accel: Introduce AccelOpsClass::cpu_thread_is_idle()
[qemu/rayw.git] / migration / ram.c
blob170e522a1fcabdacc163e9f634b2f6f81904accb
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration/register.h"
39 #include "migration/misc.h"
40 #include "qemu-file.h"
41 #include "postcopy-ram.h"
42 #include "page_cache.h"
43 #include "qemu/error-report.h"
44 #include "qapi/error.h"
45 #include "qapi/qapi-types-migration.h"
46 #include "qapi/qapi-events-migration.h"
47 #include "qapi/qmp/qerror.h"
48 #include "trace.h"
49 #include "exec/ram_addr.h"
50 #include "exec/target_page.h"
51 #include "qemu/rcu_queue.h"
52 #include "migration/colo.h"
53 #include "block.h"
54 #include "sysemu/cpu-throttle.h"
55 #include "savevm.h"
56 #include "qemu/iov.h"
57 #include "multifd.h"
58 #include "sysemu/runstate.h"
60 #include "hw/boards.h" /* for machine_dump_guest_core() */
62 #if defined(__linux__)
63 #include "qemu/userfaultfd.h"
64 #endif /* defined(__linux__) */
66 /***********************************************************/
67 /* ram save/restore */
69 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
70 * worked for pages that where filled with the same char. We switched
71 * it to only search for the zero value. And to avoid confusion with
72 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
75 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
76 #define RAM_SAVE_FLAG_ZERO 0x02
77 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
78 #define RAM_SAVE_FLAG_PAGE 0x08
79 #define RAM_SAVE_FLAG_EOS 0x10
80 #define RAM_SAVE_FLAG_CONTINUE 0x20
81 #define RAM_SAVE_FLAG_XBZRLE 0x40
82 /* 0x80 is reserved in migration.h start with 0x100 next */
83 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
85 XBZRLECacheStats xbzrle_counters;
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
103 static void XBZRLE_cache_lock(void)
105 if (migrate_use_xbzrle()) {
106 qemu_mutex_lock(&XBZRLE.lock);
110 static void XBZRLE_cache_unlock(void)
112 if (migrate_use_xbzrle()) {
113 qemu_mutex_unlock(&XBZRLE.lock);
118 * xbzrle_cache_resize: resize the xbzrle cache
120 * This function is called from migrate_params_apply in main
121 * thread, possibly while a migration is in progress. A running
122 * migration may be using the cache and might finish during this call,
123 * hence changes to the cache are protected by XBZRLE.lock().
125 * Returns 0 for success or -1 for error
127 * @new_size: new cache size
128 * @errp: set *errp if the check failed, with reason
130 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
132 PageCache *new_cache;
133 int64_t ret = 0;
135 /* Check for truncation */
136 if (new_size != (size_t)new_size) {
137 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
138 "exceeding address space");
139 return -1;
142 if (new_size == migrate_xbzrle_cache_size()) {
143 /* nothing to do */
144 return 0;
147 XBZRLE_cache_lock();
149 if (XBZRLE.cache != NULL) {
150 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
151 if (!new_cache) {
152 ret = -1;
153 goto out;
156 cache_fini(XBZRLE.cache);
157 XBZRLE.cache = new_cache;
159 out:
160 XBZRLE_cache_unlock();
161 return ret;
164 bool ramblock_is_ignored(RAMBlock *block)
166 return !qemu_ram_is_migratable(block) ||
167 (migrate_ignore_shared() && qemu_ram_is_shared(block));
170 #undef RAMBLOCK_FOREACH
172 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
174 RAMBlock *block;
175 int ret = 0;
177 RCU_READ_LOCK_GUARD();
179 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
180 ret = func(block, opaque);
181 if (ret) {
182 break;
185 return ret;
188 static void ramblock_recv_map_init(void)
190 RAMBlock *rb;
192 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
193 assert(!rb->receivedmap);
194 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
198 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
200 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
201 rb->receivedmap);
204 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
206 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
209 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
211 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
214 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
215 size_t nr)
217 bitmap_set_atomic(rb->receivedmap,
218 ramblock_recv_bitmap_offset(host_addr, rb),
219 nr);
222 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
225 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
227 * Returns >0 if success with sent bytes, or <0 if error.
229 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
230 const char *block_name)
232 RAMBlock *block = qemu_ram_block_by_name(block_name);
233 unsigned long *le_bitmap, nbits;
234 uint64_t size;
236 if (!block) {
237 error_report("%s: invalid block name: %s", __func__, block_name);
238 return -1;
241 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
244 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
245 * machines we may need 4 more bytes for padding (see below
246 * comment). So extend it a bit before hand.
248 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
251 * Always use little endian when sending the bitmap. This is
252 * required that when source and destination VMs are not using the
253 * same endianness. (Note: big endian won't work.)
255 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
257 /* Size of the bitmap, in bytes */
258 size = DIV_ROUND_UP(nbits, 8);
261 * size is always aligned to 8 bytes for 64bit machines, but it
262 * may not be true for 32bit machines. We need this padding to
263 * make sure the migration can survive even between 32bit and
264 * 64bit machines.
266 size = ROUND_UP(size, 8);
268 qemu_put_be64(file, size);
269 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
271 * Mark as an end, in case the middle part is screwed up due to
272 * some "mysterious" reason.
274 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
275 qemu_fflush(file);
277 g_free(le_bitmap);
279 if (qemu_file_get_error(file)) {
280 return qemu_file_get_error(file);
283 return size + sizeof(size);
287 * An outstanding page request, on the source, having been received
288 * and queued
290 struct RAMSrcPageRequest {
291 RAMBlock *rb;
292 hwaddr offset;
293 hwaddr len;
295 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
298 /* State of RAM for migration */
299 struct RAMState {
300 /* QEMUFile used for this migration */
301 QEMUFile *f;
302 /* UFFD file descriptor, used in 'write-tracking' migration */
303 int uffdio_fd;
304 /* Last block that we have visited searching for dirty pages */
305 RAMBlock *last_seen_block;
306 /* Last block from where we have sent data */
307 RAMBlock *last_sent_block;
308 /* Last dirty target page we have sent */
309 ram_addr_t last_page;
310 /* last ram version we have seen */
311 uint32_t last_version;
312 /* How many times we have dirty too many pages */
313 int dirty_rate_high_cnt;
314 /* these variables are used for bitmap sync */
315 /* last time we did a full bitmap_sync */
316 int64_t time_last_bitmap_sync;
317 /* bytes transferred at start_time */
318 uint64_t bytes_xfer_prev;
319 /* number of dirty pages since start_time */
320 uint64_t num_dirty_pages_period;
321 /* xbzrle misses since the beginning of the period */
322 uint64_t xbzrle_cache_miss_prev;
323 /* Amount of xbzrle pages since the beginning of the period */
324 uint64_t xbzrle_pages_prev;
325 /* Amount of xbzrle encoded bytes since the beginning of the period */
326 uint64_t xbzrle_bytes_prev;
327 /* Start using XBZRLE (e.g., after the first round). */
328 bool xbzrle_enabled;
329 /* Are we on the last stage of migration */
330 bool last_stage;
331 /* compression statistics since the beginning of the period */
332 /* amount of count that no free thread to compress data */
333 uint64_t compress_thread_busy_prev;
334 /* amount bytes after compression */
335 uint64_t compressed_size_prev;
336 /* amount of compressed pages */
337 uint64_t compress_pages_prev;
339 /* total handled target pages at the beginning of period */
340 uint64_t target_page_count_prev;
341 /* total handled target pages since start */
342 uint64_t target_page_count;
343 /* number of dirty bits in the bitmap */
344 uint64_t migration_dirty_pages;
345 /* Protects modification of the bitmap and migration dirty pages */
346 QemuMutex bitmap_mutex;
347 /* The RAMBlock used in the last src_page_requests */
348 RAMBlock *last_req_rb;
349 /* Queue of outstanding page requests from the destination */
350 QemuMutex src_page_req_mutex;
351 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
353 typedef struct RAMState RAMState;
355 static RAMState *ram_state;
357 static NotifierWithReturnList precopy_notifier_list;
359 /* Whether postcopy has queued requests? */
360 static bool postcopy_has_request(RAMState *rs)
362 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
365 void precopy_infrastructure_init(void)
367 notifier_with_return_list_init(&precopy_notifier_list);
370 void precopy_add_notifier(NotifierWithReturn *n)
372 notifier_with_return_list_add(&precopy_notifier_list, n);
375 void precopy_remove_notifier(NotifierWithReturn *n)
377 notifier_with_return_remove(n);
380 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
382 PrecopyNotifyData pnd;
383 pnd.reason = reason;
384 pnd.errp = errp;
386 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
389 uint64_t ram_bytes_remaining(void)
391 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
395 MigrationStats ram_counters;
397 static void ram_transferred_add(uint64_t bytes)
399 if (runstate_is_running()) {
400 ram_counters.precopy_bytes += bytes;
401 } else if (migration_in_postcopy()) {
402 ram_counters.postcopy_bytes += bytes;
403 } else {
404 ram_counters.downtime_bytes += bytes;
406 ram_counters.transferred += bytes;
409 /* used by the search for pages to send */
410 struct PageSearchStatus {
411 /* Current block being searched */
412 RAMBlock *block;
413 /* Current page to search from */
414 unsigned long page;
415 /* Set once we wrap around */
416 bool complete_round;
418 typedef struct PageSearchStatus PageSearchStatus;
420 CompressionStats compression_counters;
422 struct CompressParam {
423 bool done;
424 bool quit;
425 bool zero_page;
426 QEMUFile *file;
427 QemuMutex mutex;
428 QemuCond cond;
429 RAMBlock *block;
430 ram_addr_t offset;
432 /* internally used fields */
433 z_stream stream;
434 uint8_t *originbuf;
436 typedef struct CompressParam CompressParam;
438 struct DecompressParam {
439 bool done;
440 bool quit;
441 QemuMutex mutex;
442 QemuCond cond;
443 void *des;
444 uint8_t *compbuf;
445 int len;
446 z_stream stream;
448 typedef struct DecompressParam DecompressParam;
450 static CompressParam *comp_param;
451 static QemuThread *compress_threads;
452 /* comp_done_cond is used to wake up the migration thread when
453 * one of the compression threads has finished the compression.
454 * comp_done_lock is used to co-work with comp_done_cond.
456 static QemuMutex comp_done_lock;
457 static QemuCond comp_done_cond;
458 /* The empty QEMUFileOps will be used by file in CompressParam */
459 static const QEMUFileOps empty_ops = { };
461 static QEMUFile *decomp_file;
462 static DecompressParam *decomp_param;
463 static QemuThread *decompress_threads;
464 static QemuMutex decomp_done_lock;
465 static QemuCond decomp_done_cond;
467 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
468 ram_addr_t offset, uint8_t *source_buf);
470 static void *do_data_compress(void *opaque)
472 CompressParam *param = opaque;
473 RAMBlock *block;
474 ram_addr_t offset;
475 bool zero_page;
477 qemu_mutex_lock(&param->mutex);
478 while (!param->quit) {
479 if (param->block) {
480 block = param->block;
481 offset = param->offset;
482 param->block = NULL;
483 qemu_mutex_unlock(&param->mutex);
485 zero_page = do_compress_ram_page(param->file, &param->stream,
486 block, offset, param->originbuf);
488 qemu_mutex_lock(&comp_done_lock);
489 param->done = true;
490 param->zero_page = zero_page;
491 qemu_cond_signal(&comp_done_cond);
492 qemu_mutex_unlock(&comp_done_lock);
494 qemu_mutex_lock(&param->mutex);
495 } else {
496 qemu_cond_wait(&param->cond, &param->mutex);
499 qemu_mutex_unlock(&param->mutex);
501 return NULL;
504 static void compress_threads_save_cleanup(void)
506 int i, thread_count;
508 if (!migrate_use_compression() || !comp_param) {
509 return;
512 thread_count = migrate_compress_threads();
513 for (i = 0; i < thread_count; i++) {
515 * we use it as a indicator which shows if the thread is
516 * properly init'd or not
518 if (!comp_param[i].file) {
519 break;
522 qemu_mutex_lock(&comp_param[i].mutex);
523 comp_param[i].quit = true;
524 qemu_cond_signal(&comp_param[i].cond);
525 qemu_mutex_unlock(&comp_param[i].mutex);
527 qemu_thread_join(compress_threads + i);
528 qemu_mutex_destroy(&comp_param[i].mutex);
529 qemu_cond_destroy(&comp_param[i].cond);
530 deflateEnd(&comp_param[i].stream);
531 g_free(comp_param[i].originbuf);
532 qemu_fclose(comp_param[i].file);
533 comp_param[i].file = NULL;
535 qemu_mutex_destroy(&comp_done_lock);
536 qemu_cond_destroy(&comp_done_cond);
537 g_free(compress_threads);
538 g_free(comp_param);
539 compress_threads = NULL;
540 comp_param = NULL;
543 static int compress_threads_save_setup(void)
545 int i, thread_count;
547 if (!migrate_use_compression()) {
548 return 0;
550 thread_count = migrate_compress_threads();
551 compress_threads = g_new0(QemuThread, thread_count);
552 comp_param = g_new0(CompressParam, thread_count);
553 qemu_cond_init(&comp_done_cond);
554 qemu_mutex_init(&comp_done_lock);
555 for (i = 0; i < thread_count; i++) {
556 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
557 if (!comp_param[i].originbuf) {
558 goto exit;
561 if (deflateInit(&comp_param[i].stream,
562 migrate_compress_level()) != Z_OK) {
563 g_free(comp_param[i].originbuf);
564 goto exit;
567 /* comp_param[i].file is just used as a dummy buffer to save data,
568 * set its ops to empty.
570 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops, false);
571 comp_param[i].done = true;
572 comp_param[i].quit = false;
573 qemu_mutex_init(&comp_param[i].mutex);
574 qemu_cond_init(&comp_param[i].cond);
575 qemu_thread_create(compress_threads + i, "compress",
576 do_data_compress, comp_param + i,
577 QEMU_THREAD_JOINABLE);
579 return 0;
581 exit:
582 compress_threads_save_cleanup();
583 return -1;
587 * save_page_header: write page header to wire
589 * If this is the 1st block, it also writes the block identification
591 * Returns the number of bytes written
593 * @f: QEMUFile where to send the data
594 * @block: block that contains the page we want to send
595 * @offset: offset inside the block for the page
596 * in the lower bits, it contains flags
598 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
599 ram_addr_t offset)
601 size_t size, len;
603 if (block == rs->last_sent_block) {
604 offset |= RAM_SAVE_FLAG_CONTINUE;
606 qemu_put_be64(f, offset);
607 size = 8;
609 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
610 len = strlen(block->idstr);
611 qemu_put_byte(f, len);
612 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
613 size += 1 + len;
614 rs->last_sent_block = block;
616 return size;
620 * mig_throttle_guest_down: throttle down the guest
622 * Reduce amount of guest cpu execution to hopefully slow down memory
623 * writes. If guest dirty memory rate is reduced below the rate at
624 * which we can transfer pages to the destination then we should be
625 * able to complete migration. Some workloads dirty memory way too
626 * fast and will not effectively converge, even with auto-converge.
628 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
629 uint64_t bytes_dirty_threshold)
631 MigrationState *s = migrate_get_current();
632 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
633 uint64_t pct_increment = s->parameters.cpu_throttle_increment;
634 bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
635 int pct_max = s->parameters.max_cpu_throttle;
637 uint64_t throttle_now = cpu_throttle_get_percentage();
638 uint64_t cpu_now, cpu_ideal, throttle_inc;
640 /* We have not started throttling yet. Let's start it. */
641 if (!cpu_throttle_active()) {
642 cpu_throttle_set(pct_initial);
643 } else {
644 /* Throttling already on, just increase the rate */
645 if (!pct_tailslow) {
646 throttle_inc = pct_increment;
647 } else {
648 /* Compute the ideal CPU percentage used by Guest, which may
649 * make the dirty rate match the dirty rate threshold. */
650 cpu_now = 100 - throttle_now;
651 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
652 bytes_dirty_period);
653 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
655 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
659 void mig_throttle_counter_reset(void)
661 RAMState *rs = ram_state;
663 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
664 rs->num_dirty_pages_period = 0;
665 rs->bytes_xfer_prev = ram_counters.transferred;
669 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
671 * @rs: current RAM state
672 * @current_addr: address for the zero page
674 * Update the xbzrle cache to reflect a page that's been sent as all 0.
675 * The important thing is that a stale (not-yet-0'd) page be replaced
676 * by the new data.
677 * As a bonus, if the page wasn't in the cache it gets added so that
678 * when a small write is made into the 0'd page it gets XBZRLE sent.
680 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
682 if (!rs->xbzrle_enabled) {
683 return;
686 /* We don't care if this fails to allocate a new cache page
687 * as long as it updated an old one */
688 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
689 ram_counters.dirty_sync_count);
692 #define ENCODING_FLAG_XBZRLE 0x1
695 * save_xbzrle_page: compress and send current page
697 * Returns: 1 means that we wrote the page
698 * 0 means that page is identical to the one already sent
699 * -1 means that xbzrle would be longer than normal
701 * @rs: current RAM state
702 * @current_data: pointer to the address of the page contents
703 * @current_addr: addr of the page
704 * @block: block that contains the page we want to send
705 * @offset: offset inside the block for the page
707 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
708 ram_addr_t current_addr, RAMBlock *block,
709 ram_addr_t offset)
711 int encoded_len = 0, bytes_xbzrle;
712 uint8_t *prev_cached_page;
714 if (!cache_is_cached(XBZRLE.cache, current_addr,
715 ram_counters.dirty_sync_count)) {
716 xbzrle_counters.cache_miss++;
717 if (!rs->last_stage) {
718 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
719 ram_counters.dirty_sync_count) == -1) {
720 return -1;
721 } else {
722 /* update *current_data when the page has been
723 inserted into cache */
724 *current_data = get_cached_data(XBZRLE.cache, current_addr);
727 return -1;
731 * Reaching here means the page has hit the xbzrle cache, no matter what
732 * encoding result it is (normal encoding, overflow or skipping the page),
733 * count the page as encoded. This is used to calculate the encoding rate.
735 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
736 * 2nd page turns out to be skipped (i.e. no new bytes written to the
737 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
738 * skipped page included. In this way, the encoding rate can tell if the
739 * guest page is good for xbzrle encoding.
741 xbzrle_counters.pages++;
742 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
744 /* save current buffer into memory */
745 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
747 /* XBZRLE encoding (if there is no overflow) */
748 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
749 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
750 TARGET_PAGE_SIZE);
753 * Update the cache contents, so that it corresponds to the data
754 * sent, in all cases except where we skip the page.
756 if (!rs->last_stage && encoded_len != 0) {
757 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
759 * In the case where we couldn't compress, ensure that the caller
760 * sends the data from the cache, since the guest might have
761 * changed the RAM since we copied it.
763 *current_data = prev_cached_page;
766 if (encoded_len == 0) {
767 trace_save_xbzrle_page_skipping();
768 return 0;
769 } else if (encoded_len == -1) {
770 trace_save_xbzrle_page_overflow();
771 xbzrle_counters.overflow++;
772 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
773 return -1;
776 /* Send XBZRLE based compressed page */
777 bytes_xbzrle = save_page_header(rs, rs->f, block,
778 offset | RAM_SAVE_FLAG_XBZRLE);
779 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
780 qemu_put_be16(rs->f, encoded_len);
781 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
782 bytes_xbzrle += encoded_len + 1 + 2;
784 * Like compressed_size (please see update_compress_thread_counts),
785 * the xbzrle encoded bytes don't count the 8 byte header with
786 * RAM_SAVE_FLAG_CONTINUE.
788 xbzrle_counters.bytes += bytes_xbzrle - 8;
789 ram_transferred_add(bytes_xbzrle);
791 return 1;
795 * migration_bitmap_find_dirty: find the next dirty page from start
797 * Returns the page offset within memory region of the start of a dirty page
799 * @rs: current RAM state
800 * @rb: RAMBlock where to search for dirty pages
801 * @start: page where we start the search
803 static inline
804 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
805 unsigned long start)
807 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
808 unsigned long *bitmap = rb->bmap;
810 if (ramblock_is_ignored(rb)) {
811 return size;
814 return find_next_bit(bitmap, size, start);
817 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
818 unsigned long page)
820 uint8_t shift;
821 hwaddr size, start;
823 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
824 return;
827 shift = rb->clear_bmap_shift;
829 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
830 * can make things easier sometimes since then start address
831 * of the small chunk will always be 64 pages aligned so the
832 * bitmap will always be aligned to unsigned long. We should
833 * even be able to remove this restriction but I'm simply
834 * keeping it.
836 assert(shift >= 6);
838 size = 1ULL << (TARGET_PAGE_BITS + shift);
839 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
840 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
841 memory_region_clear_dirty_bitmap(rb->mr, start, size);
844 static void
845 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
846 unsigned long start,
847 unsigned long npages)
849 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
850 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
851 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
854 * Clear pages from start to start + npages - 1, so the end boundary is
855 * exclusive.
857 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
858 migration_clear_memory_region_dirty_bitmap(rb, i);
863 * colo_bitmap_find_diry:find contiguous dirty pages from start
865 * Returns the page offset within memory region of the start of the contiguout
866 * dirty page
868 * @rs: current RAM state
869 * @rb: RAMBlock where to search for dirty pages
870 * @start: page where we start the search
871 * @num: the number of contiguous dirty pages
873 static inline
874 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
875 unsigned long start, unsigned long *num)
877 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
878 unsigned long *bitmap = rb->bmap;
879 unsigned long first, next;
881 *num = 0;
883 if (ramblock_is_ignored(rb)) {
884 return size;
887 first = find_next_bit(bitmap, size, start);
888 if (first >= size) {
889 return first;
891 next = find_next_zero_bit(bitmap, size, first + 1);
892 assert(next >= first);
893 *num = next - first;
894 return first;
897 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
898 RAMBlock *rb,
899 unsigned long page)
901 bool ret;
904 * Clear dirty bitmap if needed. This _must_ be called before we
905 * send any of the page in the chunk because we need to make sure
906 * we can capture further page content changes when we sync dirty
907 * log the next time. So as long as we are going to send any of
908 * the page in the chunk we clear the remote dirty bitmap for all.
909 * Clearing it earlier won't be a problem, but too late will.
911 migration_clear_memory_region_dirty_bitmap(rb, page);
913 ret = test_and_clear_bit(page, rb->bmap);
914 if (ret) {
915 rs->migration_dirty_pages--;
918 return ret;
921 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
922 void *opaque)
924 const hwaddr offset = section->offset_within_region;
925 const hwaddr size = int128_get64(section->size);
926 const unsigned long start = offset >> TARGET_PAGE_BITS;
927 const unsigned long npages = size >> TARGET_PAGE_BITS;
928 RAMBlock *rb = section->mr->ram_block;
929 uint64_t *cleared_bits = opaque;
932 * We don't grab ram_state->bitmap_mutex because we expect to run
933 * only when starting migration or during postcopy recovery where
934 * we don't have concurrent access.
936 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
937 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
939 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
940 bitmap_clear(rb->bmap, start, npages);
944 * Exclude all dirty pages from migration that fall into a discarded range as
945 * managed by a RamDiscardManager responsible for the mapped memory region of
946 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
948 * Discarded pages ("logically unplugged") have undefined content and must
949 * not get migrated, because even reading these pages for migration might
950 * result in undesired behavior.
952 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
954 * Note: The result is only stable while migrating (precopy/postcopy).
956 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
958 uint64_t cleared_bits = 0;
960 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
961 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
962 MemoryRegionSection section = {
963 .mr = rb->mr,
964 .offset_within_region = 0,
965 .size = int128_make64(qemu_ram_get_used_length(rb)),
968 ram_discard_manager_replay_discarded(rdm, &section,
969 dirty_bitmap_clear_section,
970 &cleared_bits);
972 return cleared_bits;
976 * Check if a host-page aligned page falls into a discarded range as managed by
977 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
979 * Note: The result is only stable while migrating (precopy/postcopy).
981 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
983 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
984 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
985 MemoryRegionSection section = {
986 .mr = rb->mr,
987 .offset_within_region = start,
988 .size = int128_make64(qemu_ram_pagesize(rb)),
991 return !ram_discard_manager_is_populated(rdm, &section);
993 return false;
996 /* Called with RCU critical section */
997 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
999 uint64_t new_dirty_pages =
1000 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
1002 rs->migration_dirty_pages += new_dirty_pages;
1003 rs->num_dirty_pages_period += new_dirty_pages;
1007 * ram_pagesize_summary: calculate all the pagesizes of a VM
1009 * Returns a summary bitmap of the page sizes of all RAMBlocks
1011 * For VMs with just normal pages this is equivalent to the host page
1012 * size. If it's got some huge pages then it's the OR of all the
1013 * different page sizes.
1015 uint64_t ram_pagesize_summary(void)
1017 RAMBlock *block;
1018 uint64_t summary = 0;
1020 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1021 summary |= block->page_size;
1024 return summary;
1027 uint64_t ram_get_total_transferred_pages(void)
1029 return ram_counters.normal + ram_counters.duplicate +
1030 compression_counters.pages + xbzrle_counters.pages;
1033 static void migration_update_rates(RAMState *rs, int64_t end_time)
1035 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1036 double compressed_size;
1038 /* calculate period counters */
1039 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1040 / (end_time - rs->time_last_bitmap_sync);
1042 if (!page_count) {
1043 return;
1046 if (migrate_use_xbzrle()) {
1047 double encoded_size, unencoded_size;
1049 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1050 rs->xbzrle_cache_miss_prev) / page_count;
1051 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1052 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
1053 TARGET_PAGE_SIZE;
1054 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
1055 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
1056 xbzrle_counters.encoding_rate = 0;
1057 } else {
1058 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
1060 rs->xbzrle_pages_prev = xbzrle_counters.pages;
1061 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
1064 if (migrate_use_compression()) {
1065 compression_counters.busy_rate = (double)(compression_counters.busy -
1066 rs->compress_thread_busy_prev) / page_count;
1067 rs->compress_thread_busy_prev = compression_counters.busy;
1069 compressed_size = compression_counters.compressed_size -
1070 rs->compressed_size_prev;
1071 if (compressed_size) {
1072 double uncompressed_size = (compression_counters.pages -
1073 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1075 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1076 compression_counters.compression_rate =
1077 uncompressed_size / compressed_size;
1079 rs->compress_pages_prev = compression_counters.pages;
1080 rs->compressed_size_prev = compression_counters.compressed_size;
1085 static void migration_trigger_throttle(RAMState *rs)
1087 MigrationState *s = migrate_get_current();
1088 uint64_t threshold = s->parameters.throttle_trigger_threshold;
1090 uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev;
1091 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1092 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1094 /* During block migration the auto-converge logic incorrectly detects
1095 * that ram migration makes no progress. Avoid this by disabling the
1096 * throttling logic during the bulk phase of block migration. */
1097 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1098 /* The following detection logic can be refined later. For now:
1099 Check to see if the ratio between dirtied bytes and the approx.
1100 amount of bytes that just got transferred since the last time
1101 we were in this routine reaches the threshold. If that happens
1102 twice, start or increase throttling. */
1104 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1105 (++rs->dirty_rate_high_cnt >= 2)) {
1106 trace_migration_throttle();
1107 rs->dirty_rate_high_cnt = 0;
1108 mig_throttle_guest_down(bytes_dirty_period,
1109 bytes_dirty_threshold);
1114 static void migration_bitmap_sync(RAMState *rs)
1116 RAMBlock *block;
1117 int64_t end_time;
1119 ram_counters.dirty_sync_count++;
1121 if (!rs->time_last_bitmap_sync) {
1122 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1125 trace_migration_bitmap_sync_start();
1126 memory_global_dirty_log_sync();
1128 qemu_mutex_lock(&rs->bitmap_mutex);
1129 WITH_RCU_READ_LOCK_GUARD() {
1130 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1131 ramblock_sync_dirty_bitmap(rs, block);
1133 ram_counters.remaining = ram_bytes_remaining();
1135 qemu_mutex_unlock(&rs->bitmap_mutex);
1137 memory_global_after_dirty_log_sync();
1138 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1140 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1142 /* more than 1 second = 1000 millisecons */
1143 if (end_time > rs->time_last_bitmap_sync + 1000) {
1144 migration_trigger_throttle(rs);
1146 migration_update_rates(rs, end_time);
1148 rs->target_page_count_prev = rs->target_page_count;
1150 /* reset period counters */
1151 rs->time_last_bitmap_sync = end_time;
1152 rs->num_dirty_pages_period = 0;
1153 rs->bytes_xfer_prev = ram_counters.transferred;
1155 if (migrate_use_events()) {
1156 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1160 static void migration_bitmap_sync_precopy(RAMState *rs)
1162 Error *local_err = NULL;
1165 * The current notifier usage is just an optimization to migration, so we
1166 * don't stop the normal migration process in the error case.
1168 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1169 error_report_err(local_err);
1170 local_err = NULL;
1173 migration_bitmap_sync(rs);
1175 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1176 error_report_err(local_err);
1180 static void ram_release_page(const char *rbname, uint64_t offset)
1182 if (!migrate_release_ram() || !migration_in_postcopy()) {
1183 return;
1186 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1190 * save_zero_page_to_file: send the zero page to the file
1192 * Returns the size of data written to the file, 0 means the page is not
1193 * a zero page
1195 * @rs: current RAM state
1196 * @file: the file where the data is saved
1197 * @block: block that contains the page we want to send
1198 * @offset: offset inside the block for the page
1200 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1201 RAMBlock *block, ram_addr_t offset)
1203 uint8_t *p = block->host + offset;
1204 int len = 0;
1206 if (buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1207 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1208 qemu_put_byte(file, 0);
1209 len += 1;
1210 ram_release_page(block->idstr, offset);
1212 return len;
1216 * save_zero_page: send the zero page to the stream
1218 * Returns the number of pages written.
1220 * @rs: current RAM state
1221 * @block: block that contains the page we want to send
1222 * @offset: offset inside the block for the page
1224 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1226 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1228 if (len) {
1229 ram_counters.duplicate++;
1230 ram_transferred_add(len);
1231 return 1;
1233 return -1;
1237 * @pages: the number of pages written by the control path,
1238 * < 0 - error
1239 * > 0 - number of pages written
1241 * Return true if the pages has been saved, otherwise false is returned.
1243 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1244 int *pages)
1246 uint64_t bytes_xmit = 0;
1247 int ret;
1249 *pages = -1;
1250 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1251 &bytes_xmit);
1252 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1253 return false;
1256 if (bytes_xmit) {
1257 ram_transferred_add(bytes_xmit);
1258 *pages = 1;
1261 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1262 return true;
1265 if (bytes_xmit > 0) {
1266 ram_counters.normal++;
1267 } else if (bytes_xmit == 0) {
1268 ram_counters.duplicate++;
1271 return true;
1275 * directly send the page to the stream
1277 * Returns the number of pages written.
1279 * @rs: current RAM state
1280 * @block: block that contains the page we want to send
1281 * @offset: offset inside the block for the page
1282 * @buf: the page to be sent
1283 * @async: send to page asyncly
1285 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1286 uint8_t *buf, bool async)
1288 ram_transferred_add(save_page_header(rs, rs->f, block,
1289 offset | RAM_SAVE_FLAG_PAGE));
1290 if (async) {
1291 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1292 migrate_release_ram() &
1293 migration_in_postcopy());
1294 } else {
1295 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1297 ram_transferred_add(TARGET_PAGE_SIZE);
1298 ram_counters.normal++;
1299 return 1;
1303 * ram_save_page: send the given page to the stream
1305 * Returns the number of pages written.
1306 * < 0 - error
1307 * >=0 - Number of pages written - this might legally be 0
1308 * if xbzrle noticed the page was the same.
1310 * @rs: current RAM state
1311 * @block: block that contains the page we want to send
1312 * @offset: offset inside the block for the page
1314 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1316 int pages = -1;
1317 uint8_t *p;
1318 bool send_async = true;
1319 RAMBlock *block = pss->block;
1320 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1321 ram_addr_t current_addr = block->offset + offset;
1323 p = block->host + offset;
1324 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1326 XBZRLE_cache_lock();
1327 if (rs->xbzrle_enabled && !migration_in_postcopy()) {
1328 pages = save_xbzrle_page(rs, &p, current_addr, block,
1329 offset);
1330 if (!rs->last_stage) {
1331 /* Can't send this cached data async, since the cache page
1332 * might get updated before it gets to the wire
1334 send_async = false;
1338 /* XBZRLE overflow or normal page */
1339 if (pages == -1) {
1340 pages = save_normal_page(rs, block, offset, p, send_async);
1343 XBZRLE_cache_unlock();
1345 return pages;
1348 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1349 ram_addr_t offset)
1351 if (multifd_queue_page(rs->f, block, offset) < 0) {
1352 return -1;
1354 ram_counters.normal++;
1356 return 1;
1359 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1360 ram_addr_t offset, uint8_t *source_buf)
1362 RAMState *rs = ram_state;
1363 uint8_t *p = block->host + offset;
1364 int ret;
1366 if (save_zero_page_to_file(rs, f, block, offset)) {
1367 return true;
1370 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1373 * copy it to a internal buffer to avoid it being modified by VM
1374 * so that we can catch up the error during compression and
1375 * decompression
1377 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1378 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1379 if (ret < 0) {
1380 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
1381 error_report("compressed data failed!");
1383 return false;
1386 static void
1387 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1389 ram_transferred_add(bytes_xmit);
1391 if (param->zero_page) {
1392 ram_counters.duplicate++;
1393 return;
1396 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1397 compression_counters.compressed_size += bytes_xmit - 8;
1398 compression_counters.pages++;
1401 static bool save_page_use_compression(RAMState *rs);
1403 static void flush_compressed_data(RAMState *rs)
1405 int idx, len, thread_count;
1407 if (!save_page_use_compression(rs)) {
1408 return;
1410 thread_count = migrate_compress_threads();
1412 qemu_mutex_lock(&comp_done_lock);
1413 for (idx = 0; idx < thread_count; idx++) {
1414 while (!comp_param[idx].done) {
1415 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1418 qemu_mutex_unlock(&comp_done_lock);
1420 for (idx = 0; idx < thread_count; idx++) {
1421 qemu_mutex_lock(&comp_param[idx].mutex);
1422 if (!comp_param[idx].quit) {
1423 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1425 * it's safe to fetch zero_page without holding comp_done_lock
1426 * as there is no further request submitted to the thread,
1427 * i.e, the thread should be waiting for a request at this point.
1429 update_compress_thread_counts(&comp_param[idx], len);
1431 qemu_mutex_unlock(&comp_param[idx].mutex);
1435 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1436 ram_addr_t offset)
1438 param->block = block;
1439 param->offset = offset;
1442 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1443 ram_addr_t offset)
1445 int idx, thread_count, bytes_xmit = -1, pages = -1;
1446 bool wait = migrate_compress_wait_thread();
1448 thread_count = migrate_compress_threads();
1449 qemu_mutex_lock(&comp_done_lock);
1450 retry:
1451 for (idx = 0; idx < thread_count; idx++) {
1452 if (comp_param[idx].done) {
1453 comp_param[idx].done = false;
1454 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1455 qemu_mutex_lock(&comp_param[idx].mutex);
1456 set_compress_params(&comp_param[idx], block, offset);
1457 qemu_cond_signal(&comp_param[idx].cond);
1458 qemu_mutex_unlock(&comp_param[idx].mutex);
1459 pages = 1;
1460 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
1461 break;
1466 * wait for the free thread if the user specifies 'compress-wait-thread',
1467 * otherwise we will post the page out in the main thread as normal page.
1469 if (pages < 0 && wait) {
1470 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1471 goto retry;
1473 qemu_mutex_unlock(&comp_done_lock);
1475 return pages;
1479 * find_dirty_block: find the next dirty page and update any state
1480 * associated with the search process.
1482 * Returns true if a page is found
1484 * @rs: current RAM state
1485 * @pss: data about the state of the current dirty page scan
1486 * @again: set to false if the search has scanned the whole of RAM
1488 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1490 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1491 if (pss->complete_round && pss->block == rs->last_seen_block &&
1492 pss->page >= rs->last_page) {
1494 * We've been once around the RAM and haven't found anything.
1495 * Give up.
1497 *again = false;
1498 return false;
1500 if (!offset_in_ramblock(pss->block,
1501 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1502 /* Didn't find anything in this RAM Block */
1503 pss->page = 0;
1504 pss->block = QLIST_NEXT_RCU(pss->block, next);
1505 if (!pss->block) {
1507 * If memory migration starts over, we will meet a dirtied page
1508 * which may still exists in compression threads's ring, so we
1509 * should flush the compressed data to make sure the new page
1510 * is not overwritten by the old one in the destination.
1512 * Also If xbzrle is on, stop using the data compression at this
1513 * point. In theory, xbzrle can do better than compression.
1515 flush_compressed_data(rs);
1517 /* Hit the end of the list */
1518 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1519 /* Flag that we've looped */
1520 pss->complete_round = true;
1521 /* After the first round, enable XBZRLE. */
1522 if (migrate_use_xbzrle()) {
1523 rs->xbzrle_enabled = true;
1526 /* Didn't find anything this time, but try again on the new block */
1527 *again = true;
1528 return false;
1529 } else {
1530 /* Can go around again, but... */
1531 *again = true;
1532 /* We've found something so probably don't need to */
1533 return true;
1538 * unqueue_page: gets a page of the queue
1540 * Helper for 'get_queued_page' - gets a page off the queue
1542 * Returns the block of the page (or NULL if none available)
1544 * @rs: current RAM state
1545 * @offset: used to return the offset within the RAMBlock
1547 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1549 struct RAMSrcPageRequest *entry;
1550 RAMBlock *block = NULL;
1551 size_t page_size;
1553 if (!postcopy_has_request(rs)) {
1554 return NULL;
1557 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1560 * This should _never_ change even after we take the lock, because no one
1561 * should be taking anything off the request list other than us.
1563 assert(postcopy_has_request(rs));
1565 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1566 block = entry->rb;
1567 *offset = entry->offset;
1568 page_size = qemu_ram_pagesize(block);
1569 /* Each page request should only be multiple page size of the ramblock */
1570 assert((entry->len % page_size) == 0);
1572 if (entry->len > page_size) {
1573 entry->len -= page_size;
1574 entry->offset += page_size;
1575 } else {
1576 memory_region_unref(block->mr);
1577 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1578 g_free(entry);
1579 migration_consume_urgent_request();
1582 trace_unqueue_page(block->idstr, *offset,
1583 test_bit((*offset >> TARGET_PAGE_BITS), block->bmap));
1585 return block;
1588 #if defined(__linux__)
1590 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1591 * is found, return RAM block pointer and page offset
1593 * Returns pointer to the RAMBlock containing faulting page,
1594 * NULL if no write faults are pending
1596 * @rs: current RAM state
1597 * @offset: page offset from the beginning of the block
1599 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1601 struct uffd_msg uffd_msg;
1602 void *page_address;
1603 RAMBlock *block;
1604 int res;
1606 if (!migrate_background_snapshot()) {
1607 return NULL;
1610 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1611 if (res <= 0) {
1612 return NULL;
1615 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1616 block = qemu_ram_block_from_host(page_address, false, offset);
1617 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1618 return block;
1622 * ram_save_release_protection: release UFFD write protection after
1623 * a range of pages has been saved
1625 * @rs: current RAM state
1626 * @pss: page-search-status structure
1627 * @start_page: index of the first page in the range relative to pss->block
1629 * Returns 0 on success, negative value in case of an error
1631 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1632 unsigned long start_page)
1634 int res = 0;
1636 /* Check if page is from UFFD-managed region. */
1637 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1638 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1639 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1641 /* Flush async buffers before un-protect. */
1642 qemu_fflush(rs->f);
1643 /* Un-protect memory range. */
1644 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1645 false, false);
1648 return res;
1651 /* ram_write_tracking_available: check if kernel supports required UFFD features
1653 * Returns true if supports, false otherwise
1655 bool ram_write_tracking_available(void)
1657 uint64_t uffd_features;
1658 int res;
1660 res = uffd_query_features(&uffd_features);
1661 return (res == 0 &&
1662 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1665 /* ram_write_tracking_compatible: check if guest configuration is
1666 * compatible with 'write-tracking'
1668 * Returns true if compatible, false otherwise
1670 bool ram_write_tracking_compatible(void)
1672 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1673 int uffd_fd;
1674 RAMBlock *block;
1675 bool ret = false;
1677 /* Open UFFD file descriptor */
1678 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1679 if (uffd_fd < 0) {
1680 return false;
1683 RCU_READ_LOCK_GUARD();
1685 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1686 uint64_t uffd_ioctls;
1688 /* Nothing to do with read-only and MMIO-writable regions */
1689 if (block->mr->readonly || block->mr->rom_device) {
1690 continue;
1692 /* Try to register block memory via UFFD-IO to track writes */
1693 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1694 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1695 goto out;
1697 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1698 goto out;
1701 ret = true;
1703 out:
1704 uffd_close_fd(uffd_fd);
1705 return ret;
1708 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1709 ram_addr_t size)
1712 * We read one byte of each page; this will preallocate page tables if
1713 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1714 * where no page was populated yet. This might require adaption when
1715 * supporting other mappings, like shmem.
1717 for (; offset < size; offset += block->page_size) {
1718 char tmp = *((char *)block->host + offset);
1720 /* Don't optimize the read out */
1721 asm volatile("" : "+r" (tmp));
1725 static inline int populate_read_section(MemoryRegionSection *section,
1726 void *opaque)
1728 const hwaddr size = int128_get64(section->size);
1729 hwaddr offset = section->offset_within_region;
1730 RAMBlock *block = section->mr->ram_block;
1732 populate_read_range(block, offset, size);
1733 return 0;
1737 * ram_block_populate_read: preallocate page tables and populate pages in the
1738 * RAM block by reading a byte of each page.
1740 * Since it's solely used for userfault_fd WP feature, here we just
1741 * hardcode page size to qemu_real_host_page_size.
1743 * @block: RAM block to populate
1745 static void ram_block_populate_read(RAMBlock *rb)
1748 * Skip populating all pages that fall into a discarded range as managed by
1749 * a RamDiscardManager responsible for the mapped memory region of the
1750 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1751 * must not get populated automatically. We don't have to track
1752 * modifications via userfaultfd WP reliably, because these pages will
1753 * not be part of the migration stream either way -- see
1754 * ramblock_dirty_bitmap_exclude_discarded_pages().
1756 * Note: The result is only stable while migrating (precopy/postcopy).
1758 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1759 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1760 MemoryRegionSection section = {
1761 .mr = rb->mr,
1762 .offset_within_region = 0,
1763 .size = rb->mr->size,
1766 ram_discard_manager_replay_populated(rdm, &section,
1767 populate_read_section, NULL);
1768 } else {
1769 populate_read_range(rb, 0, rb->used_length);
1774 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1776 void ram_write_tracking_prepare(void)
1778 RAMBlock *block;
1780 RCU_READ_LOCK_GUARD();
1782 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1783 /* Nothing to do with read-only and MMIO-writable regions */
1784 if (block->mr->readonly || block->mr->rom_device) {
1785 continue;
1789 * Populate pages of the RAM block before enabling userfault_fd
1790 * write protection.
1792 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1793 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1794 * pages with pte_none() entries in page table.
1796 ram_block_populate_read(block);
1801 * ram_write_tracking_start: start UFFD-WP memory tracking
1803 * Returns 0 for success or negative value in case of error
1805 int ram_write_tracking_start(void)
1807 int uffd_fd;
1808 RAMState *rs = ram_state;
1809 RAMBlock *block;
1811 /* Open UFFD file descriptor */
1812 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1813 if (uffd_fd < 0) {
1814 return uffd_fd;
1816 rs->uffdio_fd = uffd_fd;
1818 RCU_READ_LOCK_GUARD();
1820 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1821 /* Nothing to do with read-only and MMIO-writable regions */
1822 if (block->mr->readonly || block->mr->rom_device) {
1823 continue;
1826 /* Register block memory with UFFD to track writes */
1827 if (uffd_register_memory(rs->uffdio_fd, block->host,
1828 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1829 goto fail;
1831 /* Apply UFFD write protection to the block memory range */
1832 if (uffd_change_protection(rs->uffdio_fd, block->host,
1833 block->max_length, true, false)) {
1834 goto fail;
1836 block->flags |= RAM_UF_WRITEPROTECT;
1837 memory_region_ref(block->mr);
1839 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1840 block->host, block->max_length);
1843 return 0;
1845 fail:
1846 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1848 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1849 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1850 continue;
1853 * In case some memory block failed to be write-protected
1854 * remove protection and unregister all succeeded RAM blocks
1856 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1857 false, false);
1858 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1859 /* Cleanup flags and remove reference */
1860 block->flags &= ~RAM_UF_WRITEPROTECT;
1861 memory_region_unref(block->mr);
1864 uffd_close_fd(uffd_fd);
1865 rs->uffdio_fd = -1;
1866 return -1;
1870 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1872 void ram_write_tracking_stop(void)
1874 RAMState *rs = ram_state;
1875 RAMBlock *block;
1877 RCU_READ_LOCK_GUARD();
1879 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1880 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1881 continue;
1883 /* Remove protection and unregister all affected RAM blocks */
1884 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1885 false, false);
1886 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1888 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1889 block->host, block->max_length);
1891 /* Cleanup flags and remove reference */
1892 block->flags &= ~RAM_UF_WRITEPROTECT;
1893 memory_region_unref(block->mr);
1896 /* Finally close UFFD file descriptor */
1897 uffd_close_fd(rs->uffdio_fd);
1898 rs->uffdio_fd = -1;
1901 #else
1902 /* No target OS support, stubs just fail or ignore */
1904 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1906 (void) rs;
1907 (void) offset;
1909 return NULL;
1912 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1913 unsigned long start_page)
1915 (void) rs;
1916 (void) pss;
1917 (void) start_page;
1919 return 0;
1922 bool ram_write_tracking_available(void)
1924 return false;
1927 bool ram_write_tracking_compatible(void)
1929 assert(0);
1930 return false;
1933 int ram_write_tracking_start(void)
1935 assert(0);
1936 return -1;
1939 void ram_write_tracking_stop(void)
1941 assert(0);
1943 #endif /* defined(__linux__) */
1946 * get_queued_page: unqueue a page from the postcopy requests
1948 * Skips pages that are already sent (!dirty)
1950 * Returns true if a queued page is found
1952 * @rs: current RAM state
1953 * @pss: data about the state of the current dirty page scan
1955 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1957 RAMBlock *block;
1958 ram_addr_t offset;
1960 block = unqueue_page(rs, &offset);
1962 if (!block) {
1964 * Poll write faults too if background snapshot is enabled; that's
1965 * when we have vcpus got blocked by the write protected pages.
1967 block = poll_fault_page(rs, &offset);
1970 if (block) {
1972 * We want the background search to continue from the queued page
1973 * since the guest is likely to want other pages near to the page
1974 * it just requested.
1976 pss->block = block;
1977 pss->page = offset >> TARGET_PAGE_BITS;
1980 * This unqueued page would break the "one round" check, even is
1981 * really rare.
1983 pss->complete_round = false;
1986 return !!block;
1990 * migration_page_queue_free: drop any remaining pages in the ram
1991 * request queue
1993 * It should be empty at the end anyway, but in error cases there may
1994 * be some left. in case that there is any page left, we drop it.
1997 static void migration_page_queue_free(RAMState *rs)
1999 struct RAMSrcPageRequest *mspr, *next_mspr;
2000 /* This queue generally should be empty - but in the case of a failed
2001 * migration might have some droppings in.
2003 RCU_READ_LOCK_GUARD();
2004 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2005 memory_region_unref(mspr->rb->mr);
2006 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2007 g_free(mspr);
2012 * ram_save_queue_pages: queue the page for transmission
2014 * A request from postcopy destination for example.
2016 * Returns zero on success or negative on error
2018 * @rbname: Name of the RAMBLock of the request. NULL means the
2019 * same that last one.
2020 * @start: starting address from the start of the RAMBlock
2021 * @len: length (in bytes) to send
2023 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2025 RAMBlock *ramblock;
2026 RAMState *rs = ram_state;
2028 ram_counters.postcopy_requests++;
2029 RCU_READ_LOCK_GUARD();
2031 if (!rbname) {
2032 /* Reuse last RAMBlock */
2033 ramblock = rs->last_req_rb;
2035 if (!ramblock) {
2037 * Shouldn't happen, we can't reuse the last RAMBlock if
2038 * it's the 1st request.
2040 error_report("ram_save_queue_pages no previous block");
2041 return -1;
2043 } else {
2044 ramblock = qemu_ram_block_by_name(rbname);
2046 if (!ramblock) {
2047 /* We shouldn't be asked for a non-existent RAMBlock */
2048 error_report("ram_save_queue_pages no block '%s'", rbname);
2049 return -1;
2051 rs->last_req_rb = ramblock;
2053 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2054 if (!offset_in_ramblock(ramblock, start + len - 1)) {
2055 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2056 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2057 __func__, start, len, ramblock->used_length);
2058 return -1;
2061 struct RAMSrcPageRequest *new_entry =
2062 g_malloc0(sizeof(struct RAMSrcPageRequest));
2063 new_entry->rb = ramblock;
2064 new_entry->offset = start;
2065 new_entry->len = len;
2067 memory_region_ref(ramblock->mr);
2068 qemu_mutex_lock(&rs->src_page_req_mutex);
2069 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2070 migration_make_urgent_request();
2071 qemu_mutex_unlock(&rs->src_page_req_mutex);
2073 return 0;
2076 static bool save_page_use_compression(RAMState *rs)
2078 if (!migrate_use_compression()) {
2079 return false;
2083 * If xbzrle is enabled (e.g., after first round of migration), stop
2084 * using the data compression. In theory, xbzrle can do better than
2085 * compression.
2087 if (rs->xbzrle_enabled) {
2088 return false;
2091 return true;
2095 * try to compress the page before posting it out, return true if the page
2096 * has been properly handled by compression, otherwise needs other
2097 * paths to handle it
2099 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2101 if (!save_page_use_compression(rs)) {
2102 return false;
2106 * When starting the process of a new block, the first page of
2107 * the block should be sent out before other pages in the same
2108 * block, and all the pages in last block should have been sent
2109 * out, keeping this order is important, because the 'cont' flag
2110 * is used to avoid resending the block name.
2112 * We post the fist page as normal page as compression will take
2113 * much CPU resource.
2115 if (block != rs->last_sent_block) {
2116 flush_compressed_data(rs);
2117 return false;
2120 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2121 return true;
2124 compression_counters.busy++;
2125 return false;
2129 * ram_save_target_page: save one target page
2131 * Returns the number of pages written
2133 * @rs: current RAM state
2134 * @pss: data about the page we want to send
2136 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss)
2138 RAMBlock *block = pss->block;
2139 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2140 int res;
2142 if (control_save_page(rs, block, offset, &res)) {
2143 return res;
2146 if (save_compress_page(rs, block, offset)) {
2147 return 1;
2150 res = save_zero_page(rs, block, offset);
2151 if (res > 0) {
2152 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2153 * page would be stale
2155 if (!save_page_use_compression(rs)) {
2156 XBZRLE_cache_lock();
2157 xbzrle_cache_zero_page(rs, block->offset + offset);
2158 XBZRLE_cache_unlock();
2160 return res;
2164 * Do not use multifd for:
2165 * 1. Compression as the first page in the new block should be posted out
2166 * before sending the compressed page
2167 * 2. In postcopy as one whole host page should be placed
2169 if (!save_page_use_compression(rs) && migrate_use_multifd()
2170 && !migration_in_postcopy()) {
2171 return ram_save_multifd_page(rs, block, offset);
2174 return ram_save_page(rs, pss);
2178 * ram_save_host_page: save a whole host page
2180 * Starting at *offset send pages up to the end of the current host
2181 * page. It's valid for the initial offset to point into the middle of
2182 * a host page in which case the remainder of the hostpage is sent.
2183 * Only dirty target pages are sent. Note that the host page size may
2184 * be a huge page for this block.
2185 * The saving stops at the boundary of the used_length of the block
2186 * if the RAMBlock isn't a multiple of the host page size.
2188 * Returns the number of pages written or negative on error
2190 * @rs: current RAM state
2191 * @pss: data about the page we want to send
2193 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2195 int tmppages, pages = 0;
2196 size_t pagesize_bits =
2197 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2198 unsigned long hostpage_boundary =
2199 QEMU_ALIGN_UP(pss->page + 1, pagesize_bits);
2200 unsigned long start_page = pss->page;
2201 int res;
2203 if (ramblock_is_ignored(pss->block)) {
2204 error_report("block %s should not be migrated !", pss->block->idstr);
2205 return 0;
2208 do {
2209 /* Check the pages is dirty and if it is send it */
2210 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2211 tmppages = ram_save_target_page(rs, pss);
2212 if (tmppages < 0) {
2213 return tmppages;
2216 pages += tmppages;
2218 * Allow rate limiting to happen in the middle of huge pages if
2219 * something is sent in the current iteration.
2221 if (pagesize_bits > 1 && tmppages > 0) {
2222 migration_rate_limit();
2225 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2226 } while ((pss->page < hostpage_boundary) &&
2227 offset_in_ramblock(pss->block,
2228 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
2229 /* The offset we leave with is the min boundary of host page and block */
2230 pss->page = MIN(pss->page, hostpage_boundary);
2232 res = ram_save_release_protection(rs, pss, start_page);
2233 return (res < 0 ? res : pages);
2237 * ram_find_and_save_block: finds a dirty page and sends it to f
2239 * Called within an RCU critical section.
2241 * Returns the number of pages written where zero means no dirty pages,
2242 * or negative on error
2244 * @rs: current RAM state
2246 * On systems where host-page-size > target-page-size it will send all the
2247 * pages in a host page that are dirty.
2249 static int ram_find_and_save_block(RAMState *rs)
2251 PageSearchStatus pss;
2252 int pages = 0;
2253 bool again, found;
2255 /* No dirty page as there is zero RAM */
2256 if (!ram_bytes_total()) {
2257 return pages;
2260 pss.block = rs->last_seen_block;
2261 pss.page = rs->last_page;
2262 pss.complete_round = false;
2264 if (!pss.block) {
2265 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2268 do {
2269 again = true;
2270 found = get_queued_page(rs, &pss);
2272 if (!found) {
2273 /* priority queue empty, so just search for something dirty */
2274 found = find_dirty_block(rs, &pss, &again);
2277 if (found) {
2278 pages = ram_save_host_page(rs, &pss);
2280 } while (!pages && again);
2282 rs->last_seen_block = pss.block;
2283 rs->last_page = pss.page;
2285 return pages;
2288 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2290 uint64_t pages = size / TARGET_PAGE_SIZE;
2292 if (zero) {
2293 ram_counters.duplicate += pages;
2294 } else {
2295 ram_counters.normal += pages;
2296 ram_transferred_add(size);
2297 qemu_update_position(f, size);
2301 static uint64_t ram_bytes_total_common(bool count_ignored)
2303 RAMBlock *block;
2304 uint64_t total = 0;
2306 RCU_READ_LOCK_GUARD();
2308 if (count_ignored) {
2309 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2310 total += block->used_length;
2312 } else {
2313 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2314 total += block->used_length;
2317 return total;
2320 uint64_t ram_bytes_total(void)
2322 return ram_bytes_total_common(false);
2325 static void xbzrle_load_setup(void)
2327 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2330 static void xbzrle_load_cleanup(void)
2332 g_free(XBZRLE.decoded_buf);
2333 XBZRLE.decoded_buf = NULL;
2336 static void ram_state_cleanup(RAMState **rsp)
2338 if (*rsp) {
2339 migration_page_queue_free(*rsp);
2340 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2341 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2342 g_free(*rsp);
2343 *rsp = NULL;
2347 static void xbzrle_cleanup(void)
2349 XBZRLE_cache_lock();
2350 if (XBZRLE.cache) {
2351 cache_fini(XBZRLE.cache);
2352 g_free(XBZRLE.encoded_buf);
2353 g_free(XBZRLE.current_buf);
2354 g_free(XBZRLE.zero_target_page);
2355 XBZRLE.cache = NULL;
2356 XBZRLE.encoded_buf = NULL;
2357 XBZRLE.current_buf = NULL;
2358 XBZRLE.zero_target_page = NULL;
2360 XBZRLE_cache_unlock();
2363 static void ram_save_cleanup(void *opaque)
2365 RAMState **rsp = opaque;
2366 RAMBlock *block;
2368 /* We don't use dirty log with background snapshots */
2369 if (!migrate_background_snapshot()) {
2370 /* caller have hold iothread lock or is in a bh, so there is
2371 * no writing race against the migration bitmap
2373 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2375 * do not stop dirty log without starting it, since
2376 * memory_global_dirty_log_stop will assert that
2377 * memory_global_dirty_log_start/stop used in pairs
2379 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2383 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2384 g_free(block->clear_bmap);
2385 block->clear_bmap = NULL;
2386 g_free(block->bmap);
2387 block->bmap = NULL;
2390 xbzrle_cleanup();
2391 compress_threads_save_cleanup();
2392 ram_state_cleanup(rsp);
2395 static void ram_state_reset(RAMState *rs)
2397 rs->last_seen_block = NULL;
2398 rs->last_sent_block = NULL;
2399 rs->last_page = 0;
2400 rs->last_version = ram_list.version;
2401 rs->xbzrle_enabled = false;
2404 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2406 /* **** functions for postcopy ***** */
2408 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2410 struct RAMBlock *block;
2412 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2413 unsigned long *bitmap = block->bmap;
2414 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2415 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2417 while (run_start < range) {
2418 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2419 ram_discard_range(block->idstr,
2420 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2421 ((ram_addr_t)(run_end - run_start))
2422 << TARGET_PAGE_BITS);
2423 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2429 * postcopy_send_discard_bm_ram: discard a RAMBlock
2431 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2433 * @ms: current migration state
2434 * @block: RAMBlock to discard
2436 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2438 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2439 unsigned long current;
2440 unsigned long *bitmap = block->bmap;
2442 for (current = 0; current < end; ) {
2443 unsigned long one = find_next_bit(bitmap, end, current);
2444 unsigned long zero, discard_length;
2446 if (one >= end) {
2447 break;
2450 zero = find_next_zero_bit(bitmap, end, one + 1);
2452 if (zero >= end) {
2453 discard_length = end - one;
2454 } else {
2455 discard_length = zero - one;
2457 postcopy_discard_send_range(ms, one, discard_length);
2458 current = one + discard_length;
2462 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2465 * postcopy_each_ram_send_discard: discard all RAMBlocks
2467 * Utility for the outgoing postcopy code.
2468 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2469 * passing it bitmap indexes and name.
2470 * (qemu_ram_foreach_block ends up passing unscaled lengths
2471 * which would mean postcopy code would have to deal with target page)
2473 * @ms: current migration state
2475 static void postcopy_each_ram_send_discard(MigrationState *ms)
2477 struct RAMBlock *block;
2479 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2480 postcopy_discard_send_init(ms, block->idstr);
2483 * Deal with TPS != HPS and huge pages. It discard any partially sent
2484 * host-page size chunks, mark any partially dirty host-page size
2485 * chunks as all dirty. In this case the host-page is the host-page
2486 * for the particular RAMBlock, i.e. it might be a huge page.
2488 postcopy_chunk_hostpages_pass(ms, block);
2491 * Postcopy sends chunks of bitmap over the wire, but it
2492 * just needs indexes at this point, avoids it having
2493 * target page specific code.
2495 postcopy_send_discard_bm_ram(ms, block);
2496 postcopy_discard_send_finish(ms);
2501 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2503 * Helper for postcopy_chunk_hostpages; it's called twice to
2504 * canonicalize the two bitmaps, that are similar, but one is
2505 * inverted.
2507 * Postcopy requires that all target pages in a hostpage are dirty or
2508 * clean, not a mix. This function canonicalizes the bitmaps.
2510 * @ms: current migration state
2511 * @block: block that contains the page we want to canonicalize
2513 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2515 RAMState *rs = ram_state;
2516 unsigned long *bitmap = block->bmap;
2517 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2518 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2519 unsigned long run_start;
2521 if (block->page_size == TARGET_PAGE_SIZE) {
2522 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2523 return;
2526 /* Find a dirty page */
2527 run_start = find_next_bit(bitmap, pages, 0);
2529 while (run_start < pages) {
2532 * If the start of this run of pages is in the middle of a host
2533 * page, then we need to fixup this host page.
2535 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2536 /* Find the end of this run */
2537 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2539 * If the end isn't at the start of a host page, then the
2540 * run doesn't finish at the end of a host page
2541 * and we need to discard.
2545 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2546 unsigned long page;
2547 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2548 host_ratio);
2549 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2551 /* Clean up the bitmap */
2552 for (page = fixup_start_addr;
2553 page < fixup_start_addr + host_ratio; page++) {
2555 * Remark them as dirty, updating the count for any pages
2556 * that weren't previously dirty.
2558 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2562 /* Find the next dirty page for the next iteration */
2563 run_start = find_next_bit(bitmap, pages, run_start);
2568 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2570 * Transmit the set of pages to be discarded after precopy to the target
2571 * these are pages that:
2572 * a) Have been previously transmitted but are now dirty again
2573 * b) Pages that have never been transmitted, this ensures that
2574 * any pages on the destination that have been mapped by background
2575 * tasks get discarded (transparent huge pages is the specific concern)
2576 * Hopefully this is pretty sparse
2578 * @ms: current migration state
2580 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2582 RAMState *rs = ram_state;
2584 RCU_READ_LOCK_GUARD();
2586 /* This should be our last sync, the src is now paused */
2587 migration_bitmap_sync(rs);
2589 /* Easiest way to make sure we don't resume in the middle of a host-page */
2590 rs->last_seen_block = NULL;
2591 rs->last_sent_block = NULL;
2592 rs->last_page = 0;
2594 postcopy_each_ram_send_discard(ms);
2596 trace_ram_postcopy_send_discard_bitmap();
2600 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2602 * Returns zero on success
2604 * @rbname: name of the RAMBlock of the request. NULL means the
2605 * same that last one.
2606 * @start: RAMBlock starting page
2607 * @length: RAMBlock size
2609 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2611 trace_ram_discard_range(rbname, start, length);
2613 RCU_READ_LOCK_GUARD();
2614 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2616 if (!rb) {
2617 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2618 return -1;
2622 * On source VM, we don't need to update the received bitmap since
2623 * we don't even have one.
2625 if (rb->receivedmap) {
2626 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2627 length >> qemu_target_page_bits());
2630 return ram_block_discard_range(rb, start, length);
2634 * For every allocation, we will try not to crash the VM if the
2635 * allocation failed.
2637 static int xbzrle_init(void)
2639 Error *local_err = NULL;
2641 if (!migrate_use_xbzrle()) {
2642 return 0;
2645 XBZRLE_cache_lock();
2647 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2648 if (!XBZRLE.zero_target_page) {
2649 error_report("%s: Error allocating zero page", __func__);
2650 goto err_out;
2653 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2654 TARGET_PAGE_SIZE, &local_err);
2655 if (!XBZRLE.cache) {
2656 error_report_err(local_err);
2657 goto free_zero_page;
2660 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2661 if (!XBZRLE.encoded_buf) {
2662 error_report("%s: Error allocating encoded_buf", __func__);
2663 goto free_cache;
2666 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2667 if (!XBZRLE.current_buf) {
2668 error_report("%s: Error allocating current_buf", __func__);
2669 goto free_encoded_buf;
2672 /* We are all good */
2673 XBZRLE_cache_unlock();
2674 return 0;
2676 free_encoded_buf:
2677 g_free(XBZRLE.encoded_buf);
2678 XBZRLE.encoded_buf = NULL;
2679 free_cache:
2680 cache_fini(XBZRLE.cache);
2681 XBZRLE.cache = NULL;
2682 free_zero_page:
2683 g_free(XBZRLE.zero_target_page);
2684 XBZRLE.zero_target_page = NULL;
2685 err_out:
2686 XBZRLE_cache_unlock();
2687 return -ENOMEM;
2690 static int ram_state_init(RAMState **rsp)
2692 *rsp = g_try_new0(RAMState, 1);
2694 if (!*rsp) {
2695 error_report("%s: Init ramstate fail", __func__);
2696 return -1;
2699 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2700 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2701 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2704 * Count the total number of pages used by ram blocks not including any
2705 * gaps due to alignment or unplugs.
2706 * This must match with the initial values of dirty bitmap.
2708 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2709 ram_state_reset(*rsp);
2711 return 0;
2714 static void ram_list_init_bitmaps(void)
2716 MigrationState *ms = migrate_get_current();
2717 RAMBlock *block;
2718 unsigned long pages;
2719 uint8_t shift;
2721 /* Skip setting bitmap if there is no RAM */
2722 if (ram_bytes_total()) {
2723 shift = ms->clear_bitmap_shift;
2724 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2725 error_report("clear_bitmap_shift (%u) too big, using "
2726 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2727 shift = CLEAR_BITMAP_SHIFT_MAX;
2728 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2729 error_report("clear_bitmap_shift (%u) too small, using "
2730 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2731 shift = CLEAR_BITMAP_SHIFT_MIN;
2734 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2735 pages = block->max_length >> TARGET_PAGE_BITS;
2737 * The initial dirty bitmap for migration must be set with all
2738 * ones to make sure we'll migrate every guest RAM page to
2739 * destination.
2740 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2741 * new migration after a failed migration, ram_list.
2742 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2743 * guest memory.
2745 block->bmap = bitmap_new(pages);
2746 bitmap_set(block->bmap, 0, pages);
2747 block->clear_bmap_shift = shift;
2748 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2753 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2755 unsigned long pages;
2756 RAMBlock *rb;
2758 RCU_READ_LOCK_GUARD();
2760 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2761 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2762 rs->migration_dirty_pages -= pages;
2766 static void ram_init_bitmaps(RAMState *rs)
2768 /* For memory_global_dirty_log_start below. */
2769 qemu_mutex_lock_iothread();
2770 qemu_mutex_lock_ramlist();
2772 WITH_RCU_READ_LOCK_GUARD() {
2773 ram_list_init_bitmaps();
2774 /* We don't use dirty log with background snapshots */
2775 if (!migrate_background_snapshot()) {
2776 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2777 migration_bitmap_sync_precopy(rs);
2780 qemu_mutex_unlock_ramlist();
2781 qemu_mutex_unlock_iothread();
2784 * After an eventual first bitmap sync, fixup the initial bitmap
2785 * containing all 1s to exclude any discarded pages from migration.
2787 migration_bitmap_clear_discarded_pages(rs);
2790 static int ram_init_all(RAMState **rsp)
2792 if (ram_state_init(rsp)) {
2793 return -1;
2796 if (xbzrle_init()) {
2797 ram_state_cleanup(rsp);
2798 return -1;
2801 ram_init_bitmaps(*rsp);
2803 return 0;
2806 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2808 RAMBlock *block;
2809 uint64_t pages = 0;
2812 * Postcopy is not using xbzrle/compression, so no need for that.
2813 * Also, since source are already halted, we don't need to care
2814 * about dirty page logging as well.
2817 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2818 pages += bitmap_count_one(block->bmap,
2819 block->used_length >> TARGET_PAGE_BITS);
2822 /* This may not be aligned with current bitmaps. Recalculate. */
2823 rs->migration_dirty_pages = pages;
2825 ram_state_reset(rs);
2827 /* Update RAMState cache of output QEMUFile */
2828 rs->f = out;
2830 trace_ram_state_resume_prepare(pages);
2834 * This function clears bits of the free pages reported by the caller from the
2835 * migration dirty bitmap. @addr is the host address corresponding to the
2836 * start of the continuous guest free pages, and @len is the total bytes of
2837 * those pages.
2839 void qemu_guest_free_page_hint(void *addr, size_t len)
2841 RAMBlock *block;
2842 ram_addr_t offset;
2843 size_t used_len, start, npages;
2844 MigrationState *s = migrate_get_current();
2846 /* This function is currently expected to be used during live migration */
2847 if (!migration_is_setup_or_active(s->state)) {
2848 return;
2851 for (; len > 0; len -= used_len, addr += used_len) {
2852 block = qemu_ram_block_from_host(addr, false, &offset);
2853 if (unlikely(!block || offset >= block->used_length)) {
2855 * The implementation might not support RAMBlock resize during
2856 * live migration, but it could happen in theory with future
2857 * updates. So we add a check here to capture that case.
2859 error_report_once("%s unexpected error", __func__);
2860 return;
2863 if (len <= block->used_length - offset) {
2864 used_len = len;
2865 } else {
2866 used_len = block->used_length - offset;
2869 start = offset >> TARGET_PAGE_BITS;
2870 npages = used_len >> TARGET_PAGE_BITS;
2872 qemu_mutex_lock(&ram_state->bitmap_mutex);
2874 * The skipped free pages are equavalent to be sent from clear_bmap's
2875 * perspective, so clear the bits from the memory region bitmap which
2876 * are initially set. Otherwise those skipped pages will be sent in
2877 * the next round after syncing from the memory region bitmap.
2879 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2880 ram_state->migration_dirty_pages -=
2881 bitmap_count_one_with_offset(block->bmap, start, npages);
2882 bitmap_clear(block->bmap, start, npages);
2883 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2888 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2889 * long-running RCU critical section. When rcu-reclaims in the code
2890 * start to become numerous it will be necessary to reduce the
2891 * granularity of these critical sections.
2895 * ram_save_setup: Setup RAM for migration
2897 * Returns zero to indicate success and negative for error
2899 * @f: QEMUFile where to send the data
2900 * @opaque: RAMState pointer
2902 static int ram_save_setup(QEMUFile *f, void *opaque)
2904 RAMState **rsp = opaque;
2905 RAMBlock *block;
2907 if (compress_threads_save_setup()) {
2908 return -1;
2911 /* migration has already setup the bitmap, reuse it. */
2912 if (!migration_in_colo_state()) {
2913 if (ram_init_all(rsp) != 0) {
2914 compress_threads_save_cleanup();
2915 return -1;
2918 (*rsp)->f = f;
2920 WITH_RCU_READ_LOCK_GUARD() {
2921 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
2923 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2924 qemu_put_byte(f, strlen(block->idstr));
2925 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2926 qemu_put_be64(f, block->used_length);
2927 if (migrate_postcopy_ram() && block->page_size !=
2928 qemu_host_page_size) {
2929 qemu_put_be64(f, block->page_size);
2931 if (migrate_ignore_shared()) {
2932 qemu_put_be64(f, block->mr->addr);
2937 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2938 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2940 multifd_send_sync_main(f);
2941 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2942 qemu_fflush(f);
2944 return 0;
2948 * ram_save_iterate: iterative stage for migration
2950 * Returns zero to indicate success and negative for error
2952 * @f: QEMUFile where to send the data
2953 * @opaque: RAMState pointer
2955 static int ram_save_iterate(QEMUFile *f, void *opaque)
2957 RAMState **temp = opaque;
2958 RAMState *rs = *temp;
2959 int ret = 0;
2960 int i;
2961 int64_t t0;
2962 int done = 0;
2964 if (blk_mig_bulk_active()) {
2965 /* Avoid transferring ram during bulk phase of block migration as
2966 * the bulk phase will usually take a long time and transferring
2967 * ram updates during that time is pointless. */
2968 goto out;
2972 * We'll take this lock a little bit long, but it's okay for two reasons.
2973 * Firstly, the only possible other thread to take it is who calls
2974 * qemu_guest_free_page_hint(), which should be rare; secondly, see
2975 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
2976 * guarantees that we'll at least released it in a regular basis.
2978 qemu_mutex_lock(&rs->bitmap_mutex);
2979 WITH_RCU_READ_LOCK_GUARD() {
2980 if (ram_list.version != rs->last_version) {
2981 ram_state_reset(rs);
2984 /* Read version before ram_list.blocks */
2985 smp_rmb();
2987 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2989 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2990 i = 0;
2991 while ((ret = qemu_file_rate_limit(f)) == 0 ||
2992 postcopy_has_request(rs)) {
2993 int pages;
2995 if (qemu_file_get_error(f)) {
2996 break;
2999 pages = ram_find_and_save_block(rs);
3000 /* no more pages to sent */
3001 if (pages == 0) {
3002 done = 1;
3003 break;
3006 if (pages < 0) {
3007 qemu_file_set_error(f, pages);
3008 break;
3011 rs->target_page_count += pages;
3014 * During postcopy, it is necessary to make sure one whole host
3015 * page is sent in one chunk.
3017 if (migrate_postcopy_ram()) {
3018 flush_compressed_data(rs);
3022 * we want to check in the 1st loop, just in case it was the 1st
3023 * time and we had to sync the dirty bitmap.
3024 * qemu_clock_get_ns() is a bit expensive, so we only check each
3025 * some iterations
3027 if ((i & 63) == 0) {
3028 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3029 1000000;
3030 if (t1 > MAX_WAIT) {
3031 trace_ram_save_iterate_big_wait(t1, i);
3032 break;
3035 i++;
3038 qemu_mutex_unlock(&rs->bitmap_mutex);
3041 * Must occur before EOS (or any QEMUFile operation)
3042 * because of RDMA protocol.
3044 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3046 out:
3047 if (ret >= 0
3048 && migration_is_setup_or_active(migrate_get_current()->state)) {
3049 multifd_send_sync_main(rs->f);
3050 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3051 qemu_fflush(f);
3052 ram_transferred_add(8);
3054 ret = qemu_file_get_error(f);
3056 if (ret < 0) {
3057 return ret;
3060 return done;
3064 * ram_save_complete: function called to send the remaining amount of ram
3066 * Returns zero to indicate success or negative on error
3068 * Called with iothread lock
3070 * @f: QEMUFile where to send the data
3071 * @opaque: RAMState pointer
3073 static int ram_save_complete(QEMUFile *f, void *opaque)
3075 RAMState **temp = opaque;
3076 RAMState *rs = *temp;
3077 int ret = 0;
3079 rs->last_stage = !migration_in_colo_state();
3081 WITH_RCU_READ_LOCK_GUARD() {
3082 if (!migration_in_postcopy()) {
3083 migration_bitmap_sync_precopy(rs);
3086 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3088 /* try transferring iterative blocks of memory */
3090 /* flush all remaining blocks regardless of rate limiting */
3091 while (true) {
3092 int pages;
3094 pages = ram_find_and_save_block(rs);
3095 /* no more blocks to sent */
3096 if (pages == 0) {
3097 break;
3099 if (pages < 0) {
3100 ret = pages;
3101 break;
3105 flush_compressed_data(rs);
3106 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3109 if (ret >= 0) {
3110 multifd_send_sync_main(rs->f);
3111 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3112 qemu_fflush(f);
3115 return ret;
3118 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3119 uint64_t *res_precopy_only,
3120 uint64_t *res_compatible,
3121 uint64_t *res_postcopy_only)
3123 RAMState **temp = opaque;
3124 RAMState *rs = *temp;
3125 uint64_t remaining_size;
3127 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3129 if (!migration_in_postcopy() &&
3130 remaining_size < max_size) {
3131 qemu_mutex_lock_iothread();
3132 WITH_RCU_READ_LOCK_GUARD() {
3133 migration_bitmap_sync_precopy(rs);
3135 qemu_mutex_unlock_iothread();
3136 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3139 if (migrate_postcopy_ram()) {
3140 /* We can do postcopy, and all the data is postcopiable */
3141 *res_compatible += remaining_size;
3142 } else {
3143 *res_precopy_only += remaining_size;
3147 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3149 unsigned int xh_len;
3150 int xh_flags;
3151 uint8_t *loaded_data;
3153 /* extract RLE header */
3154 xh_flags = qemu_get_byte(f);
3155 xh_len = qemu_get_be16(f);
3157 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3158 error_report("Failed to load XBZRLE page - wrong compression!");
3159 return -1;
3162 if (xh_len > TARGET_PAGE_SIZE) {
3163 error_report("Failed to load XBZRLE page - len overflow!");
3164 return -1;
3166 loaded_data = XBZRLE.decoded_buf;
3167 /* load data and decode */
3168 /* it can change loaded_data to point to an internal buffer */
3169 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3171 /* decode RLE */
3172 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3173 TARGET_PAGE_SIZE) == -1) {
3174 error_report("Failed to load XBZRLE page - decode error!");
3175 return -1;
3178 return 0;
3182 * ram_block_from_stream: read a RAMBlock id from the migration stream
3184 * Must be called from within a rcu critical section.
3186 * Returns a pointer from within the RCU-protected ram_list.
3188 * @mis: the migration incoming state pointer
3189 * @f: QEMUFile where to read the data from
3190 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3192 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3193 QEMUFile *f, int flags)
3195 RAMBlock *block = mis->last_recv_block;
3196 char id[256];
3197 uint8_t len;
3199 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3200 if (!block) {
3201 error_report("Ack, bad migration stream!");
3202 return NULL;
3204 return block;
3207 len = qemu_get_byte(f);
3208 qemu_get_buffer(f, (uint8_t *)id, len);
3209 id[len] = 0;
3211 block = qemu_ram_block_by_name(id);
3212 if (!block) {
3213 error_report("Can't find block %s", id);
3214 return NULL;
3217 if (ramblock_is_ignored(block)) {
3218 error_report("block %s should not be migrated !", id);
3219 return NULL;
3222 mis->last_recv_block = block;
3224 return block;
3227 static inline void *host_from_ram_block_offset(RAMBlock *block,
3228 ram_addr_t offset)
3230 if (!offset_in_ramblock(block, offset)) {
3231 return NULL;
3234 return block->host + offset;
3237 static void *host_page_from_ram_block_offset(RAMBlock *block,
3238 ram_addr_t offset)
3240 /* Note: Explicitly no check against offset_in_ramblock(). */
3241 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3242 block->page_size);
3245 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3246 ram_addr_t offset)
3248 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3251 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3252 ram_addr_t offset, bool record_bitmap)
3254 if (!offset_in_ramblock(block, offset)) {
3255 return NULL;
3257 if (!block->colo_cache) {
3258 error_report("%s: colo_cache is NULL in block :%s",
3259 __func__, block->idstr);
3260 return NULL;
3264 * During colo checkpoint, we need bitmap of these migrated pages.
3265 * It help us to decide which pages in ram cache should be flushed
3266 * into VM's RAM later.
3268 if (record_bitmap &&
3269 !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3270 ram_state->migration_dirty_pages++;
3272 return block->colo_cache + offset;
3276 * ram_handle_compressed: handle the zero page case
3278 * If a page (or a whole RDMA chunk) has been
3279 * determined to be zero, then zap it.
3281 * @host: host address for the zero page
3282 * @ch: what the page is filled from. We only support zero
3283 * @size: size of the zero page
3285 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3287 if (ch != 0 || !buffer_is_zero(host, size)) {
3288 memset(host, ch, size);
3292 /* return the size after decompression, or negative value on error */
3293 static int
3294 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3295 const uint8_t *source, size_t source_len)
3297 int err;
3299 err = inflateReset(stream);
3300 if (err != Z_OK) {
3301 return -1;
3304 stream->avail_in = source_len;
3305 stream->next_in = (uint8_t *)source;
3306 stream->avail_out = dest_len;
3307 stream->next_out = dest;
3309 err = inflate(stream, Z_NO_FLUSH);
3310 if (err != Z_STREAM_END) {
3311 return -1;
3314 return stream->total_out;
3317 static void *do_data_decompress(void *opaque)
3319 DecompressParam *param = opaque;
3320 unsigned long pagesize;
3321 uint8_t *des;
3322 int len, ret;
3324 qemu_mutex_lock(&param->mutex);
3325 while (!param->quit) {
3326 if (param->des) {
3327 des = param->des;
3328 len = param->len;
3329 param->des = 0;
3330 qemu_mutex_unlock(&param->mutex);
3332 pagesize = TARGET_PAGE_SIZE;
3334 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3335 param->compbuf, len);
3336 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3337 error_report("decompress data failed");
3338 qemu_file_set_error(decomp_file, ret);
3341 qemu_mutex_lock(&decomp_done_lock);
3342 param->done = true;
3343 qemu_cond_signal(&decomp_done_cond);
3344 qemu_mutex_unlock(&decomp_done_lock);
3346 qemu_mutex_lock(&param->mutex);
3347 } else {
3348 qemu_cond_wait(&param->cond, &param->mutex);
3351 qemu_mutex_unlock(&param->mutex);
3353 return NULL;
3356 static int wait_for_decompress_done(void)
3358 int idx, thread_count;
3360 if (!migrate_use_compression()) {
3361 return 0;
3364 thread_count = migrate_decompress_threads();
3365 qemu_mutex_lock(&decomp_done_lock);
3366 for (idx = 0; idx < thread_count; idx++) {
3367 while (!decomp_param[idx].done) {
3368 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3371 qemu_mutex_unlock(&decomp_done_lock);
3372 return qemu_file_get_error(decomp_file);
3375 static void compress_threads_load_cleanup(void)
3377 int i, thread_count;
3379 if (!migrate_use_compression()) {
3380 return;
3382 thread_count = migrate_decompress_threads();
3383 for (i = 0; i < thread_count; i++) {
3385 * we use it as a indicator which shows if the thread is
3386 * properly init'd or not
3388 if (!decomp_param[i].compbuf) {
3389 break;
3392 qemu_mutex_lock(&decomp_param[i].mutex);
3393 decomp_param[i].quit = true;
3394 qemu_cond_signal(&decomp_param[i].cond);
3395 qemu_mutex_unlock(&decomp_param[i].mutex);
3397 for (i = 0; i < thread_count; i++) {
3398 if (!decomp_param[i].compbuf) {
3399 break;
3402 qemu_thread_join(decompress_threads + i);
3403 qemu_mutex_destroy(&decomp_param[i].mutex);
3404 qemu_cond_destroy(&decomp_param[i].cond);
3405 inflateEnd(&decomp_param[i].stream);
3406 g_free(decomp_param[i].compbuf);
3407 decomp_param[i].compbuf = NULL;
3409 g_free(decompress_threads);
3410 g_free(decomp_param);
3411 decompress_threads = NULL;
3412 decomp_param = NULL;
3413 decomp_file = NULL;
3416 static int compress_threads_load_setup(QEMUFile *f)
3418 int i, thread_count;
3420 if (!migrate_use_compression()) {
3421 return 0;
3424 thread_count = migrate_decompress_threads();
3425 decompress_threads = g_new0(QemuThread, thread_count);
3426 decomp_param = g_new0(DecompressParam, thread_count);
3427 qemu_mutex_init(&decomp_done_lock);
3428 qemu_cond_init(&decomp_done_cond);
3429 decomp_file = f;
3430 for (i = 0; i < thread_count; i++) {
3431 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3432 goto exit;
3435 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3436 qemu_mutex_init(&decomp_param[i].mutex);
3437 qemu_cond_init(&decomp_param[i].cond);
3438 decomp_param[i].done = true;
3439 decomp_param[i].quit = false;
3440 qemu_thread_create(decompress_threads + i, "decompress",
3441 do_data_decompress, decomp_param + i,
3442 QEMU_THREAD_JOINABLE);
3444 return 0;
3445 exit:
3446 compress_threads_load_cleanup();
3447 return -1;
3450 static void decompress_data_with_multi_threads(QEMUFile *f,
3451 void *host, int len)
3453 int idx, thread_count;
3455 thread_count = migrate_decompress_threads();
3456 QEMU_LOCK_GUARD(&decomp_done_lock);
3457 while (true) {
3458 for (idx = 0; idx < thread_count; idx++) {
3459 if (decomp_param[idx].done) {
3460 decomp_param[idx].done = false;
3461 qemu_mutex_lock(&decomp_param[idx].mutex);
3462 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3463 decomp_param[idx].des = host;
3464 decomp_param[idx].len = len;
3465 qemu_cond_signal(&decomp_param[idx].cond);
3466 qemu_mutex_unlock(&decomp_param[idx].mutex);
3467 break;
3470 if (idx < thread_count) {
3471 break;
3472 } else {
3473 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3478 static void colo_init_ram_state(void)
3480 ram_state_init(&ram_state);
3484 * colo cache: this is for secondary VM, we cache the whole
3485 * memory of the secondary VM, it is need to hold the global lock
3486 * to call this helper.
3488 int colo_init_ram_cache(void)
3490 RAMBlock *block;
3492 WITH_RCU_READ_LOCK_GUARD() {
3493 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3494 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3495 NULL, false, false);
3496 if (!block->colo_cache) {
3497 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3498 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3499 block->used_length);
3500 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3501 if (block->colo_cache) {
3502 qemu_anon_ram_free(block->colo_cache, block->used_length);
3503 block->colo_cache = NULL;
3506 return -errno;
3508 if (!machine_dump_guest_core(current_machine)) {
3509 qemu_madvise(block->colo_cache, block->used_length,
3510 QEMU_MADV_DONTDUMP);
3516 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3517 * with to decide which page in cache should be flushed into SVM's RAM. Here
3518 * we use the same name 'ram_bitmap' as for migration.
3520 if (ram_bytes_total()) {
3521 RAMBlock *block;
3523 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3524 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3525 block->bmap = bitmap_new(pages);
3529 colo_init_ram_state();
3530 return 0;
3533 /* TODO: duplicated with ram_init_bitmaps */
3534 void colo_incoming_start_dirty_log(void)
3536 RAMBlock *block = NULL;
3537 /* For memory_global_dirty_log_start below. */
3538 qemu_mutex_lock_iothread();
3539 qemu_mutex_lock_ramlist();
3541 memory_global_dirty_log_sync();
3542 WITH_RCU_READ_LOCK_GUARD() {
3543 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3544 ramblock_sync_dirty_bitmap(ram_state, block);
3545 /* Discard this dirty bitmap record */
3546 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3548 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3550 ram_state->migration_dirty_pages = 0;
3551 qemu_mutex_unlock_ramlist();
3552 qemu_mutex_unlock_iothread();
3555 /* It is need to hold the global lock to call this helper */
3556 void colo_release_ram_cache(void)
3558 RAMBlock *block;
3560 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3561 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3562 g_free(block->bmap);
3563 block->bmap = NULL;
3566 WITH_RCU_READ_LOCK_GUARD() {
3567 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3568 if (block->colo_cache) {
3569 qemu_anon_ram_free(block->colo_cache, block->used_length);
3570 block->colo_cache = NULL;
3574 ram_state_cleanup(&ram_state);
3578 * ram_load_setup: Setup RAM for migration incoming side
3580 * Returns zero to indicate success and negative for error
3582 * @f: QEMUFile where to receive the data
3583 * @opaque: RAMState pointer
3585 static int ram_load_setup(QEMUFile *f, void *opaque)
3587 if (compress_threads_load_setup(f)) {
3588 return -1;
3591 xbzrle_load_setup();
3592 ramblock_recv_map_init();
3594 return 0;
3597 static int ram_load_cleanup(void *opaque)
3599 RAMBlock *rb;
3601 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3602 qemu_ram_block_writeback(rb);
3605 xbzrle_load_cleanup();
3606 compress_threads_load_cleanup();
3608 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3609 g_free(rb->receivedmap);
3610 rb->receivedmap = NULL;
3613 return 0;
3617 * ram_postcopy_incoming_init: allocate postcopy data structures
3619 * Returns 0 for success and negative if there was one error
3621 * @mis: current migration incoming state
3623 * Allocate data structures etc needed by incoming migration with
3624 * postcopy-ram. postcopy-ram's similarly names
3625 * postcopy_ram_incoming_init does the work.
3627 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3629 return postcopy_ram_incoming_init(mis);
3633 * ram_load_postcopy: load a page in postcopy case
3635 * Returns 0 for success or -errno in case of error
3637 * Called in postcopy mode by ram_load().
3638 * rcu_read_lock is taken prior to this being called.
3640 * @f: QEMUFile where to send the data
3642 static int ram_load_postcopy(QEMUFile *f)
3644 int flags = 0, ret = 0;
3645 bool place_needed = false;
3646 bool matches_target_page_size = false;
3647 MigrationIncomingState *mis = migration_incoming_get_current();
3648 /* Currently we only use channel 0. TODO: use all the channels */
3649 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[0];
3651 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3652 ram_addr_t addr;
3653 void *page_buffer = NULL;
3654 void *place_source = NULL;
3655 RAMBlock *block = NULL;
3656 uint8_t ch;
3657 int len;
3659 addr = qemu_get_be64(f);
3662 * If qemu file error, we should stop here, and then "addr"
3663 * may be invalid
3665 ret = qemu_file_get_error(f);
3666 if (ret) {
3667 break;
3670 flags = addr & ~TARGET_PAGE_MASK;
3671 addr &= TARGET_PAGE_MASK;
3673 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3674 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3675 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3676 block = ram_block_from_stream(mis, f, flags);
3677 if (!block) {
3678 ret = -EINVAL;
3679 break;
3683 * Relying on used_length is racy and can result in false positives.
3684 * We might place pages beyond used_length in case RAM was shrunk
3685 * while in postcopy, which is fine - trying to place via
3686 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3688 if (!block->host || addr >= block->postcopy_length) {
3689 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3690 ret = -EINVAL;
3691 break;
3693 tmp_page->target_pages++;
3694 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3696 * Postcopy requires that we place whole host pages atomically;
3697 * these may be huge pages for RAMBlocks that are backed by
3698 * hugetlbfs.
3699 * To make it atomic, the data is read into a temporary page
3700 * that's moved into place later.
3701 * The migration protocol uses, possibly smaller, target-pages
3702 * however the source ensures it always sends all the components
3703 * of a host page in one chunk.
3705 page_buffer = tmp_page->tmp_huge_page +
3706 host_page_offset_from_ram_block_offset(block, addr);
3707 /* If all TP are zero then we can optimise the place */
3708 if (tmp_page->target_pages == 1) {
3709 tmp_page->host_addr =
3710 host_page_from_ram_block_offset(block, addr);
3711 } else if (tmp_page->host_addr !=
3712 host_page_from_ram_block_offset(block, addr)) {
3713 /* not the 1st TP within the HP */
3714 error_report("Non-same host page detected. "
3715 "Target host page %p, received host page %p "
3716 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3717 tmp_page->host_addr,
3718 host_page_from_ram_block_offset(block, addr),
3719 block->idstr, addr, tmp_page->target_pages);
3720 ret = -EINVAL;
3721 break;
3725 * If it's the last part of a host page then we place the host
3726 * page
3728 if (tmp_page->target_pages ==
3729 (block->page_size / TARGET_PAGE_SIZE)) {
3730 place_needed = true;
3732 place_source = tmp_page->tmp_huge_page;
3735 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3736 case RAM_SAVE_FLAG_ZERO:
3737 ch = qemu_get_byte(f);
3739 * Can skip to set page_buffer when
3740 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3742 if (ch || !matches_target_page_size) {
3743 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3745 if (ch) {
3746 tmp_page->all_zero = false;
3748 break;
3750 case RAM_SAVE_FLAG_PAGE:
3751 tmp_page->all_zero = false;
3752 if (!matches_target_page_size) {
3753 /* For huge pages, we always use temporary buffer */
3754 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3755 } else {
3757 * For small pages that matches target page size, we
3758 * avoid the qemu_file copy. Instead we directly use
3759 * the buffer of QEMUFile to place the page. Note: we
3760 * cannot do any QEMUFile operation before using that
3761 * buffer to make sure the buffer is valid when
3762 * placing the page.
3764 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3765 TARGET_PAGE_SIZE);
3767 break;
3768 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3769 tmp_page->all_zero = false;
3770 len = qemu_get_be32(f);
3771 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3772 error_report("Invalid compressed data length: %d", len);
3773 ret = -EINVAL;
3774 break;
3776 decompress_data_with_multi_threads(f, page_buffer, len);
3777 break;
3779 case RAM_SAVE_FLAG_EOS:
3780 /* normal exit */
3781 multifd_recv_sync_main();
3782 break;
3783 default:
3784 error_report("Unknown combination of migration flags: 0x%x"
3785 " (postcopy mode)", flags);
3786 ret = -EINVAL;
3787 break;
3790 /* Got the whole host page, wait for decompress before placing. */
3791 if (place_needed) {
3792 ret |= wait_for_decompress_done();
3795 /* Detect for any possible file errors */
3796 if (!ret && qemu_file_get_error(f)) {
3797 ret = qemu_file_get_error(f);
3800 if (!ret && place_needed) {
3801 if (tmp_page->all_zero) {
3802 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3803 } else {
3804 ret = postcopy_place_page(mis, tmp_page->host_addr,
3805 place_source, block);
3807 place_needed = false;
3808 postcopy_temp_page_reset(tmp_page);
3812 return ret;
3815 static bool postcopy_is_advised(void)
3817 PostcopyState ps = postcopy_state_get();
3818 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3821 static bool postcopy_is_running(void)
3823 PostcopyState ps = postcopy_state_get();
3824 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3828 * Flush content of RAM cache into SVM's memory.
3829 * Only flush the pages that be dirtied by PVM or SVM or both.
3831 void colo_flush_ram_cache(void)
3833 RAMBlock *block = NULL;
3834 void *dst_host;
3835 void *src_host;
3836 unsigned long offset = 0;
3838 memory_global_dirty_log_sync();
3839 WITH_RCU_READ_LOCK_GUARD() {
3840 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3841 ramblock_sync_dirty_bitmap(ram_state, block);
3845 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3846 WITH_RCU_READ_LOCK_GUARD() {
3847 block = QLIST_FIRST_RCU(&ram_list.blocks);
3849 while (block) {
3850 unsigned long num = 0;
3852 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3853 if (!offset_in_ramblock(block,
3854 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3855 offset = 0;
3856 num = 0;
3857 block = QLIST_NEXT_RCU(block, next);
3858 } else {
3859 unsigned long i = 0;
3861 for (i = 0; i < num; i++) {
3862 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3864 dst_host = block->host
3865 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3866 src_host = block->colo_cache
3867 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3868 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3869 offset += num;
3873 trace_colo_flush_ram_cache_end();
3877 * ram_load_precopy: load pages in precopy case
3879 * Returns 0 for success or -errno in case of error
3881 * Called in precopy mode by ram_load().
3882 * rcu_read_lock is taken prior to this being called.
3884 * @f: QEMUFile where to send the data
3886 static int ram_load_precopy(QEMUFile *f)
3888 MigrationIncomingState *mis = migration_incoming_get_current();
3889 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3890 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3891 bool postcopy_advised = postcopy_is_advised();
3892 if (!migrate_use_compression()) {
3893 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3896 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3897 ram_addr_t addr, total_ram_bytes;
3898 void *host = NULL, *host_bak = NULL;
3899 uint8_t ch;
3902 * Yield periodically to let main loop run, but an iteration of
3903 * the main loop is expensive, so do it each some iterations
3905 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3906 aio_co_schedule(qemu_get_current_aio_context(),
3907 qemu_coroutine_self());
3908 qemu_coroutine_yield();
3910 i++;
3912 addr = qemu_get_be64(f);
3913 flags = addr & ~TARGET_PAGE_MASK;
3914 addr &= TARGET_PAGE_MASK;
3916 if (flags & invalid_flags) {
3917 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3918 error_report("Received an unexpected compressed page");
3921 ret = -EINVAL;
3922 break;
3925 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3926 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3927 RAMBlock *block = ram_block_from_stream(mis, f, flags);
3929 host = host_from_ram_block_offset(block, addr);
3931 * After going into COLO stage, we should not load the page
3932 * into SVM's memory directly, we put them into colo_cache firstly.
3933 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3934 * Previously, we copied all these memory in preparing stage of COLO
3935 * while we need to stop VM, which is a time-consuming process.
3936 * Here we optimize it by a trick, back-up every page while in
3937 * migration process while COLO is enabled, though it affects the
3938 * speed of the migration, but it obviously reduce the downtime of
3939 * back-up all SVM'S memory in COLO preparing stage.
3941 if (migration_incoming_colo_enabled()) {
3942 if (migration_incoming_in_colo_state()) {
3943 /* In COLO stage, put all pages into cache temporarily */
3944 host = colo_cache_from_block_offset(block, addr, true);
3945 } else {
3947 * In migration stage but before COLO stage,
3948 * Put all pages into both cache and SVM's memory.
3950 host_bak = colo_cache_from_block_offset(block, addr, false);
3953 if (!host) {
3954 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3955 ret = -EINVAL;
3956 break;
3958 if (!migration_incoming_in_colo_state()) {
3959 ramblock_recv_bitmap_set(block, host);
3962 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3965 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3966 case RAM_SAVE_FLAG_MEM_SIZE:
3967 /* Synchronize RAM block list */
3968 total_ram_bytes = addr;
3969 while (!ret && total_ram_bytes) {
3970 RAMBlock *block;
3971 char id[256];
3972 ram_addr_t length;
3974 len = qemu_get_byte(f);
3975 qemu_get_buffer(f, (uint8_t *)id, len);
3976 id[len] = 0;
3977 length = qemu_get_be64(f);
3979 block = qemu_ram_block_by_name(id);
3980 if (block && !qemu_ram_is_migratable(block)) {
3981 error_report("block %s should not be migrated !", id);
3982 ret = -EINVAL;
3983 } else if (block) {
3984 if (length != block->used_length) {
3985 Error *local_err = NULL;
3987 ret = qemu_ram_resize(block, length,
3988 &local_err);
3989 if (local_err) {
3990 error_report_err(local_err);
3993 /* For postcopy we need to check hugepage sizes match */
3994 if (postcopy_advised && migrate_postcopy_ram() &&
3995 block->page_size != qemu_host_page_size) {
3996 uint64_t remote_page_size = qemu_get_be64(f);
3997 if (remote_page_size != block->page_size) {
3998 error_report("Mismatched RAM page size %s "
3999 "(local) %zd != %" PRId64,
4000 id, block->page_size,
4001 remote_page_size);
4002 ret = -EINVAL;
4005 if (migrate_ignore_shared()) {
4006 hwaddr addr = qemu_get_be64(f);
4007 if (ramblock_is_ignored(block) &&
4008 block->mr->addr != addr) {
4009 error_report("Mismatched GPAs for block %s "
4010 "%" PRId64 "!= %" PRId64,
4011 id, (uint64_t)addr,
4012 (uint64_t)block->mr->addr);
4013 ret = -EINVAL;
4016 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4017 block->idstr);
4018 } else {
4019 error_report("Unknown ramblock \"%s\", cannot "
4020 "accept migration", id);
4021 ret = -EINVAL;
4024 total_ram_bytes -= length;
4026 break;
4028 case RAM_SAVE_FLAG_ZERO:
4029 ch = qemu_get_byte(f);
4030 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4031 break;
4033 case RAM_SAVE_FLAG_PAGE:
4034 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4035 break;
4037 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4038 len = qemu_get_be32(f);
4039 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4040 error_report("Invalid compressed data length: %d", len);
4041 ret = -EINVAL;
4042 break;
4044 decompress_data_with_multi_threads(f, host, len);
4045 break;
4047 case RAM_SAVE_FLAG_XBZRLE:
4048 if (load_xbzrle(f, addr, host) < 0) {
4049 error_report("Failed to decompress XBZRLE page at "
4050 RAM_ADDR_FMT, addr);
4051 ret = -EINVAL;
4052 break;
4054 break;
4055 case RAM_SAVE_FLAG_EOS:
4056 /* normal exit */
4057 multifd_recv_sync_main();
4058 break;
4059 default:
4060 if (flags & RAM_SAVE_FLAG_HOOK) {
4061 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4062 } else {
4063 error_report("Unknown combination of migration flags: 0x%x",
4064 flags);
4065 ret = -EINVAL;
4068 if (!ret) {
4069 ret = qemu_file_get_error(f);
4071 if (!ret && host_bak) {
4072 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4076 ret |= wait_for_decompress_done();
4077 return ret;
4080 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4082 int ret = 0;
4083 static uint64_t seq_iter;
4085 * If system is running in postcopy mode, page inserts to host memory must
4086 * be atomic
4088 bool postcopy_running = postcopy_is_running();
4090 seq_iter++;
4092 if (version_id != 4) {
4093 return -EINVAL;
4097 * This RCU critical section can be very long running.
4098 * When RCU reclaims in the code start to become numerous,
4099 * it will be necessary to reduce the granularity of this
4100 * critical section.
4102 WITH_RCU_READ_LOCK_GUARD() {
4103 if (postcopy_running) {
4104 ret = ram_load_postcopy(f);
4105 } else {
4106 ret = ram_load_precopy(f);
4109 trace_ram_load_complete(ret, seq_iter);
4111 return ret;
4114 static bool ram_has_postcopy(void *opaque)
4116 RAMBlock *rb;
4117 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4118 if (ramblock_is_pmem(rb)) {
4119 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4120 "is not supported now!", rb->idstr, rb->host);
4121 return false;
4125 return migrate_postcopy_ram();
4128 /* Sync all the dirty bitmap with destination VM. */
4129 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4131 RAMBlock *block;
4132 QEMUFile *file = s->to_dst_file;
4133 int ramblock_count = 0;
4135 trace_ram_dirty_bitmap_sync_start();
4137 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4138 qemu_savevm_send_recv_bitmap(file, block->idstr);
4139 trace_ram_dirty_bitmap_request(block->idstr);
4140 ramblock_count++;
4143 trace_ram_dirty_bitmap_sync_wait();
4145 /* Wait until all the ramblocks' dirty bitmap synced */
4146 while (ramblock_count--) {
4147 qemu_sem_wait(&s->rp_state.rp_sem);
4150 trace_ram_dirty_bitmap_sync_complete();
4152 return 0;
4155 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4157 qemu_sem_post(&s->rp_state.rp_sem);
4161 * Read the received bitmap, revert it as the initial dirty bitmap.
4162 * This is only used when the postcopy migration is paused but wants
4163 * to resume from a middle point.
4165 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4167 int ret = -EINVAL;
4168 /* from_dst_file is always valid because we're within rp_thread */
4169 QEMUFile *file = s->rp_state.from_dst_file;
4170 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4171 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4172 uint64_t size, end_mark;
4174 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4176 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4177 error_report("%s: incorrect state %s", __func__,
4178 MigrationStatus_str(s->state));
4179 return -EINVAL;
4183 * Note: see comments in ramblock_recv_bitmap_send() on why we
4184 * need the endianness conversion, and the paddings.
4186 local_size = ROUND_UP(local_size, 8);
4188 /* Add paddings */
4189 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4191 size = qemu_get_be64(file);
4193 /* The size of the bitmap should match with our ramblock */
4194 if (size != local_size) {
4195 error_report("%s: ramblock '%s' bitmap size mismatch "
4196 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4197 block->idstr, size, local_size);
4198 ret = -EINVAL;
4199 goto out;
4202 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4203 end_mark = qemu_get_be64(file);
4205 ret = qemu_file_get_error(file);
4206 if (ret || size != local_size) {
4207 error_report("%s: read bitmap failed for ramblock '%s': %d"
4208 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4209 __func__, block->idstr, ret, local_size, size);
4210 ret = -EIO;
4211 goto out;
4214 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4215 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4216 __func__, block->idstr, end_mark);
4217 ret = -EINVAL;
4218 goto out;
4222 * Endianness conversion. We are during postcopy (though paused).
4223 * The dirty bitmap won't change. We can directly modify it.
4225 bitmap_from_le(block->bmap, le_bitmap, nbits);
4228 * What we received is "received bitmap". Revert it as the initial
4229 * dirty bitmap for this ramblock.
4231 bitmap_complement(block->bmap, block->bmap, nbits);
4233 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4234 ramblock_dirty_bitmap_clear_discarded_pages(block);
4236 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4237 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4240 * We succeeded to sync bitmap for current ramblock. If this is
4241 * the last one to sync, we need to notify the main send thread.
4243 ram_dirty_bitmap_reload_notify(s);
4245 ret = 0;
4246 out:
4247 g_free(le_bitmap);
4248 return ret;
4251 static int ram_resume_prepare(MigrationState *s, void *opaque)
4253 RAMState *rs = *(RAMState **)opaque;
4254 int ret;
4256 ret = ram_dirty_bitmap_sync_all(s, rs);
4257 if (ret) {
4258 return ret;
4261 ram_state_resume_prepare(rs, s->to_dst_file);
4263 return 0;
4266 static SaveVMHandlers savevm_ram_handlers = {
4267 .save_setup = ram_save_setup,
4268 .save_live_iterate = ram_save_iterate,
4269 .save_live_complete_postcopy = ram_save_complete,
4270 .save_live_complete_precopy = ram_save_complete,
4271 .has_postcopy = ram_has_postcopy,
4272 .save_live_pending = ram_save_pending,
4273 .load_state = ram_load,
4274 .save_cleanup = ram_save_cleanup,
4275 .load_setup = ram_load_setup,
4276 .load_cleanup = ram_load_cleanup,
4277 .resume_prepare = ram_resume_prepare,
4280 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4281 size_t old_size, size_t new_size)
4283 PostcopyState ps = postcopy_state_get();
4284 ram_addr_t offset;
4285 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4286 Error *err = NULL;
4288 if (ramblock_is_ignored(rb)) {
4289 return;
4292 if (!migration_is_idle()) {
4294 * Precopy code on the source cannot deal with the size of RAM blocks
4295 * changing at random points in time - especially after sending the
4296 * RAM block sizes in the migration stream, they must no longer change.
4297 * Abort and indicate a proper reason.
4299 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4300 migration_cancel(err);
4301 error_free(err);
4304 switch (ps) {
4305 case POSTCOPY_INCOMING_ADVISE:
4307 * Update what ram_postcopy_incoming_init()->init_range() does at the
4308 * time postcopy was advised. Syncing RAM blocks with the source will
4309 * result in RAM resizes.
4311 if (old_size < new_size) {
4312 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4313 error_report("RAM block '%s' discard of resized RAM failed",
4314 rb->idstr);
4317 rb->postcopy_length = new_size;
4318 break;
4319 case POSTCOPY_INCOMING_NONE:
4320 case POSTCOPY_INCOMING_RUNNING:
4321 case POSTCOPY_INCOMING_END:
4323 * Once our guest is running, postcopy does no longer care about
4324 * resizes. When growing, the new memory was not available on the
4325 * source, no handler needed.
4327 break;
4328 default:
4329 error_report("RAM block '%s' resized during postcopy state: %d",
4330 rb->idstr, ps);
4331 exit(-1);
4335 static RAMBlockNotifier ram_mig_ram_notifier = {
4336 .ram_block_resized = ram_mig_ram_block_resized,
4339 void ram_mig_init(void)
4341 qemu_mutex_init(&XBZRLE.lock);
4342 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4343 ram_block_notifier_add(&ram_mig_ram_notifier);