8 { 'include': 'common.json' }
13 # Enable QMP capabilities.
17 # @enable: An optional list of QMPCapability values to enable. The
18 # client must not enable any capability that is not
19 # mentioned in the QMP greeting message. If the field is not
20 # provided, it means no QMP capabilities will be enabled.
25 # -> { "execute": "qmp_capabilities",
26 # "arguments": { "enable": [ "oob" ] } }
29 # Notes: This command is valid exactly when first connecting: it must be
30 # issued before any other command will be accepted, and will fail once the
31 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
33 # The QMP client needs to explicitly enable QMP capabilities, otherwise
34 # all the QMP capabilities will be turned off by default.
39 { 'command': 'qmp_capabilities',
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
46 # Enumeration of capabilities to be advertised during initial client
47 # connection, used for agreeing on particular QMP extension behaviors.
49 # @oob: QMP ability to support Out-Of-Band requests.
50 # (Please refer to qmp-spec.txt for more information on OOB)
55 { 'enum': 'QMPCapability',
61 # A three-part version number.
63 # @major: The major version number.
65 # @minor: The minor version number.
67 # @micro: The micro version number.
71 { 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
78 # A description of QEMU's version.
80 # @qemu: The version of QEMU. By current convention, a micro
81 # version of 50 signifies a development branch. A micro version
82 # greater than or equal to 90 signifies a release candidate for
83 # the next minor version. A micro version of less than 50
84 # signifies a stable release.
86 # @package: QEMU will always set this field to an empty string. Downstream
87 # versions of QEMU should set this to a non-empty string. The
88 # exact format depends on the downstream however it highly
89 # recommended that a unique name is used.
93 { 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
99 # Returns the current version of QEMU.
101 # Returns: A @VersionInfo object describing the current version of QEMU.
107 # -> { "execute": "query-version" }
120 { 'command': 'query-version', 'returns': 'VersionInfo' }
125 # Information about a QMP command
127 # @name: The command name
131 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
136 # Return a list of supported QMP commands by this server
138 # Returns: A list of @CommandInfo for all supported commands
144 # -> { "execute": "query-commands" }
148 # "name":"query-balloon"
151 # "name":"system_powerdown"
156 # Note: This example has been shortened as the real response is too long.
159 { 'command': 'query-commands', 'returns': ['CommandInfo'],
160 'allow-preconfig': true }
165 # Policy for handling lost ticks in timer devices.
167 # @discard: throw away the missed tick(s) and continue with future injection
168 # normally. Guest time may be delayed, unless the OS has explicit
169 # handling of lost ticks
171 # @delay: continue to deliver ticks at the normal rate. Guest time will be
172 # delayed due to the late tick
174 # @merge: merge the missed tick(s) into one tick and inject. Guest time
175 # may be delayed, depending on how the OS reacts to the merging
178 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
179 # guest time should not be delayed once catchup is complete.
183 { 'enum': 'LostTickPolicy',
184 'data': ['discard', 'delay', 'merge', 'slew' ] }
189 # Allow client connections for VNC, Spice and socket based
190 # character devices to be passed in to QEMU via SCM_RIGHTS.
192 # @protocol: protocol name. Valid names are "vnc", "spice" or the
193 # name of a character device (eg. from -chardev id=XXXX)
195 # @fdname: file descriptor name previously passed via 'getfd' command
197 # @skipauth: whether to skip authentication. Only applies
198 # to "vnc" and "spice" protocols
200 # @tls: whether to perform TLS. Only applies to the "spice"
203 # Returns: nothing on success.
209 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
210 # "fdname": "myclient" } }
211 # <- { "return": {} }
214 { 'command': 'add_client',
215 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
221 # Guest name information.
223 # @name: The name of the guest
227 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
232 # Return the name information of a guest.
234 # Returns: @NameInfo of the guest
240 # -> { "execute": "query-name" }
241 # <- { "return": { "name": "qemu-name" } }
244 { 'command': 'query-name', 'returns': 'NameInfo' }
249 # Information about support for KVM acceleration
251 # @enabled: true if KVM acceleration is active
253 # @present: true if KVM acceleration is built into this executable
257 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
262 # Returns information about KVM acceleration
270 # -> { "execute": "query-kvm" }
271 # <- { "return": { "enabled": true, "present": true } }
274 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
279 # Guest UUID information (Universally Unique Identifier).
281 # @UUID: the UUID of the guest
285 # Notes: If no UUID was specified for the guest, a null UUID is returned.
287 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
292 # Query the guest UUID information.
294 # Returns: The @UuidInfo for the guest
300 # -> { "execute": "query-uuid" }
301 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
304 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
309 # Information about a QMP event
311 # @name: The event name
315 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
320 # Return a list of supported QMP events by this server
322 # Returns: A list of @EventInfo for all supported events
328 # -> { "execute": "query-events" }
340 # Note: This example has been shortened as the real response is too long.
343 { 'command': 'query-events', 'returns': ['EventInfo'] }
348 # An enumeration of cpu types that enable additional information during
349 # @query-cpus and @query-cpus-fast.
357 { 'enum': 'CpuInfoArch',
358 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
363 # Information about a virtual CPU
365 # @CPU: the index of the virtual CPU
367 # @current: this only exists for backwards compatibility and should be ignored
369 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
370 # to a processor specific low power mode.
372 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
374 # @thread_id: ID of the underlying host thread
376 # @props: properties describing to which node/socket/core/thread
377 # virtual CPU belongs to, provided if supported by board (since 2.10)
379 # @arch: architecture of the cpu, which determines which additional fields
380 # will be listed (since 2.6)
384 # Notes: @halted is a transient state that changes frequently. By the time the
385 # data is sent to the client, the guest may no longer be halted.
387 { 'union': 'CpuInfo',
388 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
389 'qom_path': 'str', 'thread_id': 'int',
390 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
391 'discriminator': 'arch',
392 'data': { 'x86': 'CpuInfoX86',
393 'sparc': 'CpuInfoSPARC',
395 'mips': 'CpuInfoMIPS',
396 'tricore': 'CpuInfoTricore',
397 's390': 'CpuInfoS390',
398 'riscv': 'CpuInfoRISCV',
399 'other': 'CpuInfoOther' } }
404 # Additional information about a virtual i386 or x86_64 CPU
406 # @pc: the 64-bit instruction pointer
410 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
415 # Additional information about a virtual SPARC CPU
417 # @pc: the PC component of the instruction pointer
419 # @npc: the NPC component of the instruction pointer
423 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
428 # Additional information about a virtual PPC CPU
430 # @nip: the instruction pointer
434 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
439 # Additional information about a virtual MIPS CPU
441 # @PC: the instruction pointer
445 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
450 # Additional information about a virtual Tricore CPU
452 # @PC: the instruction pointer
456 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
461 # Additional information about a virtual RISCV CPU
463 # @pc: the instruction pointer
467 { 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
472 # No additional information is available about the virtual CPU
477 { 'struct': 'CpuInfoOther', 'data': { } }
482 # An enumeration of cpu states that can be assumed by a virtual
487 { 'enum': 'CpuS390State',
488 'prefix': 'S390_CPU_STATE',
489 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
494 # Additional information about a virtual S390 CPU
496 # @cpu-state: the virtual CPU's state
500 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
505 # Returns a list of information about each virtual CPU.
507 # This command causes vCPU threads to exit to userspace, which causes
508 # a small interruption to guest CPU execution. This will have a negative
509 # impact on realtime guests and other latency sensitive guest workloads.
510 # It is recommended to use @query-cpus-fast instead of this command to
511 # avoid the vCPU interruption.
513 # Returns: a list of @CpuInfo for each virtual CPU
519 # -> { "execute": "query-cpus" }
525 # "qom_path":"/machine/unattached/device[0]",
534 # "qom_path":"/machine/unattached/device[2]",
542 # Notes: This interface is deprecated (since 2.12.0), and it is strongly
543 # recommended that you avoid using it. Use @query-cpus-fast to
544 # obtain information about virtual CPUs.
547 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
552 # Information about a virtual CPU
554 # @cpu-index: index of the virtual CPU
556 # @qom-path: path to the CPU object in the QOM tree
558 # @thread-id: ID of the underlying host thread
560 # @props: properties describing to which node/socket/core/thread
561 # virtual CPU belongs to, provided if supported by board
563 # @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
566 # @target: the QEMU system emulation target, which determines which
567 # additional fields will be listed (since 3.0)
572 { 'union' : 'CpuInfoFast',
573 'base' : { 'cpu-index' : 'int',
576 '*props' : 'CpuInstanceProperties',
577 'arch' : 'CpuInfoArch',
578 'target' : 'SysEmuTarget' },
579 'discriminator' : 'target',
580 'data' : { 'aarch64' : 'CpuInfoOther',
581 'alpha' : 'CpuInfoOther',
582 'arm' : 'CpuInfoOther',
583 'cris' : 'CpuInfoOther',
584 'hppa' : 'CpuInfoOther',
585 'i386' : 'CpuInfoOther',
586 'lm32' : 'CpuInfoOther',
587 'm68k' : 'CpuInfoOther',
588 'microblaze' : 'CpuInfoOther',
589 'microblazeel' : 'CpuInfoOther',
590 'mips' : 'CpuInfoOther',
591 'mips64' : 'CpuInfoOther',
592 'mips64el' : 'CpuInfoOther',
593 'mipsel' : 'CpuInfoOther',
594 'moxie' : 'CpuInfoOther',
595 'nios2' : 'CpuInfoOther',
596 'or1k' : 'CpuInfoOther',
597 'ppc' : 'CpuInfoOther',
598 'ppc64' : 'CpuInfoOther',
599 'ppcemb' : 'CpuInfoOther',
600 'riscv32' : 'CpuInfoOther',
601 'riscv64' : 'CpuInfoOther',
602 's390x' : 'CpuInfoS390',
603 'sh4' : 'CpuInfoOther',
604 'sh4eb' : 'CpuInfoOther',
605 'sparc' : 'CpuInfoOther',
606 'sparc64' : 'CpuInfoOther',
607 'tricore' : 'CpuInfoOther',
608 'unicore32' : 'CpuInfoOther',
609 'x86_64' : 'CpuInfoOther',
610 'xtensa' : 'CpuInfoOther',
611 'xtensaeb' : 'CpuInfoOther' } }
616 # Returns information about all virtual CPUs. This command does not
617 # incur a performance penalty and should be used in production
618 # instead of query-cpus.
620 # Returns: list of @CpuInfoFast
626 # -> { "execute": "query-cpus-fast" }
629 # "thread-id": 25627,
635 # "qom-path": "/machine/unattached/device[0]",
641 # "thread-id": 25628,
647 # "qom-path": "/machine/unattached/device[2]",
655 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
660 # Information about an iothread
662 # @id: the identifier of the iothread
664 # @thread-id: ID of the underlying host thread
666 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
669 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
670 # configured (since 2.9)
672 # @poll-shrink: how many ns will be removed from polling time, 0 means that
673 # it's not configured (since 2.9)
677 { 'struct': 'IOThreadInfo',
678 'data': {'id': 'str',
680 'poll-max-ns': 'int',
682 'poll-shrink': 'int' } }
687 # Returns a list of information about each iothread.
689 # Note: this list excludes the QEMU main loop thread, which is not declared
690 # using the -object iothread command-line option. It is always the main thread
693 # Returns: a list of @IOThreadInfo for each iothread
699 # -> { "execute": "query-iothreads" }
713 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
718 # Information about the guest balloon device.
720 # @actual: the number of bytes the balloon currently contains
725 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
730 # Return information about the balloon device.
732 # Returns: @BalloonInfo on success
734 # If the balloon driver is enabled but not functional because the KVM
735 # kernel module cannot support it, KvmMissingCap
737 # If no balloon device is present, DeviceNotActive
743 # -> { "execute": "query-balloon" }
745 # "actual": 1073741824,
750 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
755 # Emitted when the guest changes the actual BALLOON level. This value is
756 # equivalent to the @actual field return by the 'query-balloon' command
758 # @actual: actual level of the guest memory balloon in bytes
760 # Note: this event is rate-limited.
766 # <- { "event": "BALLOON_CHANGE",
767 # "data": { "actual": 944766976 },
768 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
771 { 'event': 'BALLOON_CHANGE',
772 'data': { 'actual': 'int' } }
777 # A PCI device memory region
779 # @base: the starting address (guest physical)
781 # @limit: the ending address (guest physical)
785 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
790 # Information about a PCI device I/O region.
792 # @bar: the index of the Base Address Register for this region
794 # @type: 'io' if the region is a PIO region
795 # 'memory' if the region is a MMIO region
799 # @prefetch: if @type is 'memory', true if the memory is prefetchable
801 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
805 { 'struct': 'PciMemoryRegion',
806 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
807 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
812 # Information about a bus of a PCI Bridge device
814 # @number: primary bus interface number. This should be the number of the
815 # bus the device resides on.
817 # @secondary: secondary bus interface number. This is the number of the
818 # main bus for the bridge
820 # @subordinate: This is the highest number bus that resides below the
823 # @io_range: The PIO range for all devices on this bridge
825 # @memory_range: The MMIO range for all devices on this bridge
827 # @prefetchable_range: The range of prefetchable MMIO for all devices on
832 { 'struct': 'PciBusInfo',
833 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
834 'io_range': 'PciMemoryRange',
835 'memory_range': 'PciMemoryRange',
836 'prefetchable_range': 'PciMemoryRange' } }
841 # Information about a PCI Bridge device
843 # @bus: information about the bus the device resides on
845 # @devices: a list of @PciDeviceInfo for each device on this bridge
849 { 'struct': 'PciBridgeInfo',
850 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
855 # Information about the Class of a PCI device
857 # @desc: a string description of the device's class
859 # @class: the class code of the device
863 { 'struct': 'PciDeviceClass',
864 'data': {'*desc': 'str', 'class': 'int'} }
869 # Information about the Id of a PCI device
871 # @device: the PCI device id
873 # @vendor: the PCI vendor id
877 { 'struct': 'PciDeviceId',
878 'data': {'device': 'int', 'vendor': 'int'} }
883 # Information about a PCI device
885 # @bus: the bus number of the device
887 # @slot: the slot the device is located in
889 # @function: the function of the slot used by the device
891 # @class_info: the class of the device
893 # @id: the PCI device id
895 # @irq: if an IRQ is assigned to the device, the IRQ number
897 # @qdev_id: the device name of the PCI device
899 # @pci_bridge: if the device is a PCI bridge, the bridge information
901 # @regions: a list of the PCI I/O regions associated with the device
903 # Notes: the contents of @class_info.desc are not stable and should only be
904 # treated as informational.
908 { 'struct': 'PciDeviceInfo',
909 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
910 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
911 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
912 'regions': ['PciMemoryRegion']} }
917 # Information about a PCI bus
919 # @bus: the bus index
921 # @devices: a list of devices on this bus
925 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
930 # Return information about the PCI bus topology of the guest.
932 # Returns: a list of @PciInfo for each PCI bus. Each bus is
933 # represented by a json-object, which has a key with a json-array of
934 # all PCI devices attached to it. Each device is represented by a
941 # -> { "execute": "query-pci" }
952 # "desc": "Host bridge"
968 # "desc": "ISA bridge"
984 # "desc": "IDE controller"
1006 # "desc": "VGA controller"
1016 # "mem_type_64": false,
1019 # "address": 4026531840,
1023 # "prefetch": false,
1024 # "mem_type_64": false,
1027 # "address": 4060086272,
1031 # "prefetch": false,
1032 # "mem_type_64": false,
1047 # "desc": "RAM controller"
1068 # Note: This example has been shortened as the real response is too long.
1071 { 'command': 'query-pci', 'returns': ['PciInfo'] }
1076 # This command will cause the QEMU process to exit gracefully. While every
1077 # attempt is made to send the QMP response before terminating, this is not
1078 # guaranteed. When using this interface, a premature EOF would not be
1085 # -> { "execute": "quit" }
1086 # <- { "return": {} }
1088 { 'command': 'quit' }
1093 # Stop all guest VCPU execution.
1097 # Notes: This function will succeed even if the guest is already in the stopped
1098 # state. In "inmigrate" state, it will ensure that the guest
1099 # remains paused once migration finishes, as if the -S option was
1100 # passed on the command line.
1104 # -> { "execute": "stop" }
1105 # <- { "return": {} }
1108 { 'command': 'stop' }
1113 # Performs a hard reset of a guest.
1119 # -> { "execute": "system_reset" }
1120 # <- { "return": {} }
1123 { 'command': 'system_reset' }
1126 # @system_powerdown:
1128 # Requests that a guest perform a powerdown operation.
1132 # Notes: A guest may or may not respond to this command. This command
1133 # returning does not indicate that a guest has accepted the request or
1134 # that it has shut down. Many guests will respond to this command by
1135 # prompting the user in some way.
1138 # -> { "execute": "system_powerdown" }
1139 # <- { "return": {} }
1142 { 'command': 'system_powerdown' }
1147 # Adds CPU with specified ID
1149 # @id: ID of CPU to be created, valid values [0..max_cpus)
1151 # Returns: Nothing on success
1157 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1158 # <- { "return": {} }
1161 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1166 # Save a portion of guest memory to a file.
1168 # @val: the virtual address of the guest to start from
1170 # @size: the size of memory region to save
1172 # @filename: the file to save the memory to as binary data
1174 # @cpu-index: the index of the virtual CPU to use for translating the
1175 # virtual address (defaults to CPU 0)
1177 # Returns: Nothing on success
1181 # Notes: Errors were not reliably returned until 1.1
1185 # -> { "execute": "memsave",
1186 # "arguments": { "val": 10,
1188 # "filename": "/tmp/virtual-mem-dump" } }
1189 # <- { "return": {} }
1192 { 'command': 'memsave',
1193 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1198 # Save a portion of guest physical memory to a file.
1200 # @val: the physical address of the guest to start from
1202 # @size: the size of memory region to save
1204 # @filename: the file to save the memory to as binary data
1206 # Returns: Nothing on success
1210 # Notes: Errors were not reliably returned until 1.1
1214 # -> { "execute": "pmemsave",
1215 # "arguments": { "val": 10,
1217 # "filename": "/tmp/physical-mem-dump" } }
1218 # <- { "return": {} }
1221 { 'command': 'pmemsave',
1222 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1227 # Resume guest VCPU execution.
1231 # Returns: If successful, nothing
1233 # Notes: This command will succeed if the guest is currently running. It
1234 # will also succeed if the guest is in the "inmigrate" state; in
1235 # this case, the effect of the command is to make sure the guest
1236 # starts once migration finishes, removing the effect of the -S
1237 # command line option if it was passed.
1241 # -> { "execute": "cont" }
1242 # <- { "return": {} }
1245 { 'command': 'cont' }
1250 # Exit from "preconfig" state
1252 # This command makes QEMU exit the preconfig state and proceed with
1253 # VM initialization using configuration data provided on the command line
1254 # and via the QMP monitor during the preconfig state. The command is only
1255 # available during the preconfig state (i.e. when the --preconfig command
1256 # line option was in use).
1264 # -> { "execute": "exit-preconfig" }
1265 # <- { "return": {} }
1268 { 'command': 'exit-preconfig', 'allow-preconfig': true }
1273 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1281 # -> { "execute": "system_wakeup" }
1282 # <- { "return": {} }
1285 { 'command': 'system_wakeup' }
1290 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1291 # The command fails when the guest doesn't support injecting.
1293 # Returns: If successful, nothing
1297 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1301 # -> { "execute": "inject-nmi" }
1302 # <- { "return": {} }
1305 { 'command': 'inject-nmi' }
1310 # Request the balloon driver to change its balloon size.
1312 # @value: the target size of the balloon in bytes
1314 # Returns: Nothing on success
1315 # If the balloon driver is enabled but not functional because the KVM
1316 # kernel module cannot support it, KvmMissingCap
1317 # If no balloon device is present, DeviceNotActive
1319 # Notes: This command just issues a request to the guest. When it returns,
1320 # the balloon size may not have changed. A guest can change the balloon
1321 # size independent of this command.
1327 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1328 # <- { "return": {} }
1331 { 'command': 'balloon', 'data': {'value': 'int'} }
1334 # @human-monitor-command:
1336 # Execute a command on the human monitor and return the output.
1338 # @command-line: the command to execute in the human monitor
1340 # @cpu-index: The CPU to use for commands that require an implicit CPU
1342 # Returns: the output of the command as a string
1346 # Notes: This command only exists as a stop-gap. Its use is highly
1347 # discouraged. The semantics of this command are not
1348 # guaranteed: this means that command names, arguments and
1349 # responses can change or be removed at ANY time. Applications
1350 # that rely on long term stability guarantees should NOT
1353 # Known limitations:
1355 # * This command is stateless, this means that commands that depend
1356 # on state information (such as getfd) might not work
1358 # * Commands that prompt the user for data don't currently work
1362 # -> { "execute": "human-monitor-command",
1363 # "arguments": { "command-line": "info kvm" } }
1364 # <- { "return": "kvm support: enabled\r\n" }
1367 { 'command': 'human-monitor-command',
1368 'data': {'command-line': 'str', '*cpu-index': 'int'},
1372 # @ObjectPropertyInfo:
1374 # @name: the name of the property
1376 # @type: the type of the property. This will typically come in one of four
1379 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1380 # These types are mapped to the appropriate JSON type.
1382 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1383 # device type name. Child properties create the composition tree.
1385 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1386 # device type name. Link properties form the device model graph.
1388 # @description: if specified, the description of the property.
1392 { 'struct': 'ObjectPropertyInfo',
1393 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1398 # This command will list any properties of a object given a path in the object
1401 # @path: the path within the object model. See @qom-get for a description of
1404 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1409 { 'command': 'qom-list',
1410 'data': { 'path': 'str' },
1411 'returns': [ 'ObjectPropertyInfo' ] }
1416 # This command will get a property from a object model path and return the
1419 # @path: The path within the object model. There are two forms of supported
1420 # paths--absolute and partial paths.
1422 # Absolute paths are derived from the root object and can follow child<>
1423 # or link<> properties. Since they can follow link<> properties, they
1424 # can be arbitrarily long. Absolute paths look like absolute filenames
1425 # and are prefixed with a leading slash.
1427 # Partial paths look like relative filenames. They do not begin
1428 # with a prefix. The matching rules for partial paths are subtle but
1429 # designed to make specifying objects easy. At each level of the
1430 # composition tree, the partial path is matched as an absolute path.
1431 # The first match is not returned. At least two matches are searched
1432 # for. A successful result is only returned if only one match is
1433 # found. If more than one match is found, a flag is return to
1434 # indicate that the match was ambiguous.
1436 # @property: The property name to read
1438 # Returns: The property value. The type depends on the property
1439 # type. child<> and link<> properties are returned as #str
1440 # pathnames. All integer property types (u8, u16, etc) are
1445 { 'command': 'qom-get',
1446 'data': { 'path': 'str', 'property': 'str' },
1452 # This command will set a property from a object model path.
1454 # @path: see @qom-get for a description of this parameter
1456 # @property: the property name to set
1458 # @value: a value who's type is appropriate for the property type. See @qom-get
1459 # for a description of type mapping.
1463 { 'command': 'qom-set',
1464 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1469 # This command is multiple commands multiplexed together.
1471 # @device: This is normally the name of a block device but it may also be 'vnc'.
1472 # when it's 'vnc', then sub command depends on @target
1474 # @target: If @device is a block device, then this is the new filename.
1475 # If @device is 'vnc', then if the value 'password' selects the vnc
1476 # change password command. Otherwise, this specifies a new server URI
1477 # address to listen to for VNC connections.
1479 # @arg: If @device is a block device, then this is an optional format to open
1481 # If @device is 'vnc' and @target is 'password', this is the new VNC
1482 # password to set. See change-vnc-password for additional notes.
1484 # Returns: Nothing on success.
1485 # If @device is not a valid block device, DeviceNotFound
1487 # Notes: This interface is deprecated, and it is strongly recommended that you
1488 # avoid using it. For changing block devices, use
1489 # blockdev-change-medium; for changing VNC parameters, use
1490 # change-vnc-password.
1496 # 1. Change a removable medium
1498 # -> { "execute": "change",
1499 # "arguments": { "device": "ide1-cd0",
1500 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1501 # <- { "return": {} }
1503 # 2. Change VNC password
1505 # -> { "execute": "change",
1506 # "arguments": { "device": "vnc", "target": "password",
1507 # "arg": "foobar1" } }
1508 # <- { "return": {} }
1511 { 'command': 'change',
1512 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1517 # This structure describes a search result from @qom-list-types
1519 # @name: the type name found in the search
1521 # @abstract: the type is abstract and can't be directly instantiated.
1522 # Omitted if false. (since 2.10)
1524 # @parent: Name of parent type, if any (since 2.10)
1528 { 'struct': 'ObjectTypeInfo',
1529 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1534 # This command will return a list of types given search parameters
1536 # @implements: if specified, only return types that implement this type name
1538 # @abstract: if true, include abstract types in the results
1540 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1544 { 'command': 'qom-list-types',
1545 'data': { '*implements': 'str', '*abstract': 'bool' },
1546 'returns': [ 'ObjectTypeInfo' ] }
1549 # @device-list-properties:
1551 # List properties associated with a device.
1553 # @typename: the type name of a device
1555 # Returns: a list of ObjectPropertyInfo describing a devices properties
1557 # Note: objects can create properties at runtime, for example to describe
1558 # links between different devices and/or objects. These properties
1559 # are not included in the output of this command.
1563 { 'command': 'device-list-properties',
1564 'data': { 'typename': 'str'},
1565 'returns': [ 'ObjectPropertyInfo' ] }
1568 # @qom-list-properties:
1570 # List properties associated with a QOM object.
1572 # @typename: the type name of an object
1574 # Note: objects can create properties at runtime, for example to describe
1575 # links between different devices and/or objects. These properties
1576 # are not included in the output of this command.
1578 # Returns: a list of ObjectPropertyInfo describing object properties
1582 { 'command': 'qom-list-properties',
1583 'data': { 'typename': 'str'},
1584 'returns': [ 'ObjectPropertyInfo' ] }
1587 # @xen-set-global-dirty-log:
1589 # Enable or disable the global dirty log mode.
1591 # @enable: true to enable, false to disable.
1599 # -> { "execute": "xen-set-global-dirty-log",
1600 # "arguments": { "enable": true } }
1601 # <- { "return": {} }
1604 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1609 # @driver: the name of the new device's driver
1611 # @bus: the device's parent bus (device tree path)
1613 # @id: the device's ID, must be unique
1615 # Additional arguments depend on the type.
1620 # 1. For detailed information about this command, please refer to the
1621 # 'docs/qdev-device-use.txt' file.
1623 # 2. It's possible to list device properties by running QEMU with the
1624 # "-device DEVICE,help" command-line argument, where DEVICE is the
1629 # -> { "execute": "device_add",
1630 # "arguments": { "driver": "e1000", "id": "net1",
1632 # "mac": "52:54:00:12:34:56" } }
1633 # <- { "return": {} }
1635 # TODO: This command effectively bypasses QAPI completely due to its
1636 # "additional arguments" business. It shouldn't have been added to
1637 # the schema in this form. It should be qapified properly, or
1638 # replaced by a properly qapified command.
1642 { 'command': 'device_add',
1643 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1644 'gen': false } # so we can get the additional arguments
1649 # Remove a device from a guest
1651 # @id: the device's ID or QOM path
1653 # Returns: Nothing on success
1654 # If @id is not a valid device, DeviceNotFound
1656 # Notes: When this command completes, the device may not be removed from the
1657 # guest. Hot removal is an operation that requires guest cooperation.
1658 # This command merely requests that the guest begin the hot removal
1659 # process. Completion of the device removal process is signaled with a
1660 # DEVICE_DELETED event. Guest reset will automatically complete removal
1667 # -> { "execute": "device_del",
1668 # "arguments": { "id": "net1" } }
1669 # <- { "return": {} }
1671 # -> { "execute": "device_del",
1672 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1673 # <- { "return": {} }
1676 { 'command': 'device_del', 'data': {'id': 'str'} }
1681 # Emitted whenever the device removal completion is acknowledged by the guest.
1682 # At this point, it's safe to reuse the specified device ID. Device removal can
1683 # be initiated by the guest or by HMP/QMP commands.
1685 # @device: device name
1687 # @path: device path
1693 # <- { "event": "DEVICE_DELETED",
1694 # "data": { "device": "virtio-net-pci-0",
1695 # "path": "/machine/peripheral/virtio-net-pci-0" },
1696 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1699 { 'event': 'DEVICE_DELETED',
1700 'data': { '*device': 'str', 'path': 'str' } }
1703 # @DumpGuestMemoryFormat:
1705 # An enumeration of guest-memory-dump's format.
1709 # @kdump-zlib: kdump-compressed format with zlib-compressed
1711 # @kdump-lzo: kdump-compressed format with lzo-compressed
1713 # @kdump-snappy: kdump-compressed format with snappy-compressed
1717 { 'enum': 'DumpGuestMemoryFormat',
1718 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1721 # @dump-guest-memory:
1723 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1724 # very long depending on the amount of guest memory.
1726 # @paging: if true, do paging to get guest's memory mapping. This allows
1727 # using gdb to process the core file.
1729 # IMPORTANT: this option can make QEMU allocate several gigabytes
1730 # of RAM. This can happen for a large guest, or a
1731 # malicious guest pretending to be large.
1733 # Also, paging=true has the following limitations:
1735 # 1. The guest may be in a catastrophic state or can have corrupted
1736 # memory, which cannot be trusted
1737 # 2. The guest can be in real-mode even if paging is enabled. For
1738 # example, the guest uses ACPI to sleep, and ACPI sleep state
1740 # 3. Currently only supported on i386 and x86_64.
1742 # @protocol: the filename or file descriptor of the vmcore. The supported
1745 # 1. file: the protocol starts with "file:", and the following
1746 # string is the file's path.
1747 # 2. fd: the protocol starts with "fd:", and the following string
1750 # @detach: if true, QMP will return immediately rather than
1751 # waiting for the dump to finish. The user can track progress
1752 # using "query-dump". (since 2.6).
1754 # @begin: if specified, the starting physical address.
1756 # @length: if specified, the memory size, in bytes. If you don't
1757 # want to dump all guest's memory, please specify the start @begin
1760 # @format: if specified, the format of guest memory dump. But non-elf
1761 # format is conflict with paging and filter, ie. @paging, @begin and
1762 # @length is not allowed to be specified with non-elf @format at the
1763 # same time (since 2.0)
1765 # Note: All boolean arguments default to false
1767 # Returns: nothing on success
1773 # -> { "execute": "dump-guest-memory",
1774 # "arguments": { "protocol": "fd:dump" } }
1775 # <- { "return": {} }
1778 { 'command': 'dump-guest-memory',
1779 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1780 '*begin': 'int', '*length': 'int',
1781 '*format': 'DumpGuestMemoryFormat'} }
1786 # Describe the status of a long-running background guest memory dump.
1788 # @none: no dump-guest-memory has started yet.
1790 # @active: there is one dump running in background.
1792 # @completed: the last dump has finished successfully.
1794 # @failed: the last dump has failed.
1798 { 'enum': 'DumpStatus',
1799 'data': [ 'none', 'active', 'completed', 'failed' ] }
1804 # The result format for 'query-dump'.
1806 # @status: enum of @DumpStatus, which shows current dump status
1808 # @completed: bytes written in latest dump (uncompressed)
1810 # @total: total bytes to be written in latest dump (uncompressed)
1814 { 'struct': 'DumpQueryResult',
1815 'data': { 'status': 'DumpStatus',
1822 # Query latest dump status.
1824 # Returns: A @DumpStatus object showing the dump status.
1830 # -> { "execute": "query-dump" }
1831 # <- { "return": { "status": "active", "completed": 1024000,
1832 # "total": 2048000 } }
1835 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1840 # Emitted when background dump has completed
1842 # @result: final dump status
1844 # @error: human-readable error string that provides
1845 # hint on why dump failed. Only presents on failure. The
1846 # user should not try to interpret the error string.
1852 # { "event": "DUMP_COMPLETED",
1853 # "data": {"result": {"total": 1090650112, "status": "completed",
1854 # "completed": 1090650112} } }
1857 { 'event': 'DUMP_COMPLETED' ,
1858 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1861 # @DumpGuestMemoryCapability:
1863 # A list of the available formats for dump-guest-memory
1867 { 'struct': 'DumpGuestMemoryCapability',
1869 'formats': ['DumpGuestMemoryFormat'] } }
1872 # @query-dump-guest-memory-capability:
1874 # Returns the available formats for dump-guest-memory
1876 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1883 # -> { "execute": "query-dump-guest-memory-capability" }
1884 # <- { "return": { "formats":
1885 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1888 { 'command': 'query-dump-guest-memory-capability',
1889 'returns': 'DumpGuestMemoryCapability' }
1894 # Dump guest's storage keys
1896 # @filename: the path to the file to dump to
1898 # This command is only supported on s390 architecture.
1904 # -> { "execute": "dump-skeys",
1905 # "arguments": { "filename": "/tmp/skeys" } }
1906 # <- { "return": {} }
1909 { 'command': 'dump-skeys',
1910 'data': { 'filename': 'str' } }
1915 # Create a QOM object.
1917 # @qom-type: the class name for the object to be created
1919 # @id: the name of the new object
1921 # @props: a dictionary of properties to be passed to the backend
1923 # Returns: Nothing on success
1924 # Error if @qom-type is not a valid class name
1930 # -> { "execute": "object-add",
1931 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1932 # "props": { "filename": "/dev/hwrng" } } }
1933 # <- { "return": {} }
1936 { 'command': 'object-add',
1937 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1942 # Remove a QOM object.
1944 # @id: the name of the QOM object to remove
1946 # Returns: Nothing on success
1947 # Error if @id is not a valid id for a QOM object
1953 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1954 # <- { "return": {} }
1957 { 'command': 'object-del', 'data': {'id': 'str'} }
1962 # Receive a file descriptor via SCM rights and assign it a name
1964 # @fdname: file descriptor name
1966 # Returns: Nothing on success
1970 # Notes: If @fdname already exists, the file descriptor assigned to
1971 # it will be closed and replaced by the received file
1974 # The 'closefd' command can be used to explicitly close the
1975 # file descriptor when it is no longer needed.
1979 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1980 # <- { "return": {} }
1983 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1988 # Close a file descriptor previously passed via SCM rights
1990 # @fdname: file descriptor name
1992 # Returns: Nothing on success
1998 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1999 # <- { "return": {} }
2002 { 'command': 'closefd', 'data': {'fdname': 'str'} }
2007 # Information describing a machine.
2009 # @name: the name of the machine
2011 # @alias: an alias for the machine name
2013 # @is-default: whether the machine is default
2015 # @cpu-max: maximum number of CPUs supported by the machine type
2018 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
2022 { 'struct': 'MachineInfo',
2023 'data': { 'name': 'str', '*alias': 'str',
2024 '*is-default': 'bool', 'cpu-max': 'int',
2025 'hotpluggable-cpus': 'bool'} }
2030 # Return a list of supported machines
2032 # Returns: a list of MachineInfo
2036 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
2039 # @CpuDefinitionInfo:
2041 # Virtual CPU definition.
2043 # @name: the name of the CPU definition
2045 # @migration-safe: whether a CPU definition can be safely used for
2046 # migration in combination with a QEMU compatibility machine
2047 # when migrating between different QMU versions and between
2048 # hosts with different sets of (hardware or software)
2049 # capabilities. If not provided, information is not available
2050 # and callers should not assume the CPU definition to be
2051 # migration-safe. (since 2.8)
2053 # @static: whether a CPU definition is static and will not change depending on
2054 # QEMU version, machine type, machine options and accelerator options.
2055 # A static model is always migration-safe. (since 2.8)
2057 # @unavailable-features: List of properties that prevent
2058 # the CPU model from running in the current
2060 # @typename: Type name that can be used as argument to @device-list-properties,
2061 # to introspect properties configurable using -cpu or -global.
2064 # @unavailable-features is a list of QOM property names that
2065 # represent CPU model attributes that prevent the CPU from running.
2066 # If the QOM property is read-only, that means there's no known
2067 # way to make the CPU model run in the current host. Implementations
2068 # that choose not to provide specific information return the
2069 # property name "type".
2070 # If the property is read-write, it means that it MAY be possible
2071 # to run the CPU model in the current host if that property is
2072 # changed. Management software can use it as hints to suggest or
2073 # choose an alternative for the user, or just to generate meaningful
2074 # error messages explaining why the CPU model can't be used.
2075 # If @unavailable-features is an empty list, the CPU model is
2076 # runnable using the current host and machine-type.
2077 # If @unavailable-features is not present, runnability
2078 # information for the CPU is not available.
2082 { 'struct': 'CpuDefinitionInfo',
2083 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2084 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2089 # Actual memory information in bytes.
2091 # @base-memory: size of "base" memory specified with command line
2094 # @plugged-memory: size of memory that can be hot-unplugged. This field
2095 # is omitted if target doesn't support memory hotplug
2096 # (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2100 { 'struct': 'MemoryInfo',
2101 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2104 # @query-memory-size-summary:
2106 # Return the amount of initially allocated and present hotpluggable (if
2107 # enabled) memory in bytes.
2111 # -> { "execute": "query-memory-size-summary" }
2112 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2116 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2119 # @query-cpu-definitions:
2121 # Return a list of supported virtual CPU definitions
2123 # Returns: a list of CpuDefInfo
2127 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2132 # Virtual CPU model.
2134 # A CPU model consists of the name of a CPU definition, to which
2135 # delta changes are applied (e.g. features added/removed). Most magic values
2136 # that an architecture might require should be hidden behind the name.
2137 # However, if required, architectures can expose relevant properties.
2139 # @name: the name of the CPU definition the model is based on
2140 # @props: a dictionary of QOM properties to be applied
2144 { 'struct': 'CpuModelInfo',
2145 'data': { 'name': 'str',
2149 # @CpuModelExpansionType:
2151 # An enumeration of CPU model expansion types.
2153 # @static: Expand to a static CPU model, a combination of a static base
2154 # model name and property delta changes. As the static base model will
2155 # never change, the expanded CPU model will be the same, independent of
2156 # independent of QEMU version, machine type, machine options, and
2157 # accelerator options. Therefore, the resulting model can be used by
2158 # tooling without having to specify a compatibility machine - e.g. when
2159 # displaying the "host" model. static CPU models are migration-safe.
2161 # @full: Expand all properties. The produced model is not guaranteed to be
2162 # migration-safe, but allows tooling to get an insight and work with
2165 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2166 # features enabled by the CPU model may be omitted, because they can't be
2167 # implemented by a static CPU model definition (e.g. cache info passthrough and
2168 # PMU passthrough in x86). If you need an accurate representation of the
2169 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2170 # static representation that will keep ABI compatibility even when changing QEMU
2171 # version or machine-type, use @static (but keep in mind that some features may
2176 { 'enum': 'CpuModelExpansionType',
2177 'data': [ 'static', 'full' ] }
2181 # @CpuModelExpansionInfo:
2183 # The result of a cpu model expansion.
2185 # @model: the expanded CpuModelInfo.
2189 { 'struct': 'CpuModelExpansionInfo',
2190 'data': { 'model': 'CpuModelInfo' } }
2194 # @query-cpu-model-expansion:
2196 # Expands a given CPU model (or a combination of CPU model + additional options)
2197 # to different granularities, allowing tooling to get an understanding what a
2198 # specific CPU model looks like in QEMU under a certain configuration.
2200 # This interface can be used to query the "host" CPU model.
2202 # The data returned by this command may be affected by:
2204 # * QEMU version: CPU models may look different depending on the QEMU version.
2205 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2206 # * machine-type: CPU model may look different depending on the machine-type.
2207 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2208 # * machine options (including accelerator): in some architectures, CPU models
2209 # may look different depending on machine and accelerator options. (Except for
2210 # CPU models reported as "static" in query-cpu-definitions.)
2211 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2212 # global properties may affect expansion of CPU models. Using
2213 # query-cpu-model-expansion while using these is not advised.
2215 # Some architectures may not support all expansion types. s390x supports
2216 # "full" and "static".
2218 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2219 # not supported, if the model cannot be expanded, if the model contains
2220 # an unknown CPU definition name, unknown properties or properties
2221 # with a wrong type. Also returns an error if an expansion type is
2226 { 'command': 'query-cpu-model-expansion',
2227 'data': { 'type': 'CpuModelExpansionType',
2228 'model': 'CpuModelInfo' },
2229 'returns': 'CpuModelExpansionInfo' }
2232 # @CpuModelCompareResult:
2234 # An enumeration of CPU model comparison results. The result is usually
2235 # calculated using e.g. CPU features or CPU generations.
2237 # @incompatible: If model A is incompatible to model B, model A is not
2238 # guaranteed to run where model B runs and the other way around.
2240 # @identical: If model A is identical to model B, model A is guaranteed to run
2241 # where model B runs and the other way around.
2243 # @superset: If model A is a superset of model B, model B is guaranteed to run
2244 # where model A runs. There are no guarantees about the other way.
2246 # @subset: If model A is a subset of model B, model A is guaranteed to run
2247 # where model B runs. There are no guarantees about the other way.
2251 { 'enum': 'CpuModelCompareResult',
2252 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2255 # @CpuModelCompareInfo:
2257 # The result of a CPU model comparison.
2259 # @result: The result of the compare operation.
2260 # @responsible-properties: List of properties that led to the comparison result
2261 # not being identical.
2263 # @responsible-properties is a list of QOM property names that led to
2264 # both CPUs not being detected as identical. For identical models, this
2266 # If a QOM property is read-only, that means there's no known way to make the
2267 # CPU models identical. If the special property name "type" is included, the
2268 # models are by definition not identical and cannot be made identical.
2272 { 'struct': 'CpuModelCompareInfo',
2273 'data': {'result': 'CpuModelCompareResult',
2274 'responsible-properties': ['str']
2279 # @query-cpu-model-comparison:
2281 # Compares two CPU models, returning how they compare in a specific
2282 # configuration. The results indicates how both models compare regarding
2283 # runnability. This result can be used by tooling to make decisions if a
2284 # certain CPU model will run in a certain configuration or if a compatible
2285 # CPU model has to be created by baselining.
2287 # Usually, a CPU model is compared against the maximum possible CPU model
2288 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2289 # model is identical or a subset, it will run in that configuration.
2291 # The result returned by this command may be affected by:
2293 # * QEMU version: CPU models may look different depending on the QEMU version.
2294 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2295 # * machine-type: CPU model may look different depending on the machine-type.
2296 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2297 # * machine options (including accelerator): in some architectures, CPU models
2298 # may look different depending on machine and accelerator options. (Except for
2299 # CPU models reported as "static" in query-cpu-definitions.)
2300 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2301 # global properties may affect expansion of CPU models. Using
2302 # query-cpu-model-expansion while using these is not advised.
2304 # Some architectures may not support comparing CPU models. s390x supports
2305 # comparing CPU models.
2307 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2308 # not supported, if a model cannot be used, if a model contains
2309 # an unknown cpu definition name, unknown properties or properties
2314 { 'command': 'query-cpu-model-comparison',
2315 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2316 'returns': 'CpuModelCompareInfo' }
2319 # @CpuModelBaselineInfo:
2321 # The result of a CPU model baseline.
2323 # @model: the baselined CpuModelInfo.
2327 { 'struct': 'CpuModelBaselineInfo',
2328 'data': { 'model': 'CpuModelInfo' } }
2331 # @query-cpu-model-baseline:
2333 # Baseline two CPU models, creating a compatible third model. The created
2334 # model will always be a static, migration-safe CPU model (see "static"
2335 # CPU model expansion for details).
2337 # This interface can be used by tooling to create a compatible CPU model out
2338 # two CPU models. The created CPU model will be identical to or a subset of
2339 # both CPU models when comparing them. Therefore, the created CPU model is
2340 # guaranteed to run where the given CPU models run.
2342 # The result returned by this command may be affected by:
2344 # * QEMU version: CPU models may look different depending on the QEMU version.
2345 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2346 # * machine-type: CPU model may look different depending on the machine-type.
2347 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2348 # * machine options (including accelerator): in some architectures, CPU models
2349 # may look different depending on machine and accelerator options. (Except for
2350 # CPU models reported as "static" in query-cpu-definitions.)
2351 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2352 # global properties may affect expansion of CPU models. Using
2353 # query-cpu-model-expansion while using these is not advised.
2355 # Some architectures may not support baselining CPU models. s390x supports
2356 # baselining CPU models.
2358 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2359 # not supported, if a model cannot be used, if a model contains
2360 # an unknown cpu definition name, unknown properties or properties
2365 { 'command': 'query-cpu-model-baseline',
2366 'data': { 'modela': 'CpuModelInfo',
2367 'modelb': 'CpuModelInfo' },
2368 'returns': 'CpuModelBaselineInfo' }
2373 # Information about a file descriptor that was added to an fd set.
2375 # @fdset-id: The ID of the fd set that @fd was added to.
2377 # @fd: The file descriptor that was received via SCM rights and
2378 # added to the fd set.
2382 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2387 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2389 # @fdset-id: The ID of the fd set to add the file descriptor to.
2391 # @opaque: A free-form string that can be used to describe the fd.
2393 # Returns: @AddfdInfo on success
2395 # If file descriptor was not received, FdNotSupplied
2397 # If @fdset-id is a negative value, InvalidParameterValue
2399 # Notes: The list of fd sets is shared by all monitor connections.
2401 # If @fdset-id is not specified, a new fd set will be created.
2407 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2408 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2411 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2412 'returns': 'AddfdInfo' }
2417 # Remove a file descriptor from an fd set.
2419 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2421 # @fd: The file descriptor that is to be removed.
2423 # Returns: Nothing on success
2424 # If @fdset-id or @fd is not found, FdNotFound
2428 # Notes: The list of fd sets is shared by all monitor connections.
2430 # If @fd is not specified, all file descriptors in @fdset-id
2435 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2436 # <- { "return": {} }
2439 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2444 # Information about a file descriptor that belongs to an fd set.
2446 # @fd: The file descriptor value.
2448 # @opaque: A free-form string that can be used to describe the fd.
2452 { 'struct': 'FdsetFdInfo',
2453 'data': {'fd': 'int', '*opaque': 'str'} }
2458 # Information about an fd set.
2460 # @fdset-id: The ID of the fd set.
2462 # @fds: A list of file descriptors that belong to this fd set.
2466 { 'struct': 'FdsetInfo',
2467 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2472 # Return information describing all fd sets.
2474 # Returns: A list of @FdsetInfo
2478 # Note: The list of fd sets is shared by all monitor connections.
2482 # -> { "execute": "query-fdsets" }
2488 # "opaque": "rdonly:/path/to/file"
2492 # "opaque": "rdwr:/path/to/file"
2512 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2517 # Information describing the QEMU target.
2519 # @arch: the target architecture
2523 { 'struct': 'TargetInfo',
2524 'data': { 'arch': 'SysEmuTarget' } }
2529 # Return information about the target for this QEMU
2531 # Returns: TargetInfo
2535 { 'command': 'query-target', 'returns': 'TargetInfo' }
2538 # @AcpiTableOptions:
2540 # Specify an ACPI table on the command line to load.
2542 # At most one of @file and @data can be specified. The list of files specified
2543 # by any one of them is loaded and concatenated in order. If both are omitted,
2546 # Other fields / optargs can be used to override fields of the generic ACPI
2547 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2548 # Description Table Header. If a header field is not overridden, then the
2549 # corresponding value from the concatenated blob is used (in case of @file), or
2550 # it is filled in with a hard-coded value (in case of @data).
2552 # String fields are copied into the matching ACPI member from lowest address
2553 # upwards, and silently truncated / NUL-padded to length.
2555 # @sig: table signature / identifier (4 bytes)
2557 # @rev: table revision number (dependent on signature, 1 byte)
2559 # @oem_id: OEM identifier (6 bytes)
2561 # @oem_table_id: OEM table identifier (8 bytes)
2563 # @oem_rev: OEM-supplied revision number (4 bytes)
2565 # @asl_compiler_id: identifier of the utility that created the table
2568 # @asl_compiler_rev: revision number of the utility that created the
2571 # @file: colon (:) separated list of pathnames to load and
2572 # concatenate as table data. The resultant binary blob is expected to
2573 # have an ACPI table header. At least one file is required. This field
2576 # @data: colon (:) separated list of pathnames to load and
2577 # concatenate as table data. The resultant binary blob must not have an
2578 # ACPI table header. At least one file is required. This field excludes
2583 { 'struct': 'AcpiTableOptions',
2588 '*oem_table_id': 'str',
2589 '*oem_rev': 'uint32',
2590 '*asl_compiler_id': 'str',
2591 '*asl_compiler_rev': 'uint32',
2596 # @CommandLineParameterType:
2598 # Possible types for an option parameter.
2600 # @string: accepts a character string
2602 # @boolean: accepts "on" or "off"
2604 # @number: accepts a number
2606 # @size: accepts a number followed by an optional suffix (K)ilo,
2607 # (M)ega, (G)iga, (T)era
2611 { 'enum': 'CommandLineParameterType',
2612 'data': ['string', 'boolean', 'number', 'size'] }
2615 # @CommandLineParameterInfo:
2617 # Details about a single parameter of a command line option.
2619 # @name: parameter name
2621 # @type: parameter @CommandLineParameterType
2623 # @help: human readable text string, not suitable for parsing.
2625 # @default: default value string (since 2.1)
2629 { 'struct': 'CommandLineParameterInfo',
2630 'data': { 'name': 'str',
2631 'type': 'CommandLineParameterType',
2633 '*default': 'str' } }
2636 # @CommandLineOptionInfo:
2638 # Details about a command line option, including its list of parameter details
2640 # @option: option name
2642 # @parameters: an array of @CommandLineParameterInfo
2646 { 'struct': 'CommandLineOptionInfo',
2647 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2650 # @query-command-line-options:
2652 # Query command line option schema.
2654 # @option: option name
2656 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2657 # @option). Returns an error if the given @option doesn't exist.
2663 # -> { "execute": "query-command-line-options",
2664 # "arguments": { "option": "option-rom" } }
2669 # "name": "romfile",
2673 # "name": "bootindex",
2677 # "option": "option-rom"
2683 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
2684 'returns': ['CommandLineOptionInfo'],
2685 'allow-preconfig': true }
2688 # @X86CPURegister32:
2690 # A X86 32-bit register
2694 { 'enum': 'X86CPURegister32',
2695 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2698 # @X86CPUFeatureWordInfo:
2700 # Information about a X86 CPU feature word
2702 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2704 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2707 # @cpuid-register: Output register containing the feature bits
2709 # @features: value of output register, containing the feature bits
2713 { 'struct': 'X86CPUFeatureWordInfo',
2714 'data': { 'cpuid-input-eax': 'int',
2715 '*cpuid-input-ecx': 'int',
2716 'cpuid-register': 'X86CPURegister32',
2717 'features': 'int' } }
2720 # @DummyForceArrays:
2722 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2726 { 'struct': 'DummyForceArrays',
2727 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2733 # @node: NUMA nodes configuration
2735 # @dist: NUMA distance configuration (since 2.10)
2737 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2741 { 'enum': 'NumaOptionsType',
2742 'data': [ 'node', 'dist', 'cpu' ] }
2747 # A discriminated record of NUMA options. (for OptsVisitor)
2751 { 'union': 'NumaOptions',
2752 'base': { 'type': 'NumaOptionsType' },
2753 'discriminator': 'type',
2755 'node': 'NumaNodeOptions',
2756 'dist': 'NumaDistOptions',
2757 'cpu': 'NumaCpuOptions' }}
2762 # Create a guest NUMA node. (for OptsVisitor)
2764 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2766 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2769 # @mem: memory size of this node; mutually exclusive with @memdev.
2770 # Equally divide total memory among nodes if both @mem and @memdev are
2773 # @memdev: memory backend object. If specified for one node,
2774 # it must be specified for all nodes.
2778 { 'struct': 'NumaNodeOptions',
2780 '*nodeid': 'uint16',
2781 '*cpus': ['uint16'],
2788 # Set the distance between 2 NUMA nodes.
2790 # @src: source NUMA node.
2792 # @dst: destination NUMA node.
2794 # @val: NUMA distance from source node to destination node.
2795 # When a node is unreachable from another node, set the distance
2796 # between them to 255.
2800 { 'struct': 'NumaDistOptions',
2809 # Option "-numa cpu" overrides default cpu to node mapping.
2810 # It accepts the same set of cpu properties as returned by
2811 # query-hotpluggable-cpus[].props, where node-id could be used to
2812 # override default node mapping.
2816 { 'struct': 'NumaCpuOptions',
2817 'base': 'CpuInstanceProperties',
2823 # Host memory policy types
2825 # @default: restore default policy, remove any nondefault policy
2827 # @preferred: set the preferred host nodes for allocation
2829 # @bind: a strict policy that restricts memory allocation to the
2830 # host nodes specified
2832 # @interleave: memory allocations are interleaved across the set
2833 # of host nodes specified
2837 { 'enum': 'HostMemPolicy',
2838 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2843 # Information about memory backend
2845 # @id: backend's ID if backend has 'id' property (since 2.9)
2847 # @size: memory backend size
2849 # @merge: enables or disables memory merge support
2851 # @dump: includes memory backend's memory in a core dump or not
2853 # @prealloc: enables or disables memory preallocation
2855 # @host-nodes: host nodes for its memory policy
2857 # @policy: memory policy of memory backend
2861 { 'struct': 'Memdev',
2868 'host-nodes': ['uint16'],
2869 'policy': 'HostMemPolicy' }}
2874 # Returns information for all memory backends.
2876 # Returns: a list of @Memdev.
2882 # -> { "execute": "query-memdev" }
2886 # "size": 536870912,
2889 # "prealloc": false,
2890 # "host-nodes": [0, 1],
2894 # "size": 536870912,
2898 # "host-nodes": [2, 3],
2899 # "policy": "preferred"
2905 { 'command': 'query-memdev', 'returns': ['Memdev'] }
2908 # @PCDIMMDeviceInfo:
2910 # PCDIMMDevice state information
2914 # @addr: physical address, where device is mapped
2916 # @size: size of memory that the device provides
2918 # @slot: slot number at which device is plugged in
2920 # @node: NUMA node number where device is plugged in
2922 # @memdev: memory backend linked with device
2924 # @hotplugged: true if device was hotplugged
2926 # @hotpluggable: true if device if could be added/removed while machine is running
2930 { 'struct': 'PCDIMMDeviceInfo',
2931 'data': { '*id': 'str',
2937 'hotplugged': 'bool',
2938 'hotpluggable': 'bool'
2943 # @MemoryDeviceInfo:
2945 # Union containing information about a memory device
2949 { 'union': 'MemoryDeviceInfo',
2950 'data': { 'dimm': 'PCDIMMDeviceInfo',
2951 'nvdimm': 'PCDIMMDeviceInfo'
2956 # @query-memory-devices:
2958 # Lists available memory devices and their state
2964 # -> { "execute": "query-memory-devices" }
2965 # <- { "return": [ { "data":
2966 # { "addr": 5368709120,
2967 # "hotpluggable": true,
2968 # "hotplugged": true,
2970 # "memdev": "/objects/memX",
2972 # "size": 1073741824,
2978 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2981 # @MEM_UNPLUG_ERROR:
2983 # Emitted when memory hot unplug error occurs.
2985 # @device: device name
2987 # @msg: Informative message
2993 # <- { "event": "MEM_UNPLUG_ERROR"
2994 # "data": { "device": "dimm1",
2995 # "msg": "acpi: device unplug for unsupported device"
2997 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
3000 { 'event': 'MEM_UNPLUG_ERROR',
3001 'data': { 'device': 'str', 'msg': 'str' } }
3006 # @DIMM: memory slot
3007 # @CPU: logical CPU slot (since 2.7)
3009 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
3014 # OSPM Status Indication for a device
3015 # For description of possible values of @source and @status fields
3016 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
3018 # @device: device ID associated with slot
3020 # @slot: slot ID, unique per slot of a given @slot-type
3022 # @slot-type: type of the slot
3024 # @source: an integer containing the source event
3026 # @status: an integer containing the status code
3030 { 'struct': 'ACPIOSTInfo',
3031 'data' : { '*device': 'str',
3033 'slot-type': 'ACPISlotType',
3038 # @query-acpi-ospm-status:
3040 # Return a list of ACPIOSTInfo for devices that support status
3041 # reporting via ACPI _OST method.
3047 # -> { "execute": "query-acpi-ospm-status" }
3048 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3049 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3050 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3051 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3055 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3060 # Emitted when guest executes ACPI _OST method.
3062 # @info: OSPM Status Indication
3068 # <- { "event": "ACPI_DEVICE_OST",
3069 # "data": { "device": "d1", "slot": "0",
3070 # "slot-type": "DIMM", "source": 1, "status": 0 } }
3073 { 'event': 'ACPI_DEVICE_OST',
3074 'data': { 'info': 'ACPIOSTInfo' } }
3077 # @rtc-reset-reinjection:
3079 # This command will reset the RTC interrupt reinjection backlog.
3080 # Can be used if another mechanism to synchronize guest time
3081 # is in effect, for example QEMU guest agent's guest-set-time
3088 # -> { "execute": "rtc-reset-reinjection" }
3089 # <- { "return": {} }
3092 { 'command': 'rtc-reset-reinjection' }
3097 # Emitted when the guest changes the RTC time.
3099 # @offset: offset between base RTC clock (as specified by -rtc base), and
3100 # new RTC clock value
3102 # Note: This event is rate-limited.
3108 # <- { "event": "RTC_CHANGE",
3109 # "data": { "offset": 78 },
3110 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3113 { 'event': 'RTC_CHANGE',
3114 'data': { 'offset': 'int' } }
3119 # Mode of the replay subsystem.
3121 # @none: normal execution mode. Replay or record are not enabled.
3123 # @record: record mode. All non-deterministic data is written into the
3126 # @play: replay mode. Non-deterministic data required for system execution
3127 # is read from the log.
3131 { 'enum': 'ReplayMode',
3132 'data': [ 'none', 'record', 'play' ] }
3135 # @xen-load-devices-state:
3137 # Load the state of all devices from file. The RAM and the block devices
3138 # of the VM are not loaded by this command.
3140 # @filename: the file to load the state of the devices from as binary
3141 # data. See xen-save-devices-state.txt for a description of the binary
3148 # -> { "execute": "xen-load-devices-state",
3149 # "arguments": { "filename": "/tmp/resume" } }
3150 # <- { "return": {} }
3153 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3158 # The struct describes capability for a specific GIC (Generic
3159 # Interrupt Controller) version. These bits are not only decided by
3160 # QEMU/KVM software version, but also decided by the hardware that
3161 # the program is running upon.
3163 # @version: version of GIC to be described. Currently, only 2 and 3
3166 # @emulated: whether current QEMU/hardware supports emulated GIC
3167 # device in user space.
3169 # @kernel: whether current QEMU/hardware supports hardware
3170 # accelerated GIC device in kernel.
3174 { 'struct': 'GICCapability',
3175 'data': { 'version': 'int',
3177 'kernel': 'bool' } }
3180 # @query-gic-capabilities:
3182 # This command is ARM-only. It will return a list of GICCapability
3183 # objects that describe its capability bits.
3185 # Returns: a list of GICCapability objects.
3191 # -> { "execute": "query-gic-capabilities" }
3192 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3193 # { "version": 3, "emulated": false, "kernel": true } ] }
3196 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3199 # @CpuInstanceProperties:
3201 # List of properties to be used for hotplugging a CPU instance,
3202 # it should be passed by management with device_add command when
3203 # a CPU is being hotplugged.
3205 # @node-id: NUMA node ID the CPU belongs to
3206 # @socket-id: socket number within node/board the CPU belongs to
3207 # @core-id: core number within socket the CPU belongs to
3208 # @thread-id: thread number within core the CPU belongs to
3210 # Note: currently there are 4 properties that could be present
3211 # but management should be prepared to pass through other
3212 # properties with device_add command to allow for future
3213 # interface extension. This also requires the filed names to be kept in
3214 # sync with the properties passed to -device/device_add.
3218 { 'struct': 'CpuInstanceProperties',
3219 'data': { '*node-id': 'int',
3220 '*socket-id': 'int',
3229 # @type: CPU object type for usage with device_add command
3230 # @props: list of properties to be used for hotplugging CPU
3231 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3232 # @qom-path: link to existing CPU object if CPU is present or
3233 # omitted if CPU is not present.
3237 { 'struct': 'HotpluggableCPU',
3238 'data': { 'type': 'str',
3239 'vcpus-count': 'int',
3240 'props': 'CpuInstanceProperties',
3246 # @query-hotpluggable-cpus:
3248 # Returns: a list of HotpluggableCPU objects.
3254 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3256 # -> { "execute": "query-hotpluggable-cpus" }
3258 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3259 # "vcpus-count": 1 },
3260 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3261 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3264 # For pc machine type started with -smp 1,maxcpus=2:
3266 # -> { "execute": "query-hotpluggable-cpus" }
3269 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3270 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3273 # "qom-path": "/machine/unattached/device[0]",
3274 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3275 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3279 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3282 # -> { "execute": "query-hotpluggable-cpus" }
3285 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3286 # "props": { "core-id": 1 }
3289 # "qom-path": "/machine/unattached/device[0]",
3290 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3291 # "props": { "core-id": 0 }
3296 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3297 'allow-preconfig': true }
3304 # @guid: the globally unique identifier
3308 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3311 # @query-vm-generation-id:
3313 # Show Virtual Machine Generation ID
3317 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3323 # An enumeration of SEV state information used during @query-sev.
3325 # @uninit: The guest is uninitialized.
3327 # @launch-update: The guest is currently being launched; plaintext data and
3328 # register state is being imported.
3330 # @launch-secret: The guest is currently being launched; ciphertext data
3331 # is being imported.
3333 # @running: The guest is fully launched or migrated in.
3335 # @send-update: The guest is currently being migrated out to another machine.
3337 # @receive-update: The guest is currently being migrated from another machine.
3341 { 'enum': 'SevState',
3342 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3343 'send-update', 'receive-update' ] }
3348 # Information about Secure Encrypted Virtualization (SEV) support
3350 # @enabled: true if SEV is active
3352 # @api-major: SEV API major version
3354 # @api-minor: SEV API minor version
3356 # @build-id: SEV FW build id
3358 # @policy: SEV policy value
3360 # @state: SEV guest state
3362 # @handle: SEV firmware handle
3366 { 'struct': 'SevInfo',
3367 'data': { 'enabled': 'bool',
3368 'api-major': 'uint8',
3369 'api-minor' : 'uint8',
3370 'build-id' : 'uint8',
3371 'policy' : 'uint32',
3372 'state' : 'SevState',
3380 # Returns information about SEV
3388 # -> { "execute": "query-sev" }
3389 # <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3390 # "build-id" : 0, "policy" : 0, "state" : "running",
3394 { 'command': 'query-sev', 'returns': 'SevInfo' }
3397 # @SevLaunchMeasureInfo:
3399 # SEV Guest Launch measurement information
3401 # @data: the measurement value encoded in base64
3406 { 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3409 # @query-sev-launch-measure:
3411 # Query the SEV guest launch information.
3413 # Returns: The @SevLaunchMeasureInfo for the guest
3419 # -> { "execute": "query-sev-launch-measure" }
3420 # <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3423 { 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3428 # The struct describes capability for a Secure Encrypted Virtualization
3431 # @pdh: Platform Diffie-Hellman key (base64 encoded)
3433 # @cert-chain: PDH certificate chain (base64 encoded)
3435 # @cbitpos: C-bit location in page table entry
3437 # @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3442 { 'struct': 'SevCapability',
3443 'data': { 'pdh': 'str',
3444 'cert-chain': 'str',
3446 'reduced-phys-bits': 'int'} }
3449 # @query-sev-capabilities:
3451 # This command is used to get the SEV capabilities, and is supported on AMD
3452 # X86 platforms only.
3454 # Returns: SevCapability objects.
3460 # -> { "execute": "query-sev-capabilities" }
3461 # <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3462 # "cbitpos": 47, "reduced-phys-bits": 5}}
3465 { 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3468 # @CommandDropReason:
3470 # Reasons that caused one command to be dropped.
3472 # @queue-full: the command queue is full. This can only occur when
3473 # the client sends a new non-oob command before the
3474 # response to the previous non-oob command has been
3479 { 'enum': 'CommandDropReason',
3480 'data': [ 'queue-full' ] }
3485 # Emitted when a command is dropped due to some reason. Commands can
3486 # only be dropped when the oob capability is enabled.
3488 # @id: The dropped command's "id" field.
3490 # @reason: The reason why the command is dropped.
3496 # { "event": "COMMAND_DROPPED",
3497 # "data": {"result": {"id": "libvirt-102",
3498 # "reason": "queue-full" } } }
3501 { 'event': 'COMMAND_DROPPED' ,
3502 'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
3507 # Test OOB functionality. When sending this command with lock=true,
3508 # it'll try to hang the dispatcher. When sending it with lock=false,
3509 # it'll try to notify the locked thread to continue. Note: it should
3510 # only be used by QMP test program rather than anything else.
3516 # { "execute": "x-oob-test",
3517 # "arguments": { "lock": true } }
3519 { 'command': 'x-oob-test', 'data' : { 'lock': 'bool' },
3525 # Runtime equivalent of '-numa' CLI option, available at
3526 # preconfigure stage to configure numa mapping before initializing
3531 { 'command': 'set-numa-node', 'boxed': true,
3532 'data': 'NumaOptions',
3533 'allow-preconfig': true