ppc/xive: Always recompute the PIPR when pushing an OS context
[qemu/rayw.git] / hw / intc / xive.c
blobc729f6a4785199c2a2acaebb490aefe464a7b7e7
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "trace.h"
27 * XIVE Thread Interrupt Management context
31 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
32 * Interrupt Priority Register (PIPR), which contains the priority of
33 * the most favored pending notification.
35 static uint8_t ipb_to_pipr(uint8_t ibp)
37 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
40 static uint8_t exception_mask(uint8_t ring)
42 switch (ring) {
43 case TM_QW1_OS:
44 return TM_QW1_NSR_EO;
45 case TM_QW3_HV_PHYS:
46 return TM_QW3_NSR_HE;
47 default:
48 g_assert_not_reached();
52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
54 switch (ring) {
55 case TM_QW0_USER:
56 return 0; /* Not supported */
57 case TM_QW1_OS:
58 return tctx->os_output;
59 case TM_QW2_HV_POOL:
60 case TM_QW3_HV_PHYS:
61 return tctx->hv_output;
62 default:
63 return 0;
67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
69 uint8_t *regs = &tctx->regs[ring];
70 uint8_t nsr = regs[TM_NSR];
71 uint8_t mask = exception_mask(ring);
73 qemu_irq_lower(xive_tctx_output(tctx, ring));
75 if (regs[TM_NSR] & mask) {
76 uint8_t cppr = regs[TM_PIPR];
78 regs[TM_CPPR] = cppr;
80 /* Reset the pending buffer bit */
81 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
82 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
84 /* Drop Exception bit */
85 regs[TM_NSR] &= ~mask;
87 trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
88 regs[TM_IPB], regs[TM_PIPR],
89 regs[TM_CPPR], regs[TM_NSR]);
92 return (nsr << 8) | regs[TM_CPPR];
95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
97 uint8_t *regs = &tctx->regs[ring];
99 if (regs[TM_PIPR] < regs[TM_CPPR]) {
100 switch (ring) {
101 case TM_QW1_OS:
102 regs[TM_NSR] |= TM_QW1_NSR_EO;
103 break;
104 case TM_QW3_HV_PHYS:
105 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
106 break;
107 default:
108 g_assert_not_reached();
110 trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
111 regs[TM_IPB], regs[TM_PIPR],
112 regs[TM_CPPR], regs[TM_NSR]);
113 qemu_irq_raise(xive_tctx_output(tctx, ring));
117 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
119 uint8_t *regs = &tctx->regs[ring];
121 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
122 regs[TM_IPB], regs[TM_PIPR],
123 cppr, regs[TM_NSR]);
125 if (cppr > XIVE_PRIORITY_MAX) {
126 cppr = 0xff;
129 tctx->regs[ring + TM_CPPR] = cppr;
131 /* CPPR has changed, check if we need to raise a pending exception */
132 xive_tctx_notify(tctx, ring);
135 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
137 uint8_t *regs = &tctx->regs[ring];
139 regs[TM_IPB] |= ipb;
140 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
141 xive_tctx_notify(tctx, ring);
145 * XIVE Thread Interrupt Management Area (TIMA)
148 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
149 hwaddr offset, uint64_t value, unsigned size)
151 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
154 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
155 hwaddr offset, unsigned size)
157 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
160 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
161 hwaddr offset, unsigned size)
163 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
164 uint32_t qw2w2;
166 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
167 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
168 return qw2w2;
171 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
172 uint64_t value, unsigned size)
174 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
177 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
178 hwaddr offset, unsigned size)
180 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
184 * Define an access map for each page of the TIMA that we will use in
185 * the memory region ops to filter values when doing loads and stores
186 * of raw registers values
188 * Registers accessibility bits :
190 * 0x0 - no access
191 * 0x1 - write only
192 * 0x2 - read only
193 * 0x3 - read/write
196 static const uint8_t xive_tm_hw_view[] = {
197 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
198 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
199 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
200 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
203 static const uint8_t xive_tm_hv_view[] = {
204 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
205 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
206 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
207 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
210 static const uint8_t xive_tm_os_view[] = {
211 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
212 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
213 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
214 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
217 static const uint8_t xive_tm_user_view[] = {
218 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
219 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
220 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
225 * Overall TIMA access map for the thread interrupt management context
226 * registers
228 static const uint8_t *xive_tm_views[] = {
229 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
230 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
231 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
232 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
236 * Computes a register access mask for a given offset in the TIMA
238 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
240 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
241 uint8_t reg_offset = offset & 0x3F;
242 uint8_t reg_mask = write ? 0x1 : 0x2;
243 uint64_t mask = 0x0;
244 int i;
246 for (i = 0; i < size; i++) {
247 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
248 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
252 return mask;
255 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
256 unsigned size)
258 uint8_t ring_offset = offset & 0x30;
259 uint8_t reg_offset = offset & 0x3F;
260 uint64_t mask = xive_tm_mask(offset, size, true);
261 int i;
264 * Only 4 or 8 bytes stores are allowed and the User ring is
265 * excluded
267 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
268 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
269 HWADDR_PRIx"\n", offset);
270 return;
274 * Use the register offset for the raw values and filter out
275 * reserved values
277 for (i = 0; i < size; i++) {
278 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
279 if (byte_mask) {
280 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
281 byte_mask;
286 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
288 uint8_t ring_offset = offset & 0x30;
289 uint8_t reg_offset = offset & 0x3F;
290 uint64_t mask = xive_tm_mask(offset, size, false);
291 uint64_t ret;
292 int i;
295 * Only 4 or 8 bytes loads are allowed and the User ring is
296 * excluded
298 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
299 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
300 HWADDR_PRIx"\n", offset);
301 return -1;
304 /* Use the register offset for the raw values */
305 ret = 0;
306 for (i = 0; i < size; i++) {
307 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
310 /* filter out reserved values */
311 return ret & mask;
315 * The TM context is mapped twice within each page. Stores and loads
316 * to the first mapping below 2K write and read the specified values
317 * without modification. The second mapping above 2K performs specific
318 * state changes (side effects) in addition to setting/returning the
319 * interrupt management area context of the processor thread.
321 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
322 hwaddr offset, unsigned size)
324 return xive_tctx_accept(tctx, TM_QW1_OS);
327 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
328 hwaddr offset, uint64_t value, unsigned size)
330 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
334 * Adjust the IPB to allow a CPU to process event queues of other
335 * priorities during one physical interrupt cycle.
337 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
338 hwaddr offset, uint64_t value, unsigned size)
340 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
343 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
344 uint32_t *nvt_idx, bool *vo)
346 if (nvt_blk) {
347 *nvt_blk = xive_nvt_blk(cam);
349 if (nvt_idx) {
350 *nvt_idx = xive_nvt_idx(cam);
352 if (vo) {
353 *vo = !!(cam & TM_QW1W2_VO);
357 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
358 uint32_t *nvt_idx, bool *vo)
360 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
361 uint32_t cam = be32_to_cpu(qw1w2);
363 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
364 return qw1w2;
367 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
369 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
372 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
373 hwaddr offset, unsigned size)
375 uint32_t qw1w2;
376 uint32_t qw1w2_new;
377 uint8_t nvt_blk;
378 uint32_t nvt_idx;
379 bool vo;
381 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
383 if (!vo) {
384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
385 nvt_blk, nvt_idx);
388 /* Invalidate CAM line */
389 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
390 xive_tctx_set_os_cam(tctx, qw1w2_new);
391 return qw1w2;
394 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
395 uint8_t nvt_blk, uint32_t nvt_idx)
397 XiveNVT nvt;
398 uint8_t ipb;
401 * Grab the associated NVT to pull the pending bits, and merge
402 * them with the IPB of the thread interrupt context registers
404 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
406 nvt_blk, nvt_idx);
407 return;
410 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
412 if (ipb) {
413 /* Reset the NVT value */
414 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
415 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
418 * Always call xive_tctx_ipb_update(). Even if there were no
419 * escalation triggered, there could be a pending interrupt which
420 * was saved when the context was pulled and that we need to take
421 * into account by recalculating the PIPR (which is not
422 * saved/restored).
424 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
428 * Updating the OS CAM line can trigger a resend of interrupt
430 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
431 hwaddr offset, uint64_t value, unsigned size)
433 uint32_t cam = value;
434 uint32_t qw1w2 = cpu_to_be32(cam);
435 uint8_t nvt_blk;
436 uint32_t nvt_idx;
437 bool vo;
439 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
441 /* First update the registers */
442 xive_tctx_set_os_cam(tctx, qw1w2);
444 /* Check the interrupt pending bits */
445 if (vo) {
446 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
451 * Define a mapping of "special" operations depending on the TIMA page
452 * offset and the size of the operation.
454 typedef struct XiveTmOp {
455 uint8_t page_offset;
456 uint32_t op_offset;
457 unsigned size;
458 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
459 hwaddr offset,
460 uint64_t value, unsigned size);
461 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
462 unsigned size);
463 } XiveTmOp;
465 static const XiveTmOp xive_tm_operations[] = {
467 * MMIOs below 2K : raw values and special operations without side
468 * effects
470 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
471 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL },
472 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
473 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
474 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
476 /* MMIOs above 2K : special operations with side effects */
477 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
478 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
479 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
480 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
481 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
482 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
483 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
486 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
488 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
489 uint32_t op_offset = offset & 0xFFF;
490 int i;
492 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
493 const XiveTmOp *xto = &xive_tm_operations[i];
495 /* Accesses done from a more privileged TIMA page is allowed */
496 if (xto->page_offset >= page_offset &&
497 xto->op_offset == op_offset &&
498 xto->size == size &&
499 ((write && xto->write_handler) || (!write && xto->read_handler))) {
500 return xto;
503 return NULL;
507 * TIMA MMIO handlers
509 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
510 uint64_t value, unsigned size)
512 const XiveTmOp *xto;
514 trace_xive_tctx_tm_write(offset, size, value);
517 * TODO: check V bit in Q[0-3]W2
521 * First, check for special operations in the 2K region
523 if (offset & 0x800) {
524 xto = xive_tm_find_op(offset, size, true);
525 if (!xto) {
526 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
527 "@%"HWADDR_PRIx"\n", offset);
528 } else {
529 xto->write_handler(xptr, tctx, offset, value, size);
531 return;
535 * Then, for special operations in the region below 2K.
537 xto = xive_tm_find_op(offset, size, true);
538 if (xto) {
539 xto->write_handler(xptr, tctx, offset, value, size);
540 return;
544 * Finish with raw access to the register values
546 xive_tm_raw_write(tctx, offset, value, size);
549 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
550 unsigned size)
552 const XiveTmOp *xto;
553 uint64_t ret;
556 * TODO: check V bit in Q[0-3]W2
560 * First, check for special operations in the 2K region
562 if (offset & 0x800) {
563 xto = xive_tm_find_op(offset, size, false);
564 if (!xto) {
565 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
566 "@%"HWADDR_PRIx"\n", offset);
567 return -1;
569 ret = xto->read_handler(xptr, tctx, offset, size);
570 goto out;
574 * Then, for special operations in the region below 2K.
576 xto = xive_tm_find_op(offset, size, false);
577 if (xto) {
578 ret = xto->read_handler(xptr, tctx, offset, size);
579 goto out;
583 * Finish with raw access to the register values
585 ret = xive_tm_raw_read(tctx, offset, size);
586 out:
587 trace_xive_tctx_tm_read(offset, size, ret);
588 return ret;
591 static char *xive_tctx_ring_print(uint8_t *ring)
593 uint32_t w2 = xive_tctx_word2(ring);
595 return g_strdup_printf("%02x %02x %02x %02x %02x "
596 "%02x %02x %02x %08x",
597 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
598 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
599 be32_to_cpu(w2));
602 static const char * const xive_tctx_ring_names[] = {
603 "USER", "OS", "POOL", "PHYS",
607 * kvm_irqchip_in_kernel() will cause the compiler to turn this
608 * info a nop if CONFIG_KVM isn't defined.
610 #define xive_in_kernel(xptr) \
611 (kvm_irqchip_in_kernel() && \
612 ({ \
613 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \
614 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \
617 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
619 int cpu_index;
620 int i;
622 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
623 * are hot plugged or unplugged.
625 if (!tctx) {
626 return;
629 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
631 if (xive_in_kernel(tctx->xptr)) {
632 Error *local_err = NULL;
634 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
635 if (local_err) {
636 error_report_err(local_err);
637 return;
641 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
642 " W2\n", cpu_index);
644 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
645 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
646 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
647 xive_tctx_ring_names[i], s);
648 g_free(s);
652 void xive_tctx_reset(XiveTCTX *tctx)
654 memset(tctx->regs, 0, sizeof(tctx->regs));
656 /* Set some defaults */
657 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
658 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
659 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
662 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
663 * CPPR is first set.
665 tctx->regs[TM_QW1_OS + TM_PIPR] =
666 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
667 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
668 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
671 static void xive_tctx_realize(DeviceState *dev, Error **errp)
673 XiveTCTX *tctx = XIVE_TCTX(dev);
674 PowerPCCPU *cpu;
675 CPUPPCState *env;
677 assert(tctx->cs);
678 assert(tctx->xptr);
680 cpu = POWERPC_CPU(tctx->cs);
681 env = &cpu->env;
682 switch (PPC_INPUT(env)) {
683 case PPC_FLAGS_INPUT_POWER9:
684 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
685 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
686 break;
688 default:
689 error_setg(errp, "XIVE interrupt controller does not support "
690 "this CPU bus model");
691 return;
694 /* Connect the presenter to the VCPU (required for CPU hotplug) */
695 if (xive_in_kernel(tctx->xptr)) {
696 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
697 return;
702 static int vmstate_xive_tctx_pre_save(void *opaque)
704 XiveTCTX *tctx = XIVE_TCTX(opaque);
705 Error *local_err = NULL;
706 int ret;
708 if (xive_in_kernel(tctx->xptr)) {
709 ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
710 if (ret < 0) {
711 error_report_err(local_err);
712 return ret;
716 return 0;
719 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
721 XiveTCTX *tctx = XIVE_TCTX(opaque);
722 Error *local_err = NULL;
723 int ret;
725 if (xive_in_kernel(tctx->xptr)) {
727 * Required for hotplugged CPU, for which the state comes
728 * after all states of the machine.
730 ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
731 if (ret < 0) {
732 error_report_err(local_err);
733 return ret;
737 return 0;
740 static const VMStateDescription vmstate_xive_tctx = {
741 .name = TYPE_XIVE_TCTX,
742 .version_id = 1,
743 .minimum_version_id = 1,
744 .pre_save = vmstate_xive_tctx_pre_save,
745 .post_load = vmstate_xive_tctx_post_load,
746 .fields = (VMStateField[]) {
747 VMSTATE_BUFFER(regs, XiveTCTX),
748 VMSTATE_END_OF_LIST()
752 static Property xive_tctx_properties[] = {
753 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
754 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
755 XivePresenter *),
756 DEFINE_PROP_END_OF_LIST(),
759 static void xive_tctx_class_init(ObjectClass *klass, void *data)
761 DeviceClass *dc = DEVICE_CLASS(klass);
763 dc->desc = "XIVE Interrupt Thread Context";
764 dc->realize = xive_tctx_realize;
765 dc->vmsd = &vmstate_xive_tctx;
766 device_class_set_props(dc, xive_tctx_properties);
768 * Reason: part of XIVE interrupt controller, needs to be wired up
769 * by xive_tctx_create().
771 dc->user_creatable = false;
774 static const TypeInfo xive_tctx_info = {
775 .name = TYPE_XIVE_TCTX,
776 .parent = TYPE_DEVICE,
777 .instance_size = sizeof(XiveTCTX),
778 .class_init = xive_tctx_class_init,
781 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
783 Object *obj;
785 obj = object_new(TYPE_XIVE_TCTX);
786 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
787 object_unref(obj);
788 object_property_set_link(obj, "cpu", cpu, &error_abort);
789 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
790 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
791 object_unparent(obj);
792 return NULL;
794 return obj;
797 void xive_tctx_destroy(XiveTCTX *tctx)
799 Object *obj = OBJECT(tctx);
801 object_unparent(obj);
805 * XIVE ESB helpers
808 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
810 uint8_t old_pq = *pq & 0x3;
812 *pq &= ~0x3;
813 *pq |= value & 0x3;
815 return old_pq;
818 bool xive_esb_trigger(uint8_t *pq)
820 uint8_t old_pq = *pq & 0x3;
822 switch (old_pq) {
823 case XIVE_ESB_RESET:
824 xive_esb_set(pq, XIVE_ESB_PENDING);
825 return true;
826 case XIVE_ESB_PENDING:
827 case XIVE_ESB_QUEUED:
828 xive_esb_set(pq, XIVE_ESB_QUEUED);
829 return false;
830 case XIVE_ESB_OFF:
831 xive_esb_set(pq, XIVE_ESB_OFF);
832 return false;
833 default:
834 g_assert_not_reached();
838 bool xive_esb_eoi(uint8_t *pq)
840 uint8_t old_pq = *pq & 0x3;
842 switch (old_pq) {
843 case XIVE_ESB_RESET:
844 case XIVE_ESB_PENDING:
845 xive_esb_set(pq, XIVE_ESB_RESET);
846 return false;
847 case XIVE_ESB_QUEUED:
848 xive_esb_set(pq, XIVE_ESB_PENDING);
849 return true;
850 case XIVE_ESB_OFF:
851 xive_esb_set(pq, XIVE_ESB_OFF);
852 return false;
853 default:
854 g_assert_not_reached();
859 * XIVE Interrupt Source (or IVSE)
862 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
864 assert(srcno < xsrc->nr_irqs);
866 return xsrc->status[srcno] & 0x3;
869 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
871 assert(srcno < xsrc->nr_irqs);
873 return xive_esb_set(&xsrc->status[srcno], pq);
877 * Returns whether the event notification should be forwarded.
879 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
881 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
883 xive_source_set_asserted(xsrc, srcno, true);
885 switch (old_pq) {
886 case XIVE_ESB_RESET:
887 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
888 return true;
889 default:
890 return false;
895 * Sources can be configured with PQ offloading in which case the check
896 * on the PQ state bits of MSIs is disabled
898 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno)
900 return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) &&
901 !xive_source_irq_is_lsi(xsrc, srcno);
905 * Returns whether the event notification should be forwarded.
907 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
909 bool ret;
911 assert(srcno < xsrc->nr_irqs);
913 if (xive_source_esb_disabled(xsrc, srcno)) {
914 return true;
917 ret = xive_esb_trigger(&xsrc->status[srcno]);
919 if (xive_source_irq_is_lsi(xsrc, srcno) &&
920 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
921 qemu_log_mask(LOG_GUEST_ERROR,
922 "XIVE: queued an event on LSI IRQ %d\n", srcno);
925 return ret;
929 * Returns whether the event notification should be forwarded.
931 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
933 bool ret;
935 assert(srcno < xsrc->nr_irqs);
937 if (xive_source_esb_disabled(xsrc, srcno)) {
938 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno);
939 return false;
942 ret = xive_esb_eoi(&xsrc->status[srcno]);
945 * LSI sources do not set the Q bit but they can still be
946 * asserted, in which case we should forward a new event
947 * notification
949 if (xive_source_irq_is_lsi(xsrc, srcno) &&
950 xive_source_is_asserted(xsrc, srcno)) {
951 ret = xive_source_lsi_trigger(xsrc, srcno);
954 return ret;
958 * Forward the source event notification to the Router
960 static void xive_source_notify(XiveSource *xsrc, int srcno)
962 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
963 bool pq_checked = !xive_source_esb_disabled(xsrc, srcno);
965 if (xnc->notify) {
966 xnc->notify(xsrc->xive, srcno, pq_checked);
971 * In a two pages ESB MMIO setting, even page is the trigger page, odd
972 * page is for management
974 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
976 return !((addr >> shift) & 1);
979 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
981 return xive_source_esb_has_2page(xsrc) &&
982 addr_is_even(addr, xsrc->esb_shift - 1);
986 * ESB MMIO loads
987 * Trigger page Management/EOI page
989 * ESB MMIO setting 2 pages 1 or 2 pages
991 * 0x000 .. 0x3FF -1 EOI and return 0|1
992 * 0x400 .. 0x7FF -1 EOI and return 0|1
993 * 0x800 .. 0xBFF -1 return PQ
994 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
995 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
996 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
997 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
999 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
1001 XiveSource *xsrc = XIVE_SOURCE(opaque);
1002 uint32_t offset = addr & 0xFFF;
1003 uint32_t srcno = addr >> xsrc->esb_shift;
1004 uint64_t ret = -1;
1006 /* In a two pages ESB MMIO setting, trigger page should not be read */
1007 if (xive_source_is_trigger_page(xsrc, addr)) {
1008 qemu_log_mask(LOG_GUEST_ERROR,
1009 "XIVE: invalid load on IRQ %d trigger page at "
1010 "0x%"HWADDR_PRIx"\n", srcno, addr);
1011 return -1;
1014 switch (offset) {
1015 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1016 ret = xive_source_esb_eoi(xsrc, srcno);
1018 /* Forward the source event notification for routing */
1019 if (ret) {
1020 xive_source_notify(xsrc, srcno);
1022 break;
1024 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1025 ret = xive_source_esb_get(xsrc, srcno);
1026 break;
1028 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1029 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1030 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1031 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1032 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1033 break;
1034 default:
1035 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1036 offset);
1039 trace_xive_source_esb_read(addr, srcno, ret);
1041 return ret;
1045 * ESB MMIO stores
1046 * Trigger page Management/EOI page
1048 * ESB MMIO setting 2 pages 1 or 2 pages
1050 * 0x000 .. 0x3FF Trigger Trigger
1051 * 0x400 .. 0x7FF Trigger EOI
1052 * 0x800 .. 0xBFF Trigger undefined
1053 * 0xC00 .. 0xCFF Trigger PQ=00
1054 * 0xD00 .. 0xDFF Trigger PQ=01
1055 * 0xE00 .. 0xDFF Trigger PQ=10
1056 * 0xF00 .. 0xDFF Trigger PQ=11
1058 static void xive_source_esb_write(void *opaque, hwaddr addr,
1059 uint64_t value, unsigned size)
1061 XiveSource *xsrc = XIVE_SOURCE(opaque);
1062 uint32_t offset = addr & 0xFFF;
1063 uint32_t srcno = addr >> xsrc->esb_shift;
1064 bool notify = false;
1066 trace_xive_source_esb_write(addr, srcno, value);
1068 /* In a two pages ESB MMIO setting, trigger page only triggers */
1069 if (xive_source_is_trigger_page(xsrc, addr)) {
1070 notify = xive_source_esb_trigger(xsrc, srcno);
1071 goto out;
1074 switch (offset) {
1075 case 0 ... 0x3FF:
1076 notify = xive_source_esb_trigger(xsrc, srcno);
1077 break;
1079 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1080 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1081 qemu_log_mask(LOG_GUEST_ERROR,
1082 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1083 return;
1086 notify = xive_source_esb_eoi(xsrc, srcno);
1087 break;
1090 * This is an internal offset used to inject triggers when the PQ
1091 * state bits are not controlled locally. Such as for LSIs when
1092 * under ABT mode.
1094 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
1095 notify = true;
1096 break;
1098 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1099 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1100 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1101 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1102 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1103 break;
1105 default:
1106 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1107 offset);
1108 return;
1111 out:
1112 /* Forward the source event notification for routing */
1113 if (notify) {
1114 xive_source_notify(xsrc, srcno);
1118 static const MemoryRegionOps xive_source_esb_ops = {
1119 .read = xive_source_esb_read,
1120 .write = xive_source_esb_write,
1121 .endianness = DEVICE_BIG_ENDIAN,
1122 .valid = {
1123 .min_access_size = 8,
1124 .max_access_size = 8,
1126 .impl = {
1127 .min_access_size = 8,
1128 .max_access_size = 8,
1132 void xive_source_set_irq(void *opaque, int srcno, int val)
1134 XiveSource *xsrc = XIVE_SOURCE(opaque);
1135 bool notify = false;
1137 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1138 if (val) {
1139 notify = xive_source_lsi_trigger(xsrc, srcno);
1140 } else {
1141 xive_source_set_asserted(xsrc, srcno, false);
1143 } else {
1144 if (val) {
1145 notify = xive_source_esb_trigger(xsrc, srcno);
1149 /* Forward the source event notification for routing */
1150 if (notify) {
1151 xive_source_notify(xsrc, srcno);
1155 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1157 int i;
1159 for (i = 0; i < xsrc->nr_irqs; i++) {
1160 uint8_t pq = xive_source_esb_get(xsrc, i);
1162 if (pq == XIVE_ESB_OFF) {
1163 continue;
1166 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1167 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1168 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1169 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1170 xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1174 static void xive_source_reset(void *dev)
1176 XiveSource *xsrc = XIVE_SOURCE(dev);
1178 /* Do not clear the LSI bitmap */
1180 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1181 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1184 static void xive_source_realize(DeviceState *dev, Error **errp)
1186 XiveSource *xsrc = XIVE_SOURCE(dev);
1187 size_t esb_len = xive_source_esb_len(xsrc);
1189 assert(xsrc->xive);
1191 if (!xsrc->nr_irqs) {
1192 error_setg(errp, "Number of interrupt needs to be greater than 0");
1193 return;
1196 if (xsrc->esb_shift != XIVE_ESB_4K &&
1197 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1198 xsrc->esb_shift != XIVE_ESB_64K &&
1199 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1200 error_setg(errp, "Invalid ESB shift setting");
1201 return;
1204 xsrc->status = g_malloc0(xsrc->nr_irqs);
1205 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1207 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1208 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1209 &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1210 esb_len);
1211 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1213 qemu_register_reset(xive_source_reset, dev);
1216 static const VMStateDescription vmstate_xive_source = {
1217 .name = TYPE_XIVE_SOURCE,
1218 .version_id = 1,
1219 .minimum_version_id = 1,
1220 .fields = (VMStateField[]) {
1221 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1222 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1223 VMSTATE_END_OF_LIST()
1228 * The default XIVE interrupt source setting for the ESB MMIOs is two
1229 * 64k pages without Store EOI, to be in sync with KVM.
1231 static Property xive_source_properties[] = {
1232 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1233 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1234 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1235 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1236 XiveNotifier *),
1237 DEFINE_PROP_END_OF_LIST(),
1240 static void xive_source_class_init(ObjectClass *klass, void *data)
1242 DeviceClass *dc = DEVICE_CLASS(klass);
1244 dc->desc = "XIVE Interrupt Source";
1245 device_class_set_props(dc, xive_source_properties);
1246 dc->realize = xive_source_realize;
1247 dc->vmsd = &vmstate_xive_source;
1249 * Reason: part of XIVE interrupt controller, needs to be wired up,
1250 * e.g. by spapr_xive_instance_init().
1252 dc->user_creatable = false;
1255 static const TypeInfo xive_source_info = {
1256 .name = TYPE_XIVE_SOURCE,
1257 .parent = TYPE_DEVICE,
1258 .instance_size = sizeof(XiveSource),
1259 .class_init = xive_source_class_init,
1263 * XiveEND helpers
1266 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1268 uint64_t qaddr_base = xive_end_qaddr(end);
1269 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1270 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1271 uint32_t qentries = 1 << (qsize + 10);
1272 int i;
1275 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1277 monitor_printf(mon, " [ ");
1278 qindex = (qindex - (width - 1)) & (qentries - 1);
1279 for (i = 0; i < width; i++) {
1280 uint64_t qaddr = qaddr_base + (qindex << 2);
1281 uint32_t qdata = -1;
1283 if (dma_memory_read(&address_space_memory, qaddr,
1284 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1285 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1286 HWADDR_PRIx "\n", qaddr);
1287 return;
1289 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1290 be32_to_cpu(qdata));
1291 qindex = (qindex + 1) & (qentries - 1);
1293 monitor_printf(mon, "]");
1296 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1298 uint64_t qaddr_base = xive_end_qaddr(end);
1299 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1300 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1301 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1302 uint32_t qentries = 1 << (qsize + 10);
1304 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1305 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1306 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1307 uint8_t pq;
1309 if (!xive_end_is_valid(end)) {
1310 return;
1313 pq = xive_get_field32(END_W1_ESn, end->w1);
1315 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1316 end_idx,
1317 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1318 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1319 xive_end_is_valid(end) ? 'v' : '-',
1320 xive_end_is_enqueue(end) ? 'q' : '-',
1321 xive_end_is_notify(end) ? 'n' : '-',
1322 xive_end_is_backlog(end) ? 'b' : '-',
1323 xive_end_is_escalate(end) ? 'e' : '-',
1324 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1325 xive_end_is_silent_escalation(end) ? 's' : '-',
1326 xive_end_is_firmware(end) ? 'f' : '-',
1327 priority, nvt_blk, nvt_idx);
1329 if (qaddr_base) {
1330 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1331 qaddr_base, qindex, qentries, qgen);
1332 xive_end_queue_pic_print_info(end, 6, mon);
1334 monitor_printf(mon, "\n");
1337 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1339 uint64_t qaddr_base = xive_end_qaddr(end);
1340 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1341 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1342 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1344 uint64_t qaddr = qaddr_base + (qindex << 2);
1345 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1346 uint32_t qentries = 1 << (qsize + 10);
1348 if (dma_memory_write(&address_space_memory, qaddr,
1349 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1350 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1351 HWADDR_PRIx "\n", qaddr);
1352 return;
1355 qindex = (qindex + 1) & (qentries - 1);
1356 if (qindex == 0) {
1357 qgen ^= 1;
1358 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1360 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1363 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1364 Monitor *mon)
1366 XiveEAS *eas = (XiveEAS *) &end->w4;
1367 uint8_t pq;
1369 if (!xive_end_is_escalate(end)) {
1370 return;
1373 pq = xive_get_field32(END_W1_ESe, end->w1);
1375 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1376 end_idx,
1377 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1378 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1379 xive_eas_is_valid(eas) ? 'V' : ' ',
1380 xive_eas_is_masked(eas) ? 'M' : ' ',
1381 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1382 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1383 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1387 * XIVE Router (aka. Virtualization Controller or IVRE)
1390 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1391 XiveEAS *eas)
1393 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1395 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1398 static
1399 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1400 uint8_t *pq)
1402 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1404 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq);
1407 static
1408 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1409 uint8_t *pq)
1411 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1413 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq);
1416 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1417 XiveEND *end)
1419 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1421 return xrc->get_end(xrtr, end_blk, end_idx, end);
1424 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1425 XiveEND *end, uint8_t word_number)
1427 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1429 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1432 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1433 XiveNVT *nvt)
1435 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1437 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1440 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1441 XiveNVT *nvt, uint8_t word_number)
1443 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1445 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1448 static int xive_router_get_block_id(XiveRouter *xrtr)
1450 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1452 return xrc->get_block_id(xrtr);
1455 static void xive_router_realize(DeviceState *dev, Error **errp)
1457 XiveRouter *xrtr = XIVE_ROUTER(dev);
1459 assert(xrtr->xfb);
1463 * Encode the HW CAM line in the block group mode format :
1465 * chip << 19 | 0000000 0 0001 thread (7Bit)
1467 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1469 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1470 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1471 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1473 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1477 * The thread context register words are in big-endian format.
1479 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1480 uint8_t format,
1481 uint8_t nvt_blk, uint32_t nvt_idx,
1482 bool cam_ignore, uint32_t logic_serv)
1484 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1485 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1486 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1487 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1488 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1491 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1492 * identifier are ignored in the "CAM" match.
1495 if (format == 0) {
1496 if (cam_ignore == true) {
1498 * F=0 & i=1: Logical server notification (bits ignored at
1499 * the end of the NVT identifier)
1501 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1502 nvt_blk, nvt_idx);
1503 return -1;
1506 /* F=0 & i=0: Specific NVT notification */
1508 /* PHYS ring */
1509 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1510 cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1511 return TM_QW3_HV_PHYS;
1514 /* HV POOL ring */
1515 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1516 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1517 return TM_QW2_HV_POOL;
1520 /* OS ring */
1521 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1522 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1523 return TM_QW1_OS;
1525 } else {
1526 /* F=1 : User level Event-Based Branch (EBB) notification */
1528 /* USER ring */
1529 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1530 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1531 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1532 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1533 return TM_QW0_USER;
1536 return -1;
1540 * This is our simple Xive Presenter Engine model. It is merged in the
1541 * Router as it does not require an extra object.
1543 * It receives notification requests sent by the IVRE to find one
1544 * matching NVT (or more) dispatched on the processor threads. In case
1545 * of a single NVT notification, the process is abreviated and the
1546 * thread is signaled if a match is found. In case of a logical server
1547 * notification (bits ignored at the end of the NVT identifier), the
1548 * IVPE and IVRE select a winning thread using different filters. This
1549 * involves 2 or 3 exchanges on the PowerBus that the model does not
1550 * support.
1552 * The parameters represent what is sent on the PowerBus
1554 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1555 uint8_t nvt_blk, uint32_t nvt_idx,
1556 bool cam_ignore, uint8_t priority,
1557 uint32_t logic_serv)
1559 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1560 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1561 int count;
1564 * Ask the machine to scan the interrupt controllers for a match
1566 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1567 priority, logic_serv, &match);
1568 if (count < 0) {
1569 return false;
1572 /* handle CPU exception delivery */
1573 if (count) {
1574 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
1575 xive_tctx_ipb_update(match.tctx, match.ring,
1576 xive_priority_to_ipb(priority));
1579 return !!count;
1583 * Notification using the END ESe/ESn bit (Event State Buffer for
1584 * escalation and notification). Provide further coalescing in the
1585 * Router.
1587 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1588 uint32_t end_idx, XiveEND *end,
1589 uint32_t end_esmask)
1591 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1592 bool notify = xive_esb_trigger(&pq);
1594 if (pq != xive_get_field32(end_esmask, end->w1)) {
1595 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1596 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1599 /* ESe/n[Q]=1 : end of notification */
1600 return notify;
1604 * An END trigger can come from an event trigger (IPI or HW) or from
1605 * another chip. We don't model the PowerBus but the END trigger
1606 * message has the same parameters than in the function below.
1608 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1609 uint32_t end_idx, uint32_t end_data)
1611 XiveEND end;
1612 uint8_t priority;
1613 uint8_t format;
1614 uint8_t nvt_blk;
1615 uint32_t nvt_idx;
1616 XiveNVT nvt;
1617 bool found;
1619 /* END cache lookup */
1620 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1621 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1622 end_idx);
1623 return;
1626 if (!xive_end_is_valid(&end)) {
1627 trace_xive_router_end_notify(end_blk, end_idx, end_data);
1628 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1629 end_blk, end_idx);
1630 return;
1633 if (xive_end_is_enqueue(&end)) {
1634 xive_end_enqueue(&end, end_data);
1635 /* Enqueuing event data modifies the EQ toggle and index */
1636 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1640 * When the END is silent, we skip the notification part.
1642 if (xive_end_is_silent_escalation(&end)) {
1643 goto do_escalation;
1647 * The W7 format depends on the F bit in W6. It defines the type
1648 * of the notification :
1650 * F=0 : single or multiple NVT notification
1651 * F=1 : User level Event-Based Branch (EBB) notification, no
1652 * priority
1654 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1655 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1657 /* The END is masked */
1658 if (format == 0 && priority == 0xff) {
1659 return;
1663 * Check the END ESn (Event State Buffer for notification) for
1664 * even further coalescing in the Router
1666 if (!xive_end_is_notify(&end)) {
1667 /* ESn[Q]=1 : end of notification */
1668 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1669 &end, END_W1_ESn)) {
1670 return;
1675 * Follows IVPE notification
1677 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1678 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1680 /* NVT cache lookup */
1681 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1682 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1683 nvt_blk, nvt_idx);
1684 return;
1687 if (!xive_nvt_is_valid(&nvt)) {
1688 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1689 nvt_blk, nvt_idx);
1690 return;
1693 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1694 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1695 priority,
1696 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1698 /* TODO: Auto EOI. */
1700 if (found) {
1701 return;
1705 * If no matching NVT is dispatched on a HW thread :
1706 * - specific VP: update the NVT structure if backlog is activated
1707 * - logical server : forward request to IVPE (not supported)
1709 if (xive_end_is_backlog(&end)) {
1710 uint8_t ipb;
1712 if (format == 1) {
1713 qemu_log_mask(LOG_GUEST_ERROR,
1714 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1715 end_blk, end_idx);
1716 return;
1719 * Record the IPB in the associated NVT structure for later
1720 * use. The presenter will resend the interrupt when the vCPU
1721 * is dispatched again on a HW thread.
1723 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
1724 xive_priority_to_ipb(priority);
1725 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1726 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1729 * On HW, follows a "Broadcast Backlog" to IVPEs
1733 do_escalation:
1735 * If activated, escalate notification using the ESe PQ bits and
1736 * the EAS in w4-5
1738 if (!xive_end_is_escalate(&end)) {
1739 return;
1743 * Check the END ESe (Event State Buffer for escalation) for even
1744 * further coalescing in the Router
1746 if (!xive_end_is_uncond_escalation(&end)) {
1747 /* ESe[Q]=1 : end of notification */
1748 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1749 &end, END_W1_ESe)) {
1750 return;
1754 trace_xive_router_end_escalate(end_blk, end_idx,
1755 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1756 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1757 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1759 * The END trigger becomes an Escalation trigger
1761 xive_router_end_notify(xrtr,
1762 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1763 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1764 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1767 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked)
1769 XiveRouter *xrtr = XIVE_ROUTER(xn);
1770 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1771 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1772 XiveEAS eas;
1774 /* EAS cache lookup */
1775 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1776 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1777 return;
1780 if (!pq_checked) {
1781 bool notify;
1782 uint8_t pq;
1784 /* PQ cache lookup */
1785 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) {
1786 /* Set FIR */
1787 g_assert_not_reached();
1790 notify = xive_esb_trigger(&pq);
1792 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) {
1793 /* Set FIR */
1794 g_assert_not_reached();
1797 if (!notify) {
1798 return;
1802 if (!xive_eas_is_valid(&eas)) {
1803 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1804 return;
1807 if (xive_eas_is_masked(&eas)) {
1808 /* Notification completed */
1809 return;
1813 * The event trigger becomes an END trigger
1815 xive_router_end_notify(xrtr,
1816 xive_get_field64(EAS_END_BLOCK, eas.w),
1817 xive_get_field64(EAS_END_INDEX, eas.w),
1818 xive_get_field64(EAS_END_DATA, eas.w));
1821 static Property xive_router_properties[] = {
1822 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1823 TYPE_XIVE_FABRIC, XiveFabric *),
1824 DEFINE_PROP_END_OF_LIST(),
1827 static void xive_router_class_init(ObjectClass *klass, void *data)
1829 DeviceClass *dc = DEVICE_CLASS(klass);
1830 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1832 dc->desc = "XIVE Router Engine";
1833 device_class_set_props(dc, xive_router_properties);
1834 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1835 dc->realize = xive_router_realize;
1836 xnc->notify = xive_router_notify;
1839 static const TypeInfo xive_router_info = {
1840 .name = TYPE_XIVE_ROUTER,
1841 .parent = TYPE_SYS_BUS_DEVICE,
1842 .abstract = true,
1843 .instance_size = sizeof(XiveRouter),
1844 .class_size = sizeof(XiveRouterClass),
1845 .class_init = xive_router_class_init,
1846 .interfaces = (InterfaceInfo[]) {
1847 { TYPE_XIVE_NOTIFIER },
1848 { TYPE_XIVE_PRESENTER },
1853 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1855 if (!xive_eas_is_valid(eas)) {
1856 return;
1859 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1860 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1861 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1862 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1863 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1867 * END ESB MMIO loads
1869 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1871 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1872 uint32_t offset = addr & 0xFFF;
1873 uint8_t end_blk;
1874 uint32_t end_idx;
1875 XiveEND end;
1876 uint32_t end_esmask;
1877 uint8_t pq;
1878 uint64_t ret = -1;
1881 * The block id should be deduced from the load address on the END
1882 * ESB MMIO but our model only supports a single block per XIVE chip.
1884 end_blk = xive_router_get_block_id(xsrc->xrtr);
1885 end_idx = addr >> (xsrc->esb_shift + 1);
1887 trace_xive_end_source_read(end_blk, end_idx, addr);
1889 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1890 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1891 end_idx);
1892 return -1;
1895 if (!xive_end_is_valid(&end)) {
1896 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1897 end_blk, end_idx);
1898 return -1;
1901 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1902 pq = xive_get_field32(end_esmask, end.w1);
1904 switch (offset) {
1905 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1906 ret = xive_esb_eoi(&pq);
1908 /* Forward the source event notification for routing ?? */
1909 break;
1911 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1912 ret = pq;
1913 break;
1915 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1916 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1917 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1918 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1919 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1920 break;
1921 default:
1922 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1923 offset);
1924 return -1;
1927 if (pq != xive_get_field32(end_esmask, end.w1)) {
1928 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1929 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1932 return ret;
1936 * END ESB MMIO stores are invalid
1938 static void xive_end_source_write(void *opaque, hwaddr addr,
1939 uint64_t value, unsigned size)
1941 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1942 HWADDR_PRIx"\n", addr);
1945 static const MemoryRegionOps xive_end_source_ops = {
1946 .read = xive_end_source_read,
1947 .write = xive_end_source_write,
1948 .endianness = DEVICE_BIG_ENDIAN,
1949 .valid = {
1950 .min_access_size = 8,
1951 .max_access_size = 8,
1953 .impl = {
1954 .min_access_size = 8,
1955 .max_access_size = 8,
1959 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1961 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1963 assert(xsrc->xrtr);
1965 if (!xsrc->nr_ends) {
1966 error_setg(errp, "Number of interrupt needs to be greater than 0");
1967 return;
1970 if (xsrc->esb_shift != XIVE_ESB_4K &&
1971 xsrc->esb_shift != XIVE_ESB_64K) {
1972 error_setg(errp, "Invalid ESB shift setting");
1973 return;
1977 * Each END is assigned an even/odd pair of MMIO pages, the even page
1978 * manages the ESn field while the odd page manages the ESe field.
1980 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1981 &xive_end_source_ops, xsrc, "xive.end",
1982 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1985 static Property xive_end_source_properties[] = {
1986 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1987 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1988 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1989 XiveRouter *),
1990 DEFINE_PROP_END_OF_LIST(),
1993 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1995 DeviceClass *dc = DEVICE_CLASS(klass);
1997 dc->desc = "XIVE END Source";
1998 device_class_set_props(dc, xive_end_source_properties);
1999 dc->realize = xive_end_source_realize;
2001 * Reason: part of XIVE interrupt controller, needs to be wired up,
2002 * e.g. by spapr_xive_instance_init().
2004 dc->user_creatable = false;
2007 static const TypeInfo xive_end_source_info = {
2008 .name = TYPE_XIVE_END_SOURCE,
2009 .parent = TYPE_DEVICE,
2010 .instance_size = sizeof(XiveENDSource),
2011 .class_init = xive_end_source_class_init,
2015 * XIVE Notifier
2017 static const TypeInfo xive_notifier_info = {
2018 .name = TYPE_XIVE_NOTIFIER,
2019 .parent = TYPE_INTERFACE,
2020 .class_size = sizeof(XiveNotifierClass),
2024 * XIVE Presenter
2026 static const TypeInfo xive_presenter_info = {
2027 .name = TYPE_XIVE_PRESENTER,
2028 .parent = TYPE_INTERFACE,
2029 .class_size = sizeof(XivePresenterClass),
2033 * XIVE Fabric
2035 static const TypeInfo xive_fabric_info = {
2036 .name = TYPE_XIVE_FABRIC,
2037 .parent = TYPE_INTERFACE,
2038 .class_size = sizeof(XiveFabricClass),
2041 static void xive_register_types(void)
2043 type_register_static(&xive_fabric_info);
2044 type_register_static(&xive_source_info);
2045 type_register_static(&xive_notifier_info);
2046 type_register_static(&xive_presenter_info);
2047 type_register_static(&xive_router_info);
2048 type_register_static(&xive_end_source_info);
2049 type_register_static(&xive_tctx_info);
2052 type_init(xive_register_types)