
]);
63 qemu_get_sbe32s(f
, &env
->nb_tlb
);
64 qemu_get_sbe32s(f
, &env
->tlb_per_way
);
65 qemu_get_sbe32s(f
, &env
->nb_ways
);
66 qemu_get_sbe32s(f
, &env
->last_way
);
67 qemu_get_sbe32s(f
, &env
->id_tlbs
);
68 qemu_get_sbe32s(f
, &env
->nb_pids
);
71 for (i
= 0; i
< env
->nb_tlb
; i
++) {
72 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].pte0
);
73 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].pte1
);
74 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].EPN
);
77 for (i
= 0; i
< 4; i
++)
78 qemu_get_betls(f
, &env
->pb
[i
]);
79 for (i
= 0; i
< 1024; i
++)
80 qemu_get_betls(f
, &env
->spr
[i
]);
82 ppc_store_sdr1(env
, sdr1
);
84 qemu_get_be32s(f
, &env
->vscr
);
85 qemu_get_be64s(f
, &env
->spe_acc
);
86 qemu_get_be32s(f
, &env
->spe_fscr
);
87 qemu_get_betls(f
, &env
->msr_mask
);
88 qemu_get_be32s(f
, &env
->flags
);
89 qemu_get_sbe32s(f
, &env
->error_code
);
90 qemu_get_be32s(f
, &env
->pending_interrupts
);
91 qemu_get_be32s(f
, &env
->irq_input_state
);
92 for (i
= 0; i
< POWERPC_EXCP_NB
; i
++)
93 qemu_get_betls(f
, &env
->excp_vectors
[i
]);
94 qemu_get_betls(f
, &env
->excp_prefix
);
95 qemu_get_betls(f
, &env
->ivor_mask
);
96 qemu_get_betls(f
, &env
->ivpr_mask
);
97 qemu_get_betls(f
, &env
->hreset_vector
);
98 qemu_get_betls(f
, &env
->nip
);
99 qemu_get_betls(f
, &env
->hflags
);
100 qemu_get_betls(f
, &env
->hflags_nmsr
);
101 qemu_get_sbe32(f
); /* Discard unused mmu_idx */
102 qemu_get_sbe32(f
); /* Discard unused power_mode */
104 /* Recompute mmu indices */
105 hreg_compute_mem_idx(env
);
110 static int get_avr(QEMUFile
*f
, void *pv
, size_t size
, VMStateField
*field
)
114 v
->u64
[0] = qemu_get_be64(f
);
115 v
->u64
[1] = qemu_get_be64(f
);
120 static int put_avr(QEMUFile
*f
, void *pv
, size_t size
, VMStateField
*field
,
125 qemu_put_be64(f
, v
->u64
[0]);
126 qemu_put_be64(f
, v
->u64
[1]);
130 static const VMStateInfo vmstate_info_avr
= {
136 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
137 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
139 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
140 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
142 static bool cpu_pre_2_8_migration(void *opaque
, int version_id
)
144 PowerPCCPU
*cpu
= opaque
;
146 return cpu
->pre_2_8_migration
;
149 static void cpu_pre_save(void *opaque
)
151 PowerPCCPU
*cpu
= opaque
;
152 CPUPPCState
*env
= &cpu
->env
;
154 uint64_t insns_compat_mask
=
155 PPC_INSNS_BASE
| PPC_ISEL
| PPC_STRING
| PPC_MFTB
156 | PPC_FLOAT
| PPC_FLOAT_FSEL
| PPC_FLOAT_FRES
157 | PPC_FLOAT_FSQRT
| PPC_FLOAT_FRSQRTE
| PPC_FLOAT_FRSQRTES
158 | PPC_FLOAT_STFIWX
| PPC_FLOAT_EXT
159 | PPC_CACHE
| PPC_CACHE_ICBI
| PPC_CACHE_DCBZ
160 | PPC_MEM_SYNC
| PPC_MEM_EIEIO
| PPC_MEM_TLBIE
| PPC_MEM_TLBSYNC
161 | PPC_64B
| PPC_64BX
| PPC_ALTIVEC
162 | PPC_SEGMENT_64B
| PPC_SLBI
| PPC_POPCNTB
| PPC_POPCNTWD
;
163 uint64_t insns_compat_mask2
= PPC2_VSX
| PPC2_VSX207
| PPC2_DFP
| PPC2_DBRX
164 | PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
165 | PPC2_ATOMIC_ISA206
| PPC2_FP_CVT_ISA206
166 | PPC2_FP_TST_ISA206
| PPC2_BCTAR_ISA207
167 | PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
168 | PPC2_ISA205
| PPC2_ISA207S
| PPC2_FP_CVT_S64
| PPC2_TM
;
170 env
->spr
[SPR_LR
] = env
->lr
;
171 env
->spr
[SPR_CTR
] = env
->ctr
;
172 env
->spr
[SPR_XER
] = cpu_read_xer(env
);
173 #if defined(TARGET_PPC64)
174 env
->spr
[SPR_CFAR
] = env
->cfar
;
176 env
->spr
[SPR_BOOKE_SPEFSCR
] = env
->spe_fscr
;
178 for (i
= 0; (i
< 4) && (i
< env
->nb_BATs
); i
++) {
179 env
->spr
[SPR_DBAT0U
+ 2*i
] = env
->DBAT
[0][i
];
180 env
->spr
[SPR_DBAT0U
+ 2*i
+ 1] = env
->DBAT
[1][i
];
181 env
->spr
[SPR_IBAT0U
+ 2*i
] = env
->IBAT
[0][i
];
182 env
->spr
[SPR_IBAT0U
+ 2*i
+ 1] = env
->IBAT
[1][i
];
184 for (i
= 0; (i
< 4) && ((i
+4) < env
->nb_BATs
); i
++) {
185 env
->spr
[SPR_DBAT4U
+ 2*i
] = env
->DBAT
[0][i
+4];
186 env
->spr
[SPR_DBAT4U
+ 2*i
+ 1] = env
->DBAT
[1][i
+4];
187 env
->spr
[SPR_IBAT4U
+ 2*i
] = env
->IBAT
[0][i
+4];
188 env
->spr
[SPR_IBAT4U
+ 2*i
+ 1] = env
->IBAT
[1][i
+4];
191 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
192 if (cpu
->pre_2_8_migration
) {
193 cpu
->mig_msr_mask
= env
->msr_mask
;
194 cpu
->mig_insns_flags
= env
->insns_flags
& insns_compat_mask
;
195 cpu
->mig_insns_flags2
= env
->insns_flags2
& insns_compat_mask2
;
196 cpu
->mig_nb_BATs
= env
->nb_BATs
;
201 * Determine if a given PVR is a "close enough" match to the CPU
202 * object. For TCG and KVM PR it would probably be sufficient to
203 * require an exact PVR match. However for KVM HV the user is
204 * restricted to a PVR exactly matching the host CPU. The correct way
205 * to handle this is to put the guest into an architected
206 * compatibility mode. However, to allow a more forgiving transition
207 * and migration from before this was widely done, we allow migration
208 * between sufficiently similar PVRs, as determined by the CPU class's
211 static bool pvr_match(PowerPCCPU
*cpu
, uint32_t pvr
)
213 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
215 if (pvr
== pcc
->pvr
) {
218 return pcc
->pvr_match(pcc
, pvr
);
221 static int cpu_post_load(void *opaque
, int version_id
)
223 PowerPCCPU
*cpu
= opaque
;
224 CPUPPCState
*env
= &cpu
->env
;
229 * If we're operating in compat mode, we should be ok as long as
230 * the destination supports the same compatiblity mode.
232 * Otherwise, however, we require that the destination has exactly
233 * the same CPU model as the source.
236 #if defined(TARGET_PPC64)
237 if (cpu
->compat_pvr
) {
238 Error
*local_err
= NULL
;
240 ppc_set_compat(cpu
, cpu
->compat_pvr
, &local_err
);
242 error_report_err(local_err
);
248 if (!pvr_match(cpu
, env
->spr
[SPR_PVR
])) {
254 * If we're running with KVM HV, there is a chance that the guest
255 * is running with KVM HV and its kernel does not have the
256 * capability of dealing with a different PVR other than this
257 * exact host PVR in KVM_SET_SREGS. If that happens, the
258 * guest freezes after migration.
260 * The function kvmppc_pvr_workaround_required does this verification
261 * by first checking if the kernel has the cap, returning true immediately
262 * if that is the case. Otherwise, it checks if we're running in KVM PR.
263 * If the guest kernel does not have the cap and we're not running KVM-PR
264 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
265 * receive the PVR it expects as a workaround.
268 #if defined(CONFIG_KVM)
269 if (kvmppc_pvr_workaround_required(cpu
)) {
270 env
->spr
[SPR_PVR
] = env
->spr_cb
[SPR_PVR
].default_value
;
274 env
->lr
= env
->spr
[SPR_LR
];
275 env
->ctr
= env
->spr
[SPR_CTR
];
276 cpu_write_xer(env
, env
->spr
[SPR_XER
]);
277 #if defined(TARGET_PPC64)
278 env
->cfar
= env
->spr
[SPR_CFAR
];
280 env
->spe_fscr
= env
->spr
[SPR_BOOKE_SPEFSCR
];
282 for (i
= 0; (i
< 4) && (i
< env
->nb_BATs
); i
++) {
283 env
->DBAT
[0][i
] = env
->spr
[SPR_DBAT0U
+ 2*i
];
284 env
->DBAT
[1][i
] = env
->spr
[SPR_DBAT0U
+ 2*i
+ 1];
285 env
->IBAT
[0][i
] = env
->spr
[SPR_IBAT0U
+ 2*i
];
286 env
->IBAT
[1][i
] = env
->spr
[SPR_IBAT0U
+ 2*i
+ 1];
288 for (i
= 0; (i
< 4) && ((i
+4) < env
->nb_BATs
); i
++) {
289 env
->DBAT
[0][i
+4] = env
->spr
[SPR_DBAT4U
+ 2*i
];
290 env
->DBAT
[1][i
+4] = env
->spr
[SPR_DBAT4U
+ 2*i
+ 1];
291 env
->IBAT
[0][i
+4] = env
->spr
[SPR_IBAT4U
+ 2*i
];
292 env
->IBAT
[1][i
+4] = env
->spr
[SPR_IBAT4U
+ 2*i
+ 1];
296 ppc_store_sdr1(env
, env
->spr
[SPR_SDR1
]);
299 /* Invalidate all msr bits except MSR_TGPR/MSR_HVB before restoring */
301 env
->msr
^= ~((1ULL << MSR_TGPR
) | MSR_HVB
);
302 ppc_store_msr(env
, msr
);
304 hreg_compute_mem_idx(env
);
309 static bool fpu_needed(void *opaque
)
311 PowerPCCPU
*cpu
= opaque
;
313 return (cpu
->env
.insns_flags
& PPC_FLOAT
);
316 static const VMStateDescription vmstate_fpu
= {
319 .minimum_version_id
= 1,
320 .needed
= fpu_needed
,
321 .fields
= (VMStateField
[]) {
322 VMSTATE_FLOAT64_ARRAY(env
.fpr
, PowerPCCPU
, 32),
323 VMSTATE_UINTTL(env
.fpscr
, PowerPCCPU
),
324 VMSTATE_END_OF_LIST()
328 static bool altivec_needed(void *opaque
)
330 PowerPCCPU
*cpu
= opaque
;
332 return (cpu
->env
.insns_flags
& PPC_ALTIVEC
);
335 static const VMStateDescription vmstate_altivec
= {
336 .name
= "cpu/altivec",
338 .minimum_version_id
= 1,
339 .needed
= altivec_needed
,
340 .fields
= (VMStateField
[]) {
341 VMSTATE_AVR_ARRAY(env
.avr
, PowerPCCPU
, 32),
342 VMSTATE_UINT32(env
.vscr
, PowerPCCPU
),
343 VMSTATE_END_OF_LIST()
347 static bool vsx_needed(void *opaque
)
349 PowerPCCPU
*cpu
= opaque
;
351 return (cpu
->env
.insns_flags2
& PPC2_VSX
);
354 static const VMStateDescription vmstate_vsx
= {
357 .minimum_version_id
= 1,
358 .needed
= vsx_needed
,
359 .fields
= (VMStateField
[]) {
360 VMSTATE_UINT64_ARRAY(env
.vsr
, PowerPCCPU
, 32),
361 VMSTATE_END_OF_LIST()
366 /* Transactional memory state */
367 static bool tm_needed(void *opaque
)
369 PowerPCCPU
*cpu
= opaque
;
370 CPUPPCState
*env
= &cpu
->env
;
374 static const VMStateDescription vmstate_tm
= {
377 .minimum_version_id
= 1,
378 .minimum_version_id_old
= 1,
380 .fields
= (VMStateField
[]) {
381 VMSTATE_UINTTL_ARRAY(env
.tm_gpr
, PowerPCCPU
, 32),
382 VMSTATE_AVR_ARRAY(env
.tm_vsr
, PowerPCCPU
, 64),
383 VMSTATE_UINT64(env
.tm_cr
, PowerPCCPU
),
384 VMSTATE_UINT64(env
.tm_lr
, PowerPCCPU
),
385 VMSTATE_UINT64(env
.tm_ctr
, PowerPCCPU
),
386 VMSTATE_UINT64(env
.tm_fpscr
, PowerPCCPU
),
387 VMSTATE_UINT64(env
.tm_amr
, PowerPCCPU
),
388 VMSTATE_UINT64(env
.tm_ppr
, PowerPCCPU
),
389 VMSTATE_UINT64(env
.tm_vrsave
, PowerPCCPU
),
390 VMSTATE_UINT32(env
.tm_vscr
, PowerPCCPU
),
391 VMSTATE_UINT64(env
.tm_dscr
, PowerPCCPU
),
392 VMSTATE_UINT64(env
.tm_tar
, PowerPCCPU
),
393 VMSTATE_END_OF_LIST()
398 static bool sr_needed(void *opaque
)
401 PowerPCCPU
*cpu
= opaque
;
403 return !(cpu
->env
.mmu_model
& POWERPC_MMU_64
);
409 static const VMStateDescription vmstate_sr
= {
412 .minimum_version_id
= 1,
414 .fields
= (VMStateField
[]) {
415 VMSTATE_UINTTL_ARRAY(env
.sr
, PowerPCCPU
, 32),
416 VMSTATE_END_OF_LIST()
421 static int get_slbe(QEMUFile
*f
, void *pv
, size_t size
, VMStateField
*field
)
425 v
->esid
= qemu_get_be64(f
);
426 v
->vsid
= qemu_get_be64(f
);
431 static int put_slbe(QEMUFile
*f
, void *pv
, size_t size
, VMStateField
*field
,
436 qemu_put_be64(f
, v
->esid
);
437 qemu_put_be64(f
, v
->vsid
);
441 static const VMStateInfo vmstate_info_slbe
= {
447 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
448 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
450 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
451 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
453 static bool slb_needed(void *opaque
)
455 PowerPCCPU
*cpu
= opaque
;
457 /* We don't support any of the old segment table based 64-bit CPUs */
458 return (cpu
->env
.mmu_model
& POWERPC_MMU_64
);
461 static int slb_post_load(void *opaque
, int version_id
)
463 PowerPCCPU
*cpu
= opaque
;
464 CPUPPCState
*env
= &cpu
->env
;
467 /* We've pulled in the raw esid and vsid values from the migration
468 * stream, but we need to recompute the page size pointers */
469 for (i
= 0; i
< env
->slb_nr
; i
++) {
470 if (ppc_store_slb(cpu
, i
, env
->slb
[i
].esid
, env
->slb
[i
].vsid
) < 0) {
471 /* Migration source had bad values in its SLB */
479 static const VMStateDescription vmstate_slb
= {
482 .minimum_version_id
= 1,
483 .needed
= slb_needed
,
484 .post_load
= slb_post_load
,
485 .fields
= (VMStateField
[]) {
486 VMSTATE_INT32_EQUAL(env
.slb_nr
, PowerPCCPU
, NULL
),
487 VMSTATE_SLB_ARRAY(env
.slb
, PowerPCCPU
, MAX_SLB_ENTRIES
),
488 VMSTATE_END_OF_LIST()
491 #endif /* TARGET_PPC64 */
493 static const VMStateDescription vmstate_tlb6xx_entry
= {
494 .name
= "cpu/tlb6xx_entry",
496 .minimum_version_id
= 1,
497 .fields
= (VMStateField
[]) {
498 VMSTATE_UINTTL(pte0
, ppc6xx_tlb_t
),
499 VMSTATE_UINTTL(pte1
, ppc6xx_tlb_t
),
500 VMSTATE_UINTTL(EPN
, ppc6xx_tlb_t
),
501 VMSTATE_END_OF_LIST()
505 static bool tlb6xx_needed(void *opaque
)
507 PowerPCCPU
*cpu
= opaque
;
508 CPUPPCState
*env
= &cpu
->env
;
510 return env
->nb_tlb
&& (env
->tlb_type
== TLB_6XX
);
513 static const VMStateDescription vmstate_tlb6xx
= {
514 .name
= "cpu/tlb6xx",
516 .minimum_version_id
= 1,
517 .needed
= tlb6xx_needed
,
518 .fields
= (VMStateField
[]) {
519 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
520 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlb6
, PowerPCCPU
,
522 vmstate_tlb6xx_entry
,
524 VMSTATE_UINTTL_ARRAY(env
.tgpr
, PowerPCCPU
, 4),
525 VMSTATE_END_OF_LIST()
529 static const VMStateDescription vmstate_tlbemb_entry
= {
530 .name
= "cpu/tlbemb_entry",
532 .minimum_version_id
= 1,
533 .fields
= (VMStateField
[]) {
534 VMSTATE_UINT64(RPN
, ppcemb_tlb_t
),
535 VMSTATE_UINTTL(EPN
, ppcemb_tlb_t
),
536 VMSTATE_UINTTL(PID
, ppcemb_tlb_t
),
537 VMSTATE_UINTTL(size
, ppcemb_tlb_t
),
538 VMSTATE_UINT32(prot
, ppcemb_tlb_t
),
539 VMSTATE_UINT32(attr
, ppcemb_tlb_t
),
540 VMSTATE_END_OF_LIST()
544 static bool tlbemb_needed(void *opaque
)
546 PowerPCCPU
*cpu
= opaque
;
547 CPUPPCState
*env
= &cpu
->env
;
549 return env
->nb_tlb
&& (env
->tlb_type
== TLB_EMB
);
552 static bool pbr403_needed(void *opaque
)
554 PowerPCCPU
*cpu
= opaque
;
555 uint32_t pvr
= cpu
->env
.spr
[SPR_PVR
];
557 return (pvr
& 0xffff0000) == 0x00200000;
560 static const VMStateDescription vmstate_pbr403
= {
561 .name
= "cpu/pbr403",
563 .minimum_version_id
= 1,
564 .needed
= pbr403_needed
,
565 .fields
= (VMStateField
[]) {
566 VMSTATE_UINTTL_ARRAY(env
.pb
, PowerPCCPU
, 4),
567 VMSTATE_END_OF_LIST()
571 static const VMStateDescription vmstate_tlbemb
= {
572 .name
= "cpu/tlb6xx",
574 .minimum_version_id
= 1,
575 .needed
= tlbemb_needed
,
576 .fields
= (VMStateField
[]) {
577 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
578 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlbe
, PowerPCCPU
,
580 vmstate_tlbemb_entry
,
582 /* 403 protection registers */
583 VMSTATE_END_OF_LIST()
585 .subsections
= (const VMStateDescription
*[]) {
591 static const VMStateDescription vmstate_tlbmas_entry
= {
592 .name
= "cpu/tlbmas_entry",
594 .minimum_version_id
= 1,
595 .fields
= (VMStateField
[]) {
596 VMSTATE_UINT32(mas8
, ppcmas_tlb_t
),
597 VMSTATE_UINT32(mas1
, ppcmas_tlb_t
),
598 VMSTATE_UINT64(mas2
, ppcmas_tlb_t
),
599 VMSTATE_UINT64(mas7_3
, ppcmas_tlb_t
),
600 VMSTATE_END_OF_LIST()
604 static bool tlbmas_needed(void *opaque
)
606 PowerPCCPU
*cpu
= opaque
;
607 CPUPPCState
*env
= &cpu
->env
;
609 return env
->nb_tlb
&& (env
->tlb_type
== TLB_MAS
);
612 static const VMStateDescription vmstate_tlbmas
= {
613 .name
= "cpu/tlbmas",
615 .minimum_version_id
= 1,
616 .needed
= tlbmas_needed
,
617 .fields
= (VMStateField
[]) {
618 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
619 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlbm
, PowerPCCPU
,
621 vmstate_tlbmas_entry
,
623 VMSTATE_END_OF_LIST()
627 static bool compat_needed(void *opaque
)
629 PowerPCCPU
*cpu
= opaque
;
631 assert(!(cpu
->compat_pvr
&& !cpu
->vhyp
));
632 return !cpu
->pre_2_10_migration
&& cpu
->compat_pvr
!= 0;
635 static const VMStateDescription vmstate_compat
= {
636 .name
= "cpu/compat",
638 .minimum_version_id
= 1,
639 .needed
= compat_needed
,
640 .fields
= (VMStateField
[]) {
641 VMSTATE_UINT32(compat_pvr
, PowerPCCPU
),
642 VMSTATE_END_OF_LIST()
646 const VMStateDescription vmstate_ppc_cpu
= {
649 .minimum_version_id
= 5,
650 .minimum_version_id_old
= 4,
651 .load_state_old
= cpu_load_old
,
652 .pre_save
= cpu_pre_save
,
653 .post_load
= cpu_post_load
,
654 .fields
= (VMStateField
[]) {
655 VMSTATE_UNUSED(sizeof(target_ulong
)), /* was _EQUAL(env.spr[SPR_PVR]) */
657 /* User mode architected state */
658 VMSTATE_UINTTL_ARRAY(env
.gpr
, PowerPCCPU
, 32),
659 #if !defined(TARGET_PPC64)
660 VMSTATE_UINTTL_ARRAY(env
.gprh
, PowerPCCPU
, 32),
662 VMSTATE_UINT32_ARRAY(env
.crf
, PowerPCCPU
, 8),
663 VMSTATE_UINTTL(env
.nip
, PowerPCCPU
),
666 VMSTATE_UINTTL_ARRAY(env
.spr
, PowerPCCPU
, 1024),
667 VMSTATE_UINT64(env
.spe_acc
, PowerPCCPU
),
670 VMSTATE_UINTTL(env
.reserve_addr
, PowerPCCPU
),
672 /* Supervisor mode architected state */
673 VMSTATE_UINTTL(env
.msr
, PowerPCCPU
),
676 VMSTATE_UINTTL(env
.hflags_nmsr
, PowerPCCPU
),
677 /* FIXME: access_type? */
679 /* Sanity checking */
680 VMSTATE_UINTTL_TEST(mig_msr_mask
, PowerPCCPU
, cpu_pre_2_8_migration
),
681 VMSTATE_UINT64_TEST(mig_insns_flags
, PowerPCCPU
, cpu_pre_2_8_migration
),
682 VMSTATE_UINT64_TEST(mig_insns_flags2
, PowerPCCPU
,
683 cpu_pre_2_8_migration
),
684 VMSTATE_UINT32_TEST(mig_nb_BATs
, PowerPCCPU
, cpu_pre_2_8_migration
),
685 VMSTATE_END_OF_LIST()
687 .subsections
= (const VMStateDescription
*[]) {
695 #endif /* TARGET_PPC64 */