4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
44 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
45 static inline int target_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
46 uint8_t *buf
, int len
, int is_write
)
48 return cpu_memory_rw_debug(env
, addr
, buf
, len
, is_write
);
51 /* target_memory_rw_debug() defined in cpu.h */
63 GDB_SIGNAL_UNKNOWN
= 143
66 #ifdef CONFIG_USER_ONLY
68 /* Map target signal numbers to GDB protocol signal numbers and vice
69 * versa. For user emulation's currently supported systems, we can
70 * assume most signals are defined.
73 static int gdb_signal_table
[] = {
233 /* In system mode we only need SIGINT and SIGTRAP; other signals
234 are not yet supported. */
241 static int gdb_signal_table
[] = {
251 #ifdef CONFIG_USER_ONLY
252 static int target_signal_to_gdb (int sig
)
255 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
256 if (gdb_signal_table
[i
] == sig
)
258 return GDB_SIGNAL_UNKNOWN
;
262 static int gdb_signal_to_target (int sig
)
264 if (sig
< ARRAY_SIZE (gdb_signal_table
))
265 return gdb_signal_table
[sig
];
272 typedef struct GDBRegisterState
{
278 struct GDBRegisterState
*next
;
288 typedef struct GDBState
{
289 CPUArchState
*c_cpu
; /* current CPU for step/continue ops */
290 CPUArchState
*g_cpu
; /* current CPU for other ops */
291 CPUArchState
*query_cpu
; /* for q{f|s}ThreadInfo */
292 enum RSState state
; /* parsing state */
293 char line_buf
[MAX_PACKET_LENGTH
];
296 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
299 #ifdef CONFIG_USER_ONLY
303 CharDriverState
*chr
;
304 CharDriverState
*mon_chr
;
306 char syscall_buf
[256];
307 gdb_syscall_complete_cb current_syscall_cb
;
310 /* By default use no IRQs and no timers while single stepping so as to
311 * make single stepping like an ICE HW step.
313 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
315 static GDBState
*gdbserver_state
;
317 /* This is an ugly hack to cope with both new and old gdb.
318 If gdb sends qXfer:features:read then assume we're talking to a newish
319 gdb that understands target descriptions. */
320 static int gdb_has_xml
;
322 #ifdef CONFIG_USER_ONLY
323 /* XXX: This is not thread safe. Do we care? */
324 static int gdbserver_fd
= -1;
326 static int get_char(GDBState
*s
)
332 ret
= qemu_recv(s
->fd
, &ch
, 1, 0);
334 if (errno
== ECONNRESET
)
336 if (errno
!= EINTR
&& errno
!= EAGAIN
)
338 } else if (ret
== 0) {
356 /* If gdb is connected when the first semihosting syscall occurs then use
357 remote gdb syscalls. Otherwise use native file IO. */
358 int use_gdb_syscalls(void)
360 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
361 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
364 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
367 /* Resume execution. */
368 static inline void gdb_continue(GDBState
*s
)
370 #ifdef CONFIG_USER_ONLY
371 s
->running_state
= 1;
377 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
379 #ifdef CONFIG_USER_ONLY
383 ret
= send(s
->fd
, buf
, len
, 0);
385 if (errno
!= EINTR
&& errno
!= EAGAIN
)
393 qemu_chr_fe_write(s
->chr
, buf
, len
);
397 static inline int fromhex(int v
)
399 if (v
>= '0' && v
<= '9')
401 else if (v
>= 'A' && v
<= 'F')
403 else if (v
>= 'a' && v
<= 'f')
409 static inline int tohex(int v
)
417 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
422 for(i
= 0; i
< len
; i
++) {
424 *q
++ = tohex(c
>> 4);
425 *q
++ = tohex(c
& 0xf);
430 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
434 for(i
= 0; i
< len
; i
++) {
435 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
440 /* return -1 if error, 0 if OK */
441 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
452 for(i
= 0; i
< len
; i
++) {
456 *(p
++) = tohex((csum
>> 4) & 0xf);
457 *(p
++) = tohex((csum
) & 0xf);
459 s
->last_packet_len
= p
- s
->last_packet
;
460 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
462 #ifdef CONFIG_USER_ONLY
475 /* return -1 if error, 0 if OK */
476 static int put_packet(GDBState
*s
, const char *buf
)
479 printf("reply='%s'\n", buf
);
482 return put_packet_binary(s
, buf
, strlen(buf
));
485 /* The GDB remote protocol transfers values in target byte order. This means
486 we can use the raw memory access routines to access the value buffer.
487 Conveniently, these also handle the case where the buffer is mis-aligned.
489 #define GET_REG8(val) do { \
490 stb_p(mem_buf, val); \
493 #define GET_REG16(val) do { \
494 stw_p(mem_buf, val); \
497 #define GET_REG32(val) do { \
498 stl_p(mem_buf, val); \
501 #define GET_REG64(val) do { \
502 stq_p(mem_buf, val); \
506 #if TARGET_LONG_BITS == 64
507 #define GET_REGL(val) GET_REG64(val)
508 #define ldtul_p(addr) ldq_p(addr)
510 #define GET_REGL(val) GET_REG32(val)
511 #define ldtul_p(addr) ldl_p(addr)
514 #if defined(TARGET_I386)
517 static const int gpr_map
[16] = {
518 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
519 8, 9, 10, 11, 12, 13, 14, 15
522 #define gpr_map gpr_map32
524 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
526 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
528 #define IDX_IP_REG CPU_NB_REGS
529 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
530 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
531 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
532 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
533 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
535 static int cpu_gdb_read_register(CPUX86State
*env
, uint8_t *mem_buf
, int n
)
537 if (n
< CPU_NB_REGS
) {
538 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
539 GET_REG64(env
->regs
[gpr_map
[n
]]);
540 } else if (n
< CPU_NB_REGS32
) {
541 GET_REG32(env
->regs
[gpr_map32
[n
]]);
543 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
544 #ifdef USE_X86LDOUBLE
545 /* FIXME: byteswap float values - after fixing fpregs layout. */
546 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
548 memset(mem_buf
, 0, 10);
551 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
553 if (n
< CPU_NB_REGS32
||
554 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
555 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
556 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
562 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
567 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
569 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
570 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
571 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
572 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
573 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
574 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
576 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
577 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
578 (env
->fpstt
& 0x7) << 11);
579 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
580 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
581 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
582 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
583 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
584 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
586 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
592 static int cpu_x86_gdb_load_seg(CPUX86State
*env
, int sreg
, uint8_t *mem_buf
)
594 uint16_t selector
= ldl_p(mem_buf
);
596 if (selector
!= env
->segs
[sreg
].selector
) {
597 #if defined(CONFIG_USER_ONLY)
598 cpu_x86_load_seg(env
, sreg
, selector
);
600 unsigned int limit
, flags
;
603 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
604 base
= selector
<< 4;
608 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
611 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
617 static int cpu_gdb_write_register(CPUX86State
*env
, uint8_t *mem_buf
, int n
)
621 if (n
< CPU_NB_REGS
) {
622 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
623 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
624 return sizeof(target_ulong
);
625 } else if (n
< CPU_NB_REGS32
) {
627 env
->regs
[n
] &= ~0xffffffffUL
;
628 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
631 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
632 #ifdef USE_X86LDOUBLE
633 /* FIXME: byteswap float values - after fixing fpregs layout. */
634 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
637 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
639 if (n
< CPU_NB_REGS32
||
640 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
641 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
642 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
648 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
649 env
->eip
= ldq_p(mem_buf
);
652 env
->eip
&= ~0xffffffffUL
;
653 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
657 env
->eflags
= ldl_p(mem_buf
);
660 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
661 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
662 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
663 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
664 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
665 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
667 case IDX_FP_REGS
+ 8:
668 env
->fpuc
= ldl_p(mem_buf
);
670 case IDX_FP_REGS
+ 9:
671 tmp
= ldl_p(mem_buf
);
672 env
->fpstt
= (tmp
>> 11) & 7;
673 env
->fpus
= tmp
& ~0x3800;
675 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
676 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
677 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
678 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
679 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
680 case IDX_FP_REGS
+ 15: /* fop */ return 4;
683 env
->mxcsr
= ldl_p(mem_buf
);
687 /* Unrecognised register. */
691 #elif defined (TARGET_PPC)
693 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
694 expects whatever the target description contains. Due to a
695 historical mishap the FP registers appear in between core integer
696 regs and PC, MSR, CR, and so forth. We hack round this by giving the
697 FP regs zero size when talking to a newer gdb. */
698 #define NUM_CORE_REGS 71
699 #if defined (TARGET_PPC64)
700 #define GDB_CORE_XML "power64-core.xml"
702 #define GDB_CORE_XML "power-core.xml"
705 static int cpu_gdb_read_register(CPUPPCState
*env
, uint8_t *mem_buf
, int n
)
709 GET_REGL(env
->gpr
[n
]);
714 stfq_p(mem_buf
, env
->fpr
[n
-32]);
718 case 64: GET_REGL(env
->nip
);
719 case 65: GET_REGL(env
->msr
);
724 for (i
= 0; i
< 8; i
++)
725 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
728 case 67: GET_REGL(env
->lr
);
729 case 68: GET_REGL(env
->ctr
);
730 case 69: GET_REGL(env
->xer
);
735 GET_REG32(env
->fpscr
);
742 static int cpu_gdb_write_register(CPUPPCState
*env
, uint8_t *mem_buf
, int n
)
746 env
->gpr
[n
] = ldtul_p(mem_buf
);
747 return sizeof(target_ulong
);
752 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
757 env
->nip
= ldtul_p(mem_buf
);
758 return sizeof(target_ulong
);
760 ppc_store_msr(env
, ldtul_p(mem_buf
));
761 return sizeof(target_ulong
);
764 uint32_t cr
= ldl_p(mem_buf
);
766 for (i
= 0; i
< 8; i
++)
767 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
771 env
->lr
= ldtul_p(mem_buf
);
772 return sizeof(target_ulong
);
774 env
->ctr
= ldtul_p(mem_buf
);
775 return sizeof(target_ulong
);
777 env
->xer
= ldtul_p(mem_buf
);
778 return sizeof(target_ulong
);
789 #elif defined (TARGET_SPARC)
791 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
792 #define NUM_CORE_REGS 86
794 #define NUM_CORE_REGS 72
798 #define GET_REGA(val) GET_REG32(val)
800 #define GET_REGA(val) GET_REGL(val)
803 static int cpu_gdb_read_register(CPUSPARCState
*env
, uint8_t *mem_buf
, int n
)
807 GET_REGA(env
->gregs
[n
]);
810 /* register window */
811 GET_REGA(env
->regwptr
[n
- 8]);
813 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
817 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
819 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
822 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
824 case 64: GET_REGA(env
->y
);
825 case 65: GET_REGA(cpu_get_psr(env
));
826 case 66: GET_REGA(env
->wim
);
827 case 67: GET_REGA(env
->tbr
);
828 case 68: GET_REGA(env
->pc
);
829 case 69: GET_REGA(env
->npc
);
830 case 70: GET_REGA(env
->fsr
);
831 case 71: GET_REGA(0); /* csr */
832 default: GET_REGA(0);
838 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
840 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
844 /* f32-f62 (double width, even numbers only) */
845 GET_REG64(env
->fpr
[(n
- 32) / 2].ll
);
848 case 80: GET_REGL(env
->pc
);
849 case 81: GET_REGL(env
->npc
);
850 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
851 ((env
->asi
& 0xff) << 24) |
852 ((env
->pstate
& 0xfff) << 8) |
854 case 83: GET_REGL(env
->fsr
);
855 case 84: GET_REGL(env
->fprs
);
856 case 85: GET_REGL(env
->y
);
862 static int cpu_gdb_write_register(CPUSPARCState
*env
, uint8_t *mem_buf
, int n
)
864 #if defined(TARGET_ABI32)
867 tmp
= ldl_p(mem_buf
);
871 tmp
= ldtul_p(mem_buf
);
878 /* register window */
879 env
->regwptr
[n
- 8] = tmp
;
881 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
886 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
888 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
891 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
893 case 64: env
->y
= tmp
; break;
894 case 65: cpu_put_psr(env
, tmp
); break;
895 case 66: env
->wim
= tmp
; break;
896 case 67: env
->tbr
= tmp
; break;
897 case 68: env
->pc
= tmp
; break;
898 case 69: env
->npc
= tmp
; break;
899 case 70: env
->fsr
= tmp
; break;
907 tmp
= ldl_p(mem_buf
);
909 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
911 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
915 /* f32-f62 (double width, even numbers only) */
916 env
->fpr
[(n
- 32) / 2].ll
= tmp
;
919 case 80: env
->pc
= tmp
; break;
920 case 81: env
->npc
= tmp
; break;
922 cpu_put_ccr(env
, tmp
>> 32);
923 env
->asi
= (tmp
>> 24) & 0xff;
924 env
->pstate
= (tmp
>> 8) & 0xfff;
925 cpu_put_cwp64(env
, tmp
& 0xff);
927 case 83: env
->fsr
= tmp
; break;
928 case 84: env
->fprs
= tmp
; break;
929 case 85: env
->y
= tmp
; break;
936 #elif defined (TARGET_ARM)
938 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
939 whatever the target description contains. Due to a historical mishap
940 the FPA registers appear in between core integer regs and the CPSR.
941 We hack round this by giving the FPA regs zero size when talking to a
943 #define NUM_CORE_REGS 26
944 #define GDB_CORE_XML "arm-core.xml"
946 static int cpu_gdb_read_register(CPUARMState
*env
, uint8_t *mem_buf
, int n
)
949 /* Core integer register. */
950 GET_REG32(env
->regs
[n
]);
956 memset(mem_buf
, 0, 12);
961 /* FPA status register. */
967 GET_REG32(cpsr_read(env
));
969 /* Unknown register. */
973 static int cpu_gdb_write_register(CPUARMState
*env
, uint8_t *mem_buf
, int n
)
977 tmp
= ldl_p(mem_buf
);
979 /* Mask out low bit of PC to workaround gdb bugs. This will probably
980 cause problems if we ever implement the Jazelle DBX extensions. */
985 /* Core integer register. */
989 if (n
< 24) { /* 16-23 */
990 /* FPA registers (ignored). */
997 /* FPA status register (ignored). */
1003 cpsr_write (env
, tmp
, 0xffffffff);
1006 /* Unknown register. */
1010 #elif defined (TARGET_M68K)
1012 #define NUM_CORE_REGS 18
1014 #define GDB_CORE_XML "cf-core.xml"
1016 static int cpu_gdb_read_register(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
1020 GET_REG32(env
->dregs
[n
]);
1021 } else if (n
< 16) {
1023 GET_REG32(env
->aregs
[n
- 8]);
1026 case 16: GET_REG32(env
->sr
);
1027 case 17: GET_REG32(env
->pc
);
1030 /* FP registers not included here because they vary between
1031 ColdFire and m68k. Use XML bits for these. */
1035 static int cpu_gdb_write_register(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
1039 tmp
= ldl_p(mem_buf
);
1043 env
->dregs
[n
] = tmp
;
1044 } else if (n
< 16) {
1046 env
->aregs
[n
- 8] = tmp
;
1049 case 16: env
->sr
= tmp
; break;
1050 case 17: env
->pc
= tmp
; break;
1056 #elif defined (TARGET_MIPS)
1058 #define NUM_CORE_REGS 73
1060 static int cpu_gdb_read_register(CPUMIPSState
*env
, uint8_t *mem_buf
, int n
)
1063 GET_REGL(env
->active_tc
.gpr
[n
]);
1065 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1066 if (n
>= 38 && n
< 70) {
1067 if (env
->CP0_Status
& (1 << CP0St_FR
))
1068 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1070 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1073 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1074 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1078 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1079 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1080 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1081 case 35: GET_REGL(env
->CP0_BadVAddr
);
1082 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1083 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1084 case 72: GET_REGL(0); /* fp */
1085 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1087 if (n
>= 73 && n
<= 88) {
1088 /* 16 embedded regs. */
1095 /* convert MIPS rounding mode in FCR31 to IEEE library */
1096 static unsigned int ieee_rm
[] =
1098 float_round_nearest_even
,
1099 float_round_to_zero
,
1103 #define RESTORE_ROUNDING_MODE \
1104 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1106 static int cpu_gdb_write_register(CPUMIPSState
*env
, uint8_t *mem_buf
, int n
)
1110 tmp
= ldtul_p(mem_buf
);
1113 env
->active_tc
.gpr
[n
] = tmp
;
1114 return sizeof(target_ulong
);
1116 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1117 && n
>= 38 && n
< 73) {
1119 if (env
->CP0_Status
& (1 << CP0St_FR
))
1120 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1122 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1126 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1127 /* set rounding mode */
1128 RESTORE_ROUNDING_MODE
;
1130 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1132 return sizeof(target_ulong
);
1135 case 32: env
->CP0_Status
= tmp
; break;
1136 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1137 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1138 case 35: env
->CP0_BadVAddr
= tmp
; break;
1139 case 36: env
->CP0_Cause
= tmp
; break;
1141 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1143 env
->hflags
|= MIPS_HFLAG_M16
;
1145 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1148 case 72: /* fp, ignored */ break;
1152 /* Other registers are readonly. Ignore writes. */
1156 return sizeof(target_ulong
);
1158 #elif defined (TARGET_SH4)
1160 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1161 /* FIXME: We should use XML for this. */
1163 #define NUM_CORE_REGS 59
1165 static int cpu_gdb_read_register(CPUSH4State
*env
, uint8_t *mem_buf
, int n
)
1168 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1169 GET_REGL(env
->gregs
[n
+ 16]);
1171 GET_REGL(env
->gregs
[n
]);
1173 } else if (n
< 16) {
1174 GET_REGL(env
->gregs
[n
]);
1175 } else if (n
>= 25 && n
< 41) {
1176 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1177 } else if (n
>= 43 && n
< 51) {
1178 GET_REGL(env
->gregs
[n
- 43]);
1179 } else if (n
>= 51 && n
< 59) {
1180 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1183 case 16: GET_REGL(env
->pc
);
1184 case 17: GET_REGL(env
->pr
);
1185 case 18: GET_REGL(env
->gbr
);
1186 case 19: GET_REGL(env
->vbr
);
1187 case 20: GET_REGL(env
->mach
);
1188 case 21: GET_REGL(env
->macl
);
1189 case 22: GET_REGL(env
->sr
);
1190 case 23: GET_REGL(env
->fpul
);
1191 case 24: GET_REGL(env
->fpscr
);
1192 case 41: GET_REGL(env
->ssr
);
1193 case 42: GET_REGL(env
->spc
);
1199 static int cpu_gdb_write_register(CPUSH4State
*env
, uint8_t *mem_buf
, int n
)
1203 tmp
= ldl_p(mem_buf
);
1206 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1207 env
->gregs
[n
+ 16] = tmp
;
1209 env
->gregs
[n
] = tmp
;
1212 } else if (n
< 16) {
1213 env
->gregs
[n
] = tmp
;
1215 } else if (n
>= 25 && n
< 41) {
1216 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1218 } else if (n
>= 43 && n
< 51) {
1219 env
->gregs
[n
- 43] = tmp
;
1221 } else if (n
>= 51 && n
< 59) {
1222 env
->gregs
[n
- (51 - 16)] = tmp
;
1226 case 16: env
->pc
= tmp
; break;
1227 case 17: env
->pr
= tmp
; break;
1228 case 18: env
->gbr
= tmp
; break;
1229 case 19: env
->vbr
= tmp
; break;
1230 case 20: env
->mach
= tmp
; break;
1231 case 21: env
->macl
= tmp
; break;
1232 case 22: env
->sr
= tmp
; break;
1233 case 23: env
->fpul
= tmp
; break;
1234 case 24: env
->fpscr
= tmp
; break;
1235 case 41: env
->ssr
= tmp
; break;
1236 case 42: env
->spc
= tmp
; break;
1242 #elif defined (TARGET_MICROBLAZE)
1244 #define NUM_CORE_REGS (32 + 5)
1246 static int cpu_gdb_read_register(CPUMBState
*env
, uint8_t *mem_buf
, int n
)
1249 GET_REG32(env
->regs
[n
]);
1251 GET_REG32(env
->sregs
[n
- 32]);
1256 static int cpu_gdb_write_register(CPUMBState
*env
, uint8_t *mem_buf
, int n
)
1260 if (n
> NUM_CORE_REGS
)
1263 tmp
= ldl_p(mem_buf
);
1268 env
->sregs
[n
- 32] = tmp
;
1272 #elif defined (TARGET_CRIS)
1274 #define NUM_CORE_REGS 49
1277 read_register_crisv10(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1280 GET_REG32(env
->regs
[n
]);
1290 GET_REG8(env
->pregs
[n
- 16]);
1293 GET_REG8(env
->pregs
[n
- 16]);
1297 GET_REG16(env
->pregs
[n
- 16]);
1301 GET_REG32(env
->pregs
[n
- 16]);
1309 static int cpu_gdb_read_register(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1313 if (env
->pregs
[PR_VR
] < 32)
1314 return read_register_crisv10(env
, mem_buf
, n
);
1316 srs
= env
->pregs
[PR_SRS
];
1318 GET_REG32(env
->regs
[n
]);
1321 if (n
>= 21 && n
< 32) {
1322 GET_REG32(env
->pregs
[n
- 16]);
1324 if (n
>= 33 && n
< 49) {
1325 GET_REG32(env
->sregs
[srs
][n
- 33]);
1328 case 16: GET_REG8(env
->pregs
[0]);
1329 case 17: GET_REG8(env
->pregs
[1]);
1330 case 18: GET_REG32(env
->pregs
[2]);
1331 case 19: GET_REG8(srs
);
1332 case 20: GET_REG16(env
->pregs
[4]);
1333 case 32: GET_REG32(env
->pc
);
1339 static int cpu_gdb_write_register(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1346 tmp
= ldl_p(mem_buf
);
1352 if (n
>= 21 && n
< 32) {
1353 env
->pregs
[n
- 16] = tmp
;
1356 /* FIXME: Should support function regs be writable? */
1360 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1363 case 32: env
->pc
= tmp
; break;
1368 #elif defined (TARGET_ALPHA)
1370 #define NUM_CORE_REGS 67
1372 static int cpu_gdb_read_register(CPUAlphaState
*env
, uint8_t *mem_buf
, int n
)
1382 d
.d
= env
->fir
[n
- 32];
1386 val
= cpu_alpha_load_fpcr(env
);
1396 /* 31 really is the zero register; 65 is unassigned in the
1397 gdb protocol, but is still required to occupy 8 bytes. */
1406 static int cpu_gdb_write_register(CPUAlphaState
*env
, uint8_t *mem_buf
, int n
)
1408 target_ulong tmp
= ldtul_p(mem_buf
);
1417 env
->fir
[n
- 32] = d
.d
;
1420 cpu_alpha_store_fpcr(env
, tmp
);
1430 /* 31 really is the zero register; 65 is unassigned in the
1431 gdb protocol, but is still required to occupy 8 bytes. */
1438 #elif defined (TARGET_S390X)
1440 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1442 static int cpu_gdb_read_register(CPUS390XState
*env
, uint8_t *mem_buf
, int n
)
1445 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1446 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1447 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1448 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1449 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1450 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1451 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1452 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1455 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1456 case S390_CC_REGNUM
:
1457 env
->cc_op
= calc_cc(env
, env
->cc_op
, env
->cc_src
, env
->cc_dst
,
1459 GET_REG32(env
->cc_op
);
1466 static int cpu_gdb_write_register(CPUS390XState
*env
, uint8_t *mem_buf
, int n
)
1471 tmpl
= ldtul_p(mem_buf
);
1472 tmp32
= ldl_p(mem_buf
);
1475 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1476 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1477 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1478 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1479 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1480 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1481 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1482 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1485 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1486 case S390_CC_REGNUM
: env
->cc_op
= tmp32
; r
=4; break;
1491 #elif defined (TARGET_LM32)
1493 #include "hw/lm32_pic.h"
1494 #define NUM_CORE_REGS (32 + 7)
1496 static int cpu_gdb_read_register(CPULM32State
*env
, uint8_t *mem_buf
, int n
)
1499 GET_REG32(env
->regs
[n
]);
1505 /* FIXME: put in right exception ID */
1510 GET_REG32(env
->eba
);
1513 GET_REG32(env
->deba
);
1519 GET_REG32(lm32_pic_get_im(env
->pic_state
));
1522 GET_REG32(lm32_pic_get_ip(env
->pic_state
));
1529 static int cpu_gdb_write_register(CPULM32State
*env
, uint8_t *mem_buf
, int n
)
1533 if (n
> NUM_CORE_REGS
) {
1537 tmp
= ldl_p(mem_buf
);
1556 lm32_pic_set_im(env
->pic_state
, tmp
);
1559 lm32_pic_set_ip(env
->pic_state
, tmp
);
1565 #elif defined(TARGET_XTENSA)
1567 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1568 * Use num_regs to see all registers. gdb modification is required for that:
1569 * reset bit 0 in the 'flags' field of the registers definitions in the
1570 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1572 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1573 #define num_g_regs NUM_CORE_REGS
1575 static int cpu_gdb_read_register(CPUXtensaState
*env
, uint8_t *mem_buf
, int n
)
1577 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1579 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1583 switch (reg
->type
) {
1589 xtensa_sync_phys_from_window(env
);
1590 GET_REG32(env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
]);
1594 GET_REG32(env
->sregs
[reg
->targno
& 0xff]);
1598 GET_REG32(env
->uregs
[reg
->targno
& 0xff]);
1602 GET_REG32(env
->regs
[reg
->targno
& 0x0f]);
1606 qemu_log("%s from reg %d of unsupported type %d\n",
1607 __func__
, n
, reg
->type
);
1612 static int cpu_gdb_write_register(CPUXtensaState
*env
, uint8_t *mem_buf
, int n
)
1615 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1617 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1621 tmp
= ldl_p(mem_buf
);
1623 switch (reg
->type
) {
1629 env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
] = tmp
;
1630 xtensa_sync_window_from_phys(env
);
1634 env
->sregs
[reg
->targno
& 0xff] = tmp
;
1638 env
->uregs
[reg
->targno
& 0xff] = tmp
;
1642 env
->regs
[reg
->targno
& 0x0f] = tmp
;
1646 qemu_log("%s to reg %d of unsupported type %d\n",
1647 __func__
, n
, reg
->type
);
1655 #define NUM_CORE_REGS 0
1657 static int cpu_gdb_read_register(CPUArchState
*env
, uint8_t *mem_buf
, int n
)
1662 static int cpu_gdb_write_register(CPUArchState
*env
, uint8_t *mem_buf
, int n
)
1669 #if !defined(TARGET_XTENSA)
1670 static int num_g_regs
= NUM_CORE_REGS
;
1674 /* Encode data using the encoding for 'x' packets. */
1675 static int memtox(char *buf
, const char *mem
, int len
)
1683 case '#': case '$': case '*': case '}':
1695 static const char *get_feature_xml(const char *p
, const char **newp
)
1700 static char target_xml
[1024];
1703 while (p
[len
] && p
[len
] != ':')
1708 if (strncmp(p
, "target.xml", len
) == 0) {
1709 /* Generate the XML description for this CPU. */
1710 if (!target_xml
[0]) {
1711 GDBRegisterState
*r
;
1713 snprintf(target_xml
, sizeof(target_xml
),
1714 "<?xml version=\"1.0\"?>"
1715 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1717 "<xi:include href=\"%s\"/>",
1720 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1721 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1722 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1723 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1725 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1729 for (i
= 0; ; i
++) {
1730 name
= xml_builtin
[i
][0];
1731 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1734 return name
? xml_builtin
[i
][1] : NULL
;
1738 static int gdb_read_register(CPUArchState
*env
, uint8_t *mem_buf
, int reg
)
1740 GDBRegisterState
*r
;
1742 if (reg
< NUM_CORE_REGS
)
1743 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1745 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1746 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1747 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1753 static int gdb_write_register(CPUArchState
*env
, uint8_t *mem_buf
, int reg
)
1755 GDBRegisterState
*r
;
1757 if (reg
< NUM_CORE_REGS
)
1758 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1760 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1761 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1762 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1768 #if !defined(TARGET_XTENSA)
1769 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1770 specifies the first register number and these registers are included in
1771 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1772 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1775 void gdb_register_coprocessor(CPUArchState
* env
,
1776 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1777 int num_regs
, const char *xml
, int g_pos
)
1779 GDBRegisterState
*s
;
1780 GDBRegisterState
**p
;
1781 static int last_reg
= NUM_CORE_REGS
;
1785 /* Check for duplicates. */
1786 if (strcmp((*p
)->xml
, xml
) == 0)
1791 s
= g_new0(GDBRegisterState
, 1);
1792 s
->base_reg
= last_reg
;
1793 s
->num_regs
= num_regs
;
1794 s
->get_reg
= get_reg
;
1795 s
->set_reg
= set_reg
;
1798 /* Add to end of list. */
1799 last_reg
+= num_regs
;
1802 if (g_pos
!= s
->base_reg
) {
1803 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1804 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1806 num_g_regs
= last_reg
;
1812 #ifndef CONFIG_USER_ONLY
1813 static const int xlat_gdb_type
[] = {
1814 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1815 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1816 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1820 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1826 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1829 case GDB_BREAKPOINT_SW
:
1830 case GDB_BREAKPOINT_HW
:
1831 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1832 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1837 #ifndef CONFIG_USER_ONLY
1838 case GDB_WATCHPOINT_WRITE
:
1839 case GDB_WATCHPOINT_READ
:
1840 case GDB_WATCHPOINT_ACCESS
:
1841 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1842 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1854 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1860 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1863 case GDB_BREAKPOINT_SW
:
1864 case GDB_BREAKPOINT_HW
:
1865 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1866 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1871 #ifndef CONFIG_USER_ONLY
1872 case GDB_WATCHPOINT_WRITE
:
1873 case GDB_WATCHPOINT_READ
:
1874 case GDB_WATCHPOINT_ACCESS
:
1875 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1876 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1887 static void gdb_breakpoint_remove_all(void)
1891 if (kvm_enabled()) {
1892 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1896 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1897 cpu_breakpoint_remove_all(env
, BP_GDB
);
1898 #ifndef CONFIG_USER_ONLY
1899 cpu_watchpoint_remove_all(env
, BP_GDB
);
1904 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1906 #if defined(TARGET_I386)
1907 cpu_synchronize_state(s
->c_cpu
);
1909 #elif defined (TARGET_PPC)
1911 #elif defined (TARGET_SPARC)
1913 s
->c_cpu
->npc
= pc
+ 4;
1914 #elif defined (TARGET_ARM)
1915 s
->c_cpu
->regs
[15] = pc
;
1916 #elif defined (TARGET_SH4)
1918 #elif defined (TARGET_MIPS)
1919 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1921 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1923 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1925 #elif defined (TARGET_MICROBLAZE)
1926 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1927 #elif defined (TARGET_CRIS)
1929 #elif defined (TARGET_ALPHA)
1931 #elif defined (TARGET_S390X)
1932 cpu_synchronize_state(s
->c_cpu
);
1933 s
->c_cpu
->psw
.addr
= pc
;
1934 #elif defined (TARGET_LM32)
1936 #elif defined(TARGET_XTENSA)
1941 static inline int gdb_id(CPUArchState
*env
)
1943 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1944 return env
->host_tid
;
1946 return env
->cpu_index
+ 1;
1950 static CPUArchState
*find_cpu(uint32_t thread_id
)
1954 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1955 if (gdb_id(env
) == thread_id
) {
1963 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1968 int ch
, reg_size
, type
, res
;
1969 char buf
[MAX_PACKET_LENGTH
];
1970 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1972 target_ulong addr
, len
;
1975 printf("command='%s'\n", line_buf
);
1981 /* TODO: Make this return the correct value for user-mode. */
1982 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1985 /* Remove all the breakpoints when this query is issued,
1986 * because gdb is doing and initial connect and the state
1987 * should be cleaned up.
1989 gdb_breakpoint_remove_all();
1993 addr
= strtoull(p
, (char **)&p
, 16);
1994 gdb_set_cpu_pc(s
, addr
);
2000 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
2001 if (s
->signal
== -1)
2006 if (strncmp(p
, "Cont", 4) == 0) {
2007 int res_signal
, res_thread
;
2011 put_packet(s
, "vCont;c;C;s;S");
2026 if (action
== 'C' || action
== 'S') {
2027 signal
= strtoul(p
, (char **)&p
, 16);
2028 } else if (action
!= 'c' && action
!= 's') {
2034 thread
= strtoull(p
+1, (char **)&p
, 16);
2036 action
= tolower(action
);
2037 if (res
== 0 || (res
== 'c' && action
== 's')) {
2039 res_signal
= signal
;
2040 res_thread
= thread
;
2044 if (res_thread
!= -1 && res_thread
!= 0) {
2045 env
= find_cpu(res_thread
);
2047 put_packet(s
, "E22");
2053 cpu_single_step(s
->c_cpu
, sstep_flags
);
2055 s
->signal
= res_signal
;
2061 goto unknown_command
;
2064 #ifdef CONFIG_USER_ONLY
2065 /* Kill the target */
2066 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
2071 gdb_breakpoint_remove_all();
2072 gdb_syscall_mode
= GDB_SYS_DISABLED
;
2074 put_packet(s
, "OK");
2078 addr
= strtoull(p
, (char **)&p
, 16);
2079 gdb_set_cpu_pc(s
, addr
);
2081 cpu_single_step(s
->c_cpu
, sstep_flags
);
2089 ret
= strtoull(p
, (char **)&p
, 16);
2092 err
= strtoull(p
, (char **)&p
, 16);
2099 if (s
->current_syscall_cb
) {
2100 s
->current_syscall_cb(s
->c_cpu
, ret
, err
);
2101 s
->current_syscall_cb
= NULL
;
2104 put_packet(s
, "T02");
2111 cpu_synchronize_state(s
->g_cpu
);
2114 for (addr
= 0; addr
< num_g_regs
; addr
++) {
2115 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
2118 memtohex(buf
, mem_buf
, len
);
2122 cpu_synchronize_state(s
->g_cpu
);
2124 registers
= mem_buf
;
2125 len
= strlen(p
) / 2;
2126 hextomem((uint8_t *)registers
, p
, len
);
2127 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
2128 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
2130 registers
+= reg_size
;
2132 put_packet(s
, "OK");
2135 addr
= strtoull(p
, (char **)&p
, 16);
2138 len
= strtoull(p
, NULL
, 16);
2139 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
2140 put_packet (s
, "E14");
2142 memtohex(buf
, mem_buf
, len
);
2147 addr
= strtoull(p
, (char **)&p
, 16);
2150 len
= strtoull(p
, (char **)&p
, 16);
2153 hextomem(mem_buf
, p
, len
);
2154 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0) {
2155 put_packet(s
, "E14");
2157 put_packet(s
, "OK");
2161 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2162 This works, but can be very slow. Anything new enough to
2163 understand XML also knows how to use this properly. */
2165 goto unknown_command
;
2166 addr
= strtoull(p
, (char **)&p
, 16);
2167 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
2169 memtohex(buf
, mem_buf
, reg_size
);
2172 put_packet(s
, "E14");
2177 goto unknown_command
;
2178 addr
= strtoull(p
, (char **)&p
, 16);
2181 reg_size
= strlen(p
) / 2;
2182 hextomem(mem_buf
, p
, reg_size
);
2183 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
2184 put_packet(s
, "OK");
2188 type
= strtoul(p
, (char **)&p
, 16);
2191 addr
= strtoull(p
, (char **)&p
, 16);
2194 len
= strtoull(p
, (char **)&p
, 16);
2196 res
= gdb_breakpoint_insert(addr
, len
, type
);
2198 res
= gdb_breakpoint_remove(addr
, len
, type
);
2200 put_packet(s
, "OK");
2201 else if (res
== -ENOSYS
)
2204 put_packet(s
, "E22");
2208 thread
= strtoull(p
, (char **)&p
, 16);
2209 if (thread
== -1 || thread
== 0) {
2210 put_packet(s
, "OK");
2213 env
= find_cpu(thread
);
2215 put_packet(s
, "E22");
2221 put_packet(s
, "OK");
2225 put_packet(s
, "OK");
2228 put_packet(s
, "E22");
2233 thread
= strtoull(p
, (char **)&p
, 16);
2234 env
= find_cpu(thread
);
2237 put_packet(s
, "OK");
2239 put_packet(s
, "E22");
2244 /* parse any 'q' packets here */
2245 if (!strcmp(p
,"qemu.sstepbits")) {
2246 /* Query Breakpoint bit definitions */
2247 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2253 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2254 /* Display or change the sstep_flags */
2257 /* Display current setting */
2258 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2263 type
= strtoul(p
, (char **)&p
, 16);
2265 put_packet(s
, "OK");
2267 } else if (strcmp(p
,"C") == 0) {
2268 /* "Current thread" remains vague in the spec, so always return
2269 * the first CPU (gdb returns the first thread). */
2270 put_packet(s
, "QC1");
2272 } else if (strcmp(p
,"fThreadInfo") == 0) {
2273 s
->query_cpu
= first_cpu
;
2274 goto report_cpuinfo
;
2275 } else if (strcmp(p
,"sThreadInfo") == 0) {
2278 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2280 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2284 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2285 thread
= strtoull(p
+16, (char **)&p
, 16);
2286 env
= find_cpu(thread
);
2288 cpu_synchronize_state(env
);
2289 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2290 "CPU#%d [%s]", env
->cpu_index
,
2291 env
->halted
? "halted " : "running");
2292 memtohex(buf
, mem_buf
, len
);
2297 #ifdef CONFIG_USER_ONLY
2298 else if (strncmp(p
, "Offsets", 7) == 0) {
2299 TaskState
*ts
= s
->c_cpu
->opaque
;
2301 snprintf(buf
, sizeof(buf
),
2302 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2303 ";Bss=" TARGET_ABI_FMT_lx
,
2304 ts
->info
->code_offset
,
2305 ts
->info
->data_offset
,
2306 ts
->info
->data_offset
);
2310 #else /* !CONFIG_USER_ONLY */
2311 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2312 int len
= strlen(p
+ 5);
2314 if ((len
% 2) != 0) {
2315 put_packet(s
, "E01");
2318 hextomem(mem_buf
, p
+ 5, len
);
2321 qemu_chr_be_write(s
->mon_chr
, mem_buf
, len
);
2322 put_packet(s
, "OK");
2325 #endif /* !CONFIG_USER_ONLY */
2326 if (strncmp(p
, "Supported", 9) == 0) {
2327 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2329 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2335 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2337 target_ulong total_len
;
2341 xml
= get_feature_xml(p
, &p
);
2343 snprintf(buf
, sizeof(buf
), "E00");
2350 addr
= strtoul(p
, (char **)&p
, 16);
2353 len
= strtoul(p
, (char **)&p
, 16);
2355 total_len
= strlen(xml
);
2356 if (addr
> total_len
) {
2357 snprintf(buf
, sizeof(buf
), "E00");
2361 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2362 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2363 if (len
< total_len
- addr
) {
2365 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2368 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2370 put_packet_binary(s
, buf
, len
+ 1);
2374 /* Unrecognised 'q' command. */
2375 goto unknown_command
;
2379 /* put empty packet */
2387 void gdb_set_stop_cpu(CPUArchState
*env
)
2389 gdbserver_state
->c_cpu
= env
;
2390 gdbserver_state
->g_cpu
= env
;
2393 #ifndef CONFIG_USER_ONLY
2394 static void gdb_vm_state_change(void *opaque
, int running
, RunState state
)
2396 GDBState
*s
= gdbserver_state
;
2397 CPUArchState
*env
= s
->c_cpu
;
2402 if (running
|| s
->state
== RS_INACTIVE
) {
2405 /* Is there a GDB syscall waiting to be sent? */
2406 if (s
->current_syscall_cb
) {
2407 put_packet(s
, s
->syscall_buf
);
2411 case RUN_STATE_DEBUG
:
2412 if (env
->watchpoint_hit
) {
2413 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2424 snprintf(buf
, sizeof(buf
),
2425 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2426 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2427 env
->watchpoint_hit
->vaddr
);
2428 env
->watchpoint_hit
= NULL
;
2432 ret
= GDB_SIGNAL_TRAP
;
2434 case RUN_STATE_PAUSED
:
2435 ret
= GDB_SIGNAL_INT
;
2437 case RUN_STATE_SHUTDOWN
:
2438 ret
= GDB_SIGNAL_QUIT
;
2440 case RUN_STATE_IO_ERROR
:
2441 ret
= GDB_SIGNAL_IO
;
2443 case RUN_STATE_WATCHDOG
:
2444 ret
= GDB_SIGNAL_ALRM
;
2446 case RUN_STATE_INTERNAL_ERROR
:
2447 ret
= GDB_SIGNAL_ABRT
;
2449 case RUN_STATE_SAVE_VM
:
2450 case RUN_STATE_RESTORE_VM
:
2452 case RUN_STATE_FINISH_MIGRATE
:
2453 ret
= GDB_SIGNAL_XCPU
;
2456 ret
= GDB_SIGNAL_UNKNOWN
;
2459 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2464 /* disable single step if it was enabled */
2465 cpu_single_step(env
, 0);
2469 /* Send a gdb syscall request.
2470 This accepts limited printf-style format specifiers, specifically:
2471 %x - target_ulong argument printed in hex.
2472 %lx - 64-bit argument printed in hex.
2473 %s - string pointer (target_ulong) and length (int) pair. */
2474 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2483 s
= gdbserver_state
;
2486 s
->current_syscall_cb
= cb
;
2487 #ifndef CONFIG_USER_ONLY
2488 vm_stop(RUN_STATE_DEBUG
);
2492 p_end
= &s
->syscall_buf
[sizeof(s
->syscall_buf
)];
2499 addr
= va_arg(va
, target_ulong
);
2500 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
, addr
);
2503 if (*(fmt
++) != 'x')
2505 i64
= va_arg(va
, uint64_t);
2506 p
+= snprintf(p
, p_end
- p
, "%" PRIx64
, i64
);
2509 addr
= va_arg(va
, target_ulong
);
2510 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
"/%x",
2511 addr
, va_arg(va
, int));
2515 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2525 #ifdef CONFIG_USER_ONLY
2526 put_packet(s
, s
->syscall_buf
);
2527 gdb_handlesig(s
->c_cpu
, 0);
2529 /* In this case wait to send the syscall packet until notification that
2530 the CPU has stopped. This must be done because if the packet is sent
2531 now the reply from the syscall request could be received while the CPU
2532 is still in the running state, which can cause packets to be dropped
2533 and state transition 'T' packets to be sent while the syscall is still
2539 static void gdb_read_byte(GDBState
*s
, int ch
)
2544 #ifndef CONFIG_USER_ONLY
2545 if (s
->last_packet_len
) {
2546 /* Waiting for a response to the last packet. If we see the start
2547 of a new command then abandon the previous response. */
2550 printf("Got NACK, retransmitting\n");
2552 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2556 printf("Got ACK\n");
2558 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2560 if (ch
== '+' || ch
== '$')
2561 s
->last_packet_len
= 0;
2565 if (runstate_is_running()) {
2566 /* when the CPU is running, we cannot do anything except stop
2567 it when receiving a char */
2568 vm_stop(RUN_STATE_PAUSED
);
2575 s
->line_buf_index
= 0;
2576 s
->state
= RS_GETLINE
;
2581 s
->state
= RS_CHKSUM1
;
2582 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2585 s
->line_buf
[s
->line_buf_index
++] = ch
;
2589 s
->line_buf
[s
->line_buf_index
] = '\0';
2590 s
->line_csum
= fromhex(ch
) << 4;
2591 s
->state
= RS_CHKSUM2
;
2594 s
->line_csum
|= fromhex(ch
);
2596 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2597 csum
+= s
->line_buf
[i
];
2599 if (s
->line_csum
!= (csum
& 0xff)) {
2601 put_buffer(s
, &reply
, 1);
2605 put_buffer(s
, &reply
, 1);
2606 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2615 /* Tell the remote gdb that the process has exited. */
2616 void gdb_exit(CPUArchState
*env
, int code
)
2621 s
= gdbserver_state
;
2625 #ifdef CONFIG_USER_ONLY
2626 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2631 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2634 #ifndef CONFIG_USER_ONLY
2636 qemu_chr_delete(s
->chr
);
2641 #ifdef CONFIG_USER_ONLY
2647 s
= gdbserver_state
;
2649 if (gdbserver_fd
< 0 || s
->fd
< 0)
2656 gdb_handlesig (CPUArchState
*env
, int sig
)
2662 s
= gdbserver_state
;
2663 if (gdbserver_fd
< 0 || s
->fd
< 0)
2666 /* disable single step if it was enabled */
2667 cpu_single_step(env
, 0);
2672 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2675 /* put_packet() might have detected that the peer terminated the
2682 s
->running_state
= 0;
2683 while (s
->running_state
== 0) {
2684 n
= read (s
->fd
, buf
, 256);
2689 for (i
= 0; i
< n
; i
++)
2690 gdb_read_byte (s
, buf
[i
]);
2692 else if (n
== 0 || errno
!= EAGAIN
)
2694 /* XXX: Connection closed. Should probably wait for another
2695 connection before continuing. */
2704 /* Tell the remote gdb that the process has exited due to SIG. */
2705 void gdb_signalled(CPUArchState
*env
, int sig
)
2710 s
= gdbserver_state
;
2711 if (gdbserver_fd
< 0 || s
->fd
< 0)
2714 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2718 static void gdb_accept(void)
2721 struct sockaddr_in sockaddr
;
2726 len
= sizeof(sockaddr
);
2727 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2728 if (fd
< 0 && errno
!= EINTR
) {
2731 } else if (fd
>= 0) {
2733 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2739 /* set short latency */
2741 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2743 s
= g_malloc0(sizeof(GDBState
));
2744 s
->c_cpu
= first_cpu
;
2745 s
->g_cpu
= first_cpu
;
2749 gdbserver_state
= s
;
2751 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2754 static int gdbserver_open(int port
)
2756 struct sockaddr_in sockaddr
;
2759 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2765 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2768 /* allow fast reuse */
2770 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2772 sockaddr
.sin_family
= AF_INET
;
2773 sockaddr
.sin_port
= htons(port
);
2774 sockaddr
.sin_addr
.s_addr
= 0;
2775 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2781 ret
= listen(fd
, 0);
2790 int gdbserver_start(int port
)
2792 gdbserver_fd
= gdbserver_open(port
);
2793 if (gdbserver_fd
< 0)
2795 /* accept connections */
2800 /* Disable gdb stub for child processes. */
2801 void gdbserver_fork(CPUArchState
*env
)
2803 GDBState
*s
= gdbserver_state
;
2804 if (gdbserver_fd
< 0 || s
->fd
< 0)
2808 cpu_breakpoint_remove_all(env
, BP_GDB
);
2809 cpu_watchpoint_remove_all(env
, BP_GDB
);
2812 static int gdb_chr_can_receive(void *opaque
)
2814 /* We can handle an arbitrarily large amount of data.
2815 Pick the maximum packet size, which is as good as anything. */
2816 return MAX_PACKET_LENGTH
;
2819 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2823 for (i
= 0; i
< size
; i
++) {
2824 gdb_read_byte(gdbserver_state
, buf
[i
]);
2828 static void gdb_chr_event(void *opaque
, int event
)
2831 case CHR_EVENT_OPENED
:
2832 vm_stop(RUN_STATE_PAUSED
);
2840 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2842 char buf
[MAX_PACKET_LENGTH
];
2845 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2846 len
= (MAX_PACKET_LENGTH
/2) - 1;
2847 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2851 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2853 const char *p
= (const char *)buf
;
2856 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2858 if (len
<= max_sz
) {
2859 gdb_monitor_output(gdbserver_state
, p
, len
);
2862 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2870 static void gdb_sigterm_handler(int signal
)
2872 if (runstate_is_running()) {
2873 vm_stop(RUN_STATE_PAUSED
);
2878 int gdbserver_start(const char *device
)
2881 char gdbstub_device_name
[128];
2882 CharDriverState
*chr
= NULL
;
2883 CharDriverState
*mon_chr
;
2887 if (strcmp(device
, "none") != 0) {
2888 if (strstart(device
, "tcp:", NULL
)) {
2889 /* enforce required TCP attributes */
2890 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2891 "%s,nowait,nodelay,server", device
);
2892 device
= gdbstub_device_name
;
2895 else if (strcmp(device
, "stdio") == 0) {
2896 struct sigaction act
;
2898 memset(&act
, 0, sizeof(act
));
2899 act
.sa_handler
= gdb_sigterm_handler
;
2900 sigaction(SIGINT
, &act
, NULL
);
2903 chr
= qemu_chr_new("gdb", device
, NULL
);
2907 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2908 gdb_chr_event
, NULL
);
2911 s
= gdbserver_state
;
2913 s
= g_malloc0(sizeof(GDBState
));
2914 gdbserver_state
= s
;
2916 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2918 /* Initialize a monitor terminal for gdb */
2919 mon_chr
= g_malloc0(sizeof(*mon_chr
));
2920 mon_chr
->chr_write
= gdb_monitor_write
;
2921 monitor_init(mon_chr
, 0);
2924 qemu_chr_delete(s
->chr
);
2925 mon_chr
= s
->mon_chr
;
2926 memset(s
, 0, sizeof(GDBState
));
2928 s
->c_cpu
= first_cpu
;
2929 s
->g_cpu
= first_cpu
;
2931 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2932 s
->mon_chr
= mon_chr
;
2933 s
->current_syscall_cb
= NULL
;