2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/visitor.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/hostmem.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
39 #include "hw/fw-path-provider.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/cpus.h"
44 #include "sysemu/hw_accel.h"
46 #include "migration/misc.h"
47 #include "migration/qemu-file-types.h"
48 #include "migration/global_state.h"
49 #include "migration/register.h"
50 #include "migration/blocker.h"
51 #include "mmu-hash64.h"
52 #include "mmu-book3s-v3.h"
53 #include "cpu-models.h"
54 #include "hw/core/cpu.h"
56 #include "hw/boards.h"
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
72 #include "exec/address-spaces.h"
73 #include "exec/ram_addr.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
79 #include "hw/intc/intc.h"
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
88 #include "monitor/monitor.h"
92 /* SLOF memory layout:
94 * SLOF raw image loaded at 0, copies its romfs right below the flat
95 * device-tree, then position SLOF itself 31M below that
97 * So we set FW_OVERHEAD to 40MB which should account for all of that
100 * We load our kernel at 4M, leaving space for SLOF initial image
102 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
103 #define FW_MAX_SIZE 0x400000
104 #define FW_FILE_NAME "slof.bin"
105 #define FW_OVERHEAD 0x2800000
106 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
108 #define MIN_RMA_SLOF (128 * MiB)
110 #define PHANDLE_INTC 0x00001111
112 /* These two functions implement the VCPU id numbering: one to compute them
113 * all and one to identify thread 0 of a VCORE. Any change to the first one
114 * is likely to have an impact on the second one, so let's keep them close.
116 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
118 MachineState
*ms
= MACHINE(spapr
);
119 unsigned int smp_threads
= ms
->smp
.threads
;
123 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
125 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
129 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
132 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
134 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
135 * and newer QEMUs don't even have them. In both cases, we don't want
136 * to send anything on the wire.
141 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
142 .name
= "icp/server",
144 .minimum_version_id
= 1,
145 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
146 .fields
= (VMStateField
[]) {
147 VMSTATE_UNUSED(4), /* uint32_t xirr */
148 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
149 VMSTATE_UNUSED(1), /* uint8_t mfrr */
150 VMSTATE_END_OF_LIST()
154 static void pre_2_10_vmstate_register_dummy_icp(int i
)
156 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
157 (void *)(uintptr_t) i
);
160 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
162 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
163 (void *)(uintptr_t) i
);
166 int spapr_max_server_number(SpaprMachineState
*spapr
)
168 MachineState
*ms
= MACHINE(spapr
);
171 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
174 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
178 uint32_t servers_prop
[smt_threads
];
179 uint32_t gservers_prop
[smt_threads
* 2];
180 int index
= spapr_get_vcpu_id(cpu
);
182 if (cpu
->compat_pvr
) {
183 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
189 /* Build interrupt servers and gservers properties */
190 for (i
= 0; i
< smt_threads
; i
++) {
191 servers_prop
[i
] = cpu_to_be32(index
+ i
);
192 /* Hack, direct the group queues back to cpu 0 */
193 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
194 gservers_prop
[i
*2 + 1] = 0;
196 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
197 servers_prop
, sizeof(servers_prop
));
201 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
202 gservers_prop
, sizeof(gservers_prop
));
207 static void spapr_dt_pa_features(SpaprMachineState
*spapr
,
209 void *fdt
, int offset
)
211 uint8_t pa_features_206
[] = { 6, 0,
212 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213 uint8_t pa_features_207
[] = { 24, 0,
214 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218 uint8_t pa_features_300
[] = { 66, 0,
219 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234 /* 42: PM, 44: PC RA, 46: SC vec'd */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236 /* 48: SIMD, 50: QP BFP, 52: String */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238 /* 54: DecFP, 56: DecI, 58: SHA */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240 /* 60: NM atomic, 62: RNG */
241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 uint8_t *pa_features
= NULL
;
246 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
247 pa_features
= pa_features_206
;
248 pa_size
= sizeof(pa_features_206
);
250 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
251 pa_features
= pa_features_207
;
252 pa_size
= sizeof(pa_features_207
);
254 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
255 pa_features
= pa_features_300
;
256 pa_size
= sizeof(pa_features_300
);
262 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
264 * Note: we keep CI large pages off by default because a 64K capable
265 * guest provisioned with large pages might otherwise try to map a qemu
266 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
267 * even if that qemu runs on a 4k host.
268 * We dd this bit back here if we are confident this is not an issue
270 pa_features
[3] |= 0x20;
272 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
273 pa_features
[24] |= 0x80; /* Transactional memory support */
275 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
276 /* Workaround for broken kernels that attempt (guest) radix
277 * mode when they can't handle it, if they see the radix bit set
278 * in pa-features. So hide it from them. */
279 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
282 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
285 static hwaddr
spapr_node0_size(MachineState
*machine
)
287 if (machine
->numa_state
->num_nodes
) {
289 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
290 if (machine
->numa_state
->nodes
[i
].node_mem
) {
291 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
296 return machine
->ram_size
;
299 bool spapr_machine_using_legacy_numa(SpaprMachineState
*spapr
)
301 MachineState
*machine
= MACHINE(spapr
);
302 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
304 return smc
->pre_5_2_numa_associativity
||
305 machine
->numa_state
->num_nodes
<= 1;
308 static void add_str(GString
*s
, const gchar
*s1
)
310 g_string_append_len(s
, s1
, strlen(s1
) + 1);
313 static int spapr_dt_memory_node(SpaprMachineState
*spapr
, void *fdt
, int nodeid
,
314 hwaddr start
, hwaddr size
)
317 uint64_t mem_reg_property
[2];
320 mem_reg_property
[0] = cpu_to_be64(start
);
321 mem_reg_property
[1] = cpu_to_be64(size
);
323 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
324 off
= fdt_add_subnode(fdt
, 0, mem_name
);
326 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
327 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
328 sizeof(mem_reg_property
))));
329 spapr_numa_write_associativity_dt(spapr
, fdt
, off
, nodeid
);
333 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
335 MemoryDeviceInfoList
*info
;
337 for (info
= list
; info
; info
= info
->next
) {
338 MemoryDeviceInfo
*value
= info
->value
;
340 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
341 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
343 if (addr
>= pcdimm_info
->addr
&&
344 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
345 return pcdimm_info
->node
;
353 struct sPAPRDrconfCellV2
{
361 typedef struct DrconfCellQueue
{
362 struct sPAPRDrconfCellV2 cell
;
363 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
366 static DrconfCellQueue
*
367 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
368 uint32_t drc_index
, uint32_t aa_index
,
371 DrconfCellQueue
*elem
;
373 elem
= g_malloc0(sizeof(*elem
));
374 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
375 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
376 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
377 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
378 elem
->cell
.flags
= cpu_to_be32(flags
);
383 static int spapr_dt_dynamic_memory_v2(SpaprMachineState
*spapr
, void *fdt
,
384 int offset
, MemoryDeviceInfoList
*dimms
)
386 MachineState
*machine
= MACHINE(spapr
);
387 uint8_t *int_buf
, *cur_index
;
389 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
390 uint64_t addr
, cur_addr
, size
;
391 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
392 uint64_t mem_end
= machine
->device_memory
->base
+
393 memory_region_size(&machine
->device_memory
->mr
);
394 uint32_t node
, buf_len
, nr_entries
= 0;
396 DrconfCellQueue
*elem
, *next
;
397 MemoryDeviceInfoList
*info
;
398 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
399 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
401 /* Entry to cover RAM and the gap area */
402 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
403 SPAPR_LMB_FLAGS_RESERVED
|
404 SPAPR_LMB_FLAGS_DRC_INVALID
);
405 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
408 cur_addr
= machine
->device_memory
->base
;
409 for (info
= dimms
; info
; info
= info
->next
) {
410 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
417 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
418 * area is marked hotpluggable in the next iteration for the bigger
419 * chunk including the NVDIMM occupied area.
421 if (info
->value
->type
== MEMORY_DEVICE_INFO_KIND_NVDIMM
)
424 /* Entry for hot-pluggable area */
425 if (cur_addr
< addr
) {
426 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
428 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
429 cur_addr
, spapr_drc_index(drc
), -1, 0);
430 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
435 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
437 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
438 spapr_drc_index(drc
), node
,
439 (SPAPR_LMB_FLAGS_ASSIGNED
|
440 SPAPR_LMB_FLAGS_HOTREMOVABLE
));
441 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
443 cur_addr
= addr
+ size
;
446 /* Entry for remaining hotpluggable area */
447 if (cur_addr
< mem_end
) {
448 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
450 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
451 cur_addr
, spapr_drc_index(drc
), -1, 0);
452 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
456 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
457 int_buf
= cur_index
= g_malloc0(buf_len
);
458 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
459 cur_index
+= sizeof(nr_entries
);
461 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
462 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
463 cur_index
+= sizeof(elem
->cell
);
464 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
468 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
476 static int spapr_dt_dynamic_memory(SpaprMachineState
*spapr
, void *fdt
,
477 int offset
, MemoryDeviceInfoList
*dimms
)
479 MachineState
*machine
= MACHINE(spapr
);
481 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
482 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
483 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
484 memory_region_size(&machine
->device_memory
->mr
)) /
486 uint32_t *int_buf
, *cur_index
, buf_len
;
489 * Allocate enough buffer size to fit in ibm,dynamic-memory
491 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
492 cur_index
= int_buf
= g_malloc0(buf_len
);
493 int_buf
[0] = cpu_to_be32(nr_lmbs
);
495 for (i
= 0; i
< nr_lmbs
; i
++) {
496 uint64_t addr
= i
* lmb_size
;
497 uint32_t *dynamic_memory
= cur_index
;
499 if (i
>= device_lmb_start
) {
502 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
505 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
506 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
507 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
508 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
509 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
510 if (memory_region_present(get_system_memory(), addr
)) {
511 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
513 dynamic_memory
[5] = cpu_to_be32(0);
517 * LMB information for RMA, boot time RAM and gap b/n RAM and
518 * device memory region -- all these are marked as reserved
519 * and as having no valid DRC.
521 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
522 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
523 dynamic_memory
[2] = cpu_to_be32(0);
524 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
525 dynamic_memory
[4] = cpu_to_be32(-1);
526 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
527 SPAPR_LMB_FLAGS_DRC_INVALID
);
530 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
532 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
541 * Adds ibm,dynamic-reconfiguration-memory node.
542 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
543 * of this device tree node.
545 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState
*spapr
,
548 MachineState
*machine
= MACHINE(spapr
);
550 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
551 uint32_t prop_lmb_size
[] = {cpu_to_be32(lmb_size
>> 32),
552 cpu_to_be32(lmb_size
& 0xffffffff)};
553 MemoryDeviceInfoList
*dimms
= NULL
;
556 * Don't create the node if there is no device memory
558 if (machine
->ram_size
== machine
->maxram_size
) {
562 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
564 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
565 sizeof(prop_lmb_size
));
570 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
575 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
580 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
581 dimms
= qmp_memory_device_list();
582 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
583 ret
= spapr_dt_dynamic_memory_v2(spapr
, fdt
, offset
, dimms
);
585 ret
= spapr_dt_dynamic_memory(spapr
, fdt
, offset
, dimms
);
587 qapi_free_MemoryDeviceInfoList(dimms
);
593 ret
= spapr_numa_write_assoc_lookup_arrays(spapr
, fdt
, offset
);
598 static int spapr_dt_memory(SpaprMachineState
*spapr
, void *fdt
)
600 MachineState
*machine
= MACHINE(spapr
);
601 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
602 hwaddr mem_start
, node_size
;
603 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
604 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
606 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
607 if (!nodes
[i
].node_mem
) {
610 if (mem_start
>= machine
->ram_size
) {
613 node_size
= nodes
[i
].node_mem
;
614 if (node_size
> machine
->ram_size
- mem_start
) {
615 node_size
= machine
->ram_size
- mem_start
;
619 /* spapr_machine_init() checks for rma_size <= node0_size
621 spapr_dt_memory_node(spapr
, fdt
, i
, 0, spapr
->rma_size
);
622 mem_start
+= spapr
->rma_size
;
623 node_size
-= spapr
->rma_size
;
625 for ( ; node_size
; ) {
626 hwaddr sizetmp
= pow2floor(node_size
);
628 /* mem_start != 0 here */
629 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
630 sizetmp
= 1ULL << ctzl(mem_start
);
633 spapr_dt_memory_node(spapr
, fdt
, i
, mem_start
, sizetmp
);
634 node_size
-= sizetmp
;
635 mem_start
+= sizetmp
;
639 /* Generate ibm,dynamic-reconfiguration-memory node if required */
640 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRCONF_MEMORY
)) {
643 g_assert(smc
->dr_lmb_enabled
);
644 ret
= spapr_dt_dynamic_reconfiguration_memory(spapr
, fdt
);
653 static void spapr_dt_cpu(CPUState
*cs
, void *fdt
, int offset
,
654 SpaprMachineState
*spapr
)
656 MachineState
*ms
= MACHINE(spapr
);
657 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
658 CPUPPCState
*env
= &cpu
->env
;
659 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
660 int index
= spapr_get_vcpu_id(cpu
);
661 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
662 0xffffffff, 0xffffffff};
663 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
664 : SPAPR_TIMEBASE_FREQ
;
665 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
666 uint32_t page_sizes_prop
[64];
667 size_t page_sizes_prop_size
;
668 unsigned int smp_threads
= ms
->smp
.threads
;
669 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
670 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
671 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
674 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
677 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
679 drc_index
= spapr_drc_index(drc
);
680 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
683 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
684 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
686 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
687 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
688 env
->dcache_line_size
)));
689 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
690 env
->dcache_line_size
)));
691 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
692 env
->icache_line_size
)));
693 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
694 env
->icache_line_size
)));
696 if (pcc
->l1_dcache_size
) {
697 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
698 pcc
->l1_dcache_size
)));
700 warn_report("Unknown L1 dcache size for cpu");
702 if (pcc
->l1_icache_size
) {
703 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
704 pcc
->l1_icache_size
)));
706 warn_report("Unknown L1 icache size for cpu");
709 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
710 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
711 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
712 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
713 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
714 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
716 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
717 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
719 if (env
->spr_cb
[SPR_SPURR
].oea_read
) {
720 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
723 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
724 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
725 segs
, sizeof(segs
))));
728 /* Advertise VSX (vector extensions) if available
729 * 1 == VMX / Altivec available
732 * Only CPUs for which we create core types in spapr_cpu_core.c
733 * are possible, and all of those have VMX */
734 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
735 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
737 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
740 /* Advertise DFP (Decimal Floating Point) if available
741 * 0 / no property == no DFP
742 * 1 == DFP available */
743 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
744 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
747 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
748 sizeof(page_sizes_prop
));
749 if (page_sizes_prop_size
) {
750 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
751 page_sizes_prop
, page_sizes_prop_size
)));
754 spapr_dt_pa_features(spapr
, cpu
, fdt
, offset
);
756 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
757 cs
->cpu_index
/ vcpus_per_socket
)));
759 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
760 pft_size_prop
, sizeof(pft_size_prop
))));
762 if (ms
->numa_state
->num_nodes
> 1) {
763 _FDT(spapr_numa_fixup_cpu_dt(spapr
, fdt
, offset
, cpu
));
766 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
768 if (pcc
->radix_page_info
) {
769 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
770 radix_AP_encodings
[i
] =
771 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
773 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
775 pcc
->radix_page_info
->count
*
776 sizeof(radix_AP_encodings
[0]))));
780 * We set this property to let the guest know that it can use the large
781 * decrementer and its width in bits.
783 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
784 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
785 pcc
->lrg_decr_bits
)));
788 static void spapr_dt_cpus(void *fdt
, SpaprMachineState
*spapr
)
797 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
799 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
800 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
803 * We walk the CPUs in reverse order to ensure that CPU DT nodes
804 * created by fdt_add_subnode() end up in the right order in FDT
805 * for the guest kernel the enumerate the CPUs correctly.
807 * The CPU list cannot be traversed in reverse order, so we need
813 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
817 for (i
= n_cpus
- 1; i
>= 0; i
--) {
818 CPUState
*cs
= rev
[i
];
819 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
820 int index
= spapr_get_vcpu_id(cpu
);
821 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
824 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
828 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
829 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
832 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
838 static int spapr_dt_rng(void *fdt
)
843 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
847 ret
= fdt_setprop_string(fdt
, node
, "device_type",
848 "ibm,platform-facilities");
849 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
850 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
852 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
856 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
861 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
863 MachineState
*ms
= MACHINE(spapr
);
865 GString
*hypertas
= g_string_sized_new(256);
866 GString
*qemu_hypertas
= g_string_sized_new(256);
867 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
868 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
869 uint32_t lrdr_capacity
[] = {
870 cpu_to_be32(max_device_addr
>> 32),
871 cpu_to_be32(max_device_addr
& 0xffffffff),
872 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
>> 32),
873 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
& 0xffffffff),
874 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
877 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
880 add_str(hypertas
, "hcall-pft");
881 add_str(hypertas
, "hcall-term");
882 add_str(hypertas
, "hcall-dabr");
883 add_str(hypertas
, "hcall-interrupt");
884 add_str(hypertas
, "hcall-tce");
885 add_str(hypertas
, "hcall-vio");
886 add_str(hypertas
, "hcall-splpar");
887 add_str(hypertas
, "hcall-join");
888 add_str(hypertas
, "hcall-bulk");
889 add_str(hypertas
, "hcall-set-mode");
890 add_str(hypertas
, "hcall-sprg0");
891 add_str(hypertas
, "hcall-copy");
892 add_str(hypertas
, "hcall-debug");
893 add_str(hypertas
, "hcall-vphn");
894 add_str(qemu_hypertas
, "hcall-memop1");
896 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
897 add_str(hypertas
, "hcall-multi-tce");
900 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
901 add_str(hypertas
, "hcall-hpt-resize");
904 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
905 hypertas
->str
, hypertas
->len
));
906 g_string_free(hypertas
, TRUE
);
907 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
908 qemu_hypertas
->str
, qemu_hypertas
->len
));
909 g_string_free(qemu_hypertas
, TRUE
);
911 spapr_numa_write_rtas_dt(spapr
, fdt
, rtas
);
914 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
915 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
917 * The system reset requirements are driven by existing Linux and PowerVM
918 * implementation which (contrary to PAPR) saves r3 in the error log
919 * structure like machine check, so Linux expects to find the saved r3
920 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
921 * does not look at the error value).
923 * System reset interrupts are not subject to interlock like machine
924 * check, so this memory area could be corrupted if the sreset is
925 * interrupted by a machine check (or vice versa) if it was shared. To
926 * prevent this, system reset uses per-CPU areas for the sreset save
927 * area. A system reset that interrupts a system reset handler could
928 * still overwrite this area, but Linux doesn't try to recover in that
931 * The extra 8 bytes is required because Linux's FWNMI error log check
934 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-size", RTAS_ERROR_LOG_MAX
+
935 ms
->smp
.max_cpus
* sizeof(uint64_t)*2 + sizeof(uint64_t)));
936 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
937 RTAS_ERROR_LOG_MAX
));
938 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
939 RTAS_EVENT_SCAN_RATE
));
941 g_assert(msi_nonbroken
);
942 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
945 * According to PAPR, rtas ibm,os-term does not guarantee a return
946 * back to the guest cpu.
948 * While an additional ibm,extended-os-term property indicates
949 * that rtas call return will always occur. Set this property.
951 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
953 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
954 lrdr_capacity
, sizeof(lrdr_capacity
)));
956 spapr_dt_rtas_tokens(fdt
, rtas
);
960 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
961 * and the XIVE features that the guest may request and thus the valid
962 * values for bytes 23..26 of option vector 5:
964 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
967 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
970 23, 0x00, /* XICS / XIVE mode */
971 24, 0x00, /* Hash/Radix, filled in below. */
972 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
973 26, 0x40, /* Radix options: GTSE == yes. */
976 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
977 val
[1] = SPAPR_OV5_XIVE_BOTH
;
978 } else if (spapr
->irq
->xive
) {
979 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
981 assert(spapr
->irq
->xics
);
982 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
985 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
986 first_ppc_cpu
->compat_pvr
)) {
988 * If we're in a pre POWER9 compat mode then the guest should
989 * do hash and use the legacy interrupt mode
991 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
992 val
[3] = 0x00; /* Hash */
993 } else if (kvm_enabled()) {
994 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
995 val
[3] = 0x80; /* OV5_MMU_BOTH */
996 } else if (kvmppc_has_cap_mmu_radix()) {
997 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
999 val
[3] = 0x00; /* Hash */
1002 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1005 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1009 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
, bool reset
)
1011 MachineState
*machine
= MACHINE(spapr
);
1012 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1015 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1018 const char *boot_device
= machine
->boot_order
;
1019 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1021 char *bootlist
= get_boot_devices_list(&cb
);
1023 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1024 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1025 machine
->kernel_cmdline
));
1028 if (spapr
->initrd_size
) {
1029 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1030 spapr
->initrd_base
));
1031 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1032 spapr
->initrd_base
+ spapr
->initrd_size
));
1035 if (spapr
->kernel_size
) {
1036 uint64_t kprop
[2] = { cpu_to_be64(spapr
->kernel_addr
),
1037 cpu_to_be64(spapr
->kernel_size
) };
1039 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1040 &kprop
, sizeof(kprop
)));
1041 if (spapr
->kernel_le
) {
1042 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1046 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1048 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1049 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1050 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1052 if (cb
&& bootlist
) {
1055 for (i
= 0; i
< cb
; i
++) {
1056 if (bootlist
[i
] == '\n') {
1060 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1063 if (boot_device
&& strlen(boot_device
)) {
1064 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1067 if (!spapr
->has_graphics
&& stdout_path
) {
1069 * "linux,stdout-path" and "stdout" properties are
1070 * deprecated by linux kernel. New platforms should only
1071 * use the "stdout-path" property. Set the new property
1072 * and continue using older property to remain compatible
1073 * with the existing firmware.
1075 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1076 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1080 * We can deal with BAR reallocation just fine, advertise it
1083 if (smc
->linux_pci_probe
) {
1084 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1087 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1089 g_free(stdout_path
);
1093 _FDT(spapr_dt_ovec(fdt
, chosen
, spapr
->ov5_cas
, "ibm,architecture-vec-5"));
1096 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1098 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1099 * KVM to work under pHyp with some guest co-operation */
1101 uint8_t hypercall
[16];
1103 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1104 /* indicate KVM hypercall interface */
1105 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1106 if (kvmppc_has_cap_fixup_hcalls()) {
1108 * Older KVM versions with older guest kernels were broken
1109 * with the magic page, don't allow the guest to map it.
1111 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1112 sizeof(hypercall
))) {
1113 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1114 hypercall
, sizeof(hypercall
)));
1119 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1121 MachineState
*machine
= MACHINE(spapr
);
1122 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1123 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1124 uint32_t root_drc_type_mask
= 0;
1130 fdt
= g_malloc0(space
);
1131 _FDT((fdt_create_empty_tree(fdt
, space
)));
1134 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1135 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1136 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1138 /* Guest UUID & Name*/
1139 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1140 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1141 if (qemu_uuid_set
) {
1142 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1146 if (qemu_get_vm_name()) {
1147 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1148 qemu_get_vm_name()));
1151 /* Host Model & Serial Number */
1152 if (spapr
->host_model
) {
1153 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1154 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1155 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1159 if (spapr
->host_serial
) {
1160 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1161 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1162 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1166 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1167 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1169 /* /interrupt controller */
1170 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1172 ret
= spapr_dt_memory(spapr
, fdt
);
1174 error_report("couldn't setup memory nodes in fdt");
1179 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1181 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1182 ret
= spapr_dt_rng(fdt
);
1184 error_report("could not set up rng device in the fdt");
1189 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1190 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1192 error_report("couldn't setup PCI devices in fdt");
1197 spapr_dt_cpus(fdt
, spapr
);
1199 /* ibm,drc-indexes and friends */
1200 if (smc
->dr_lmb_enabled
) {
1201 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_LMB
;
1203 if (smc
->dr_phb_enabled
) {
1204 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PHB
;
1206 if (mc
->nvdimm_supported
) {
1207 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PMEM
;
1209 if (root_drc_type_mask
) {
1210 _FDT(spapr_dt_drc(fdt
, 0, NULL
, root_drc_type_mask
));
1213 if (mc
->has_hotpluggable_cpus
) {
1214 int offset
= fdt_path_offset(fdt
, "/cpus");
1215 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1217 error_report("Couldn't set up CPU DR device tree properties");
1222 /* /event-sources */
1223 spapr_dt_events(spapr
, fdt
);
1226 spapr_dt_rtas(spapr
, fdt
);
1229 spapr_dt_chosen(spapr
, fdt
, reset
);
1232 if (kvm_enabled()) {
1233 spapr_dt_hypervisor(spapr
, fdt
);
1236 /* Build memory reserve map */
1238 if (spapr
->kernel_size
) {
1239 _FDT((fdt_add_mem_rsv(fdt
, spapr
->kernel_addr
,
1240 spapr
->kernel_size
)));
1242 if (spapr
->initrd_size
) {
1243 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1244 spapr
->initrd_size
)));
1248 /* NVDIMM devices */
1249 if (mc
->nvdimm_supported
) {
1250 spapr_dt_persistent_memory(spapr
, fdt
);
1256 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1258 SpaprMachineState
*spapr
= opaque
;
1260 return (addr
& 0x0fffffff) + spapr
->kernel_addr
;
1263 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1266 CPUPPCState
*env
= &cpu
->env
;
1268 /* The TCG path should also be holding the BQL at this point */
1269 g_assert(qemu_mutex_iothread_locked());
1272 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1273 env
->gpr
[3] = H_PRIVILEGE
;
1275 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1279 struct LPCRSyncState
{
1284 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1286 struct LPCRSyncState
*s
= arg
.host_ptr
;
1287 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1288 CPUPPCState
*env
= &cpu
->env
;
1291 cpu_synchronize_state(cs
);
1292 lpcr
= env
->spr
[SPR_LPCR
];
1295 ppc_store_lpcr(cpu
, lpcr
);
1298 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1301 struct LPCRSyncState s
= {
1306 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1310 static void spapr_get_pate(PPCVirtualHypervisor
*vhyp
, ppc_v3_pate_t
*entry
)
1312 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1314 /* Copy PATE1:GR into PATE0:HR */
1315 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1316 entry
->dw1
= spapr
->patb_entry
;
1319 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1320 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1321 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1322 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1323 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1326 * Get the fd to access the kernel htab, re-opening it if necessary
1328 static int get_htab_fd(SpaprMachineState
*spapr
)
1330 Error
*local_err
= NULL
;
1332 if (spapr
->htab_fd
>= 0) {
1333 return spapr
->htab_fd
;
1336 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1337 if (spapr
->htab_fd
< 0) {
1338 error_report_err(local_err
);
1341 return spapr
->htab_fd
;
1344 void close_htab_fd(SpaprMachineState
*spapr
)
1346 if (spapr
->htab_fd
>= 0) {
1347 close(spapr
->htab_fd
);
1349 spapr
->htab_fd
= -1;
1352 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1354 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1356 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1359 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1361 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1363 assert(kvm_enabled());
1369 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1372 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1375 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1376 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1380 * HTAB is controlled by KVM. Fetch into temporary buffer
1382 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1383 kvmppc_read_hptes(hptes
, ptex
, n
);
1388 * HTAB is controlled by QEMU. Just point to the internally
1391 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1394 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1395 const ppc_hash_pte64_t
*hptes
,
1398 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1401 g_free((void *)hptes
);
1404 /* Nothing to do for qemu managed HPT */
1407 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1408 uint64_t pte0
, uint64_t pte1
)
1410 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1411 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1414 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1416 if (pte0
& HPTE64_V_VALID
) {
1417 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1419 * When setting valid, we write PTE1 first. This ensures
1420 * proper synchronization with the reading code in
1421 * ppc_hash64_pteg_search()
1424 stq_p(spapr
->htab
+ offset
, pte0
);
1426 stq_p(spapr
->htab
+ offset
, pte0
);
1428 * When clearing it we set PTE0 first. This ensures proper
1429 * synchronization with the reading code in
1430 * ppc_hash64_pteg_search()
1433 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1438 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1441 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 15;
1442 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1445 /* There should always be a hash table when this is called */
1446 error_report("spapr_hpte_set_c called with no hash table !");
1450 /* The HW performs a non-atomic byte update */
1451 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1454 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1457 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 14;
1458 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1461 /* There should always be a hash table when this is called */
1462 error_report("spapr_hpte_set_r called with no hash table !");
1466 /* The HW performs a non-atomic byte update */
1467 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1470 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1474 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1475 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1476 * that's much more than is needed for Linux guests */
1477 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1478 shift
= MAX(shift
, 18); /* Minimum architected size */
1479 shift
= MIN(shift
, 46); /* Maximum architected size */
1483 void spapr_free_hpt(SpaprMachineState
*spapr
)
1485 g_free(spapr
->htab
);
1487 spapr
->htab_shift
= 0;
1488 close_htab_fd(spapr
);
1491 int spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
, Error
**errp
)
1496 /* Clean up any HPT info from a previous boot */
1497 spapr_free_hpt(spapr
);
1499 rc
= kvmppc_reset_htab(shift
);
1501 if (rc
== -EOPNOTSUPP
) {
1502 error_setg(errp
, "HPT not supported in nested guests");
1507 /* kernel-side HPT needed, but couldn't allocate one */
1508 error_setg_errno(errp
, errno
, "Failed to allocate KVM HPT of order %d",
1510 error_append_hint(errp
, "Try smaller maxmem?\n");
1512 } else if (rc
> 0) {
1513 /* kernel-side HPT allocated */
1516 "Requested order %d HPT, but kernel allocated order %ld",
1518 error_append_hint(errp
, "Try smaller maxmem?\n");
1522 spapr
->htab_shift
= shift
;
1525 /* kernel-side HPT not needed, allocate in userspace instead */
1526 size_t size
= 1ULL << shift
;
1529 spapr
->htab
= qemu_memalign(size
, size
);
1530 memset(spapr
->htab
, 0, size
);
1531 spapr
->htab_shift
= shift
;
1533 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1534 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1537 /* We're setting up a hash table, so that means we're not radix */
1538 spapr
->patb_entry
= 0;
1539 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1543 void spapr_setup_hpt(SpaprMachineState
*spapr
)
1547 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
1548 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1550 uint64_t current_ram_size
;
1552 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1553 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1555 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1557 if (kvm_enabled()) {
1558 hwaddr vrma_limit
= kvmppc_vrma_limit(spapr
->htab_shift
);
1560 /* Check our RMA fits in the possible VRMA */
1561 if (vrma_limit
< spapr
->rma_size
) {
1562 error_report("Unable to create %" HWADDR_PRIu
1563 "MiB RMA (VRMA only allows %" HWADDR_PRIu
"MiB",
1564 spapr
->rma_size
/ MiB
, vrma_limit
/ MiB
);
1570 static void spapr_machine_reset(MachineState
*machine
)
1572 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1573 PowerPCCPU
*first_ppc_cpu
;
1578 pef_kvm_reset(machine
->cgs
, &error_fatal
);
1579 spapr_caps_apply(spapr
);
1581 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1582 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1583 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1584 spapr
->max_compat_pvr
)) {
1586 * If using KVM with radix mode available, VCPUs can be started
1587 * without a HPT because KVM will start them in radix mode.
1588 * Set the GR bit in PATE so that we know there is no HPT.
1590 spapr
->patb_entry
= PATE1_GR
;
1591 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1593 spapr_setup_hpt(spapr
);
1596 qemu_devices_reset();
1598 spapr_ovec_cleanup(spapr
->ov5_cas
);
1599 spapr
->ov5_cas
= spapr_ovec_new();
1601 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1604 * This is fixing some of the default configuration of the XIVE
1605 * devices. To be called after the reset of the machine devices.
1607 spapr_irq_reset(spapr
, &error_fatal
);
1610 * There is no CAS under qtest. Simulate one to please the code that
1611 * depends on spapr->ov5_cas. This is especially needed to test device
1612 * unplug, so we do that before resetting the DRCs.
1614 if (qtest_enabled()) {
1615 spapr_ovec_cleanup(spapr
->ov5_cas
);
1616 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1619 /* DRC reset may cause a device to be unplugged. This will cause troubles
1620 * if this device is used by another device (eg, a running vhost backend
1621 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1622 * situations, we reset DRCs after all devices have been reset.
1624 spapr_drc_reset_all(spapr
);
1626 spapr_clear_pending_events(spapr
);
1629 * We place the device tree and RTAS just below either the top of the RMA,
1630 * or just below 2GB, whichever is lower, so that it can be
1631 * processed with 32-bit real mode code if necessary
1633 fdt_addr
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FDT_MAX_SIZE
;
1635 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1639 /* Should only fail if we've built a corrupted tree */
1643 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1644 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1645 g_free(spapr
->fdt_blob
);
1646 spapr
->fdt_size
= fdt_totalsize(fdt
);
1647 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1648 spapr
->fdt_blob
= fdt
;
1650 /* Set up the entry state */
1651 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, 0, fdt_addr
, 0);
1652 first_ppc_cpu
->env
.gpr
[5] = 0;
1654 spapr
->fwnmi_system_reset_addr
= -1;
1655 spapr
->fwnmi_machine_check_addr
= -1;
1656 spapr
->fwnmi_machine_check_interlock
= -1;
1658 /* Signal all vCPUs waiting on this condition */
1659 qemu_cond_broadcast(&spapr
->fwnmi_machine_check_interlock_cond
);
1661 migrate_del_blocker(spapr
->fwnmi_migration_blocker
);
1664 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1666 DeviceState
*dev
= qdev_new("spapr-nvram");
1667 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1670 qdev_prop_set_drive_err(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1674 qdev_realize_and_unref(dev
, &spapr
->vio_bus
->bus
, &error_fatal
);
1676 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1679 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1681 object_initialize_child_with_props(OBJECT(spapr
), "rtc", &spapr
->rtc
,
1682 sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1683 &error_fatal
, NULL
);
1684 qdev_realize(DEVICE(&spapr
->rtc
), NULL
, &error_fatal
);
1685 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1689 /* Returns whether we want to use VGA or not */
1690 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1692 switch (vga_interface_type
) {
1700 return pci_vga_init(pci_bus
) != NULL
;
1703 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1708 static int spapr_pre_load(void *opaque
)
1712 rc
= spapr_caps_pre_load(opaque
);
1720 static int spapr_post_load(void *opaque
, int version_id
)
1722 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1725 err
= spapr_caps_post_migration(spapr
);
1731 * In earlier versions, there was no separate qdev for the PAPR
1732 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1733 * So when migrating from those versions, poke the incoming offset
1734 * value into the RTC device
1736 if (version_id
< 3) {
1737 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1743 if (kvm_enabled() && spapr
->patb_entry
) {
1744 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1745 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1746 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1749 * Update LPCR:HR and UPRT as they may not be set properly in
1752 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1753 LPCR_HR
| LPCR_UPRT
);
1755 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1757 error_report("Process table config unsupported by the host");
1762 err
= spapr_irq_post_load(spapr
, version_id
);
1770 static int spapr_pre_save(void *opaque
)
1774 rc
= spapr_caps_pre_save(opaque
);
1782 static bool version_before_3(void *opaque
, int version_id
)
1784 return version_id
< 3;
1787 static bool spapr_pending_events_needed(void *opaque
)
1789 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1790 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1793 static const VMStateDescription vmstate_spapr_event_entry
= {
1794 .name
= "spapr_event_log_entry",
1796 .minimum_version_id
= 1,
1797 .fields
= (VMStateField
[]) {
1798 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1799 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1800 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1801 NULL
, extended_length
),
1802 VMSTATE_END_OF_LIST()
1806 static const VMStateDescription vmstate_spapr_pending_events
= {
1807 .name
= "spapr_pending_events",
1809 .minimum_version_id
= 1,
1810 .needed
= spapr_pending_events_needed
,
1811 .fields
= (VMStateField
[]) {
1812 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1813 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1814 VMSTATE_END_OF_LIST()
1818 static bool spapr_ov5_cas_needed(void *opaque
)
1820 SpaprMachineState
*spapr
= opaque
;
1821 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1824 /* Prior to the introduction of SpaprOptionVector, we had two option
1825 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1826 * Both of these options encode machine topology into the device-tree
1827 * in such a way that the now-booted OS should still be able to interact
1828 * appropriately with QEMU regardless of what options were actually
1829 * negotiatied on the source side.
1831 * As such, we can avoid migrating the CAS-negotiated options if these
1832 * are the only options available on the current machine/platform.
1833 * Since these are the only options available for pseries-2.7 and
1834 * earlier, this allows us to maintain old->new/new->old migration
1837 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1838 * via default pseries-2.8 machines and explicit command-line parameters.
1839 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1840 * of the actual CAS-negotiated values to continue working properly. For
1841 * example, availability of memory unplug depends on knowing whether
1842 * OV5_HP_EVT was negotiated via CAS.
1844 * Thus, for any cases where the set of available CAS-negotiatable
1845 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1846 * include the CAS-negotiated options in the migration stream, unless
1847 * if they affect boot time behaviour only.
1849 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1850 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1851 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1853 /* We need extra information if we have any bits outside the mask
1855 cas_needed
= !spapr_ovec_subset(spapr
->ov5
, ov5_mask
);
1857 spapr_ovec_cleanup(ov5_mask
);
1862 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1863 .name
= "spapr_option_vector_ov5_cas",
1865 .minimum_version_id
= 1,
1866 .needed
= spapr_ov5_cas_needed
,
1867 .fields
= (VMStateField
[]) {
1868 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1869 vmstate_spapr_ovec
, SpaprOptionVector
),
1870 VMSTATE_END_OF_LIST()
1874 static bool spapr_patb_entry_needed(void *opaque
)
1876 SpaprMachineState
*spapr
= opaque
;
1878 return !!spapr
->patb_entry
;
1881 static const VMStateDescription vmstate_spapr_patb_entry
= {
1882 .name
= "spapr_patb_entry",
1884 .minimum_version_id
= 1,
1885 .needed
= spapr_patb_entry_needed
,
1886 .fields
= (VMStateField
[]) {
1887 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1888 VMSTATE_END_OF_LIST()
1892 static bool spapr_irq_map_needed(void *opaque
)
1894 SpaprMachineState
*spapr
= opaque
;
1896 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1899 static const VMStateDescription vmstate_spapr_irq_map
= {
1900 .name
= "spapr_irq_map",
1902 .minimum_version_id
= 1,
1903 .needed
= spapr_irq_map_needed
,
1904 .fields
= (VMStateField
[]) {
1905 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1906 VMSTATE_END_OF_LIST()
1910 static bool spapr_dtb_needed(void *opaque
)
1912 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1914 return smc
->update_dt_enabled
;
1917 static int spapr_dtb_pre_load(void *opaque
)
1919 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1921 g_free(spapr
->fdt_blob
);
1922 spapr
->fdt_blob
= NULL
;
1923 spapr
->fdt_size
= 0;
1928 static const VMStateDescription vmstate_spapr_dtb
= {
1929 .name
= "spapr_dtb",
1931 .minimum_version_id
= 1,
1932 .needed
= spapr_dtb_needed
,
1933 .pre_load
= spapr_dtb_pre_load
,
1934 .fields
= (VMStateField
[]) {
1935 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
1936 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
1937 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
1939 VMSTATE_END_OF_LIST()
1943 static bool spapr_fwnmi_needed(void *opaque
)
1945 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1947 return spapr
->fwnmi_machine_check_addr
!= -1;
1950 static int spapr_fwnmi_pre_save(void *opaque
)
1952 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1955 * Check if machine check handling is in progress and print a
1958 if (spapr
->fwnmi_machine_check_interlock
!= -1) {
1959 warn_report("A machine check is being handled during migration. The"
1960 "handler may run and log hardware error on the destination");
1966 static const VMStateDescription vmstate_spapr_fwnmi
= {
1967 .name
= "spapr_fwnmi",
1969 .minimum_version_id
= 1,
1970 .needed
= spapr_fwnmi_needed
,
1971 .pre_save
= spapr_fwnmi_pre_save
,
1972 .fields
= (VMStateField
[]) {
1973 VMSTATE_UINT64(fwnmi_system_reset_addr
, SpaprMachineState
),
1974 VMSTATE_UINT64(fwnmi_machine_check_addr
, SpaprMachineState
),
1975 VMSTATE_INT32(fwnmi_machine_check_interlock
, SpaprMachineState
),
1976 VMSTATE_END_OF_LIST()
1980 static const VMStateDescription vmstate_spapr
= {
1983 .minimum_version_id
= 1,
1984 .pre_load
= spapr_pre_load
,
1985 .post_load
= spapr_post_load
,
1986 .pre_save
= spapr_pre_save
,
1987 .fields
= (VMStateField
[]) {
1988 /* used to be @next_irq */
1989 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1992 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
1994 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
1995 VMSTATE_END_OF_LIST()
1997 .subsections
= (const VMStateDescription
*[]) {
1998 &vmstate_spapr_ov5_cas
,
1999 &vmstate_spapr_patb_entry
,
2000 &vmstate_spapr_pending_events
,
2001 &vmstate_spapr_cap_htm
,
2002 &vmstate_spapr_cap_vsx
,
2003 &vmstate_spapr_cap_dfp
,
2004 &vmstate_spapr_cap_cfpc
,
2005 &vmstate_spapr_cap_sbbc
,
2006 &vmstate_spapr_cap_ibs
,
2007 &vmstate_spapr_cap_hpt_maxpagesize
,
2008 &vmstate_spapr_irq_map
,
2009 &vmstate_spapr_cap_nested_kvm_hv
,
2011 &vmstate_spapr_cap_large_decr
,
2012 &vmstate_spapr_cap_ccf_assist
,
2013 &vmstate_spapr_cap_fwnmi
,
2014 &vmstate_spapr_fwnmi
,
2019 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2021 SpaprMachineState
*spapr
= opaque
;
2023 /* "Iteration" header */
2024 if (!spapr
->htab_shift
) {
2025 qemu_put_be32(f
, -1);
2027 qemu_put_be32(f
, spapr
->htab_shift
);
2031 spapr
->htab_save_index
= 0;
2032 spapr
->htab_first_pass
= true;
2034 if (spapr
->htab_shift
) {
2035 assert(kvm_enabled());
2043 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2044 int chunkstart
, int n_valid
, int n_invalid
)
2046 qemu_put_be32(f
, chunkstart
);
2047 qemu_put_be16(f
, n_valid
);
2048 qemu_put_be16(f
, n_invalid
);
2049 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2050 HASH_PTE_SIZE_64
* n_valid
);
2053 static void htab_save_end_marker(QEMUFile
*f
)
2055 qemu_put_be32(f
, 0);
2056 qemu_put_be16(f
, 0);
2057 qemu_put_be16(f
, 0);
2060 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2063 bool has_timeout
= max_ns
!= -1;
2064 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2065 int index
= spapr
->htab_save_index
;
2066 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2068 assert(spapr
->htab_first_pass
);
2073 /* Consume invalid HPTEs */
2074 while ((index
< htabslots
)
2075 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2076 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2080 /* Consume valid HPTEs */
2082 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2083 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2084 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2088 if (index
> chunkstart
) {
2089 int n_valid
= index
- chunkstart
;
2091 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2094 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2098 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2100 if (index
>= htabslots
) {
2101 assert(index
== htabslots
);
2103 spapr
->htab_first_pass
= false;
2105 spapr
->htab_save_index
= index
;
2108 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2111 bool final
= max_ns
< 0;
2112 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2113 int examined
= 0, sent
= 0;
2114 int index
= spapr
->htab_save_index
;
2115 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2117 assert(!spapr
->htab_first_pass
);
2120 int chunkstart
, invalidstart
;
2122 /* Consume non-dirty HPTEs */
2123 while ((index
< htabslots
)
2124 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2130 /* Consume valid dirty HPTEs */
2131 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2132 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2133 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2134 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2139 invalidstart
= index
;
2140 /* Consume invalid dirty HPTEs */
2141 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2142 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2143 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2144 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2149 if (index
> chunkstart
) {
2150 int n_valid
= invalidstart
- chunkstart
;
2151 int n_invalid
= index
- invalidstart
;
2153 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2154 sent
+= index
- chunkstart
;
2156 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2161 if (examined
>= htabslots
) {
2165 if (index
>= htabslots
) {
2166 assert(index
== htabslots
);
2169 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2171 if (index
>= htabslots
) {
2172 assert(index
== htabslots
);
2176 spapr
->htab_save_index
= index
;
2178 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2181 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2182 #define MAX_KVM_BUF_SIZE 2048
2184 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2186 SpaprMachineState
*spapr
= opaque
;
2190 /* Iteration header */
2191 if (!spapr
->htab_shift
) {
2192 qemu_put_be32(f
, -1);
2195 qemu_put_be32(f
, 0);
2199 assert(kvm_enabled());
2201 fd
= get_htab_fd(spapr
);
2206 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2210 } else if (spapr
->htab_first_pass
) {
2211 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2213 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2216 htab_save_end_marker(f
);
2221 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2223 SpaprMachineState
*spapr
= opaque
;
2226 /* Iteration header */
2227 if (!spapr
->htab_shift
) {
2228 qemu_put_be32(f
, -1);
2231 qemu_put_be32(f
, 0);
2237 assert(kvm_enabled());
2239 fd
= get_htab_fd(spapr
);
2244 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2249 if (spapr
->htab_first_pass
) {
2250 htab_save_first_pass(f
, spapr
, -1);
2252 htab_save_later_pass(f
, spapr
, -1);
2256 htab_save_end_marker(f
);
2261 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2263 SpaprMachineState
*spapr
= opaque
;
2264 uint32_t section_hdr
;
2266 Error
*local_err
= NULL
;
2268 if (version_id
< 1 || version_id
> 1) {
2269 error_report("htab_load() bad version");
2273 section_hdr
= qemu_get_be32(f
);
2275 if (section_hdr
== -1) {
2276 spapr_free_hpt(spapr
);
2283 /* First section gives the htab size */
2284 ret
= spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2286 error_report_err(local_err
);
2293 assert(kvm_enabled());
2295 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2297 error_report_err(local_err
);
2304 uint16_t n_valid
, n_invalid
;
2306 index
= qemu_get_be32(f
);
2307 n_valid
= qemu_get_be16(f
);
2308 n_invalid
= qemu_get_be16(f
);
2310 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2315 if ((index
+ n_valid
+ n_invalid
) >
2316 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2317 /* Bad index in stream */
2319 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2320 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2326 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2327 HASH_PTE_SIZE_64
* n_valid
);
2330 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2331 HASH_PTE_SIZE_64
* n_invalid
);
2338 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
,
2341 error_report_err(local_err
);
2355 static void htab_save_cleanup(void *opaque
)
2357 SpaprMachineState
*spapr
= opaque
;
2359 close_htab_fd(spapr
);
2362 static SaveVMHandlers savevm_htab_handlers
= {
2363 .save_setup
= htab_save_setup
,
2364 .save_live_iterate
= htab_save_iterate
,
2365 .save_live_complete_precopy
= htab_save_complete
,
2366 .save_cleanup
= htab_save_cleanup
,
2367 .load_state
= htab_load
,
2370 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2373 MachineState
*machine
= MACHINE(opaque
);
2374 machine
->boot_order
= g_strdup(boot_device
);
2377 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2379 MachineState
*machine
= MACHINE(spapr
);
2380 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2381 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2384 for (i
= 0; i
< nr_lmbs
; i
++) {
2387 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2388 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2394 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2395 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2396 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2398 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2402 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2403 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2404 " is not aligned to %" PRIu64
" MiB",
2406 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2410 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2411 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2412 " is not aligned to %" PRIu64
" MiB",
2414 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2418 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2419 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2421 "Node %d memory size 0x%" PRIx64
2422 " is not aligned to %" PRIu64
" MiB",
2423 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2424 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2430 /* find cpu slot in machine->possible_cpus by core_id */
2431 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2433 int index
= id
/ ms
->smp
.threads
;
2435 if (index
>= ms
->possible_cpus
->len
) {
2441 return &ms
->possible_cpus
->cpus
[index
];
2444 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2446 MachineState
*ms
= MACHINE(spapr
);
2447 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2448 Error
*local_err
= NULL
;
2449 bool vsmt_user
= !!spapr
->vsmt
;
2450 int kvm_smt
= kvmppc_smt_threads();
2452 unsigned int smp_threads
= ms
->smp
.threads
;
2454 if (!kvm_enabled() && (smp_threads
> 1)) {
2455 error_setg(errp
, "TCG cannot support more than 1 thread/core "
2456 "on a pseries machine");
2459 if (!is_power_of_2(smp_threads
)) {
2460 error_setg(errp
, "Cannot support %d threads/core on a pseries "
2461 "machine because it must be a power of 2", smp_threads
);
2465 /* Detemine the VSMT mode to use: */
2467 if (spapr
->vsmt
< smp_threads
) {
2468 error_setg(errp
, "Cannot support VSMT mode %d"
2469 " because it must be >= threads/core (%d)",
2470 spapr
->vsmt
, smp_threads
);
2473 /* In this case, spapr->vsmt has been set by the command line */
2474 } else if (!smc
->smp_threads_vsmt
) {
2476 * Default VSMT value is tricky, because we need it to be as
2477 * consistent as possible (for migration), but this requires
2478 * changing it for at least some existing cases. We pick 8 as
2479 * the value that we'd get with KVM on POWER8, the
2480 * overwhelmingly common case in production systems.
2482 spapr
->vsmt
= MAX(8, smp_threads
);
2484 spapr
->vsmt
= smp_threads
;
2487 /* KVM: If necessary, set the SMT mode: */
2488 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2489 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2491 /* Looks like KVM isn't able to change VSMT mode */
2492 error_setg(&local_err
,
2493 "Failed to set KVM's VSMT mode to %d (errno %d)",
2495 /* We can live with that if the default one is big enough
2496 * for the number of threads, and a submultiple of the one
2497 * we want. In this case we'll waste some vcpu ids, but
2498 * behaviour will be correct */
2499 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2500 warn_report_err(local_err
);
2503 error_append_hint(&local_err
,
2504 "On PPC, a VM with %d threads/core"
2505 " on a host with %d threads/core"
2506 " requires the use of VSMT mode %d.\n",
2507 smp_threads
, kvm_smt
, spapr
->vsmt
);
2509 kvmppc_error_append_smt_possible_hint(&local_err
);
2510 error_propagate(errp
, local_err
);
2514 /* else TCG: nothing to do currently */
2517 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2519 MachineState
*machine
= MACHINE(spapr
);
2520 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2521 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2522 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2523 const CPUArchIdList
*possible_cpus
;
2524 unsigned int smp_cpus
= machine
->smp
.cpus
;
2525 unsigned int smp_threads
= machine
->smp
.threads
;
2526 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2527 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2530 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2531 if (mc
->has_hotpluggable_cpus
) {
2532 if (smp_cpus
% smp_threads
) {
2533 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2534 smp_cpus
, smp_threads
);
2537 if (max_cpus
% smp_threads
) {
2538 error_report("max_cpus (%u) must be multiple of threads (%u)",
2539 max_cpus
, smp_threads
);
2543 if (max_cpus
!= smp_cpus
) {
2544 error_report("This machine version does not support CPU hotplug");
2547 boot_cores_nr
= possible_cpus
->len
;
2550 if (smc
->pre_2_10_has_unused_icps
) {
2553 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2554 /* Dummy entries get deregistered when real ICPState objects
2555 * are registered during CPU core hotplug.
2557 pre_2_10_vmstate_register_dummy_icp(i
);
2561 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2562 int core_id
= i
* smp_threads
;
2564 if (mc
->has_hotpluggable_cpus
) {
2565 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2566 spapr_vcpu_id(spapr
, core_id
));
2569 if (i
< boot_cores_nr
) {
2570 Object
*core
= object_new(type
);
2571 int nr_threads
= smp_threads
;
2573 /* Handle the partially filled core for older machine types */
2574 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2575 nr_threads
= smp_cpus
- i
* smp_threads
;
2578 object_property_set_int(core
, "nr-threads", nr_threads
,
2580 object_property_set_int(core
, CPU_CORE_PROP_CORE_ID
, core_id
,
2582 qdev_realize(DEVICE(core
), NULL
, &error_fatal
);
2589 static PCIHostState
*spapr_create_default_phb(void)
2593 dev
= qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE
);
2594 qdev_prop_set_uint32(dev
, "index", 0);
2595 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
2597 return PCI_HOST_BRIDGE(dev
);
2600 static hwaddr
spapr_rma_size(SpaprMachineState
*spapr
, Error
**errp
)
2602 MachineState
*machine
= MACHINE(spapr
);
2603 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2604 hwaddr rma_size
= machine
->ram_size
;
2605 hwaddr node0_size
= spapr_node0_size(machine
);
2607 /* RMA has to fit in the first NUMA node */
2608 rma_size
= MIN(rma_size
, node0_size
);
2611 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2614 rma_size
= MIN(rma_size
, 1 * TiB
);
2617 * Clamp the RMA size based on machine type. This is for
2618 * migration compatibility with older qemu versions, which limited
2619 * the RMA size for complicated and mostly bad reasons.
2621 if (smc
->rma_limit
) {
2622 rma_size
= MIN(rma_size
, smc
->rma_limit
);
2625 if (rma_size
< MIN_RMA_SLOF
) {
2627 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2628 "ldMiB guest RMA (Real Mode Area memory)",
2629 MIN_RMA_SLOF
/ MiB
);
2636 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState
*spapr
)
2638 MachineState
*machine
= MACHINE(spapr
);
2641 for (i
= 0; i
< machine
->ram_slots
; i
++) {
2642 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_PMEM
, i
);
2646 /* pSeries LPAR / sPAPR hardware init */
2647 static void spapr_machine_init(MachineState
*machine
)
2649 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2650 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2651 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2652 const char *bios_name
= machine
->firmware
?: FW_FILE_NAME
;
2653 const char *kernel_filename
= machine
->kernel_filename
;
2654 const char *initrd_filename
= machine
->initrd_filename
;
2657 MemoryRegion
*sysmem
= get_system_memory();
2658 long load_limit
, fw_size
;
2660 Error
*resize_hpt_err
= NULL
;
2663 * if Secure VM (PEF) support is configured, then initialize it
2665 pef_kvm_init(machine
->cgs
, &error_fatal
);
2667 msi_nonbroken
= true;
2669 QLIST_INIT(&spapr
->phbs
);
2670 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2672 /* Determine capabilities to run with */
2673 spapr_caps_init(spapr
);
2675 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2676 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2678 * If the user explicitly requested a mode we should either
2679 * supply it, or fail completely (which we do below). But if
2680 * it's not set explicitly, we reset our mode to something
2683 if (resize_hpt_err
) {
2684 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2685 error_free(resize_hpt_err
);
2686 resize_hpt_err
= NULL
;
2688 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2692 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2694 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2696 * User requested HPT resize, but this host can't supply it. Bail out
2698 error_report_err(resize_hpt_err
);
2701 error_free(resize_hpt_err
);
2703 spapr
->rma_size
= spapr_rma_size(spapr
, &error_fatal
);
2705 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2706 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2709 * VSMT must be set in order to be able to compute VCPU ids, ie to
2710 * call spapr_max_server_number() or spapr_vcpu_id().
2712 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2714 /* Set up Interrupt Controller before we create the VCPUs */
2715 spapr_irq_init(spapr
, &error_fatal
);
2717 /* Set up containers for ibm,client-architecture-support negotiated options
2719 spapr
->ov5
= spapr_ovec_new();
2720 spapr
->ov5_cas
= spapr_ovec_new();
2722 if (smc
->dr_lmb_enabled
) {
2723 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2724 spapr_validate_node_memory(machine
, &error_fatal
);
2727 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2729 /* advertise support for dedicated HP event source to guests */
2730 if (spapr
->use_hotplug_event_source
) {
2731 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2734 /* advertise support for HPT resizing */
2735 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2736 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2739 /* advertise support for ibm,dyamic-memory-v2 */
2740 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2742 /* advertise XIVE on POWER9 machines */
2743 if (spapr
->irq
->xive
) {
2744 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2748 spapr_init_cpus(spapr
);
2751 * check we don't have a memory-less/cpu-less NUMA node
2752 * Firmware relies on the existing memory/cpu topology to provide the
2753 * NUMA topology to the kernel.
2754 * And the linux kernel needs to know the NUMA topology at start
2755 * to be able to hotplug CPUs later.
2757 if (machine
->numa_state
->num_nodes
) {
2758 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
2759 /* check for memory-less node */
2760 if (machine
->numa_state
->nodes
[i
].node_mem
== 0) {
2763 /* check for cpu-less node */
2765 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2766 if (cpu
->node_id
== i
) {
2771 /* memory-less and cpu-less node */
2774 "Memory-less/cpu-less nodes are not supported (node %d)",
2784 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2785 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2786 * called from vPHB reset handler so we initialize the counter here.
2787 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2788 * must be equally distant from any other node.
2789 * The final value of spapr->gpu_numa_id is going to be written to
2790 * max-associativity-domains in spapr_build_fdt().
2792 spapr
->gpu_numa_id
= MAX(1, machine
->numa_state
->num_nodes
);
2794 /* Init numa_assoc_array */
2795 spapr_numa_associativity_init(spapr
, machine
);
2797 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2798 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2799 spapr
->max_compat_pvr
)) {
2800 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_300
);
2801 /* KVM and TCG always allow GTSE with radix... */
2802 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2804 /* ... but not with hash (currently). */
2806 if (kvm_enabled()) {
2807 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2808 kvmppc_enable_logical_ci_hcalls();
2809 kvmppc_enable_set_mode_hcall();
2811 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2812 kvmppc_enable_clear_ref_mod_hcalls();
2814 /* Enable H_PAGE_INIT */
2815 kvmppc_enable_h_page_init();
2819 memory_region_add_subregion(sysmem
, 0, machine
->ram
);
2821 /* always allocate the device memory information */
2822 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2824 /* initialize hotplug memory address space */
2825 if (machine
->ram_size
< machine
->maxram_size
) {
2826 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2828 * Limit the number of hotpluggable memory slots to half the number
2829 * slots that KVM supports, leaving the other half for PCI and other
2830 * devices. However ensure that number of slots doesn't drop below 32.
2832 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2833 SPAPR_MAX_RAM_SLOTS
;
2835 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2836 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2838 if (machine
->ram_slots
> max_memslots
) {
2839 error_report("Specified number of memory slots %"
2840 PRIu64
" exceeds max supported %d",
2841 machine
->ram_slots
, max_memslots
);
2845 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2846 SPAPR_DEVICE_MEM_ALIGN
);
2847 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2848 "device-memory", device_mem_size
);
2849 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2850 &machine
->device_memory
->mr
);
2853 if (smc
->dr_lmb_enabled
) {
2854 spapr_create_lmb_dr_connectors(spapr
);
2857 if (spapr_get_cap(spapr
, SPAPR_CAP_FWNMI
) == SPAPR_CAP_ON
) {
2858 /* Create the error string for live migration blocker */
2859 error_setg(&spapr
->fwnmi_migration_blocker
,
2860 "A machine check is being handled during migration. The handler"
2861 "may run and log hardware error on the destination");
2864 if (mc
->nvdimm_supported
) {
2865 spapr_create_nvdimm_dr_connectors(spapr
);
2868 /* Set up RTAS event infrastructure */
2869 spapr_events_init(spapr
);
2871 /* Set up the RTC RTAS interfaces */
2872 spapr_rtc_create(spapr
);
2874 /* Set up VIO bus */
2875 spapr
->vio_bus
= spapr_vio_bus_init();
2877 for (i
= 0; serial_hd(i
); i
++) {
2878 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2881 /* We always have at least the nvram device on VIO */
2882 spapr_create_nvram(spapr
);
2885 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2886 * connectors (described in root DT node's "ibm,drc-types" property)
2887 * are pre-initialized here. additional child connectors (such as
2888 * connectors for a PHBs PCI slots) are added as needed during their
2889 * parent's realization.
2891 if (smc
->dr_phb_enabled
) {
2892 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2893 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2898 spapr_pci_rtas_init();
2900 phb
= spapr_create_default_phb();
2902 for (i
= 0; i
< nb_nics
; i
++) {
2903 NICInfo
*nd
= &nd_table
[i
];
2906 nd
->model
= g_strdup("spapr-vlan");
2909 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2910 g_str_equal(nd
->model
, "ibmveth")) {
2911 spapr_vlan_create(spapr
->vio_bus
, nd
);
2913 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2917 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2918 spapr_vscsi_create(spapr
->vio_bus
);
2922 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2923 spapr
->has_graphics
= true;
2924 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2928 if (smc
->use_ohci_by_default
) {
2929 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2931 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2934 if (spapr
->has_graphics
) {
2935 USBBus
*usb_bus
= usb_bus_find(-1);
2937 usb_create_simple(usb_bus
, "usb-kbd");
2938 usb_create_simple(usb_bus
, "usb-mouse");
2942 if (kernel_filename
) {
2943 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2944 translate_kernel_address
, spapr
,
2945 NULL
, NULL
, NULL
, NULL
, 1,
2946 PPC_ELF_MACHINE
, 0, 0);
2947 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2948 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2949 translate_kernel_address
, spapr
,
2950 NULL
, NULL
, NULL
, NULL
, 0,
2951 PPC_ELF_MACHINE
, 0, 0);
2952 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2954 if (spapr
->kernel_size
< 0) {
2955 error_report("error loading %s: %s", kernel_filename
,
2956 load_elf_strerror(spapr
->kernel_size
));
2961 if (initrd_filename
) {
2962 /* Try to locate the initrd in the gap between the kernel
2963 * and the firmware. Add a bit of space just in case
2965 spapr
->initrd_base
= (spapr
->kernel_addr
+ spapr
->kernel_size
2966 + 0x1ffff) & ~0xffff;
2967 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2970 - spapr
->initrd_base
);
2971 if (spapr
->initrd_size
< 0) {
2972 error_report("could not load initial ram disk '%s'",
2979 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2981 error_report("Could not find LPAR firmware '%s'", bios_name
);
2984 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2986 error_report("Could not load LPAR firmware '%s'", filename
);
2991 /* FIXME: Should register things through the MachineState's qdev
2992 * interface, this is a legacy from the sPAPREnvironment structure
2993 * which predated MachineState but had a similar function */
2994 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2995 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY
, 1,
2996 &savevm_htab_handlers
, spapr
);
2998 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
));
3000 qemu_register_boot_set(spapr_boot_set
, spapr
);
3003 * Nothing needs to be done to resume a suspended guest because
3004 * suspending does not change the machine state, so no need for
3005 * a ->wakeup method.
3007 qemu_register_wakeup_support();
3009 if (kvm_enabled()) {
3010 /* to stop and start vmclock */
3011 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
3014 kvmppc_spapr_enable_inkernel_multitce();
3017 qemu_cond_init(&spapr
->fwnmi_machine_check_interlock_cond
);
3020 #define DEFAULT_KVM_TYPE "auto"
3021 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3024 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3025 * accomodate the 'HV' and 'PV' formats that exists in the
3026 * wild. The 'auto' mode is being introduced already as
3027 * lower-case, thus we don't need to bother checking for
3030 if (!vm_type
|| !strcmp(vm_type
, DEFAULT_KVM_TYPE
)) {
3034 if (!g_ascii_strcasecmp(vm_type
, "hv")) {
3038 if (!g_ascii_strcasecmp(vm_type
, "pr")) {
3042 error_report("Unknown kvm-type specified '%s'", vm_type
);
3047 * Implementation of an interface to adjust firmware path
3048 * for the bootindex property handling.
3050 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3053 #define CAST(type, obj, name) \
3054 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3055 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3056 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3057 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3060 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3061 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3062 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3066 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3067 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3068 * 0x8000 | (target << 8) | (bus << 5) | lun
3069 * (see the "Logical unit addressing format" table in SAM5)
3071 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3072 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3073 (uint64_t)id
<< 48);
3074 } else if (virtio
) {
3076 * We use SRP luns of the form 01000000 | (target << 8) | lun
3077 * in the top 32 bits of the 64-bit LUN
3078 * Note: the quote above is from SLOF and it is wrong,
3079 * the actual binding is:
3080 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3082 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3083 if (d
->lun
>= 256) {
3084 /* Use the LUN "flat space addressing method" */
3087 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3088 (uint64_t)id
<< 32);
3091 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3092 * in the top 32 bits of the 64-bit LUN
3094 unsigned usb_port
= atoi(usb
->port
->path
);
3095 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3096 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3097 (uint64_t)id
<< 32);
3102 * SLOF probes the USB devices, and if it recognizes that the device is a
3103 * storage device, it changes its name to "storage" instead of "usb-host",
3104 * and additionally adds a child node for the SCSI LUN, so the correct
3105 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3107 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3108 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3109 if (usb_host_dev_is_scsi_storage(usbdev
)) {
3110 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3115 /* Replace "pci" with "pci@800000020000000" */
3116 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3120 /* Same logic as virtio above */
3121 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3122 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3125 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3126 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3127 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3128 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3134 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3136 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3138 return g_strdup(spapr
->kvm_type
);
3141 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3143 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3145 g_free(spapr
->kvm_type
);
3146 spapr
->kvm_type
= g_strdup(value
);
3149 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3151 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3153 return spapr
->use_hotplug_event_source
;
3156 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3159 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3161 spapr
->use_hotplug_event_source
= value
;
3164 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3169 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3171 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3173 switch (spapr
->resize_hpt
) {
3174 case SPAPR_RESIZE_HPT_DEFAULT
:
3175 return g_strdup("default");
3176 case SPAPR_RESIZE_HPT_DISABLED
:
3177 return g_strdup("disabled");
3178 case SPAPR_RESIZE_HPT_ENABLED
:
3179 return g_strdup("enabled");
3180 case SPAPR_RESIZE_HPT_REQUIRED
:
3181 return g_strdup("required");
3183 g_assert_not_reached();
3186 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3188 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3190 if (strcmp(value
, "default") == 0) {
3191 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3192 } else if (strcmp(value
, "disabled") == 0) {
3193 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3194 } else if (strcmp(value
, "enabled") == 0) {
3195 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3196 } else if (strcmp(value
, "required") == 0) {
3197 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3199 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3203 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3205 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3207 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3208 return g_strdup("legacy");
3209 } else if (spapr
->irq
== &spapr_irq_xics
) {
3210 return g_strdup("xics");
3211 } else if (spapr
->irq
== &spapr_irq_xive
) {
3212 return g_strdup("xive");
3213 } else if (spapr
->irq
== &spapr_irq_dual
) {
3214 return g_strdup("dual");
3216 g_assert_not_reached();
3219 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3221 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3223 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3224 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3228 /* The legacy IRQ backend can not be set */
3229 if (strcmp(value
, "xics") == 0) {
3230 spapr
->irq
= &spapr_irq_xics
;
3231 } else if (strcmp(value
, "xive") == 0) {
3232 spapr
->irq
= &spapr_irq_xive
;
3233 } else if (strcmp(value
, "dual") == 0) {
3234 spapr
->irq
= &spapr_irq_dual
;
3236 error_setg(errp
, "Bad value for \"ic-mode\" property");
3240 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3242 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3244 return g_strdup(spapr
->host_model
);
3247 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3249 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3251 g_free(spapr
->host_model
);
3252 spapr
->host_model
= g_strdup(value
);
3255 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3257 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3259 return g_strdup(spapr
->host_serial
);
3262 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3264 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3266 g_free(spapr
->host_serial
);
3267 spapr
->host_serial
= g_strdup(value
);
3270 static void spapr_instance_init(Object
*obj
)
3272 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3273 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3274 MachineState
*ms
= MACHINE(spapr
);
3275 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
3278 * NVDIMM support went live in 5.1 without considering that, in
3279 * other archs, the user needs to enable NVDIMM support with the
3280 * 'nvdimm' machine option and the default behavior is NVDIMM
3281 * support disabled. It is too late to roll back to the standard
3282 * behavior without breaking 5.1 guests.
3284 if (mc
->nvdimm_supported
) {
3285 ms
->nvdimms_state
->is_enabled
= true;
3288 spapr
->htab_fd
= -1;
3289 spapr
->use_hotplug_event_source
= true;
3290 spapr
->kvm_type
= g_strdup(DEFAULT_KVM_TYPE
);
3291 object_property_add_str(obj
, "kvm-type",
3292 spapr_get_kvm_type
, spapr_set_kvm_type
);
3293 object_property_set_description(obj
, "kvm-type",
3294 "Specifies the KVM virtualization mode (auto,"
3295 " hv, pr). Defaults to 'auto'. This mode will use"
3296 " any available KVM module loaded in the host,"
3297 " where kvm_hv takes precedence if both kvm_hv and"
3298 " kvm_pr are loaded.");
3299 object_property_add_bool(obj
, "modern-hotplug-events",
3300 spapr_get_modern_hotplug_events
,
3301 spapr_set_modern_hotplug_events
);
3302 object_property_set_description(obj
, "modern-hotplug-events",
3303 "Use dedicated hotplug event mechanism in"
3304 " place of standard EPOW events when possible"
3305 " (required for memory hot-unplug support)");
3306 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3307 "Maximum permitted CPU compatibility mode");
3309 object_property_add_str(obj
, "resize-hpt",
3310 spapr_get_resize_hpt
, spapr_set_resize_hpt
);
3311 object_property_set_description(obj
, "resize-hpt",
3312 "Resizing of the Hash Page Table (enabled, disabled, required)");
3313 object_property_add_uint32_ptr(obj
, "vsmt",
3314 &spapr
->vsmt
, OBJ_PROP_FLAG_READWRITE
);
3315 object_property_set_description(obj
, "vsmt",
3316 "Virtual SMT: KVM behaves as if this were"
3317 " the host's SMT mode");
3319 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3320 spapr_get_msix_emulation
, NULL
);
3322 object_property_add_uint64_ptr(obj
, "kernel-addr",
3323 &spapr
->kernel_addr
, OBJ_PROP_FLAG_READWRITE
);
3324 object_property_set_description(obj
, "kernel-addr",
3325 stringify(KERNEL_LOAD_ADDR
)
3326 " for -kernel is the default");
3327 spapr
->kernel_addr
= KERNEL_LOAD_ADDR
;
3328 /* The machine class defines the default interrupt controller mode */
3329 spapr
->irq
= smc
->irq
;
3330 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3332 object_property_set_description(obj
, "ic-mode",
3333 "Specifies the interrupt controller mode (xics, xive, dual)");
3335 object_property_add_str(obj
, "host-model",
3336 spapr_get_host_model
, spapr_set_host_model
);
3337 object_property_set_description(obj
, "host-model",
3338 "Host model to advertise in guest device tree");
3339 object_property_add_str(obj
, "host-serial",
3340 spapr_get_host_serial
, spapr_set_host_serial
);
3341 object_property_set_description(obj
, "host-serial",
3342 "Host serial number to advertise in guest device tree");
3345 static void spapr_machine_finalizefn(Object
*obj
)
3347 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3349 g_free(spapr
->kvm_type
);
3352 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3354 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3355 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3356 CPUPPCState
*env
= &cpu
->env
;
3358 cpu_synchronize_state(cs
);
3359 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3360 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3361 uint64_t rtas_addr
, addr
;
3363 /* get rtas addr from fdt */
3364 rtas_addr
= spapr_get_rtas_addr();
3366 qemu_system_guest_panicked(NULL
);
3370 addr
= rtas_addr
+ RTAS_ERROR_LOG_MAX
+ cs
->cpu_index
* sizeof(uint64_t)*2;
3371 stq_be_phys(&address_space_memory
, addr
, env
->gpr
[3]);
3372 stq_be_phys(&address_space_memory
, addr
+ sizeof(uint64_t), 0);
3375 ppc_cpu_do_system_reset(cs
);
3376 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3377 env
->nip
= spapr
->fwnmi_system_reset_addr
;
3381 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3386 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3390 int spapr_lmb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3391 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3396 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3397 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3399 *fdt_start_offset
= spapr_dt_memory_node(spapr
, fdt
, node
, addr
,
3400 SPAPR_MEMORY_BLOCK_SIZE
);
3404 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3405 bool dedicated_hp_event_source
)
3408 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3410 uint64_t addr
= addr_start
;
3411 bool hotplugged
= spapr_drc_hotplugged(dev
);
3413 for (i
= 0; i
< nr_lmbs
; i
++) {
3414 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3415 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3419 * memory_device_get_free_addr() provided a range of free addresses
3420 * that doesn't overlap with any existing mapping at pre-plug. The
3421 * corresponding LMB DRCs are thus assumed to be all attachable.
3423 spapr_drc_attach(drc
, dev
);
3425 spapr_drc_reset(drc
);
3427 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3429 /* send hotplug notification to the
3430 * guest only in case of hotplugged memory
3433 if (dedicated_hp_event_source
) {
3434 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3435 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3437 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3439 spapr_drc_index(drc
));
3441 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3447 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3449 SpaprMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3450 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3451 uint64_t size
, addr
;
3453 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3455 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3457 pc_dimm_plug(dimm
, MACHINE(ms
));
3460 addr
= object_property_get_uint(OBJECT(dimm
),
3461 PC_DIMM_ADDR_PROP
, &error_abort
);
3462 spapr_add_lmbs(dev
, addr
, size
,
3463 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
));
3465 slot
= object_property_get_int(OBJECT(dimm
),
3466 PC_DIMM_SLOT_PROP
, &error_abort
);
3467 /* We should have valid slot number at this point */
3468 g_assert(slot
>= 0);
3469 spapr_add_nvdimm(dev
, slot
);
3473 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3476 const SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3477 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3478 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3479 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3480 Error
*local_err
= NULL
;
3485 if (!smc
->dr_lmb_enabled
) {
3486 error_setg(errp
, "Memory hotplug not supported for this machine");
3490 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3492 error_propagate(errp
, local_err
);
3497 if (!spapr_nvdimm_validate(hotplug_dev
, NVDIMM(dev
), size
, errp
)) {
3500 } else if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3501 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3502 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3506 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3508 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3509 if (!spapr_check_pagesize(spapr
, pagesize
, errp
)) {
3513 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3516 struct SpaprDimmState
{
3519 QTAILQ_ENTRY(SpaprDimmState
) next
;
3522 static SpaprDimmState
*spapr_pending_dimm_unplugs_find(SpaprMachineState
*s
,
3525 SpaprDimmState
*dimm_state
= NULL
;
3527 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3528 if (dimm_state
->dimm
== dimm
) {
3535 static SpaprDimmState
*spapr_pending_dimm_unplugs_add(SpaprMachineState
*spapr
,
3539 SpaprDimmState
*ds
= NULL
;
3542 * If this request is for a DIMM whose removal had failed earlier
3543 * (due to guest's refusal to remove the LMBs), we would have this
3544 * dimm already in the pending_dimm_unplugs list. In that
3545 * case don't add again.
3547 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3549 ds
= g_malloc0(sizeof(SpaprDimmState
));
3550 ds
->nr_lmbs
= nr_lmbs
;
3552 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3557 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState
*spapr
,
3558 SpaprDimmState
*dimm_state
)
3560 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3564 static SpaprDimmState
*spapr_recover_pending_dimm_state(SpaprMachineState
*ms
,
3568 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3570 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3571 uint32_t avail_lmbs
= 0;
3572 uint64_t addr_start
, addr
;
3575 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3579 for (i
= 0; i
< nr_lmbs
; i
++) {
3580 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3581 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3586 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3589 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3592 /* Callback to be called during DRC release. */
3593 void spapr_lmb_release(DeviceState
*dev
)
3595 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3596 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3597 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3599 /* This information will get lost if a migration occurs
3600 * during the unplug process. In this case recover it. */
3602 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3604 /* The DRC being examined by the caller at least must be counted */
3605 g_assert(ds
->nr_lmbs
);
3608 if (--ds
->nr_lmbs
) {
3613 * Now that all the LMBs have been removed by the guest, call the
3614 * unplug handler chain. This can never fail.
3616 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3617 object_unparent(OBJECT(dev
));
3620 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3622 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3623 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3625 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3626 qdev_unrealize(dev
);
3627 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3630 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3631 DeviceState
*dev
, Error
**errp
)
3633 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3634 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3636 uint64_t size
, addr_start
, addr
;
3640 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
3641 error_setg(errp
, "nvdimm device hot unplug is not supported yet.");
3645 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3646 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3648 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3652 * An existing pending dimm state for this DIMM means that there is an
3653 * unplug operation in progress, waiting for the spapr_lmb_release
3654 * callback to complete the job (BQL can't cover that far). In this case,
3655 * bail out to avoid detaching DRCs that were already released.
3657 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3658 error_setg(errp
, "Memory unplug already in progress for device %s",
3663 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3666 for (i
= 0; i
< nr_lmbs
; i
++) {
3667 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3668 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3671 spapr_drc_detach(drc
);
3672 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3675 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3676 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3678 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3679 nr_lmbs
, spapr_drc_index(drc
));
3682 /* Callback to be called during DRC release. */
3683 void spapr_core_release(DeviceState
*dev
)
3685 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3687 /* Call the unplug handler chain. This can never fail. */
3688 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3689 object_unparent(OBJECT(dev
));
3692 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3694 MachineState
*ms
= MACHINE(hotplug_dev
);
3695 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3696 CPUCore
*cc
= CPU_CORE(dev
);
3697 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3699 if (smc
->pre_2_10_has_unused_icps
) {
3700 SpaprCpuCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3703 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3704 CPUState
*cs
= CPU(sc
->threads
[i
]);
3706 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3711 core_slot
->cpu
= NULL
;
3712 qdev_unrealize(dev
);
3716 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3719 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3722 CPUCore
*cc
= CPU_CORE(dev
);
3724 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3725 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3730 error_setg(errp
, "Boot CPU core may not be unplugged");
3734 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3735 spapr_vcpu_id(spapr
, cc
->core_id
));
3738 if (!spapr_drc_unplug_requested(drc
)) {
3739 spapr_drc_detach(drc
);
3740 spapr_hotplug_req_remove_by_index(drc
);
3744 int spapr_core_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3745 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3747 SpaprCpuCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3748 CPUState
*cs
= CPU(core
->threads
[0]);
3749 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3750 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3751 int id
= spapr_get_vcpu_id(cpu
);
3755 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3756 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3759 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
3761 *fdt_start_offset
= offset
;
3765 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3767 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3768 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3769 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3770 SpaprCpuCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3771 CPUCore
*cc
= CPU_CORE(dev
);
3774 CPUArchId
*core_slot
;
3776 bool hotplugged
= spapr_drc_hotplugged(dev
);
3779 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3780 g_assert(core_slot
); /* Already checked in spapr_core_pre_plug() */
3782 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3783 spapr_vcpu_id(spapr
, cc
->core_id
));
3785 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3789 * spapr_core_pre_plug() already buys us this is a brand new
3790 * core being plugged into a free slot. Nothing should already
3791 * be attached to the corresponding DRC.
3793 spapr_drc_attach(drc
, dev
);
3797 * Send hotplug notification interrupt to the guest only
3798 * in case of hotplugged CPUs.
3800 spapr_hotplug_req_add_by_index(drc
);
3802 spapr_drc_reset(drc
);
3806 core_slot
->cpu
= OBJECT(dev
);
3809 * Set compatibility mode to match the boot CPU, which was either set
3810 * by the machine reset code or by CAS. This really shouldn't fail at
3814 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3815 ppc_set_compat(core
->threads
[i
], POWERPC_CPU(first_cpu
)->compat_pvr
,
3820 if (smc
->pre_2_10_has_unused_icps
) {
3821 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3822 cs
= CPU(core
->threads
[i
]);
3823 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3828 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3831 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3832 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3833 CPUCore
*cc
= CPU_CORE(dev
);
3834 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3835 const char *type
= object_get_typename(OBJECT(dev
));
3836 CPUArchId
*core_slot
;
3838 unsigned int smp_threads
= machine
->smp
.threads
;
3840 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3841 error_setg(errp
, "CPU hotplug not supported for this machine");
3845 if (strcmp(base_core_type
, type
)) {
3846 error_setg(errp
, "CPU core type should be %s", base_core_type
);
3850 if (cc
->core_id
% smp_threads
) {
3851 error_setg(errp
, "invalid core id %d", cc
->core_id
);
3856 * In general we should have homogeneous threads-per-core, but old
3857 * (pre hotplug support) machine types allow the last core to have
3858 * reduced threads as a compatibility hack for when we allowed
3859 * total vcpus not a multiple of threads-per-core.
3861 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3862 error_setg(errp
, "invalid nr-threads %d, must be %d", cc
->nr_threads
,
3867 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3869 error_setg(errp
, "core id %d out of range", cc
->core_id
);
3873 if (core_slot
->cpu
) {
3874 error_setg(errp
, "core %d already populated", cc
->core_id
);
3878 numa_cpu_pre_plug(core_slot
, dev
, errp
);
3881 int spapr_phb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3882 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3884 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
3887 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
3888 if (intc_phandle
<= 0) {
3892 if (spapr_dt_phb(spapr
, sphb
, intc_phandle
, fdt
, fdt_start_offset
)) {
3893 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
3897 /* generally SLOF creates these, for hotplug it's up to QEMU */
3898 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
3903 static bool spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3906 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3907 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3908 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3909 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
3912 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
3913 error_setg(errp
, "PHB hotplug not supported for this machine");
3917 if (sphb
->index
== (uint32_t)-1) {
3918 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
3922 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3923 if (drc
&& drc
->dev
) {
3924 error_setg(errp
, "PHB %d already attached", sphb
->index
);
3929 * This will check that sphb->index doesn't exceed the maximum number of
3930 * PHBs for the current machine type.
3933 smc
->phb_placement(spapr
, sphb
->index
,
3934 &sphb
->buid
, &sphb
->io_win_addr
,
3935 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
3936 windows_supported
, sphb
->dma_liobn
,
3937 &sphb
->nv2_gpa_win_addr
, &sphb
->nv2_atsd_win_addr
,
3941 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3943 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3944 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3945 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3947 bool hotplugged
= spapr_drc_hotplugged(dev
);
3949 if (!smc
->dr_phb_enabled
) {
3953 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3954 /* hotplug hooks should check it's enabled before getting this far */
3957 /* spapr_phb_pre_plug() already checked the DRC is attachable */
3958 spapr_drc_attach(drc
, dev
);
3961 spapr_hotplug_req_add_by_index(drc
);
3963 spapr_drc_reset(drc
);
3967 void spapr_phb_release(DeviceState
*dev
)
3969 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3971 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3972 object_unparent(OBJECT(dev
));
3975 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3977 qdev_unrealize(dev
);
3980 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
3981 DeviceState
*dev
, Error
**errp
)
3983 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3986 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3989 if (!spapr_drc_unplug_requested(drc
)) {
3990 spapr_drc_detach(drc
);
3991 spapr_hotplug_req_remove_by_index(drc
);
3996 bool spapr_tpm_proxy_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3999 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4001 if (spapr
->tpm_proxy
!= NULL
) {
4002 error_setg(errp
, "Only one TPM proxy can be specified for this machine");
4009 static void spapr_tpm_proxy_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4011 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4012 SpaprTpmProxy
*tpm_proxy
= SPAPR_TPM_PROXY(dev
);
4014 /* Already checked in spapr_tpm_proxy_pre_plug() */
4015 g_assert(spapr
->tpm_proxy
== NULL
);
4017 spapr
->tpm_proxy
= tpm_proxy
;
4020 static void spapr_tpm_proxy_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4022 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4024 qdev_unrealize(dev
);
4025 object_unparent(OBJECT(dev
));
4026 spapr
->tpm_proxy
= NULL
;
4029 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
4030 DeviceState
*dev
, Error
**errp
)
4032 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4033 spapr_memory_plug(hotplug_dev
, dev
);
4034 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4035 spapr_core_plug(hotplug_dev
, dev
);
4036 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4037 spapr_phb_plug(hotplug_dev
, dev
);
4038 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4039 spapr_tpm_proxy_plug(hotplug_dev
, dev
);
4043 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
4044 DeviceState
*dev
, Error
**errp
)
4046 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4047 spapr_memory_unplug(hotplug_dev
, dev
);
4048 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4049 spapr_core_unplug(hotplug_dev
, dev
);
4050 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4051 spapr_phb_unplug(hotplug_dev
, dev
);
4052 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4053 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4057 bool spapr_memory_hot_unplug_supported(SpaprMachineState
*spapr
)
4059 return spapr_ovec_test(spapr
->ov5_cas
, OV5_HP_EVT
) ||
4061 * CAS will process all pending unplug requests.
4063 * HACK: a guest could theoretically have cleared all bits in OV5,
4064 * but none of the guests we care for do.
4066 spapr_ovec_empty(spapr
->ov5_cas
);
4069 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
4070 DeviceState
*dev
, Error
**errp
)
4072 SpaprMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4073 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4074 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4076 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4077 if (spapr_memory_hot_unplug_supported(sms
)) {
4078 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4080 error_setg(errp
, "Memory hot unplug not supported for this guest");
4082 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4083 if (!mc
->has_hotpluggable_cpus
) {
4084 error_setg(errp
, "CPU hot unplug not supported on this machine");
4087 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4088 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4089 if (!smc
->dr_phb_enabled
) {
4090 error_setg(errp
, "PHB hot unplug not supported on this machine");
4093 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4094 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4095 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4099 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4100 DeviceState
*dev
, Error
**errp
)
4102 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4103 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4104 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4105 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4106 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4107 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4108 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4109 spapr_tpm_proxy_pre_plug(hotplug_dev
, dev
, errp
);
4113 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4116 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4117 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4118 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
) ||
4119 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4120 return HOTPLUG_HANDLER(machine
);
4122 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
4123 PCIDevice
*pcidev
= PCI_DEVICE(dev
);
4124 PCIBus
*root
= pci_device_root_bus(pcidev
);
4125 SpaprPhbState
*phb
=
4126 (SpaprPhbState
*)object_dynamic_cast(OBJECT(BUS(root
)->parent
),
4127 TYPE_SPAPR_PCI_HOST_BRIDGE
);
4130 return HOTPLUG_HANDLER(phb
);
4136 static CpuInstanceProperties
4137 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4139 CPUArchId
*core_slot
;
4140 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4142 /* make sure possible_cpu are intialized */
4143 mc
->possible_cpu_arch_ids(machine
);
4144 /* get CPU core slot containing thread that matches cpu_index */
4145 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4147 return core_slot
->props
;
4150 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4152 return idx
/ ms
->smp
.cores
% ms
->numa_state
->num_nodes
;
4155 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4158 unsigned int smp_threads
= machine
->smp
.threads
;
4159 unsigned int smp_cpus
= machine
->smp
.cpus
;
4160 const char *core_type
;
4161 int spapr_max_cores
= machine
->smp
.max_cpus
/ smp_threads
;
4162 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4164 if (!mc
->has_hotpluggable_cpus
) {
4165 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4167 if (machine
->possible_cpus
) {
4168 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4169 return machine
->possible_cpus
;
4172 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4174 error_report("Unable to find sPAPR CPU Core definition");
4178 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4179 sizeof(CPUArchId
) * spapr_max_cores
);
4180 machine
->possible_cpus
->len
= spapr_max_cores
;
4181 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4182 int core_id
= i
* smp_threads
;
4184 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4185 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4186 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4187 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4188 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4190 return machine
->possible_cpus
;
4193 static bool spapr_phb_placement(SpaprMachineState
*spapr
, uint32_t index
,
4194 uint64_t *buid
, hwaddr
*pio
,
4195 hwaddr
*mmio32
, hwaddr
*mmio64
,
4196 unsigned n_dma
, uint32_t *liobns
,
4197 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4200 * New-style PHB window placement.
4202 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4203 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4206 * Some guest kernels can't work with MMIO windows above 1<<46
4207 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4209 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4210 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4211 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4212 * 1TiB 64-bit MMIO windows for each PHB.
4214 const uint64_t base_buid
= 0x800000020000000ULL
;
4217 /* Sanity check natural alignments */
4218 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4219 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4220 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4221 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4222 /* Sanity check bounds */
4223 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4224 SPAPR_PCI_MEM32_WIN_SIZE
);
4225 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4226 SPAPR_PCI_MEM64_WIN_SIZE
);
4228 if (index
>= SPAPR_MAX_PHBS
) {
4229 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4230 SPAPR_MAX_PHBS
- 1);
4234 *buid
= base_buid
+ index
;
4235 for (i
= 0; i
< n_dma
; ++i
) {
4236 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4239 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4240 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4241 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4243 *nv2gpa
= SPAPR_PCI_NV2RAM64_WIN_BASE
+ index
* SPAPR_PCI_NV2RAM64_WIN_SIZE
;
4244 *nv2atsd
= SPAPR_PCI_NV2ATSD_WIN_BASE
+ index
* SPAPR_PCI_NV2ATSD_WIN_SIZE
;
4248 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4250 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4252 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4255 static void spapr_ics_resend(XICSFabric
*dev
)
4257 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4259 ics_resend(spapr
->ics
);
4262 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4264 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4266 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4269 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4272 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
4274 spapr_irq_print_info(spapr
, mon
);
4275 monitor_printf(mon
, "irqchip: %s\n",
4276 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4280 * This is a XIVE only operation
4282 static int spapr_match_nvt(XiveFabric
*xfb
, uint8_t format
,
4283 uint8_t nvt_blk
, uint32_t nvt_idx
,
4284 bool cam_ignore
, uint8_t priority
,
4285 uint32_t logic_serv
, XiveTCTXMatch
*match
)
4287 SpaprMachineState
*spapr
= SPAPR_MACHINE(xfb
);
4288 XivePresenter
*xptr
= XIVE_PRESENTER(spapr
->active_intc
);
4289 XivePresenterClass
*xpc
= XIVE_PRESENTER_GET_CLASS(xptr
);
4292 count
= xpc
->match_nvt(xptr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
4293 priority
, logic_serv
, match
);
4299 * When we implement the save and restore of the thread interrupt
4300 * contexts in the enter/exit CPU handlers of the machine and the
4301 * escalations in QEMU, we should be able to handle non dispatched
4304 * Until this is done, the sPAPR machine should find at least one
4305 * matching context always.
4308 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is not dispatched\n",
4315 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4317 return cpu
->vcpu_id
;
4320 bool spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4322 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4323 MachineState
*ms
= MACHINE(spapr
);
4326 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4328 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4329 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4330 error_append_hint(errp
, "Adjust the number of cpus to %d "
4331 "or try to raise the number of threads per core\n",
4332 vcpu_id
* ms
->smp
.threads
/ spapr
->vsmt
);
4336 cpu
->vcpu_id
= vcpu_id
;
4340 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4345 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4347 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4355 static void spapr_cpu_exec_enter(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4357 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4359 /* These are only called by TCG, KVM maintains dispatch state */
4361 spapr_cpu
->prod
= false;
4362 if (spapr_cpu
->vpa_addr
) {
4363 CPUState
*cs
= CPU(cpu
);
4366 dispatch
= ldl_be_phys(cs
->as
,
4367 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4369 if ((dispatch
& 1) != 0) {
4370 qemu_log_mask(LOG_GUEST_ERROR
,
4371 "VPA: incorrect dispatch counter value for "
4372 "dispatched partition %u, correcting.\n", dispatch
);
4376 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4380 static void spapr_cpu_exec_exit(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4382 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4384 if (spapr_cpu
->vpa_addr
) {
4385 CPUState
*cs
= CPU(cpu
);
4388 dispatch
= ldl_be_phys(cs
->as
,
4389 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4391 if ((dispatch
& 1) != 1) {
4392 qemu_log_mask(LOG_GUEST_ERROR
,
4393 "VPA: incorrect dispatch counter value for "
4394 "preempted partition %u, correcting.\n", dispatch
);
4398 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4402 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4404 MachineClass
*mc
= MACHINE_CLASS(oc
);
4405 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4406 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4407 NMIClass
*nc
= NMI_CLASS(oc
);
4408 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4409 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4410 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4411 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4412 XiveFabricClass
*xfc
= XIVE_FABRIC_CLASS(oc
);
4414 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4415 mc
->ignore_boot_device_suffixes
= true;
4418 * We set up the default / latest behaviour here. The class_init
4419 * functions for the specific versioned machine types can override
4420 * these details for backwards compatibility
4422 mc
->init
= spapr_machine_init
;
4423 mc
->reset
= spapr_machine_reset
;
4424 mc
->block_default_type
= IF_SCSI
;
4425 mc
->max_cpus
= 1024;
4426 mc
->no_parallel
= 1;
4427 mc
->default_boot_order
= "";
4428 mc
->default_ram_size
= 512 * MiB
;
4429 mc
->default_ram_id
= "ppc_spapr.ram";
4430 mc
->default_display
= "std";
4431 mc
->kvm_type
= spapr_kvm_type
;
4432 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4433 mc
->pci_allow_0_address
= true;
4434 assert(!mc
->get_hotplug_handler
);
4435 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4436 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4437 hc
->plug
= spapr_machine_device_plug
;
4438 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4439 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4440 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4441 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4442 hc
->unplug
= spapr_machine_device_unplug
;
4444 smc
->dr_lmb_enabled
= true;
4445 smc
->update_dt_enabled
= true;
4446 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4447 mc
->has_hotpluggable_cpus
= true;
4448 mc
->nvdimm_supported
= true;
4449 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4450 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4451 nc
->nmi_monitor_handler
= spapr_nmi
;
4452 smc
->phb_placement
= spapr_phb_placement
;
4453 vhc
->hypercall
= emulate_spapr_hypercall
;
4454 vhc
->hpt_mask
= spapr_hpt_mask
;
4455 vhc
->map_hptes
= spapr_map_hptes
;
4456 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4457 vhc
->hpte_set_c
= spapr_hpte_set_c
;
4458 vhc
->hpte_set_r
= spapr_hpte_set_r
;
4459 vhc
->get_pate
= spapr_get_pate
;
4460 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4461 vhc
->cpu_exec_enter
= spapr_cpu_exec_enter
;
4462 vhc
->cpu_exec_exit
= spapr_cpu_exec_exit
;
4463 xic
->ics_get
= spapr_ics_get
;
4464 xic
->ics_resend
= spapr_ics_resend
;
4465 xic
->icp_get
= spapr_icp_get
;
4466 ispc
->print_info
= spapr_pic_print_info
;
4467 /* Force NUMA node memory size to be a multiple of
4468 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4469 * in which LMBs are represented and hot-added
4471 mc
->numa_mem_align_shift
= 28;
4472 mc
->auto_enable_numa
= true;
4474 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4475 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4476 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4477 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4478 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4479 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_WORKAROUND
;
4480 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4481 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4482 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4483 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_ON
;
4484 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_ON
;
4485 spapr_caps_add_properties(smc
);
4486 smc
->irq
= &spapr_irq_dual
;
4487 smc
->dr_phb_enabled
= true;
4488 smc
->linux_pci_probe
= true;
4489 smc
->smp_threads_vsmt
= true;
4490 smc
->nr_xirqs
= SPAPR_NR_XIRQS
;
4491 xfc
->match_nvt
= spapr_match_nvt
;
4494 static const TypeInfo spapr_machine_info
= {
4495 .name
= TYPE_SPAPR_MACHINE
,
4496 .parent
= TYPE_MACHINE
,
4498 .instance_size
= sizeof(SpaprMachineState
),
4499 .instance_init
= spapr_instance_init
,
4500 .instance_finalize
= spapr_machine_finalizefn
,
4501 .class_size
= sizeof(SpaprMachineClass
),
4502 .class_init
= spapr_machine_class_init
,
4503 .interfaces
= (InterfaceInfo
[]) {
4504 { TYPE_FW_PATH_PROVIDER
},
4506 { TYPE_HOTPLUG_HANDLER
},
4507 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4508 { TYPE_XICS_FABRIC
},
4509 { TYPE_INTERRUPT_STATS_PROVIDER
},
4510 { TYPE_XIVE_FABRIC
},
4515 static void spapr_machine_latest_class_options(MachineClass
*mc
)
4517 mc
->alias
= "pseries";
4518 mc
->is_default
= true;
4521 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4522 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4525 MachineClass *mc = MACHINE_CLASS(oc); \
4526 spapr_machine_##suffix##_class_options(mc); \
4528 spapr_machine_latest_class_options(mc); \
4531 static const TypeInfo spapr_machine_##suffix##_info = { \
4532 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4533 .parent = TYPE_SPAPR_MACHINE, \
4534 .class_init = spapr_machine_##suffix##_class_init, \
4536 static void spapr_machine_register_##suffix(void) \
4538 type_register(&spapr_machine_##suffix##_info); \
4540 type_init(spapr_machine_register_##suffix)
4545 static void spapr_machine_6_0_class_options(MachineClass
*mc
)
4547 /* Defaults for the latest behaviour inherited from the base class */
4550 DEFINE_SPAPR_MACHINE(6_0
, "6.0", true);
4555 static void spapr_machine_5_2_class_options(MachineClass
*mc
)
4557 spapr_machine_6_0_class_options(mc
);
4558 compat_props_add(mc
->compat_props
, hw_compat_5_2
, hw_compat_5_2_len
);
4561 DEFINE_SPAPR_MACHINE(5_2
, "5.2", false);
4566 static void spapr_machine_5_1_class_options(MachineClass
*mc
)
4568 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4570 spapr_machine_5_2_class_options(mc
);
4571 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
4572 smc
->pre_5_2_numa_associativity
= true;
4575 DEFINE_SPAPR_MACHINE(5_1
, "5.1", false);
4580 static void spapr_machine_5_0_class_options(MachineClass
*mc
)
4582 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4583 static GlobalProperty compat
[] = {
4584 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-5.1-associativity", "on" },
4587 spapr_machine_5_1_class_options(mc
);
4588 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
4589 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4590 mc
->numa_mem_supported
= true;
4591 smc
->pre_5_1_assoc_refpoints
= true;
4594 DEFINE_SPAPR_MACHINE(5_0
, "5.0", false);
4599 static void spapr_machine_4_2_class_options(MachineClass
*mc
)
4601 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4603 spapr_machine_5_0_class_options(mc
);
4604 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
4605 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_OFF
;
4606 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_OFF
;
4607 smc
->rma_limit
= 16 * GiB
;
4608 mc
->nvdimm_supported
= false;
4611 DEFINE_SPAPR_MACHINE(4_2
, "4.2", false);
4616 static void spapr_machine_4_1_class_options(MachineClass
*mc
)
4618 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4619 static GlobalProperty compat
[] = {
4620 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4621 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pgsz", "0x11000" },
4624 spapr_machine_4_2_class_options(mc
);
4625 smc
->linux_pci_probe
= false;
4626 smc
->smp_threads_vsmt
= false;
4627 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
4628 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4631 DEFINE_SPAPR_MACHINE(4_1
, "4.1", false);
4636 static bool phb_placement_4_0(SpaprMachineState
*spapr
, uint32_t index
,
4637 uint64_t *buid
, hwaddr
*pio
,
4638 hwaddr
*mmio32
, hwaddr
*mmio64
,
4639 unsigned n_dma
, uint32_t *liobns
,
4640 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4642 if (!spapr_phb_placement(spapr
, index
, buid
, pio
, mmio32
, mmio64
, n_dma
,
4643 liobns
, nv2gpa
, nv2atsd
, errp
)) {
4651 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4653 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4655 spapr_machine_4_1_class_options(mc
);
4656 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
4657 smc
->phb_placement
= phb_placement_4_0
;
4658 smc
->irq
= &spapr_irq_xics
;
4659 smc
->pre_4_1_migration
= true;
4662 DEFINE_SPAPR_MACHINE(4_0
, "4.0", false);
4667 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4669 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4671 spapr_machine_4_0_class_options(mc
);
4672 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4674 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4675 smc
->update_dt_enabled
= false;
4676 smc
->dr_phb_enabled
= false;
4677 smc
->broken_host_serial_model
= true;
4678 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4679 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4680 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4681 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4684 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4690 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4692 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4694 spapr_machine_3_1_class_options(mc
);
4695 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4697 smc
->legacy_irq_allocation
= true;
4698 smc
->nr_xirqs
= 0x400;
4699 smc
->irq
= &spapr_irq_xics_legacy
;
4702 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4707 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4709 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4710 static GlobalProperty compat
[] = {
4711 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4712 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4715 spapr_machine_3_0_class_options(mc
);
4716 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4717 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4719 /* We depend on kvm_enabled() to choose a default value for the
4720 * hpt-max-page-size capability. Of course we can't do it here
4721 * because this is too early and the HW accelerator isn't initialzed
4722 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4724 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4727 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4729 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4731 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4733 spapr_machine_2_12_class_options(mc
);
4734 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4735 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4736 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4739 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4745 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4747 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4749 spapr_machine_2_12_class_options(mc
);
4750 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4751 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
4754 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4760 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4762 spapr_machine_2_11_class_options(mc
);
4763 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
4766 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4772 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4774 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4775 static GlobalProperty compat
[] = {
4776 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
4779 spapr_machine_2_10_class_options(mc
);
4780 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
4781 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4782 smc
->pre_2_10_has_unused_icps
= true;
4783 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4786 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4792 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4794 static GlobalProperty compat
[] = {
4795 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
4798 spapr_machine_2_9_class_options(mc
);
4799 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
4800 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4801 mc
->numa_mem_align_shift
= 23;
4804 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4810 static bool phb_placement_2_7(SpaprMachineState
*spapr
, uint32_t index
,
4811 uint64_t *buid
, hwaddr
*pio
,
4812 hwaddr
*mmio32
, hwaddr
*mmio64
,
4813 unsigned n_dma
, uint32_t *liobns
,
4814 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4816 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4817 const uint64_t base_buid
= 0x800000020000000ULL
;
4818 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4819 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4820 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4821 const uint32_t max_index
= 255;
4822 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4824 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4825 hwaddr phb0_base
, phb_base
;
4828 /* Do we have device memory? */
4829 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4830 /* Can't just use maxram_size, because there may be an
4831 * alignment gap between normal and device memory regions
4833 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4834 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4837 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4839 if (index
> max_index
) {
4840 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4845 *buid
= base_buid
+ index
;
4846 for (i
= 0; i
< n_dma
; ++i
) {
4847 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4850 phb_base
= phb0_base
+ index
* phb_spacing
;
4851 *pio
= phb_base
+ pio_offset
;
4852 *mmio32
= phb_base
+ mmio_offset
;
4854 * We don't set the 64-bit MMIO window, relying on the PHB's
4855 * fallback behaviour of automatically splitting a large "32-bit"
4856 * window into contiguous 32-bit and 64-bit windows
4864 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4866 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4867 static GlobalProperty compat
[] = {
4868 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
4869 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
4870 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
4871 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
4874 spapr_machine_2_8_class_options(mc
);
4875 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4876 mc
->default_machine_opts
= "modern-hotplug-events=off";
4877 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
4878 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4879 smc
->phb_placement
= phb_placement_2_7
;
4882 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4888 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4890 static GlobalProperty compat
[] = {
4891 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
4894 spapr_machine_2_7_class_options(mc
);
4895 mc
->has_hotpluggable_cpus
= false;
4896 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
4897 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4900 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4906 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4908 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4909 static GlobalProperty compat
[] = {
4910 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4913 spapr_machine_2_6_class_options(mc
);
4914 smc
->use_ohci_by_default
= true;
4915 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
4916 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4919 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4925 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4927 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4929 spapr_machine_2_5_class_options(mc
);
4930 smc
->dr_lmb_enabled
= false;
4931 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
4934 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4940 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4942 static GlobalProperty compat
[] = {
4943 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4945 spapr_machine_2_4_class_options(mc
);
4946 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
4947 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4949 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4955 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4957 static GlobalProperty compat
[] = {
4958 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
4961 spapr_machine_2_3_class_options(mc
);
4962 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
4963 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4964 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
4966 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4972 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4974 spapr_machine_2_2_class_options(mc
);
4975 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
4977 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4979 static void spapr_machine_register_types(void)
4981 type_register_static(&spapr_machine_info
);
4984 type_init(spapr_machine_register_types
)