hw/block/nvme: Generate namespace UUIDs
[qemu/rayw.git] / hw / rtc / mc146818rtc.c
blob5d0fcacd0c01dad45497a26a1cfad736e38d0d0b
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "qemu/cutils.h"
28 #include "qemu/module.h"
29 #include "qemu/bcd.h"
30 #include "hw/acpi/aml-build.h"
31 #include "hw/irq.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "qemu/timer.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/replay.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "hw/rtc/mc146818rtc.h"
40 #include "hw/rtc/mc146818rtc_regs.h"
41 #include "migration/vmstate.h"
42 #include "qapi/error.h"
43 #include "qapi/qapi-events-misc-target.h"
44 #include "qapi/visitor.h"
45 #include "exec/address-spaces.h"
46 #include "hw/rtc/mc146818rtc_regs.h"
48 #ifdef TARGET_I386
49 #include "qapi/qapi-commands-misc-target.h"
50 #include "hw/i386/apic.h"
51 #endif
53 //#define DEBUG_CMOS
54 //#define DEBUG_COALESCED
56 #ifdef DEBUG_CMOS
57 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
58 #else
59 # define CMOS_DPRINTF(format, ...) do { } while (0)
60 #endif
62 #ifdef DEBUG_COALESCED
63 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
64 #else
65 # define DPRINTF_C(format, ...) do { } while (0)
66 #endif
68 #define SEC_PER_MIN 60
69 #define MIN_PER_HOUR 60
70 #define SEC_PER_HOUR 3600
71 #define HOUR_PER_DAY 24
72 #define SEC_PER_DAY 86400
74 #define RTC_REINJECT_ON_ACK_COUNT 20
75 #define RTC_CLOCK_RATE 32768
76 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
78 static void rtc_set_time(RTCState *s);
79 static void rtc_update_time(RTCState *s);
80 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
81 static inline int rtc_from_bcd(RTCState *s, int a);
82 static uint64_t get_next_alarm(RTCState *s);
84 static inline bool rtc_running(RTCState *s)
86 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
87 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
90 static uint64_t get_guest_rtc_ns(RTCState *s)
92 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
94 return s->base_rtc * NANOSECONDS_PER_SECOND +
95 guest_clock - s->last_update + s->offset;
98 static void rtc_coalesced_timer_update(RTCState *s)
100 if (s->irq_coalesced == 0) {
101 timer_del(s->coalesced_timer);
102 } else {
103 /* divide each RTC interval to 2 - 8 smaller intervals */
104 int c = MIN(s->irq_coalesced, 7) + 1;
105 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
106 periodic_clock_to_ns(s->period / c);
107 timer_mod(s->coalesced_timer, next_clock);
111 static QLIST_HEAD(, RTCState) rtc_devices =
112 QLIST_HEAD_INITIALIZER(rtc_devices);
114 #ifdef TARGET_I386
115 void qmp_rtc_reset_reinjection(Error **errp)
117 RTCState *s;
119 QLIST_FOREACH(s, &rtc_devices, link) {
120 s->irq_coalesced = 0;
124 static bool rtc_policy_slew_deliver_irq(RTCState *s)
126 apic_reset_irq_delivered();
127 qemu_irq_raise(s->irq);
128 return apic_get_irq_delivered();
131 static void rtc_coalesced_timer(void *opaque)
133 RTCState *s = opaque;
135 if (s->irq_coalesced != 0) {
136 s->cmos_data[RTC_REG_C] |= 0xc0;
137 DPRINTF_C("cmos: injecting from timer\n");
138 if (rtc_policy_slew_deliver_irq(s)) {
139 s->irq_coalesced--;
140 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
141 s->irq_coalesced);
145 rtc_coalesced_timer_update(s);
147 #else
148 static bool rtc_policy_slew_deliver_irq(RTCState *s)
150 assert(0);
151 return false;
153 #endif
155 static uint32_t rtc_periodic_clock_ticks(RTCState *s)
157 int period_code;
159 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
160 return 0;
163 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
165 return periodic_period_to_clock(period_code);
169 * handle periodic timer. @old_period indicates the periodic timer update
170 * is just due to period adjustment.
172 static void
173 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change)
175 uint32_t period;
176 int64_t cur_clock, next_irq_clock, lost_clock = 0;
178 period = rtc_periodic_clock_ticks(s);
179 s->period = period;
181 if (!period) {
182 s->irq_coalesced = 0;
183 timer_del(s->periodic_timer);
184 return;
187 /* compute 32 khz clock */
188 cur_clock =
189 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
192 * if the periodic timer's update is due to period re-configuration,
193 * we should count the clock since last interrupt.
195 if (old_period && period_change) {
196 int64_t last_periodic_clock, next_periodic_clock;
198 next_periodic_clock = muldiv64(s->next_periodic_time,
199 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
200 last_periodic_clock = next_periodic_clock - old_period;
201 lost_clock = cur_clock - last_periodic_clock;
202 assert(lost_clock >= 0);
206 * s->irq_coalesced can change for two reasons:
208 * a) if one or more periodic timer interrupts have been lost,
209 * lost_clock will be more that a period.
211 * b) when the period may be reconfigured, we expect the OS to
212 * treat delayed tick as the new period. So, when switching
213 * from a shorter to a longer period, scale down the missing,
214 * because the OS will treat past delayed ticks as longer
215 * (leftovers are put back into lost_clock). When switching
216 * to a shorter period, scale up the missing ticks since the
217 * OS handler will treat past delayed ticks as shorter.
219 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
220 uint32_t old_irq_coalesced = s->irq_coalesced;
222 lost_clock += old_irq_coalesced * old_period;
223 s->irq_coalesced = lost_clock / s->period;
224 lost_clock %= s->period;
225 if (old_irq_coalesced != s->irq_coalesced ||
226 old_period != s->period) {
227 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
228 "period scaled from %d to %d\n", old_irq_coalesced,
229 s->irq_coalesced, old_period, s->period);
230 rtc_coalesced_timer_update(s);
232 } else {
234 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
235 * is not used, we should make the time progress anyway.
237 lost_clock = MIN(lost_clock, period);
240 assert(lost_clock >= 0 && lost_clock <= period);
242 next_irq_clock = cur_clock + period - lost_clock;
243 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
244 timer_mod(s->periodic_timer, s->next_periodic_time);
247 static void rtc_periodic_timer(void *opaque)
249 RTCState *s = opaque;
251 periodic_timer_update(s, s->next_periodic_time, s->period, false);
252 s->cmos_data[RTC_REG_C] |= REG_C_PF;
253 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
254 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
255 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
256 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
257 s->irq_reinject_on_ack_count = 0;
258 if (!rtc_policy_slew_deliver_irq(s)) {
259 s->irq_coalesced++;
260 rtc_coalesced_timer_update(s);
261 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
262 s->irq_coalesced);
264 } else
265 qemu_irq_raise(s->irq);
269 /* handle update-ended timer */
270 static void check_update_timer(RTCState *s)
272 uint64_t next_update_time;
273 uint64_t guest_nsec;
274 int next_alarm_sec;
276 /* From the data sheet: "Holding the dividers in reset prevents
277 * interrupts from operating, while setting the SET bit allows"
278 * them to occur.
280 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
281 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
282 timer_del(s->update_timer);
283 return;
286 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
287 next_update_time = qemu_clock_get_ns(rtc_clock)
288 + NANOSECONDS_PER_SECOND - guest_nsec;
290 /* Compute time of next alarm. One second is already accounted
291 * for in next_update_time.
293 next_alarm_sec = get_next_alarm(s);
294 s->next_alarm_time = next_update_time +
295 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
297 /* If update_in_progress latched the UIP bit, we must keep the timer
298 * programmed to the next second, so that UIP is cleared. Otherwise,
299 * if UF is already set, we might be able to optimize.
301 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
302 (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
303 /* If AF cannot change (i.e. either it is set already, or
304 * SET=1 and then the time is not updated), nothing to do.
306 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
307 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
308 timer_del(s->update_timer);
309 return;
312 /* UF is set, but AF is clear. Program the timer to target
313 * the alarm time. */
314 next_update_time = s->next_alarm_time;
316 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
317 timer_mod(s->update_timer, next_update_time);
321 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
323 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
324 hour %= 12;
325 if (s->cmos_data[RTC_HOURS] & 0x80) {
326 hour += 12;
329 return hour;
332 static uint64_t get_next_alarm(RTCState *s)
334 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
335 int32_t hour, min, sec;
337 rtc_update_time(s);
339 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
340 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
341 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
342 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
344 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
345 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
346 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
347 cur_hour = convert_hour(s, cur_hour);
349 if (alarm_hour == -1) {
350 alarm_hour = cur_hour;
351 if (alarm_min == -1) {
352 alarm_min = cur_min;
353 if (alarm_sec == -1) {
354 alarm_sec = cur_sec + 1;
355 } else if (cur_sec > alarm_sec) {
356 alarm_min++;
358 } else if (cur_min == alarm_min) {
359 if (alarm_sec == -1) {
360 alarm_sec = cur_sec + 1;
361 } else {
362 if (cur_sec > alarm_sec) {
363 alarm_hour++;
366 if (alarm_sec == SEC_PER_MIN) {
367 /* wrap to next hour, minutes is not in don't care mode */
368 alarm_sec = 0;
369 alarm_hour++;
371 } else if (cur_min > alarm_min) {
372 alarm_hour++;
374 } else if (cur_hour == alarm_hour) {
375 if (alarm_min == -1) {
376 alarm_min = cur_min;
377 if (alarm_sec == -1) {
378 alarm_sec = cur_sec + 1;
379 } else if (cur_sec > alarm_sec) {
380 alarm_min++;
383 if (alarm_sec == SEC_PER_MIN) {
384 alarm_sec = 0;
385 alarm_min++;
387 /* wrap to next day, hour is not in don't care mode */
388 alarm_min %= MIN_PER_HOUR;
389 } else if (cur_min == alarm_min) {
390 if (alarm_sec == -1) {
391 alarm_sec = cur_sec + 1;
393 /* wrap to next day, hours+minutes not in don't care mode */
394 alarm_sec %= SEC_PER_MIN;
398 /* values that are still don't care fire at the next min/sec */
399 if (alarm_min == -1) {
400 alarm_min = 0;
402 if (alarm_sec == -1) {
403 alarm_sec = 0;
406 /* keep values in range */
407 if (alarm_sec == SEC_PER_MIN) {
408 alarm_sec = 0;
409 alarm_min++;
411 if (alarm_min == MIN_PER_HOUR) {
412 alarm_min = 0;
413 alarm_hour++;
415 alarm_hour %= HOUR_PER_DAY;
417 hour = alarm_hour - cur_hour;
418 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
419 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
420 return sec <= 0 ? sec + SEC_PER_DAY : sec;
423 static void rtc_update_timer(void *opaque)
425 RTCState *s = opaque;
426 int32_t irqs = REG_C_UF;
427 int32_t new_irqs;
429 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
431 /* UIP might have been latched, update time and clear it. */
432 rtc_update_time(s);
433 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
435 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
436 irqs |= REG_C_AF;
437 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
438 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
442 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
443 s->cmos_data[RTC_REG_C] |= irqs;
444 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
445 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
446 qemu_irq_raise(s->irq);
448 check_update_timer(s);
451 static void cmos_ioport_write(void *opaque, hwaddr addr,
452 uint64_t data, unsigned size)
454 RTCState *s = opaque;
455 uint32_t old_period;
456 bool update_periodic_timer;
458 if ((addr & 1) == 0) {
459 s->cmos_index = data & 0x7f;
460 } else {
461 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
462 s->cmos_index, data);
463 switch(s->cmos_index) {
464 case RTC_SECONDS_ALARM:
465 case RTC_MINUTES_ALARM:
466 case RTC_HOURS_ALARM:
467 s->cmos_data[s->cmos_index] = data;
468 check_update_timer(s);
469 break;
470 case RTC_IBM_PS2_CENTURY_BYTE:
471 s->cmos_index = RTC_CENTURY;
472 /* fall through */
473 case RTC_CENTURY:
474 case RTC_SECONDS:
475 case RTC_MINUTES:
476 case RTC_HOURS:
477 case RTC_DAY_OF_WEEK:
478 case RTC_DAY_OF_MONTH:
479 case RTC_MONTH:
480 case RTC_YEAR:
481 s->cmos_data[s->cmos_index] = data;
482 /* if in set mode, do not update the time */
483 if (rtc_running(s)) {
484 rtc_set_time(s);
485 check_update_timer(s);
487 break;
488 case RTC_REG_A:
489 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
490 old_period = rtc_periodic_clock_ticks(s);
492 if ((data & 0x60) == 0x60) {
493 if (rtc_running(s)) {
494 rtc_update_time(s);
496 /* What happens to UIP when divider reset is enabled is
497 * unclear from the datasheet. Shouldn't matter much
498 * though.
500 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
501 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
502 (data & 0x70) <= 0x20) {
503 /* when the divider reset is removed, the first update cycle
504 * begins one-half second later*/
505 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
506 s->offset = 500000000;
507 rtc_set_time(s);
509 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
511 /* UIP bit is read only */
512 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
513 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
515 if (update_periodic_timer) {
516 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
517 old_period, true);
520 check_update_timer(s);
521 break;
522 case RTC_REG_B:
523 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
524 & REG_B_PIE;
525 old_period = rtc_periodic_clock_ticks(s);
527 if (data & REG_B_SET) {
528 /* update cmos to when the rtc was stopping */
529 if (rtc_running(s)) {
530 rtc_update_time(s);
532 /* set mode: reset UIP mode */
533 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
534 data &= ~REG_B_UIE;
535 } else {
536 /* if disabling set mode, update the time */
537 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
538 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
539 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
540 rtc_set_time(s);
543 /* if an interrupt flag is already set when the interrupt
544 * becomes enabled, raise an interrupt immediately. */
545 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
546 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
547 qemu_irq_raise(s->irq);
548 } else {
549 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
550 qemu_irq_lower(s->irq);
552 s->cmos_data[RTC_REG_B] = data;
554 if (update_periodic_timer) {
555 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
556 old_period, true);
559 check_update_timer(s);
560 break;
561 case RTC_REG_C:
562 case RTC_REG_D:
563 /* cannot write to them */
564 break;
565 default:
566 s->cmos_data[s->cmos_index] = data;
567 break;
572 static inline int rtc_to_bcd(RTCState *s, int a)
574 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
575 return a;
576 } else {
577 return ((a / 10) << 4) | (a % 10);
581 static inline int rtc_from_bcd(RTCState *s, int a)
583 if ((a & 0xc0) == 0xc0) {
584 return -1;
586 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
587 return a;
588 } else {
589 return ((a >> 4) * 10) + (a & 0x0f);
593 static void rtc_get_time(RTCState *s, struct tm *tm)
595 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
596 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
597 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
598 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
599 tm->tm_hour %= 12;
600 if (s->cmos_data[RTC_HOURS] & 0x80) {
601 tm->tm_hour += 12;
604 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
605 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
606 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
607 tm->tm_year =
608 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
609 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
612 static void rtc_set_time(RTCState *s)
614 struct tm tm;
616 rtc_get_time(s, &tm);
617 s->base_rtc = mktimegm(&tm);
618 s->last_update = qemu_clock_get_ns(rtc_clock);
620 qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
623 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
625 int year;
627 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
628 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
629 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
630 /* 24 hour format */
631 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
632 } else {
633 /* 12 hour format */
634 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
635 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
636 if (tm->tm_hour >= 12)
637 s->cmos_data[RTC_HOURS] |= 0x80;
639 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
640 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
641 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
642 year = tm->tm_year + 1900 - s->base_year;
643 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
644 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
647 static void rtc_update_time(RTCState *s)
649 struct tm ret;
650 time_t guest_sec;
651 int64_t guest_nsec;
653 guest_nsec = get_guest_rtc_ns(s);
654 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
655 gmtime_r(&guest_sec, &ret);
657 /* Is SET flag of Register B disabled? */
658 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
659 rtc_set_cmos(s, &ret);
663 static int update_in_progress(RTCState *s)
665 int64_t guest_nsec;
667 if (!rtc_running(s)) {
668 return 0;
670 if (timer_pending(s->update_timer)) {
671 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
672 /* Latch UIP until the timer expires. */
673 if (qemu_clock_get_ns(rtc_clock) >=
674 (next_update_time - UIP_HOLD_LENGTH)) {
675 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
676 return 1;
680 guest_nsec = get_guest_rtc_ns(s);
681 /* UIP bit will be set at last 244us of every second. */
682 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
683 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
684 return 1;
686 return 0;
689 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
690 unsigned size)
692 RTCState *s = opaque;
693 int ret;
694 if ((addr & 1) == 0) {
695 return 0xff;
696 } else {
697 switch(s->cmos_index) {
698 case RTC_IBM_PS2_CENTURY_BYTE:
699 s->cmos_index = RTC_CENTURY;
700 /* fall through */
701 case RTC_CENTURY:
702 case RTC_SECONDS:
703 case RTC_MINUTES:
704 case RTC_HOURS:
705 case RTC_DAY_OF_WEEK:
706 case RTC_DAY_OF_MONTH:
707 case RTC_MONTH:
708 case RTC_YEAR:
709 /* if not in set mode, calibrate cmos before
710 * reading*/
711 if (rtc_running(s)) {
712 rtc_update_time(s);
714 ret = s->cmos_data[s->cmos_index];
715 break;
716 case RTC_REG_A:
717 ret = s->cmos_data[s->cmos_index];
718 if (update_in_progress(s)) {
719 ret |= REG_A_UIP;
721 break;
722 case RTC_REG_C:
723 ret = s->cmos_data[s->cmos_index];
724 qemu_irq_lower(s->irq);
725 s->cmos_data[RTC_REG_C] = 0x00;
726 if (ret & (REG_C_UF | REG_C_AF)) {
727 check_update_timer(s);
730 if(s->irq_coalesced &&
731 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
732 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
733 s->irq_reinject_on_ack_count++;
734 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
735 DPRINTF_C("cmos: injecting on ack\n");
736 if (rtc_policy_slew_deliver_irq(s)) {
737 s->irq_coalesced--;
738 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
739 s->irq_coalesced);
742 break;
743 default:
744 ret = s->cmos_data[s->cmos_index];
745 break;
747 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
748 s->cmos_index, ret);
749 return ret;
753 void rtc_set_memory(ISADevice *dev, int addr, int val)
755 RTCState *s = MC146818_RTC(dev);
756 if (addr >= 0 && addr <= 127)
757 s->cmos_data[addr] = val;
760 int rtc_get_memory(ISADevice *dev, int addr)
762 RTCState *s = MC146818_RTC(dev);
763 assert(addr >= 0 && addr <= 127);
764 return s->cmos_data[addr];
767 static void rtc_set_date_from_host(ISADevice *dev)
769 RTCState *s = MC146818_RTC(dev);
770 struct tm tm;
772 qemu_get_timedate(&tm, 0);
774 s->base_rtc = mktimegm(&tm);
775 s->last_update = qemu_clock_get_ns(rtc_clock);
776 s->offset = 0;
778 /* set the CMOS date */
779 rtc_set_cmos(s, &tm);
782 static int rtc_pre_save(void *opaque)
784 RTCState *s = opaque;
786 rtc_update_time(s);
788 return 0;
791 static int rtc_post_load(void *opaque, int version_id)
793 RTCState *s = opaque;
795 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
796 rtc_set_time(s);
797 s->offset = 0;
798 check_update_timer(s);
800 s->period = rtc_periodic_clock_ticks(s);
802 /* The periodic timer is deterministic in record/replay mode,
803 * so there is no need to update it after loading the vmstate.
804 * Reading RTC here would misalign record and replay.
806 if (replay_mode == REPLAY_MODE_NONE) {
807 uint64_t now = qemu_clock_get_ns(rtc_clock);
808 if (now < s->next_periodic_time ||
809 now > (s->next_periodic_time + get_max_clock_jump())) {
810 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false);
814 if (version_id >= 2) {
815 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
816 rtc_coalesced_timer_update(s);
819 return 0;
822 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
824 RTCState *s = (RTCState *)opaque;
825 return s->irq_reinject_on_ack_count != 0;
828 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
829 .name = "mc146818rtc/irq_reinject_on_ack_count",
830 .version_id = 1,
831 .minimum_version_id = 1,
832 .needed = rtc_irq_reinject_on_ack_count_needed,
833 .fields = (VMStateField[]) {
834 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
835 VMSTATE_END_OF_LIST()
839 static const VMStateDescription vmstate_rtc = {
840 .name = "mc146818rtc",
841 .version_id = 3,
842 .minimum_version_id = 1,
843 .pre_save = rtc_pre_save,
844 .post_load = rtc_post_load,
845 .fields = (VMStateField[]) {
846 VMSTATE_BUFFER(cmos_data, RTCState),
847 VMSTATE_UINT8(cmos_index, RTCState),
848 VMSTATE_UNUSED(7*4),
849 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
850 VMSTATE_INT64(next_periodic_time, RTCState),
851 VMSTATE_UNUSED(3*8),
852 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
853 VMSTATE_UINT32_V(period, RTCState, 2),
854 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
855 VMSTATE_UINT64_V(last_update, RTCState, 3),
856 VMSTATE_INT64_V(offset, RTCState, 3),
857 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
858 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
859 VMSTATE_END_OF_LIST()
861 .subsections = (const VMStateDescription*[]) {
862 &vmstate_rtc_irq_reinject_on_ack_count,
863 NULL
867 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
868 BIOS will read it and start S3 resume at POST Entry */
869 static void rtc_notify_suspend(Notifier *notifier, void *data)
871 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
872 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
875 static void rtc_reset(void *opaque)
877 RTCState *s = opaque;
879 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
880 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
881 check_update_timer(s);
883 qemu_irq_lower(s->irq);
885 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
886 s->irq_coalesced = 0;
887 s->irq_reinject_on_ack_count = 0;
891 static const MemoryRegionOps cmos_ops = {
892 .read = cmos_ioport_read,
893 .write = cmos_ioport_write,
894 .impl = {
895 .min_access_size = 1,
896 .max_access_size = 1,
898 .endianness = DEVICE_LITTLE_ENDIAN,
901 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
903 RTCState *s = MC146818_RTC(obj);
905 rtc_update_time(s);
906 rtc_get_time(s, current_tm);
909 static void rtc_realizefn(DeviceState *dev, Error **errp)
911 ISADevice *isadev = ISA_DEVICE(dev);
912 RTCState *s = MC146818_RTC(dev);
914 s->cmos_data[RTC_REG_A] = 0x26;
915 s->cmos_data[RTC_REG_B] = 0x02;
916 s->cmos_data[RTC_REG_C] = 0x00;
917 s->cmos_data[RTC_REG_D] = 0x80;
919 /* This is for historical reasons. The default base year qdev property
920 * was set to 2000 for most machine types before the century byte was
921 * implemented.
923 * This if statement means that the century byte will be always 0
924 * (at least until 2079...) for base_year = 1980, but will be set
925 * correctly for base_year = 2000.
927 if (s->base_year == 2000) {
928 s->base_year = 0;
931 rtc_set_date_from_host(isadev);
933 switch (s->lost_tick_policy) {
934 #ifdef TARGET_I386
935 case LOST_TICK_POLICY_SLEW:
936 s->coalesced_timer =
937 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
938 break;
939 #endif
940 case LOST_TICK_POLICY_DISCARD:
941 break;
942 default:
943 error_setg(errp, "Invalid lost tick policy.");
944 return;
947 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
948 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
949 check_update_timer(s);
951 s->suspend_notifier.notify = rtc_notify_suspend;
952 qemu_register_suspend_notifier(&s->suspend_notifier);
954 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
955 isa_register_ioport(isadev, &s->io, RTC_ISA_BASE);
957 /* register rtc 0x70 port for coalesced_pio */
958 memory_region_set_flush_coalesced(&s->io);
959 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
960 s, "rtc-index", 1);
961 memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
962 memory_region_add_coalescing(&s->coalesced_io, 0, 1);
964 qdev_set_legacy_instance_id(dev, RTC_ISA_BASE, 3);
965 qemu_register_reset(rtc_reset, s);
967 object_property_add_tm(OBJECT(s), "date", rtc_get_date);
969 qdev_init_gpio_out(dev, &s->irq, 1);
970 QLIST_INSERT_HEAD(&rtc_devices, s, link);
973 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
975 DeviceState *dev;
976 ISADevice *isadev;
978 isadev = isa_new(TYPE_MC146818_RTC);
979 dev = DEVICE(isadev);
980 qdev_prop_set_int32(dev, "base_year", base_year);
981 isa_realize_and_unref(isadev, bus, &error_fatal);
982 if (intercept_irq) {
983 qdev_connect_gpio_out(dev, 0, intercept_irq);
984 } else {
985 isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
988 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev),
989 "date");
991 return isadev;
994 static Property mc146818rtc_properties[] = {
995 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
996 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
997 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
998 DEFINE_PROP_END_OF_LIST(),
1001 static void rtc_resetdev(DeviceState *d)
1003 RTCState *s = MC146818_RTC(d);
1005 /* Reason: VM do suspend self will set 0xfe
1006 * Reset any values other than 0xfe(Guest suspend case) */
1007 if (s->cmos_data[0x0f] != 0xfe) {
1008 s->cmos_data[0x0f] = 0x00;
1012 static void rtc_build_aml(ISADevice *isadev, Aml *scope)
1014 Aml *dev;
1015 Aml *crs;
1018 * Reserving 8 io ports here, following what physical hardware
1019 * does, even though qemu only responds to the first two ports.
1021 crs = aml_resource_template();
1022 aml_append(crs, aml_io(AML_DECODE16, RTC_ISA_BASE, RTC_ISA_BASE,
1023 0x01, 0x08));
1024 aml_append(crs, aml_irq_no_flags(RTC_ISA_IRQ));
1026 dev = aml_device("RTC");
1027 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1028 aml_append(dev, aml_name_decl("_CRS", crs));
1030 aml_append(scope, dev);
1033 static void rtc_class_initfn(ObjectClass *klass, void *data)
1035 DeviceClass *dc = DEVICE_CLASS(klass);
1036 ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
1038 dc->realize = rtc_realizefn;
1039 dc->reset = rtc_resetdev;
1040 dc->vmsd = &vmstate_rtc;
1041 isa->build_aml = rtc_build_aml;
1042 device_class_set_props(dc, mc146818rtc_properties);
1045 static const TypeInfo mc146818rtc_info = {
1046 .name = TYPE_MC146818_RTC,
1047 .parent = TYPE_ISA_DEVICE,
1048 .instance_size = sizeof(RTCState),
1049 .class_init = rtc_class_initfn,
1052 static void mc146818rtc_register_types(void)
1054 type_register_static(&mc146818rtc_info);
1057 type_init(mc146818rtc_register_types)