4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
59 #include "migration/vmstate.h"
61 #include "qemu/range.h"
63 #include "qemu/mmap-alloc.h"
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
72 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
74 static MemoryRegion
*system_memory
;
75 static MemoryRegion
*system_io
;
77 AddressSpace address_space_io
;
78 AddressSpace address_space_memory
;
80 MemoryRegion io_mem_rom
, io_mem_notdirty
;
81 static MemoryRegion io_mem_unassigned
;
83 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84 #define RAM_PREALLOC (1 << 0)
86 /* RAM is mmap-ed with MAP_SHARED */
87 #define RAM_SHARED (1 << 1)
89 /* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
92 #define RAM_RESIZEABLE (1 << 2)
96 #ifdef TARGET_PAGE_BITS_VARY
98 bool target_page_bits_decided
;
101 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
102 /* current CPU in the current thread. It is only valid inside
104 __thread CPUState
*current_cpu
;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
110 bool set_preferred_target_page_bits(int bits
)
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
117 #ifdef TARGET_PAGE_BITS_VARY
118 assert(bits
>= TARGET_PAGE_BITS_MIN
);
119 if (target_page_bits
== 0 || target_page_bits
> bits
) {
120 if (target_page_bits_decided
) {
123 target_page_bits
= bits
;
129 #if !defined(CONFIG_USER_ONLY)
131 static void finalize_target_page_bits(void)
133 #ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits
== 0) {
135 target_page_bits
= TARGET_PAGE_BITS_MIN
;
137 target_page_bits_decided
= true;
141 typedef struct PhysPageEntry PhysPageEntry
;
143 struct PhysPageEntry
{
144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152 /* Size of the L2 (and L3, etc) page tables. */
153 #define ADDR_SPACE_BITS 64
156 #define P_L2_SIZE (1 << P_L2_BITS)
158 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160 typedef PhysPageEntry Node
[P_L2_SIZE
];
162 typedef struct PhysPageMap
{
165 unsigned sections_nb
;
166 unsigned sections_nb_alloc
;
168 unsigned nodes_nb_alloc
;
170 MemoryRegionSection
*sections
;
173 struct AddressSpaceDispatch
{
176 MemoryRegionSection
*mru_section
;
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
180 PhysPageEntry phys_map
;
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t
{
190 uint16_t sub_section
[];
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_commit(MemoryListener
*listener
);
202 static MemoryRegion io_mem_watch
;
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 struct CPUAddressSpace
{
214 struct AddressSpaceDispatch
*memory_dispatch
;
215 MemoryListener tcg_as_listener
;
220 #if !defined(CONFIG_USER_ONLY)
222 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
224 static unsigned alloc_hint
= 16;
225 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
226 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
227 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
228 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
229 alloc_hint
= map
->nodes_nb_alloc
;
233 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
240 ret
= map
->nodes_nb
++;
242 assert(ret
!= PHYS_MAP_NODE_NIL
);
243 assert(ret
!= map
->nodes_nb_alloc
);
245 e
.skip
= leaf
? 0 : 1;
246 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
247 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
248 memcpy(&p
[i
], &e
, sizeof(e
));
253 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
254 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
258 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
260 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
261 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
263 p
= map
->nodes
[lp
->ptr
];
264 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
266 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
267 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
273 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
279 static void phys_page_set(AddressSpaceDispatch
*d
,
280 hwaddr index
, hwaddr nb
,
283 /* Wildly overreserve - it doesn't matter much. */
284 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
286 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
289 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
292 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
294 unsigned valid_ptr
= P_L2_SIZE
;
299 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
304 for (i
= 0; i
< P_L2_SIZE
; i
++) {
305 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
312 phys_page_compact(&p
[i
], nodes
);
316 /* We can only compress if there's only one child. */
321 assert(valid_ptr
< P_L2_SIZE
);
323 /* Don't compress if it won't fit in the # of bits we have. */
324 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
328 lp
->ptr
= p
[valid_ptr
].ptr
;
329 if (!p
[valid_ptr
].skip
) {
330 /* If our only child is a leaf, make this a leaf. */
331 /* By design, we should have made this node a leaf to begin with so we
332 * should never reach here.
333 * But since it's so simple to handle this, let's do it just in case we
338 lp
->skip
+= p
[valid_ptr
].skip
;
342 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
344 if (d
->phys_map
.skip
) {
345 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
349 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
352 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
353 * the section must cover the entire address space.
355 return int128_gethi(section
->size
) ||
356 range_covers_byte(section
->offset_within_address_space
,
357 int128_getlo(section
->size
), addr
);
360 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
361 Node
*nodes
, MemoryRegionSection
*sections
)
364 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
367 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
368 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
369 return §ions
[PHYS_SECTION_UNASSIGNED
];
372 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
375 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
376 return §ions
[lp
.ptr
];
378 return §ions
[PHYS_SECTION_UNASSIGNED
];
382 bool memory_region_is_unassigned(MemoryRegion
*mr
)
384 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
385 && mr
!= &io_mem_watch
;
388 /* Called from RCU critical section */
389 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
391 bool resolve_subpage
)
393 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
397 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
398 section_covers_addr(section
, addr
)) {
401 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
405 if (resolve_subpage
&& section
->mr
->subpage
) {
406 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
407 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
410 atomic_set(&d
->mru_section
, section
);
415 /* Called from RCU critical section */
416 static MemoryRegionSection
*
417 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
418 hwaddr
*plen
, bool resolve_subpage
)
420 MemoryRegionSection
*section
;
424 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
425 /* Compute offset within MemoryRegionSection */
426 addr
-= section
->offset_within_address_space
;
428 /* Compute offset within MemoryRegion */
429 *xlat
= addr
+ section
->offset_within_region
;
433 /* MMIO registers can be expected to perform full-width accesses based only
434 * on their address, without considering adjacent registers that could
435 * decode to completely different MemoryRegions. When such registers
436 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
437 * regions overlap wildly. For this reason we cannot clamp the accesses
440 * If the length is small (as is the case for address_space_ldl/stl),
441 * everything works fine. If the incoming length is large, however,
442 * the caller really has to do the clamping through memory_access_size.
444 if (memory_region_is_ram(mr
)) {
445 diff
= int128_sub(section
->size
, int128_make64(addr
));
446 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
451 /* Called from RCU critical section */
452 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
455 IOMMUTLBEntry iotlb
= {0};
456 MemoryRegionSection
*section
;
460 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
461 section
= address_space_lookup_region(d
, addr
, false);
462 addr
= addr
- section
->offset_within_address_space
463 + section
->offset_within_region
;
466 if (!mr
->iommu_ops
) {
470 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
471 if (!(iotlb
.perm
& (1 << is_write
))) {
472 iotlb
.target_as
= NULL
;
476 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
477 | (addr
& iotlb
.addr_mask
));
478 as
= iotlb
.target_as
;
484 /* Called from RCU critical section */
485 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
486 hwaddr
*xlat
, hwaddr
*plen
,
490 MemoryRegionSection
*section
;
494 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
495 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
498 if (!mr
->iommu_ops
) {
502 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
503 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
504 | (addr
& iotlb
.addr_mask
));
505 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
506 if (!(iotlb
.perm
& (1 << is_write
))) {
507 mr
= &io_mem_unassigned
;
511 as
= iotlb
.target_as
;
514 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
515 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
516 *plen
= MIN(page
, *plen
);
523 /* Called from RCU critical section */
524 MemoryRegionSection
*
525 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
526 hwaddr
*xlat
, hwaddr
*plen
)
528 MemoryRegionSection
*section
;
529 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
531 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
533 assert(!section
->mr
->iommu_ops
);
538 #if !defined(CONFIG_USER_ONLY)
540 static int cpu_common_post_load(void *opaque
, int version_id
)
542 CPUState
*cpu
= opaque
;
544 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
545 version_id is increased. */
546 cpu
->interrupt_request
&= ~0x01;
552 static int cpu_common_pre_load(void *opaque
)
554 CPUState
*cpu
= opaque
;
556 cpu
->exception_index
= -1;
561 static bool cpu_common_exception_index_needed(void *opaque
)
563 CPUState
*cpu
= opaque
;
565 return tcg_enabled() && cpu
->exception_index
!= -1;
568 static const VMStateDescription vmstate_cpu_common_exception_index
= {
569 .name
= "cpu_common/exception_index",
571 .minimum_version_id
= 1,
572 .needed
= cpu_common_exception_index_needed
,
573 .fields
= (VMStateField
[]) {
574 VMSTATE_INT32(exception_index
, CPUState
),
575 VMSTATE_END_OF_LIST()
579 static bool cpu_common_crash_occurred_needed(void *opaque
)
581 CPUState
*cpu
= opaque
;
583 return cpu
->crash_occurred
;
586 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
587 .name
= "cpu_common/crash_occurred",
589 .minimum_version_id
= 1,
590 .needed
= cpu_common_crash_occurred_needed
,
591 .fields
= (VMStateField
[]) {
592 VMSTATE_BOOL(crash_occurred
, CPUState
),
593 VMSTATE_END_OF_LIST()
597 const VMStateDescription vmstate_cpu_common
= {
598 .name
= "cpu_common",
600 .minimum_version_id
= 1,
601 .pre_load
= cpu_common_pre_load
,
602 .post_load
= cpu_common_post_load
,
603 .fields
= (VMStateField
[]) {
604 VMSTATE_UINT32(halted
, CPUState
),
605 VMSTATE_UINT32(interrupt_request
, CPUState
),
606 VMSTATE_END_OF_LIST()
608 .subsections
= (const VMStateDescription
*[]) {
609 &vmstate_cpu_common_exception_index
,
610 &vmstate_cpu_common_crash_occurred
,
617 CPUState
*qemu_get_cpu(int index
)
622 if (cpu
->cpu_index
== index
) {
630 #if !defined(CONFIG_USER_ONLY)
631 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
633 CPUAddressSpace
*newas
;
635 /* Target code should have set num_ases before calling us */
636 assert(asidx
< cpu
->num_ases
);
639 /* address space 0 gets the convenience alias */
643 /* KVM cannot currently support multiple address spaces. */
644 assert(asidx
== 0 || !kvm_enabled());
646 if (!cpu
->cpu_ases
) {
647 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
650 newas
= &cpu
->cpu_ases
[asidx
];
654 newas
->tcg_as_listener
.commit
= tcg_commit
;
655 memory_listener_register(&newas
->tcg_as_listener
, as
);
659 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
661 /* Return the AddressSpace corresponding to the specified index */
662 return cpu
->cpu_ases
[asidx
].as
;
666 void cpu_exec_unrealizefn(CPUState
*cpu
)
668 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
670 cpu_list_remove(cpu
);
672 if (cc
->vmsd
!= NULL
) {
673 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
675 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
676 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
680 void cpu_exec_initfn(CPUState
*cpu
)
685 #ifndef CONFIG_USER_ONLY
686 cpu
->thread_id
= qemu_get_thread_id();
688 /* This is a softmmu CPU object, so create a property for it
689 * so users can wire up its memory. (This can't go in qom/cpu.c
690 * because that file is compiled only once for both user-mode
691 * and system builds.) The default if no link is set up is to use
692 * the system address space.
694 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
695 (Object
**)&cpu
->memory
,
696 qdev_prop_allow_set_link_before_realize
,
697 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
699 cpu
->memory
= system_memory
;
700 object_ref(OBJECT(cpu
->memory
));
704 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
706 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
710 #ifndef CONFIG_USER_ONLY
711 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
712 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
714 if (cc
->vmsd
!= NULL
) {
715 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
720 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
722 /* Flush the whole TB as this will not have race conditions
723 * even if we don't have proper locking yet.
724 * Ideally we would just invalidate the TBs for the
730 #if defined(CONFIG_USER_ONLY)
731 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
736 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
742 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
746 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
747 int flags
, CPUWatchpoint
**watchpoint
)
752 /* Add a watchpoint. */
753 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
754 int flags
, CPUWatchpoint
**watchpoint
)
758 /* forbid ranges which are empty or run off the end of the address space */
759 if (len
== 0 || (addr
+ len
- 1) < addr
) {
760 error_report("tried to set invalid watchpoint at %"
761 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
764 wp
= g_malloc(sizeof(*wp
));
770 /* keep all GDB-injected watchpoints in front */
771 if (flags
& BP_GDB
) {
772 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
774 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
777 tlb_flush_page(cpu
, addr
);
784 /* Remove a specific watchpoint. */
785 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
790 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
791 if (addr
== wp
->vaddr
&& len
== wp
->len
792 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
793 cpu_watchpoint_remove_by_ref(cpu
, wp
);
800 /* Remove a specific watchpoint by reference. */
801 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
803 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
805 tlb_flush_page(cpu
, watchpoint
->vaddr
);
810 /* Remove all matching watchpoints. */
811 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
813 CPUWatchpoint
*wp
, *next
;
815 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
816 if (wp
->flags
& mask
) {
817 cpu_watchpoint_remove_by_ref(cpu
, wp
);
822 /* Return true if this watchpoint address matches the specified
823 * access (ie the address range covered by the watchpoint overlaps
824 * partially or completely with the address range covered by the
827 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
831 /* We know the lengths are non-zero, but a little caution is
832 * required to avoid errors in the case where the range ends
833 * exactly at the top of the address space and so addr + len
834 * wraps round to zero.
836 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
837 vaddr addrend
= addr
+ len
- 1;
839 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
844 /* Add a breakpoint. */
845 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
846 CPUBreakpoint
**breakpoint
)
850 bp
= g_malloc(sizeof(*bp
));
855 /* keep all GDB-injected breakpoints in front */
856 if (flags
& BP_GDB
) {
857 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
859 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
862 breakpoint_invalidate(cpu
, pc
);
870 /* Remove a specific breakpoint. */
871 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
875 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
876 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
877 cpu_breakpoint_remove_by_ref(cpu
, bp
);
884 /* Remove a specific breakpoint by reference. */
885 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
887 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
889 breakpoint_invalidate(cpu
, breakpoint
->pc
);
894 /* Remove all matching breakpoints. */
895 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
897 CPUBreakpoint
*bp
, *next
;
899 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
900 if (bp
->flags
& mask
) {
901 cpu_breakpoint_remove_by_ref(cpu
, bp
);
906 /* enable or disable single step mode. EXCP_DEBUG is returned by the
907 CPU loop after each instruction */
908 void cpu_single_step(CPUState
*cpu
, int enabled
)
910 if (cpu
->singlestep_enabled
!= enabled
) {
911 cpu
->singlestep_enabled
= enabled
;
913 kvm_update_guest_debug(cpu
, 0);
915 /* must flush all the translated code to avoid inconsistencies */
916 /* XXX: only flush what is necessary */
922 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
929 fprintf(stderr
, "qemu: fatal: ");
930 vfprintf(stderr
, fmt
, ap
);
931 fprintf(stderr
, "\n");
932 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
933 if (qemu_log_separate()) {
935 qemu_log("qemu: fatal: ");
936 qemu_log_vprintf(fmt
, ap2
);
938 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
946 #if defined(CONFIG_USER_ONLY)
948 struct sigaction act
;
949 sigfillset(&act
.sa_mask
);
950 act
.sa_handler
= SIG_DFL
;
951 sigaction(SIGABRT
, &act
, NULL
);
957 #if !defined(CONFIG_USER_ONLY)
958 /* Called from RCU critical section */
959 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
963 block
= atomic_rcu_read(&ram_list
.mru_block
);
964 if (block
&& addr
- block
->offset
< block
->max_length
) {
967 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
968 if (addr
- block
->offset
< block
->max_length
) {
973 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
977 /* It is safe to write mru_block outside the iothread lock. This
982 * xxx removed from list
986 * call_rcu(reclaim_ramblock, xxx);
989 * atomic_rcu_set is not needed here. The block was already published
990 * when it was placed into the list. Here we're just making an extra
991 * copy of the pointer.
993 ram_list
.mru_block
= block
;
997 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1004 end
= TARGET_PAGE_ALIGN(start
+ length
);
1005 start
&= TARGET_PAGE_MASK
;
1008 block
= qemu_get_ram_block(start
);
1009 assert(block
== qemu_get_ram_block(end
- 1));
1010 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1012 tlb_reset_dirty(cpu
, start1
, length
);
1017 /* Note: start and end must be within the same ram block. */
1018 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1022 DirtyMemoryBlocks
*blocks
;
1023 unsigned long end
, page
;
1030 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1031 page
= start
>> TARGET_PAGE_BITS
;
1035 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1037 while (page
< end
) {
1038 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1039 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1040 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1042 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1049 if (dirty
&& tcg_enabled()) {
1050 tlb_reset_dirty_range_all(start
, length
);
1056 /* Called from RCU critical section */
1057 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1058 MemoryRegionSection
*section
,
1060 hwaddr paddr
, hwaddr xlat
,
1062 target_ulong
*address
)
1067 if (memory_region_is_ram(section
->mr
)) {
1069 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1070 if (!section
->readonly
) {
1071 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1073 iotlb
|= PHYS_SECTION_ROM
;
1076 AddressSpaceDispatch
*d
;
1078 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1079 iotlb
= section
- d
->map
.sections
;
1083 /* Make accesses to pages with watchpoints go via the
1084 watchpoint trap routines. */
1085 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1086 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1087 /* Avoid trapping reads of pages with a write breakpoint. */
1088 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1089 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1090 *address
|= TLB_MMIO
;
1098 #endif /* defined(CONFIG_USER_ONLY) */
1100 #if !defined(CONFIG_USER_ONLY)
1102 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1104 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1106 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1107 qemu_anon_ram_alloc
;
1110 * Set a custom physical guest memory alloator.
1111 * Accelerators with unusual needs may need this. Hopefully, we can
1112 * get rid of it eventually.
1114 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1116 phys_mem_alloc
= alloc
;
1119 static uint16_t phys_section_add(PhysPageMap
*map
,
1120 MemoryRegionSection
*section
)
1122 /* The physical section number is ORed with a page-aligned
1123 * pointer to produce the iotlb entries. Thus it should
1124 * never overflow into the page-aligned value.
1126 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1128 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1129 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1130 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1131 map
->sections_nb_alloc
);
1133 map
->sections
[map
->sections_nb
] = *section
;
1134 memory_region_ref(section
->mr
);
1135 return map
->sections_nb
++;
1138 static void phys_section_destroy(MemoryRegion
*mr
)
1140 bool have_sub_page
= mr
->subpage
;
1142 memory_region_unref(mr
);
1144 if (have_sub_page
) {
1145 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1146 object_unref(OBJECT(&subpage
->iomem
));
1151 static void phys_sections_free(PhysPageMap
*map
)
1153 while (map
->sections_nb
> 0) {
1154 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1155 phys_section_destroy(section
->mr
);
1157 g_free(map
->sections
);
1161 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1164 hwaddr base
= section
->offset_within_address_space
1166 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1167 d
->map
.nodes
, d
->map
.sections
);
1168 MemoryRegionSection subsection
= {
1169 .offset_within_address_space
= base
,
1170 .size
= int128_make64(TARGET_PAGE_SIZE
),
1174 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1176 if (!(existing
->mr
->subpage
)) {
1177 subpage
= subpage_init(d
->as
, base
);
1178 subsection
.address_space
= d
->as
;
1179 subsection
.mr
= &subpage
->iomem
;
1180 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1181 phys_section_add(&d
->map
, &subsection
));
1183 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1185 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1186 end
= start
+ int128_get64(section
->size
) - 1;
1187 subpage_register(subpage
, start
, end
,
1188 phys_section_add(&d
->map
, section
));
1192 static void register_multipage(AddressSpaceDispatch
*d
,
1193 MemoryRegionSection
*section
)
1195 hwaddr start_addr
= section
->offset_within_address_space
;
1196 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1197 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1201 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1204 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1206 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1207 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1208 MemoryRegionSection now
= *section
, remain
= *section
;
1209 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1211 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1212 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1213 - now
.offset_within_address_space
;
1215 now
.size
= int128_min(int128_make64(left
), now
.size
);
1216 register_subpage(d
, &now
);
1218 now
.size
= int128_zero();
1220 while (int128_ne(remain
.size
, now
.size
)) {
1221 remain
.size
= int128_sub(remain
.size
, now
.size
);
1222 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1223 remain
.offset_within_region
+= int128_get64(now
.size
);
1225 if (int128_lt(remain
.size
, page_size
)) {
1226 register_subpage(d
, &now
);
1227 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1228 now
.size
= page_size
;
1229 register_subpage(d
, &now
);
1231 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1232 register_multipage(d
, &now
);
1237 void qemu_flush_coalesced_mmio_buffer(void)
1240 kvm_flush_coalesced_mmio_buffer();
1243 void qemu_mutex_lock_ramlist(void)
1245 qemu_mutex_lock(&ram_list
.mutex
);
1248 void qemu_mutex_unlock_ramlist(void)
1250 qemu_mutex_unlock(&ram_list
.mutex
);
1254 static int64_t get_file_size(int fd
)
1256 int64_t size
= lseek(fd
, 0, SEEK_END
);
1263 static void *file_ram_alloc(RAMBlock
*block
,
1268 bool unlink_on_error
= false;
1270 char *sanitized_name
;
1272 void *area
= MAP_FAILED
;
1276 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1278 "host lacks kvm mmu notifiers, -mem-path unsupported");
1283 fd
= open(path
, O_RDWR
);
1285 /* @path names an existing file, use it */
1288 if (errno
== ENOENT
) {
1289 /* @path names a file that doesn't exist, create it */
1290 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1292 unlink_on_error
= true;
1295 } else if (errno
== EISDIR
) {
1296 /* @path names a directory, create a file there */
1297 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1298 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1299 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1305 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1307 g_free(sanitized_name
);
1309 fd
= mkstemp(filename
);
1317 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1318 error_setg_errno(errp
, errno
,
1319 "can't open backing store %s for guest RAM",
1324 * Try again on EINTR and EEXIST. The latter happens when
1325 * something else creates the file between our two open().
1329 block
->page_size
= qemu_fd_getpagesize(fd
);
1330 block
->mr
->align
= block
->page_size
;
1331 #if defined(__s390x__)
1332 if (kvm_enabled()) {
1333 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1337 file_size
= get_file_size(fd
);
1339 if (memory
< block
->page_size
) {
1340 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1341 "or larger than page size 0x%zx",
1342 memory
, block
->page_size
);
1346 if (file_size
> 0 && file_size
< memory
) {
1347 error_setg(errp
, "backing store %s size 0x%" PRIx64
1348 " does not match 'size' option 0x" RAM_ADDR_FMT
,
1349 path
, file_size
, memory
);
1353 memory
= ROUND_UP(memory
, block
->page_size
);
1356 * ftruncate is not supported by hugetlbfs in older
1357 * hosts, so don't bother bailing out on errors.
1358 * If anything goes wrong with it under other filesystems,
1361 * Do not truncate the non-empty backend file to avoid corrupting
1362 * the existing data in the file. Disabling shrinking is not
1363 * enough. For example, the current vNVDIMM implementation stores
1364 * the guest NVDIMM labels at the end of the backend file. If the
1365 * backend file is later extended, QEMU will not be able to find
1366 * those labels. Therefore, extending the non-empty backend file
1367 * is disabled as well.
1369 if (!file_size
&& ftruncate(fd
, memory
)) {
1370 perror("ftruncate");
1373 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1374 block
->flags
& RAM_SHARED
);
1375 if (area
== MAP_FAILED
) {
1376 error_setg_errno(errp
, errno
,
1377 "unable to map backing store for guest RAM");
1382 os_mem_prealloc(fd
, area
, memory
, errp
);
1383 if (errp
&& *errp
) {
1392 if (area
!= MAP_FAILED
) {
1393 qemu_ram_munmap(area
, memory
);
1395 if (unlink_on_error
) {
1405 /* Called with the ramlist lock held. */
1406 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1408 RAMBlock
*block
, *next_block
;
1409 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1411 assert(size
!= 0); /* it would hand out same offset multiple times */
1413 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1417 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1418 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1420 end
= block
->offset
+ block
->max_length
;
1422 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1423 if (next_block
->offset
>= end
) {
1424 next
= MIN(next
, next_block
->offset
);
1427 if (next
- end
>= size
&& next
- end
< mingap
) {
1429 mingap
= next
- end
;
1433 if (offset
== RAM_ADDR_MAX
) {
1434 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1442 ram_addr_t
last_ram_offset(void)
1445 ram_addr_t last
= 0;
1448 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1449 last
= MAX(last
, block
->offset
+ block
->max_length
);
1455 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1459 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1460 if (!machine_dump_guest_core(current_machine
)) {
1461 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1463 perror("qemu_madvise");
1464 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1465 "but dump_guest_core=off specified\n");
1470 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1475 /* Called with iothread lock held. */
1476 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1481 assert(!new_block
->idstr
[0]);
1484 char *id
= qdev_get_dev_path(dev
);
1486 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1490 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1493 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1494 if (block
!= new_block
&&
1495 !strcmp(block
->idstr
, new_block
->idstr
)) {
1496 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1504 /* Called with iothread lock held. */
1505 void qemu_ram_unset_idstr(RAMBlock
*block
)
1507 /* FIXME: arch_init.c assumes that this is not called throughout
1508 * migration. Ignore the problem since hot-unplug during migration
1509 * does not work anyway.
1512 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1516 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1518 return rb
->page_size
;
1521 static int memory_try_enable_merging(void *addr
, size_t len
)
1523 if (!machine_mem_merge(current_machine
)) {
1524 /* disabled by the user */
1528 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1531 /* Only legal before guest might have detected the memory size: e.g. on
1532 * incoming migration, or right after reset.
1534 * As memory core doesn't know how is memory accessed, it is up to
1535 * resize callback to update device state and/or add assertions to detect
1536 * misuse, if necessary.
1538 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1542 newsize
= HOST_PAGE_ALIGN(newsize
);
1544 if (block
->used_length
== newsize
) {
1548 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1549 error_setg_errno(errp
, EINVAL
,
1550 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1551 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1552 newsize
, block
->used_length
);
1556 if (block
->max_length
< newsize
) {
1557 error_setg_errno(errp
, EINVAL
,
1558 "Length too large: %s: 0x" RAM_ADDR_FMT
1559 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1560 newsize
, block
->max_length
);
1564 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1565 block
->used_length
= newsize
;
1566 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1568 memory_region_set_size(block
->mr
, newsize
);
1569 if (block
->resized
) {
1570 block
->resized(block
->idstr
, newsize
, block
->host
);
1575 /* Called with ram_list.mutex held */
1576 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1577 ram_addr_t new_ram_size
)
1579 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1580 DIRTY_MEMORY_BLOCK_SIZE
);
1581 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1582 DIRTY_MEMORY_BLOCK_SIZE
);
1585 /* Only need to extend if block count increased */
1586 if (new_num_blocks
<= old_num_blocks
) {
1590 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1591 DirtyMemoryBlocks
*old_blocks
;
1592 DirtyMemoryBlocks
*new_blocks
;
1595 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1596 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1597 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1599 if (old_num_blocks
) {
1600 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1601 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1604 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1605 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1608 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1611 g_free_rcu(old_blocks
, rcu
);
1616 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1619 RAMBlock
*last_block
= NULL
;
1620 ram_addr_t old_ram_size
, new_ram_size
;
1623 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1625 qemu_mutex_lock_ramlist();
1626 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1628 if (!new_block
->host
) {
1629 if (xen_enabled()) {
1630 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1631 new_block
->mr
, &err
);
1633 error_propagate(errp
, err
);
1634 qemu_mutex_unlock_ramlist();
1638 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1639 &new_block
->mr
->align
);
1640 if (!new_block
->host
) {
1641 error_setg_errno(errp
, errno
,
1642 "cannot set up guest memory '%s'",
1643 memory_region_name(new_block
->mr
));
1644 qemu_mutex_unlock_ramlist();
1647 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1651 new_ram_size
= MAX(old_ram_size
,
1652 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1653 if (new_ram_size
> old_ram_size
) {
1654 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1655 dirty_memory_extend(old_ram_size
, new_ram_size
);
1657 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1658 * QLIST (which has an RCU-friendly variant) does not have insertion at
1659 * tail, so save the last element in last_block.
1661 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1663 if (block
->max_length
< new_block
->max_length
) {
1668 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1669 } else if (last_block
) {
1670 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1671 } else { /* list is empty */
1672 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1674 ram_list
.mru_block
= NULL
;
1676 /* Write list before version */
1679 qemu_mutex_unlock_ramlist();
1681 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1682 new_block
->used_length
,
1685 if (new_block
->host
) {
1686 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1687 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1688 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1689 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1694 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1695 bool share
, const char *mem_path
,
1698 RAMBlock
*new_block
;
1699 Error
*local_err
= NULL
;
1701 if (xen_enabled()) {
1702 error_setg(errp
, "-mem-path not supported with Xen");
1706 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1708 * file_ram_alloc() needs to allocate just like
1709 * phys_mem_alloc, but we haven't bothered to provide
1713 "-mem-path not supported with this accelerator");
1717 size
= HOST_PAGE_ALIGN(size
);
1718 new_block
= g_malloc0(sizeof(*new_block
));
1720 new_block
->used_length
= size
;
1721 new_block
->max_length
= size
;
1722 new_block
->flags
= share
? RAM_SHARED
: 0;
1723 new_block
->host
= file_ram_alloc(new_block
, size
,
1725 if (!new_block
->host
) {
1730 ram_block_add(new_block
, &local_err
);
1733 error_propagate(errp
, local_err
);
1741 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1742 void (*resized
)(const char*,
1745 void *host
, bool resizeable
,
1746 MemoryRegion
*mr
, Error
**errp
)
1748 RAMBlock
*new_block
;
1749 Error
*local_err
= NULL
;
1751 size
= HOST_PAGE_ALIGN(size
);
1752 max_size
= HOST_PAGE_ALIGN(max_size
);
1753 new_block
= g_malloc0(sizeof(*new_block
));
1755 new_block
->resized
= resized
;
1756 new_block
->used_length
= size
;
1757 new_block
->max_length
= max_size
;
1758 assert(max_size
>= size
);
1760 new_block
->page_size
= getpagesize();
1761 new_block
->host
= host
;
1763 new_block
->flags
|= RAM_PREALLOC
;
1766 new_block
->flags
|= RAM_RESIZEABLE
;
1768 ram_block_add(new_block
, &local_err
);
1771 error_propagate(errp
, local_err
);
1777 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1778 MemoryRegion
*mr
, Error
**errp
)
1780 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1783 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1785 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1788 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1789 void (*resized
)(const char*,
1792 MemoryRegion
*mr
, Error
**errp
)
1794 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1797 static void reclaim_ramblock(RAMBlock
*block
)
1799 if (block
->flags
& RAM_PREALLOC
) {
1801 } else if (xen_enabled()) {
1802 xen_invalidate_map_cache_entry(block
->host
);
1804 } else if (block
->fd
>= 0) {
1805 qemu_ram_munmap(block
->host
, block
->max_length
);
1809 qemu_anon_ram_free(block
->host
, block
->max_length
);
1814 void qemu_ram_free(RAMBlock
*block
)
1820 qemu_mutex_lock_ramlist();
1821 QLIST_REMOVE_RCU(block
, next
);
1822 ram_list
.mru_block
= NULL
;
1823 /* Write list before version */
1826 call_rcu(block
, reclaim_ramblock
, rcu
);
1827 qemu_mutex_unlock_ramlist();
1831 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1838 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1839 offset
= addr
- block
->offset
;
1840 if (offset
< block
->max_length
) {
1841 vaddr
= ramblock_ptr(block
, offset
);
1842 if (block
->flags
& RAM_PREALLOC
) {
1844 } else if (xen_enabled()) {
1848 if (block
->fd
>= 0) {
1849 flags
|= (block
->flags
& RAM_SHARED
?
1850 MAP_SHARED
: MAP_PRIVATE
);
1851 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1852 flags
, block
->fd
, offset
);
1855 * Remap needs to match alloc. Accelerators that
1856 * set phys_mem_alloc never remap. If they did,
1857 * we'd need a remap hook here.
1859 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1861 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1862 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1865 if (area
!= vaddr
) {
1866 fprintf(stderr
, "Could not remap addr: "
1867 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1871 memory_try_enable_merging(vaddr
, length
);
1872 qemu_ram_setup_dump(vaddr
, length
);
1877 #endif /* !_WIN32 */
1879 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1880 * This should not be used for general purpose DMA. Use address_space_map
1881 * or address_space_rw instead. For local memory (e.g. video ram) that the
1882 * device owns, use memory_region_get_ram_ptr.
1884 * Called within RCU critical section.
1886 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1888 RAMBlock
*block
= ram_block
;
1890 if (block
== NULL
) {
1891 block
= qemu_get_ram_block(addr
);
1892 addr
-= block
->offset
;
1895 if (xen_enabled() && block
->host
== NULL
) {
1896 /* We need to check if the requested address is in the RAM
1897 * because we don't want to map the entire memory in QEMU.
1898 * In that case just map until the end of the page.
1900 if (block
->offset
== 0) {
1901 return xen_map_cache(addr
, 0, 0);
1904 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1906 return ramblock_ptr(block
, addr
);
1909 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1910 * but takes a size argument.
1912 * Called within RCU critical section.
1914 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1917 RAMBlock
*block
= ram_block
;
1922 if (block
== NULL
) {
1923 block
= qemu_get_ram_block(addr
);
1924 addr
-= block
->offset
;
1926 *size
= MIN(*size
, block
->max_length
- addr
);
1928 if (xen_enabled() && block
->host
== NULL
) {
1929 /* We need to check if the requested address is in the RAM
1930 * because we don't want to map the entire memory in QEMU.
1931 * In that case just map the requested area.
1933 if (block
->offset
== 0) {
1934 return xen_map_cache(addr
, *size
, 1);
1937 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1940 return ramblock_ptr(block
, addr
);
1944 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1947 * ptr: Host pointer to look up
1948 * round_offset: If true round the result offset down to a page boundary
1949 * *ram_addr: set to result ram_addr
1950 * *offset: set to result offset within the RAMBlock
1952 * Returns: RAMBlock (or NULL if not found)
1954 * By the time this function returns, the returned pointer is not protected
1955 * by RCU anymore. If the caller is not within an RCU critical section and
1956 * does not hold the iothread lock, it must have other means of protecting the
1957 * pointer, such as a reference to the region that includes the incoming
1960 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1964 uint8_t *host
= ptr
;
1966 if (xen_enabled()) {
1967 ram_addr_t ram_addr
;
1969 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1970 block
= qemu_get_ram_block(ram_addr
);
1972 *offset
= ram_addr
- block
->offset
;
1979 block
= atomic_rcu_read(&ram_list
.mru_block
);
1980 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1984 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1985 /* This case append when the block is not mapped. */
1986 if (block
->host
== NULL
) {
1989 if (host
- block
->host
< block
->max_length
) {
1998 *offset
= (host
- block
->host
);
2000 *offset
&= TARGET_PAGE_MASK
;
2007 * Finds the named RAMBlock
2009 * name: The name of RAMBlock to find
2011 * Returns: RAMBlock (or NULL if not found)
2013 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2017 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2018 if (!strcmp(name
, block
->idstr
)) {
2026 /* Some of the softmmu routines need to translate from a host pointer
2027 (typically a TLB entry) back to a ram offset. */
2028 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2033 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2035 return RAM_ADDR_INVALID
;
2038 return block
->offset
+ offset
;
2041 /* Called within RCU critical section. */
2042 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2043 uint64_t val
, unsigned size
)
2045 bool locked
= false;
2047 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2050 tb_invalidate_phys_page_fast(ram_addr
, size
);
2054 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2057 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2060 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2070 /* Set both VGA and migration bits for simplicity and to remove
2071 * the notdirty callback faster.
2073 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2074 DIRTY_CLIENTS_NOCODE
);
2075 /* we remove the notdirty callback only if the code has been
2077 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2078 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2082 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2083 unsigned size
, bool is_write
)
2088 static const MemoryRegionOps notdirty_mem_ops
= {
2089 .write
= notdirty_mem_write
,
2090 .valid
.accepts
= notdirty_mem_accepts
,
2091 .endianness
= DEVICE_NATIVE_ENDIAN
,
2094 /* Generate a debug exception if a watchpoint has been hit. */
2095 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2097 CPUState
*cpu
= current_cpu
;
2098 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2099 CPUArchState
*env
= cpu
->env_ptr
;
2100 target_ulong pc
, cs_base
;
2105 if (cpu
->watchpoint_hit
) {
2106 /* We re-entered the check after replacing the TB. Now raise
2107 * the debug interrupt so that is will trigger after the
2108 * current instruction. */
2109 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2112 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2113 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2114 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2115 && (wp
->flags
& flags
)) {
2116 if (flags
== BP_MEM_READ
) {
2117 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2119 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2121 wp
->hitaddr
= vaddr
;
2122 wp
->hitattrs
= attrs
;
2123 if (!cpu
->watchpoint_hit
) {
2124 if (wp
->flags
& BP_CPU
&&
2125 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2126 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2129 cpu
->watchpoint_hit
= wp
;
2131 /* The tb_lock will be reset when cpu_loop_exit or
2132 * cpu_loop_exit_noexc longjmp back into the cpu_exec
2136 tb_check_watchpoint(cpu
);
2137 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2138 cpu
->exception_index
= EXCP_DEBUG
;
2141 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2142 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2143 cpu_loop_exit_noexc(cpu
);
2147 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2152 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2153 so these check for a hit then pass through to the normal out-of-line
2155 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2156 unsigned size
, MemTxAttrs attrs
)
2160 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2161 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2163 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2166 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2169 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2172 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2180 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2181 uint64_t val
, unsigned size
,
2185 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2186 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2188 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2191 address_space_stb(as
, addr
, val
, attrs
, &res
);
2194 address_space_stw(as
, addr
, val
, attrs
, &res
);
2197 address_space_stl(as
, addr
, val
, attrs
, &res
);
2204 static const MemoryRegionOps watch_mem_ops
= {
2205 .read_with_attrs
= watch_mem_read
,
2206 .write_with_attrs
= watch_mem_write
,
2207 .endianness
= DEVICE_NATIVE_ENDIAN
,
2210 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2211 unsigned len
, MemTxAttrs attrs
)
2213 subpage_t
*subpage
= opaque
;
2217 #if defined(DEBUG_SUBPAGE)
2218 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2219 subpage
, len
, addr
);
2221 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2228 *data
= ldub_p(buf
);
2231 *data
= lduw_p(buf
);
2244 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2245 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2247 subpage_t
*subpage
= opaque
;
2250 #if defined(DEBUG_SUBPAGE)
2251 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2252 " value %"PRIx64
"\n",
2253 __func__
, subpage
, len
, addr
, value
);
2271 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2275 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2276 unsigned len
, bool is_write
)
2278 subpage_t
*subpage
= opaque
;
2279 #if defined(DEBUG_SUBPAGE)
2280 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2281 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2284 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2288 static const MemoryRegionOps subpage_ops
= {
2289 .read_with_attrs
= subpage_read
,
2290 .write_with_attrs
= subpage_write
,
2291 .impl
.min_access_size
= 1,
2292 .impl
.max_access_size
= 8,
2293 .valid
.min_access_size
= 1,
2294 .valid
.max_access_size
= 8,
2295 .valid
.accepts
= subpage_accepts
,
2296 .endianness
= DEVICE_NATIVE_ENDIAN
,
2299 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2304 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2306 idx
= SUBPAGE_IDX(start
);
2307 eidx
= SUBPAGE_IDX(end
);
2308 #if defined(DEBUG_SUBPAGE)
2309 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2310 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2312 for (; idx
<= eidx
; idx
++) {
2313 mmio
->sub_section
[idx
] = section
;
2319 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2323 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2326 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2327 NULL
, TARGET_PAGE_SIZE
);
2328 mmio
->iomem
.subpage
= true;
2329 #if defined(DEBUG_SUBPAGE)
2330 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2331 mmio
, base
, TARGET_PAGE_SIZE
);
2333 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2338 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2342 MemoryRegionSection section
= {
2343 .address_space
= as
,
2345 .offset_within_address_space
= 0,
2346 .offset_within_region
= 0,
2347 .size
= int128_2_64(),
2350 return phys_section_add(map
, §ion
);
2353 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2355 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2356 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2357 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2358 MemoryRegionSection
*sections
= d
->map
.sections
;
2360 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2363 static void io_mem_init(void)
2365 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2366 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2368 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2370 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2374 static void mem_begin(MemoryListener
*listener
)
2376 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2377 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2380 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2381 assert(n
== PHYS_SECTION_UNASSIGNED
);
2382 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2383 assert(n
== PHYS_SECTION_NOTDIRTY
);
2384 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2385 assert(n
== PHYS_SECTION_ROM
);
2386 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2387 assert(n
== PHYS_SECTION_WATCH
);
2389 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2391 as
->next_dispatch
= d
;
2394 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2396 phys_sections_free(&d
->map
);
2400 static void mem_commit(MemoryListener
*listener
)
2402 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2403 AddressSpaceDispatch
*cur
= as
->dispatch
;
2404 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2406 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2408 atomic_rcu_set(&as
->dispatch
, next
);
2410 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2414 static void tcg_commit(MemoryListener
*listener
)
2416 CPUAddressSpace
*cpuas
;
2417 AddressSpaceDispatch
*d
;
2419 /* since each CPU stores ram addresses in its TLB cache, we must
2420 reset the modified entries */
2421 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2422 cpu_reloading_memory_map();
2423 /* The CPU and TLB are protected by the iothread lock.
2424 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2425 * may have split the RCU critical section.
2427 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2428 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2429 tlb_flush(cpuas
->cpu
);
2432 void address_space_init_dispatch(AddressSpace
*as
)
2434 as
->dispatch
= NULL
;
2435 as
->dispatch_listener
= (MemoryListener
) {
2437 .commit
= mem_commit
,
2438 .region_add
= mem_add
,
2439 .region_nop
= mem_add
,
2442 memory_listener_register(&as
->dispatch_listener
, as
);
2445 void address_space_unregister(AddressSpace
*as
)
2447 memory_listener_unregister(&as
->dispatch_listener
);
2450 void address_space_destroy_dispatch(AddressSpace
*as
)
2452 AddressSpaceDispatch
*d
= as
->dispatch
;
2454 atomic_rcu_set(&as
->dispatch
, NULL
);
2456 call_rcu(d
, address_space_dispatch_free
, rcu
);
2460 static void memory_map_init(void)
2462 system_memory
= g_malloc(sizeof(*system_memory
));
2464 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2465 address_space_init(&address_space_memory
, system_memory
, "memory");
2467 system_io
= g_malloc(sizeof(*system_io
));
2468 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2470 address_space_init(&address_space_io
, system_io
, "I/O");
2473 MemoryRegion
*get_system_memory(void)
2475 return system_memory
;
2478 MemoryRegion
*get_system_io(void)
2483 #endif /* !defined(CONFIG_USER_ONLY) */
2485 /* physical memory access (slow version, mainly for debug) */
2486 #if defined(CONFIG_USER_ONLY)
2487 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2488 uint8_t *buf
, int len
, int is_write
)
2495 page
= addr
& TARGET_PAGE_MASK
;
2496 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2499 flags
= page_get_flags(page
);
2500 if (!(flags
& PAGE_VALID
))
2503 if (!(flags
& PAGE_WRITE
))
2505 /* XXX: this code should not depend on lock_user */
2506 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2509 unlock_user(p
, addr
, l
);
2511 if (!(flags
& PAGE_READ
))
2513 /* XXX: this code should not depend on lock_user */
2514 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2517 unlock_user(p
, addr
, 0);
2528 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2531 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2532 addr
+= memory_region_get_ram_addr(mr
);
2534 /* No early return if dirty_log_mask is or becomes 0, because
2535 * cpu_physical_memory_set_dirty_range will still call
2536 * xen_modified_memory.
2538 if (dirty_log_mask
) {
2540 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2542 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2544 tb_invalidate_phys_range(addr
, addr
+ length
);
2546 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2548 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2551 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2553 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2555 /* Regions are assumed to support 1-4 byte accesses unless
2556 otherwise specified. */
2557 if (access_size_max
== 0) {
2558 access_size_max
= 4;
2561 /* Bound the maximum access by the alignment of the address. */
2562 if (!mr
->ops
->impl
.unaligned
) {
2563 unsigned align_size_max
= addr
& -addr
;
2564 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2565 access_size_max
= align_size_max
;
2569 /* Don't attempt accesses larger than the maximum. */
2570 if (l
> access_size_max
) {
2571 l
= access_size_max
;
2578 static bool prepare_mmio_access(MemoryRegion
*mr
)
2580 bool unlocked
= !qemu_mutex_iothread_locked();
2581 bool release_lock
= false;
2583 if (unlocked
&& mr
->global_locking
) {
2584 qemu_mutex_lock_iothread();
2586 release_lock
= true;
2588 if (mr
->flush_coalesced_mmio
) {
2590 qemu_mutex_lock_iothread();
2592 qemu_flush_coalesced_mmio_buffer();
2594 qemu_mutex_unlock_iothread();
2598 return release_lock
;
2601 /* Called within RCU critical section. */
2602 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2605 int len
, hwaddr addr1
,
2606 hwaddr l
, MemoryRegion
*mr
)
2610 MemTxResult result
= MEMTX_OK
;
2611 bool release_lock
= false;
2614 if (!memory_access_is_direct(mr
, true)) {
2615 release_lock
|= prepare_mmio_access(mr
);
2616 l
= memory_access_size(mr
, l
, addr1
);
2617 /* XXX: could force current_cpu to NULL to avoid
2621 /* 64 bit write access */
2623 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2627 /* 32 bit write access */
2629 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2633 /* 16 bit write access */
2635 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2639 /* 8 bit write access */
2641 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2649 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2650 memcpy(ptr
, buf
, l
);
2651 invalidate_and_set_dirty(mr
, addr1
, l
);
2655 qemu_mutex_unlock_iothread();
2656 release_lock
= false;
2668 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2674 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2675 const uint8_t *buf
, int len
)
2680 MemTxResult result
= MEMTX_OK
;
2685 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2686 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2694 /* Called within RCU critical section. */
2695 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2696 MemTxAttrs attrs
, uint8_t *buf
,
2697 int len
, hwaddr addr1
, hwaddr l
,
2702 MemTxResult result
= MEMTX_OK
;
2703 bool release_lock
= false;
2706 if (!memory_access_is_direct(mr
, false)) {
2708 release_lock
|= prepare_mmio_access(mr
);
2709 l
= memory_access_size(mr
, l
, addr1
);
2712 /* 64 bit read access */
2713 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2718 /* 32 bit read access */
2719 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2724 /* 16 bit read access */
2725 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2730 /* 8 bit read access */
2731 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2740 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2741 memcpy(buf
, ptr
, l
);
2745 qemu_mutex_unlock_iothread();
2746 release_lock
= false;
2758 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2764 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2765 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2770 MemTxResult result
= MEMTX_OK
;
2775 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2776 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2784 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2785 uint8_t *buf
, int len
, bool is_write
)
2788 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2790 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2794 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2795 int len
, int is_write
)
2797 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2798 buf
, len
, is_write
);
2801 enum write_rom_type
{
2806 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2807 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2817 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2819 if (!(memory_region_is_ram(mr
) ||
2820 memory_region_is_romd(mr
))) {
2821 l
= memory_access_size(mr
, l
, addr1
);
2824 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2827 memcpy(ptr
, buf
, l
);
2828 invalidate_and_set_dirty(mr
, addr1
, l
);
2831 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2842 /* used for ROM loading : can write in RAM and ROM */
2843 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2844 const uint8_t *buf
, int len
)
2846 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2849 void cpu_flush_icache_range(hwaddr start
, int len
)
2852 * This function should do the same thing as an icache flush that was
2853 * triggered from within the guest. For TCG we are always cache coherent,
2854 * so there is no need to flush anything. For KVM / Xen we need to flush
2855 * the host's instruction cache at least.
2857 if (tcg_enabled()) {
2861 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2862 start
, NULL
, len
, FLUSH_CACHE
);
2873 static BounceBuffer bounce
;
2875 typedef struct MapClient
{
2877 QLIST_ENTRY(MapClient
) link
;
2880 QemuMutex map_client_list_lock
;
2881 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2882 = QLIST_HEAD_INITIALIZER(map_client_list
);
2884 static void cpu_unregister_map_client_do(MapClient
*client
)
2886 QLIST_REMOVE(client
, link
);
2890 static void cpu_notify_map_clients_locked(void)
2894 while (!QLIST_EMPTY(&map_client_list
)) {
2895 client
= QLIST_FIRST(&map_client_list
);
2896 qemu_bh_schedule(client
->bh
);
2897 cpu_unregister_map_client_do(client
);
2901 void cpu_register_map_client(QEMUBH
*bh
)
2903 MapClient
*client
= g_malloc(sizeof(*client
));
2905 qemu_mutex_lock(&map_client_list_lock
);
2907 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2908 if (!atomic_read(&bounce
.in_use
)) {
2909 cpu_notify_map_clients_locked();
2911 qemu_mutex_unlock(&map_client_list_lock
);
2914 void cpu_exec_init_all(void)
2916 qemu_mutex_init(&ram_list
.mutex
);
2917 /* The data structures we set up here depend on knowing the page size,
2918 * so no more changes can be made after this point.
2919 * In an ideal world, nothing we did before we had finished the
2920 * machine setup would care about the target page size, and we could
2921 * do this much later, rather than requiring board models to state
2922 * up front what their requirements are.
2924 finalize_target_page_bits();
2927 qemu_mutex_init(&map_client_list_lock
);
2930 void cpu_unregister_map_client(QEMUBH
*bh
)
2934 qemu_mutex_lock(&map_client_list_lock
);
2935 QLIST_FOREACH(client
, &map_client_list
, link
) {
2936 if (client
->bh
== bh
) {
2937 cpu_unregister_map_client_do(client
);
2941 qemu_mutex_unlock(&map_client_list_lock
);
2944 static void cpu_notify_map_clients(void)
2946 qemu_mutex_lock(&map_client_list_lock
);
2947 cpu_notify_map_clients_locked();
2948 qemu_mutex_unlock(&map_client_list_lock
);
2951 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2959 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2960 if (!memory_access_is_direct(mr
, is_write
)) {
2961 l
= memory_access_size(mr
, l
, addr
);
2962 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2975 address_space_extend_translation(AddressSpace
*as
, hwaddr addr
, hwaddr target_len
,
2976 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
2981 MemoryRegion
*this_mr
;
2987 if (target_len
== 0) {
2992 this_mr
= address_space_translate(as
, addr
, &xlat
, &len
, is_write
);
2993 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2999 /* Map a physical memory region into a host virtual address.
3000 * May map a subset of the requested range, given by and returned in *plen.
3001 * May return NULL if resources needed to perform the mapping are exhausted.
3002 * Use only for reads OR writes - not for read-modify-write operations.
3003 * Use cpu_register_map_client() to know when retrying the map operation is
3004 * likely to succeed.
3006 void *address_space_map(AddressSpace
*as
,
3022 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3024 if (!memory_access_is_direct(mr
, is_write
)) {
3025 if (atomic_xchg(&bounce
.in_use
, true)) {
3029 /* Avoid unbounded allocations */
3030 l
= MIN(l
, TARGET_PAGE_SIZE
);
3031 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3035 memory_region_ref(mr
);
3038 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
3044 return bounce
.buffer
;
3048 memory_region_ref(mr
);
3049 *plen
= address_space_extend_translation(as
, addr
, len
, mr
, xlat
, l
, is_write
);
3050 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
);
3056 /* Unmaps a memory region previously mapped by address_space_map().
3057 * Will also mark the memory as dirty if is_write == 1. access_len gives
3058 * the amount of memory that was actually read or written by the caller.
3060 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3061 int is_write
, hwaddr access_len
)
3063 if (buffer
!= bounce
.buffer
) {
3067 mr
= memory_region_from_host(buffer
, &addr1
);
3070 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3072 if (xen_enabled()) {
3073 xen_invalidate_map_cache_entry(buffer
);
3075 memory_region_unref(mr
);
3079 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3080 bounce
.buffer
, access_len
);
3082 qemu_vfree(bounce
.buffer
);
3083 bounce
.buffer
= NULL
;
3084 memory_region_unref(bounce
.mr
);
3085 atomic_mb_set(&bounce
.in_use
, false);
3086 cpu_notify_map_clients();
3089 void *cpu_physical_memory_map(hwaddr addr
,
3093 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3096 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3097 int is_write
, hwaddr access_len
)
3099 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3102 #define ARG1_DECL AddressSpace *as
3105 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3106 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3107 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3108 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3109 #define RCU_READ_LOCK(...) rcu_read_lock()
3110 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3111 #include "memory_ldst.inc.c"
3113 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3126 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3127 if (!memory_access_is_direct(mr
, is_write
)) {
3131 l
= address_space_extend_translation(as
, addr
, len
, mr
, xlat
, l
, is_write
);
3132 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, &l
);
3135 cache
->is_write
= is_write
;
3139 memory_region_ref(cache
->mr
);
3144 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3148 assert(cache
->is_write
);
3149 invalidate_and_set_dirty(cache
->mr
, addr
+ cache
->xlat
, access_len
);
3152 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3158 if (xen_enabled()) {
3159 xen_invalidate_map_cache_entry(cache
->ptr
);
3161 memory_region_unref(cache
->mr
);
3164 /* Called from RCU critical section. This function has the same
3165 * semantics as address_space_translate, but it only works on a
3166 * predefined range of a MemoryRegion that was mapped with
3167 * address_space_cache_init.
3169 static inline MemoryRegion
*address_space_translate_cached(
3170 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3171 hwaddr
*plen
, bool is_write
)
3173 assert(addr
< cache
->len
&& *plen
<= cache
->len
- addr
);
3174 *xlat
= addr
+ cache
->xlat
;
3178 #define ARG1_DECL MemoryRegionCache *cache
3180 #define SUFFIX _cached
3181 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3182 #define IS_DIRECT(mr, is_write) true
3183 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3184 #define INVALIDATE(mr, ofs, len) ((void)0)
3185 #define RCU_READ_LOCK() ((void)0)
3186 #define RCU_READ_UNLOCK() ((void)0)
3187 #include "memory_ldst.inc.c"
3189 /* virtual memory access for debug (includes writing to ROM) */
3190 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3191 uint8_t *buf
, int len
, int is_write
)
3201 page
= addr
& TARGET_PAGE_MASK
;
3202 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3203 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3204 /* if no physical page mapped, return an error */
3205 if (phys_addr
== -1)
3207 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3210 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3212 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3215 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3216 MEMTXATTRS_UNSPECIFIED
,
3227 * Allows code that needs to deal with migration bitmaps etc to still be built
3228 * target independent.
3230 size_t qemu_target_page_bits(void)
3232 return TARGET_PAGE_BITS
;
3238 * A helper function for the _utterly broken_ virtio device model to find out if
3239 * it's running on a big endian machine. Don't do this at home kids!
3241 bool target_words_bigendian(void);
3242 bool target_words_bigendian(void)
3244 #if defined(TARGET_WORDS_BIGENDIAN)
3251 #ifndef CONFIG_USER_ONLY
3252 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3259 mr
= address_space_translate(&address_space_memory
,
3260 phys_addr
, &phys_addr
, &l
, false);
3262 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3267 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3273 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3274 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3275 block
->used_length
, opaque
);