Merge remote-tracking branch 'remotes/cody/tags/block-pull-request' into staging
[qemu/rayw.git] / translate-all.c
blobb4df1ec68fa985aab710a84003ed3e6341ee79f4
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/mman.h>
23 #endif
24 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #define NO_CPU_IO_DEFS
29 #include "cpu.h"
30 #include "trace.h"
31 #include "disas/disas.h"
32 #include "tcg.h"
33 #if defined(CONFIG_USER_ONLY)
34 #include "qemu.h"
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd /* avoid redefinition */
40 #include <sys/proc.h>
41 #include <machine/profile.h>
42 #define _KERNEL
43 #include <sys/user.h>
44 #undef _KERNEL
45 #undef sigqueue
46 #include <libutil.h>
47 #endif
48 #endif
49 #else
50 #include "exec/address-spaces.h"
51 #endif
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/timer.h"
58 #include "exec/log.h"
60 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_FLUSH
62 /* make various TB consistency checks */
63 //#define DEBUG_TB_CHECK
65 #if !defined(CONFIG_USER_ONLY)
66 /* TB consistency checks only implemented for usermode emulation. */
67 #undef DEBUG_TB_CHECK
68 #endif
70 #define SMC_BITMAP_USE_THRESHOLD 10
72 typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
78 unsigned long *code_bitmap;
79 #if defined(CONFIG_USER_ONLY)
80 unsigned long flags;
81 #endif
82 } PageDesc;
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89 #else
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91 #endif
92 #else
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94 #endif
96 /* Size of the L2 (and L3, etc) page tables. */
97 #define V_L2_BITS 10
98 #define V_L2_SIZE (1 << V_L2_BITS)
100 /* The bits remaining after N lower levels of page tables. */
101 #define V_L1_BITS_REM \
102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
104 #if V_L1_BITS_REM < 4
105 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
106 #else
107 #define V_L1_BITS V_L1_BITS_REM
108 #endif
110 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
112 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
117 /* The bottom level has pointers to PageDesc */
118 static void *l1_map[V_L1_SIZE];
120 /* code generation context */
121 TCGContext tcg_ctx;
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread int have_tb_lock;
126 #endif
128 void tb_lock(void)
130 #ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134 #endif
137 void tb_unlock(void)
139 #ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143 #endif
146 void tb_lock_reset(void)
148 #ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
153 #endif
156 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
157 tb_page_addr_t phys_page2);
158 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
160 void cpu_gen_init(void)
162 tcg_context_init(&tcg_ctx);
165 /* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
169 int more, byte;
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
179 *p++ = byte;
180 } while (more);
182 return p;
185 /* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187 static target_long decode_sleb128(uint8_t **pp)
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
202 *pp = p;
203 return val;
206 /* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
218 static int encode_search(TranslationBlock *tb, uint8_t *block)
220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
221 uint8_t *p = block;
222 int i, j, n;
224 tb->tc_search = block;
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
249 return p - block;
252 /* The cpu state corresponding to 'searched_pc' is restored. */
253 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
254 uintptr_t searched_pc)
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
258 CPUArchState *env = cpu->env_ptr;
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
261 #ifdef CONFIG_PROFILER
262 int64_t ti = profile_getclock();
263 #endif
265 if (searched_pc < host_pc) {
266 return -1;
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
280 return -1;
282 found:
283 if (tb->cflags & CF_USE_ICOUNT) {
284 assert(use_icount);
285 /* Reset the cycle counter to the start of the block. */
286 cpu->icount_decr.u16.low += num_insns;
287 /* Clear the IO flag. */
288 cpu->can_do_io = 0;
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
293 #ifdef CONFIG_PROFILER
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
296 #endif
297 return 0;
300 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
302 TranslationBlock *tb;
304 tb = tb_find_pc(retaddr);
305 if (tb) {
306 cpu_restore_state_from_tb(cpu, tb, retaddr);
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 cpu->current_tb = NULL;
310 tb_phys_invalidate(tb, -1);
311 tb_free(tb);
313 return true;
315 return false;
318 void page_size_init(void)
320 /* NOTE: we can always suppose that qemu_host_page_size >=
321 TARGET_PAGE_SIZE */
322 qemu_real_host_page_size = getpagesize();
323 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
324 if (qemu_host_page_size == 0) {
325 qemu_host_page_size = qemu_real_host_page_size;
327 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
328 qemu_host_page_size = TARGET_PAGE_SIZE;
330 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
333 static void page_init(void)
335 page_size_init();
336 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
338 #ifdef HAVE_KINFO_GETVMMAP
339 struct kinfo_vmentry *freep;
340 int i, cnt;
342 freep = kinfo_getvmmap(getpid(), &cnt);
343 if (freep) {
344 mmap_lock();
345 for (i = 0; i < cnt; i++) {
346 unsigned long startaddr, endaddr;
348 startaddr = freep[i].kve_start;
349 endaddr = freep[i].kve_end;
350 if (h2g_valid(startaddr)) {
351 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
353 if (h2g_valid(endaddr)) {
354 endaddr = h2g(endaddr);
355 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
356 } else {
357 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 endaddr = ~0ul;
359 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
360 #endif
364 free(freep);
365 mmap_unlock();
367 #else
368 FILE *f;
370 last_brk = (unsigned long)sbrk(0);
372 f = fopen("/compat/linux/proc/self/maps", "r");
373 if (f) {
374 mmap_lock();
376 do {
377 unsigned long startaddr, endaddr;
378 int n;
380 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
382 if (n == 2 && h2g_valid(startaddr)) {
383 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
385 if (h2g_valid(endaddr)) {
386 endaddr = h2g(endaddr);
387 } else {
388 endaddr = ~0ul;
390 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
392 } while (!feof(f));
394 fclose(f);
395 mmap_unlock();
397 #endif
399 #endif
402 /* If alloc=1:
403 * Called with mmap_lock held for user-mode emulation.
405 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
407 PageDesc *pd;
408 void **lp;
409 int i;
411 /* Level 1. Always allocated. */
412 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
414 /* Level 2..N-1. */
415 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
416 void **p = atomic_rcu_read(lp);
418 if (p == NULL) {
419 if (!alloc) {
420 return NULL;
422 p = g_new0(void *, V_L2_SIZE);
423 atomic_rcu_set(lp, p);
426 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
429 pd = atomic_rcu_read(lp);
430 if (pd == NULL) {
431 if (!alloc) {
432 return NULL;
434 pd = g_new0(PageDesc, V_L2_SIZE);
435 atomic_rcu_set(lp, pd);
438 return pd + (index & (V_L2_SIZE - 1));
441 static inline PageDesc *page_find(tb_page_addr_t index)
443 return page_find_alloc(index, 0);
446 #if defined(CONFIG_USER_ONLY)
447 /* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451 #define USE_STATIC_CODE_GEN_BUFFER
452 #endif
454 /* Minimum size of the code gen buffer. This number is randomly chosen,
455 but not so small that we can't have a fair number of TB's live. */
456 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
458 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
459 indicated, this is constrained by the range of direct branches on the
460 host cpu, as used by the TCG implementation of goto_tb. */
461 #if defined(__x86_64__)
462 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463 #elif defined(__sparc__)
464 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
465 #elif defined(__powerpc64__)
466 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
467 #elif defined(__aarch64__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
469 #elif defined(__arm__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
471 #elif defined(__s390x__)
472 /* We have a +- 4GB range on the branches; leave some slop. */
473 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
474 #elif defined(__mips__)
475 /* We have a 256MB branch region, but leave room to make sure the
476 main executable is also within that region. */
477 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
478 #else
479 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
480 #endif
482 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
484 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
485 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
486 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
488 static inline size_t size_code_gen_buffer(size_t tb_size)
490 /* Size the buffer. */
491 if (tb_size == 0) {
492 #ifdef USE_STATIC_CODE_GEN_BUFFER
493 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
494 #else
495 /* ??? Needs adjustments. */
496 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
497 static buffer, we could size this on RESERVED_VA, on the text
498 segment size of the executable, or continue to use the default. */
499 tb_size = (unsigned long)(ram_size / 4);
500 #endif
502 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
505 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
506 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
508 tcg_ctx.code_gen_buffer_size = tb_size;
509 return tb_size;
512 #ifdef __mips__
513 /* In order to use J and JAL within the code_gen_buffer, we require
514 that the buffer not cross a 256MB boundary. */
515 static inline bool cross_256mb(void *addr, size_t size)
517 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
520 /* We weren't able to allocate a buffer without crossing that boundary,
521 so make do with the larger portion of the buffer that doesn't cross.
522 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
523 static inline void *split_cross_256mb(void *buf1, size_t size1)
525 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
526 size_t size2 = buf1 + size1 - buf2;
528 size1 = buf2 - buf1;
529 if (size1 < size2) {
530 size1 = size2;
531 buf1 = buf2;
534 tcg_ctx.code_gen_buffer_size = size1;
535 return buf1;
537 #endif
539 #ifdef USE_STATIC_CODE_GEN_BUFFER
540 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
541 __attribute__((aligned(CODE_GEN_ALIGN)));
543 # ifdef _WIN32
544 static inline void do_protect(void *addr, long size, int prot)
546 DWORD old_protect;
547 VirtualProtect(addr, size, prot, &old_protect);
550 static inline void map_exec(void *addr, long size)
552 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
555 static inline void map_none(void *addr, long size)
557 do_protect(addr, size, PAGE_NOACCESS);
559 # else
560 static inline void do_protect(void *addr, long size, int prot)
562 uintptr_t start, end;
564 start = (uintptr_t)addr;
565 start &= qemu_real_host_page_mask;
567 end = (uintptr_t)addr + size;
568 end = ROUND_UP(end, qemu_real_host_page_size);
570 mprotect((void *)start, end - start, prot);
573 static inline void map_exec(void *addr, long size)
575 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
578 static inline void map_none(void *addr, long size)
580 do_protect(addr, size, PROT_NONE);
582 # endif /* WIN32 */
584 static inline void *alloc_code_gen_buffer(void)
586 void *buf = static_code_gen_buffer;
587 size_t full_size, size;
589 /* The size of the buffer, rounded down to end on a page boundary. */
590 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
591 & qemu_real_host_page_mask) - (uintptr_t)buf;
593 /* Reserve a guard page. */
594 size = full_size - qemu_real_host_page_size;
596 /* Honor a command-line option limiting the size of the buffer. */
597 if (size > tcg_ctx.code_gen_buffer_size) {
598 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
599 & qemu_real_host_page_mask) - (uintptr_t)buf;
601 tcg_ctx.code_gen_buffer_size = size;
603 #ifdef __mips__
604 if (cross_256mb(buf, size)) {
605 buf = split_cross_256mb(buf, size);
606 size = tcg_ctx.code_gen_buffer_size;
608 #endif
610 map_exec(buf, size);
611 map_none(buf + size, qemu_real_host_page_size);
612 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
614 return buf;
616 #elif defined(_WIN32)
617 static inline void *alloc_code_gen_buffer(void)
619 size_t size = tcg_ctx.code_gen_buffer_size;
620 void *buf1, *buf2;
622 /* Perform the allocation in two steps, so that the guard page
623 is reserved but uncommitted. */
624 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
625 MEM_RESERVE, PAGE_NOACCESS);
626 if (buf1 != NULL) {
627 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
628 assert(buf1 == buf2);
631 return buf1;
633 #else
634 static inline void *alloc_code_gen_buffer(void)
636 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
637 uintptr_t start = 0;
638 size_t size = tcg_ctx.code_gen_buffer_size;
639 void *buf;
641 /* Constrain the position of the buffer based on the host cpu.
642 Note that these addresses are chosen in concert with the
643 addresses assigned in the relevant linker script file. */
644 # if defined(__PIE__) || defined(__PIC__)
645 /* Don't bother setting a preferred location if we're building
646 a position-independent executable. We're more likely to get
647 an address near the main executable if we let the kernel
648 choose the address. */
649 # elif defined(__x86_64__) && defined(MAP_32BIT)
650 /* Force the memory down into low memory with the executable.
651 Leave the choice of exact location with the kernel. */
652 flags |= MAP_32BIT;
653 /* Cannot expect to map more than 800MB in low memory. */
654 if (size > 800u * 1024 * 1024) {
655 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
657 # elif defined(__sparc__)
658 start = 0x40000000ul;
659 # elif defined(__s390x__)
660 start = 0x90000000ul;
661 # elif defined(__mips__)
662 # if _MIPS_SIM == _ABI64
663 start = 0x128000000ul;
664 # else
665 start = 0x08000000ul;
666 # endif
667 # endif
669 buf = mmap((void *)start, size + qemu_real_host_page_size,
670 PROT_NONE, flags, -1, 0);
671 if (buf == MAP_FAILED) {
672 return NULL;
675 #ifdef __mips__
676 if (cross_256mb(buf, size)) {
677 /* Try again, with the original still mapped, to avoid re-acquiring
678 that 256mb crossing. This time don't specify an address. */
679 size_t size2;
680 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
681 PROT_NONE, flags, -1, 0);
682 switch (buf2 != MAP_FAILED) {
683 case 1:
684 if (!cross_256mb(buf2, size)) {
685 /* Success! Use the new buffer. */
686 munmap(buf, size);
687 break;
689 /* Failure. Work with what we had. */
690 munmap(buf2, size);
691 /* fallthru */
692 default:
693 /* Split the original buffer. Free the smaller half. */
694 buf2 = split_cross_256mb(buf, size);
695 size2 = tcg_ctx.code_gen_buffer_size;
696 if (buf == buf2) {
697 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
698 } else {
699 munmap(buf, size - size2);
701 size = size2;
702 break;
704 buf = buf2;
706 #endif
708 /* Make the final buffer accessible. The guard page at the end
709 will remain inaccessible with PROT_NONE. */
710 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
712 /* Request large pages for the buffer. */
713 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
715 return buf;
717 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
719 static inline void code_gen_alloc(size_t tb_size)
721 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
722 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
723 if (tcg_ctx.code_gen_buffer == NULL) {
724 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
725 exit(1);
728 /* Estimate a good size for the number of TBs we can support. We
729 still haven't deducted the prologue from the buffer size here,
730 but that's minimal and won't affect the estimate much. */
731 tcg_ctx.code_gen_max_blocks
732 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
733 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
735 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
738 /* Must be called before using the QEMU cpus. 'tb_size' is the size
739 (in bytes) allocated to the translation buffer. Zero means default
740 size. */
741 void tcg_exec_init(unsigned long tb_size)
743 cpu_gen_init();
744 page_init();
745 code_gen_alloc(tb_size);
746 #if defined(CONFIG_SOFTMMU)
747 /* There's no guest base to take into account, so go ahead and
748 initialize the prologue now. */
749 tcg_prologue_init(&tcg_ctx);
750 #endif
753 bool tcg_enabled(void)
755 return tcg_ctx.code_gen_buffer != NULL;
758 /* Allocate a new translation block. Flush the translation buffer if
759 too many translation blocks or too much generated code. */
760 static TranslationBlock *tb_alloc(target_ulong pc)
762 TranslationBlock *tb;
764 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
765 return NULL;
767 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
768 tb->pc = pc;
769 tb->cflags = 0;
770 return tb;
773 void tb_free(TranslationBlock *tb)
775 /* In practice this is mostly used for single use temporary TB
776 Ignore the hard cases and just back up if this TB happens to
777 be the last one generated. */
778 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
779 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
780 tcg_ctx.code_gen_ptr = tb->tc_ptr;
781 tcg_ctx.tb_ctx.nb_tbs--;
785 static inline void invalidate_page_bitmap(PageDesc *p)
787 g_free(p->code_bitmap);
788 p->code_bitmap = NULL;
789 p->code_write_count = 0;
792 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
793 static void page_flush_tb_1(int level, void **lp)
795 int i;
797 if (*lp == NULL) {
798 return;
800 if (level == 0) {
801 PageDesc *pd = *lp;
803 for (i = 0; i < V_L2_SIZE; ++i) {
804 pd[i].first_tb = NULL;
805 invalidate_page_bitmap(pd + i);
807 } else {
808 void **pp = *lp;
810 for (i = 0; i < V_L2_SIZE; ++i) {
811 page_flush_tb_1(level - 1, pp + i);
816 static void page_flush_tb(void)
818 int i;
820 for (i = 0; i < V_L1_SIZE; i++) {
821 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
825 /* flush all the translation blocks */
826 /* XXX: tb_flush is currently not thread safe */
827 void tb_flush(CPUState *cpu)
829 #if defined(DEBUG_FLUSH)
830 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
831 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
832 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
833 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
834 tcg_ctx.tb_ctx.nb_tbs : 0);
835 #endif
836 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
837 > tcg_ctx.code_gen_buffer_size) {
838 cpu_abort(cpu, "Internal error: code buffer overflow\n");
840 tcg_ctx.tb_ctx.nb_tbs = 0;
842 CPU_FOREACH(cpu) {
843 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
846 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
847 page_flush_tb();
849 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
850 /* XXX: flush processor icache at this point if cache flush is
851 expensive */
852 tcg_ctx.tb_ctx.tb_flush_count++;
855 #ifdef DEBUG_TB_CHECK
857 static void tb_invalidate_check(target_ulong address)
859 TranslationBlock *tb;
860 int i;
862 address &= TARGET_PAGE_MASK;
863 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
864 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
865 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
866 address >= tb->pc + tb->size)) {
867 printf("ERROR invalidate: address=" TARGET_FMT_lx
868 " PC=%08lx size=%04x\n",
869 address, (long)tb->pc, tb->size);
875 /* verify that all the pages have correct rights for code */
876 static void tb_page_check(void)
878 TranslationBlock *tb;
879 int i, flags1, flags2;
881 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
882 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
883 tb = tb->phys_hash_next) {
884 flags1 = page_get_flags(tb->pc);
885 flags2 = page_get_flags(tb->pc + tb->size - 1);
886 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
887 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
888 (long)tb->pc, tb->size, flags1, flags2);
894 #endif
896 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
898 TranslationBlock *tb1;
900 for (;;) {
901 tb1 = *ptb;
902 if (tb1 == tb) {
903 *ptb = tb1->phys_hash_next;
904 break;
906 ptb = &tb1->phys_hash_next;
910 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
912 TranslationBlock *tb1;
913 unsigned int n1;
915 for (;;) {
916 tb1 = *ptb;
917 n1 = (uintptr_t)tb1 & 3;
918 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
919 if (tb1 == tb) {
920 *ptb = tb1->page_next[n1];
921 break;
923 ptb = &tb1->page_next[n1];
927 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
929 TranslationBlock *tb1, **ptb;
930 unsigned int n1;
932 ptb = &tb->jmp_next[n];
933 tb1 = *ptb;
934 if (tb1) {
935 /* find tb(n) in circular list */
936 for (;;) {
937 tb1 = *ptb;
938 n1 = (uintptr_t)tb1 & 3;
939 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
940 if (n1 == n && tb1 == tb) {
941 break;
943 if (n1 == 2) {
944 ptb = &tb1->jmp_first;
945 } else {
946 ptb = &tb1->jmp_next[n1];
949 /* now we can suppress tb(n) from the list */
950 *ptb = tb->jmp_next[n];
952 tb->jmp_next[n] = NULL;
956 /* reset the jump entry 'n' of a TB so that it is not chained to
957 another TB */
958 static inline void tb_reset_jump(TranslationBlock *tb, int n)
960 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
963 /* invalidate one TB */
964 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
966 CPUState *cpu;
967 PageDesc *p;
968 unsigned int h, n1;
969 tb_page_addr_t phys_pc;
970 TranslationBlock *tb1, *tb2;
972 /* remove the TB from the hash list */
973 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
974 h = tb_phys_hash_func(phys_pc);
975 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
977 /* remove the TB from the page list */
978 if (tb->page_addr[0] != page_addr) {
979 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
980 tb_page_remove(&p->first_tb, tb);
981 invalidate_page_bitmap(p);
983 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
984 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
985 tb_page_remove(&p->first_tb, tb);
986 invalidate_page_bitmap(p);
989 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
991 /* remove the TB from the hash list */
992 h = tb_jmp_cache_hash_func(tb->pc);
993 CPU_FOREACH(cpu) {
994 if (cpu->tb_jmp_cache[h] == tb) {
995 cpu->tb_jmp_cache[h] = NULL;
999 /* suppress this TB from the two jump lists */
1000 tb_jmp_remove(tb, 0);
1001 tb_jmp_remove(tb, 1);
1003 /* suppress any remaining jumps to this TB */
1004 tb1 = tb->jmp_first;
1005 for (;;) {
1006 n1 = (uintptr_t)tb1 & 3;
1007 if (n1 == 2) {
1008 break;
1010 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1011 tb2 = tb1->jmp_next[n1];
1012 tb_reset_jump(tb1, n1);
1013 tb1->jmp_next[n1] = NULL;
1014 tb1 = tb2;
1016 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1018 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1021 static void build_page_bitmap(PageDesc *p)
1023 int n, tb_start, tb_end;
1024 TranslationBlock *tb;
1026 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1028 tb = p->first_tb;
1029 while (tb != NULL) {
1030 n = (uintptr_t)tb & 3;
1031 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1032 /* NOTE: this is subtle as a TB may span two physical pages */
1033 if (n == 0) {
1034 /* NOTE: tb_end may be after the end of the page, but
1035 it is not a problem */
1036 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1037 tb_end = tb_start + tb->size;
1038 if (tb_end > TARGET_PAGE_SIZE) {
1039 tb_end = TARGET_PAGE_SIZE;
1041 } else {
1042 tb_start = 0;
1043 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1045 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1046 tb = tb->page_next[n];
1050 /* Called with mmap_lock held for user mode emulation. */
1051 TranslationBlock *tb_gen_code(CPUState *cpu,
1052 target_ulong pc, target_ulong cs_base,
1053 int flags, int cflags)
1055 CPUArchState *env = cpu->env_ptr;
1056 TranslationBlock *tb;
1057 tb_page_addr_t phys_pc, phys_page2;
1058 target_ulong virt_page2;
1059 tcg_insn_unit *gen_code_buf;
1060 int gen_code_size, search_size;
1061 #ifdef CONFIG_PROFILER
1062 int64_t ti;
1063 #endif
1065 phys_pc = get_page_addr_code(env, pc);
1066 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1067 cflags |= CF_USE_ICOUNT;
1070 tb = tb_alloc(pc);
1071 if (unlikely(!tb)) {
1072 buffer_overflow:
1073 /* flush must be done */
1074 tb_flush(cpu);
1075 /* cannot fail at this point */
1076 tb = tb_alloc(pc);
1077 assert(tb != NULL);
1078 /* Don't forget to invalidate previous TB info. */
1079 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1082 gen_code_buf = tcg_ctx.code_gen_ptr;
1083 tb->tc_ptr = gen_code_buf;
1084 tb->cs_base = cs_base;
1085 tb->flags = flags;
1086 tb->cflags = cflags;
1088 #ifdef CONFIG_PROFILER
1089 tcg_ctx.tb_count1++; /* includes aborted translations because of
1090 exceptions */
1091 ti = profile_getclock();
1092 #endif
1094 tcg_func_start(&tcg_ctx);
1096 gen_intermediate_code(env, tb);
1098 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1100 /* generate machine code */
1101 tb->tb_next_offset[0] = 0xffff;
1102 tb->tb_next_offset[1] = 0xffff;
1103 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1104 #ifdef USE_DIRECT_JUMP
1105 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1106 tcg_ctx.tb_next = NULL;
1107 #else
1108 tcg_ctx.tb_jmp_offset = NULL;
1109 tcg_ctx.tb_next = tb->tb_next;
1110 #endif
1112 #ifdef CONFIG_PROFILER
1113 tcg_ctx.tb_count++;
1114 tcg_ctx.interm_time += profile_getclock() - ti;
1115 tcg_ctx.code_time -= profile_getclock();
1116 #endif
1118 /* ??? Overflow could be handled better here. In particular, we
1119 don't need to re-do gen_intermediate_code, nor should we re-do
1120 the tcg optimization currently hidden inside tcg_gen_code. All
1121 that should be required is to flush the TBs, allocate a new TB,
1122 re-initialize it per above, and re-do the actual code generation. */
1123 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1124 if (unlikely(gen_code_size < 0)) {
1125 goto buffer_overflow;
1127 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1128 if (unlikely(search_size < 0)) {
1129 goto buffer_overflow;
1132 #ifdef CONFIG_PROFILER
1133 tcg_ctx.code_time += profile_getclock();
1134 tcg_ctx.code_in_len += tb->size;
1135 tcg_ctx.code_out_len += gen_code_size;
1136 tcg_ctx.search_out_len += search_size;
1137 #endif
1139 #ifdef DEBUG_DISAS
1140 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1141 qemu_log_in_addr_range(tb->pc)) {
1142 qemu_log("OUT: [size=%d]\n", gen_code_size);
1143 log_disas(tb->tc_ptr, gen_code_size);
1144 qemu_log("\n");
1145 qemu_log_flush();
1147 #endif
1149 tcg_ctx.code_gen_ptr = (void *)
1150 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1151 CODE_GEN_ALIGN);
1153 /* check next page if needed */
1154 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1155 phys_page2 = -1;
1156 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1157 phys_page2 = get_page_addr_code(env, virt_page2);
1159 tb_link_page(tb, phys_pc, phys_page2);
1160 return tb;
1164 * Invalidate all TBs which intersect with the target physical address range
1165 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1166 * 'is_cpu_write_access' should be true if called from a real cpu write
1167 * access: the virtual CPU will exit the current TB if code is modified inside
1168 * this TB.
1170 * Called with mmap_lock held for user-mode emulation
1172 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1174 while (start < end) {
1175 tb_invalidate_phys_page_range(start, end, 0);
1176 start &= TARGET_PAGE_MASK;
1177 start += TARGET_PAGE_SIZE;
1182 * Invalidate all TBs which intersect with the target physical address range
1183 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1184 * 'is_cpu_write_access' should be true if called from a real cpu write
1185 * access: the virtual CPU will exit the current TB if code is modified inside
1186 * this TB.
1188 * Called with mmap_lock held for user-mode emulation
1190 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1191 int is_cpu_write_access)
1193 TranslationBlock *tb, *tb_next, *saved_tb;
1194 CPUState *cpu = current_cpu;
1195 #if defined(TARGET_HAS_PRECISE_SMC)
1196 CPUArchState *env = NULL;
1197 #endif
1198 tb_page_addr_t tb_start, tb_end;
1199 PageDesc *p;
1200 int n;
1201 #ifdef TARGET_HAS_PRECISE_SMC
1202 int current_tb_not_found = is_cpu_write_access;
1203 TranslationBlock *current_tb = NULL;
1204 int current_tb_modified = 0;
1205 target_ulong current_pc = 0;
1206 target_ulong current_cs_base = 0;
1207 int current_flags = 0;
1208 #endif /* TARGET_HAS_PRECISE_SMC */
1210 p = page_find(start >> TARGET_PAGE_BITS);
1211 if (!p) {
1212 return;
1214 #if defined(TARGET_HAS_PRECISE_SMC)
1215 if (cpu != NULL) {
1216 env = cpu->env_ptr;
1218 #endif
1220 /* we remove all the TBs in the range [start, end[ */
1221 /* XXX: see if in some cases it could be faster to invalidate all
1222 the code */
1223 tb = p->first_tb;
1224 while (tb != NULL) {
1225 n = (uintptr_t)tb & 3;
1226 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1227 tb_next = tb->page_next[n];
1228 /* NOTE: this is subtle as a TB may span two physical pages */
1229 if (n == 0) {
1230 /* NOTE: tb_end may be after the end of the page, but
1231 it is not a problem */
1232 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1233 tb_end = tb_start + tb->size;
1234 } else {
1235 tb_start = tb->page_addr[1];
1236 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1238 if (!(tb_end <= start || tb_start >= end)) {
1239 #ifdef TARGET_HAS_PRECISE_SMC
1240 if (current_tb_not_found) {
1241 current_tb_not_found = 0;
1242 current_tb = NULL;
1243 if (cpu->mem_io_pc) {
1244 /* now we have a real cpu fault */
1245 current_tb = tb_find_pc(cpu->mem_io_pc);
1248 if (current_tb == tb &&
1249 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1250 /* If we are modifying the current TB, we must stop
1251 its execution. We could be more precise by checking
1252 that the modification is after the current PC, but it
1253 would require a specialized function to partially
1254 restore the CPU state */
1256 current_tb_modified = 1;
1257 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1258 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1259 &current_flags);
1261 #endif /* TARGET_HAS_PRECISE_SMC */
1262 /* we need to do that to handle the case where a signal
1263 occurs while doing tb_phys_invalidate() */
1264 saved_tb = NULL;
1265 if (cpu != NULL) {
1266 saved_tb = cpu->current_tb;
1267 cpu->current_tb = NULL;
1269 tb_phys_invalidate(tb, -1);
1270 if (cpu != NULL) {
1271 cpu->current_tb = saved_tb;
1272 if (cpu->interrupt_request && cpu->current_tb) {
1273 cpu_interrupt(cpu, cpu->interrupt_request);
1277 tb = tb_next;
1279 #if !defined(CONFIG_USER_ONLY)
1280 /* if no code remaining, no need to continue to use slow writes */
1281 if (!p->first_tb) {
1282 invalidate_page_bitmap(p);
1283 tlb_unprotect_code(start);
1285 #endif
1286 #ifdef TARGET_HAS_PRECISE_SMC
1287 if (current_tb_modified) {
1288 /* we generate a block containing just the instruction
1289 modifying the memory. It will ensure that it cannot modify
1290 itself */
1291 cpu->current_tb = NULL;
1292 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1293 cpu_resume_from_signal(cpu, NULL);
1295 #endif
1298 /* len must be <= 8 and start must be a multiple of len */
1299 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1301 PageDesc *p;
1303 #if 0
1304 if (1) {
1305 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1306 cpu_single_env->mem_io_vaddr, len,
1307 cpu_single_env->eip,
1308 cpu_single_env->eip +
1309 (intptr_t)cpu_single_env->segs[R_CS].base);
1311 #endif
1312 p = page_find(start >> TARGET_PAGE_BITS);
1313 if (!p) {
1314 return;
1316 if (!p->code_bitmap &&
1317 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1318 /* build code bitmap */
1319 build_page_bitmap(p);
1321 if (p->code_bitmap) {
1322 unsigned int nr;
1323 unsigned long b;
1325 nr = start & ~TARGET_PAGE_MASK;
1326 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1327 if (b & ((1 << len) - 1)) {
1328 goto do_invalidate;
1330 } else {
1331 do_invalidate:
1332 tb_invalidate_phys_page_range(start, start + len, 1);
1336 #if !defined(CONFIG_SOFTMMU)
1337 /* Called with mmap_lock held. */
1338 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1339 uintptr_t pc, void *puc,
1340 bool locked)
1342 TranslationBlock *tb;
1343 PageDesc *p;
1344 int n;
1345 #ifdef TARGET_HAS_PRECISE_SMC
1346 TranslationBlock *current_tb = NULL;
1347 CPUState *cpu = current_cpu;
1348 CPUArchState *env = NULL;
1349 int current_tb_modified = 0;
1350 target_ulong current_pc = 0;
1351 target_ulong current_cs_base = 0;
1352 int current_flags = 0;
1353 #endif
1355 addr &= TARGET_PAGE_MASK;
1356 p = page_find(addr >> TARGET_PAGE_BITS);
1357 if (!p) {
1358 return;
1360 tb = p->first_tb;
1361 #ifdef TARGET_HAS_PRECISE_SMC
1362 if (tb && pc != 0) {
1363 current_tb = tb_find_pc(pc);
1365 if (cpu != NULL) {
1366 env = cpu->env_ptr;
1368 #endif
1369 while (tb != NULL) {
1370 n = (uintptr_t)tb & 3;
1371 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1372 #ifdef TARGET_HAS_PRECISE_SMC
1373 if (current_tb == tb &&
1374 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1375 /* If we are modifying the current TB, we must stop
1376 its execution. We could be more precise by checking
1377 that the modification is after the current PC, but it
1378 would require a specialized function to partially
1379 restore the CPU state */
1381 current_tb_modified = 1;
1382 cpu_restore_state_from_tb(cpu, current_tb, pc);
1383 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1384 &current_flags);
1386 #endif /* TARGET_HAS_PRECISE_SMC */
1387 tb_phys_invalidate(tb, addr);
1388 tb = tb->page_next[n];
1390 p->first_tb = NULL;
1391 #ifdef TARGET_HAS_PRECISE_SMC
1392 if (current_tb_modified) {
1393 /* we generate a block containing just the instruction
1394 modifying the memory. It will ensure that it cannot modify
1395 itself */
1396 cpu->current_tb = NULL;
1397 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1398 if (locked) {
1399 mmap_unlock();
1401 cpu_resume_from_signal(cpu, puc);
1403 #endif
1405 #endif
1407 /* add the tb in the target page and protect it if necessary
1409 * Called with mmap_lock held for user-mode emulation.
1411 static inline void tb_alloc_page(TranslationBlock *tb,
1412 unsigned int n, tb_page_addr_t page_addr)
1414 PageDesc *p;
1415 #ifndef CONFIG_USER_ONLY
1416 bool page_already_protected;
1417 #endif
1419 tb->page_addr[n] = page_addr;
1420 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1421 tb->page_next[n] = p->first_tb;
1422 #ifndef CONFIG_USER_ONLY
1423 page_already_protected = p->first_tb != NULL;
1424 #endif
1425 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1426 invalidate_page_bitmap(p);
1428 #if defined(CONFIG_USER_ONLY)
1429 if (p->flags & PAGE_WRITE) {
1430 target_ulong addr;
1431 PageDesc *p2;
1432 int prot;
1434 /* force the host page as non writable (writes will have a
1435 page fault + mprotect overhead) */
1436 page_addr &= qemu_host_page_mask;
1437 prot = 0;
1438 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1439 addr += TARGET_PAGE_SIZE) {
1441 p2 = page_find(addr >> TARGET_PAGE_BITS);
1442 if (!p2) {
1443 continue;
1445 prot |= p2->flags;
1446 p2->flags &= ~PAGE_WRITE;
1448 mprotect(g2h(page_addr), qemu_host_page_size,
1449 (prot & PAGE_BITS) & ~PAGE_WRITE);
1450 #ifdef DEBUG_TB_INVALIDATE
1451 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1452 page_addr);
1453 #endif
1455 #else
1456 /* if some code is already present, then the pages are already
1457 protected. So we handle the case where only the first TB is
1458 allocated in a physical page */
1459 if (!page_already_protected) {
1460 tlb_protect_code(page_addr);
1462 #endif
1465 /* add a new TB and link it to the physical page tables. phys_page2 is
1466 * (-1) to indicate that only one page contains the TB.
1468 * Called with mmap_lock held for user-mode emulation.
1470 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1471 tb_page_addr_t phys_page2)
1473 unsigned int h;
1474 TranslationBlock **ptb;
1476 /* add in the physical hash table */
1477 h = tb_phys_hash_func(phys_pc);
1478 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1479 tb->phys_hash_next = *ptb;
1480 *ptb = tb;
1482 /* add in the page list */
1483 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1484 if (phys_page2 != -1) {
1485 tb_alloc_page(tb, 1, phys_page2);
1486 } else {
1487 tb->page_addr[1] = -1;
1490 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1491 tb->jmp_next[0] = NULL;
1492 tb->jmp_next[1] = NULL;
1494 /* init original jump addresses */
1495 if (tb->tb_next_offset[0] != 0xffff) {
1496 tb_reset_jump(tb, 0);
1498 if (tb->tb_next_offset[1] != 0xffff) {
1499 tb_reset_jump(tb, 1);
1502 #ifdef DEBUG_TB_CHECK
1503 tb_page_check();
1504 #endif
1507 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1508 tb[1].tc_ptr. Return NULL if not found */
1509 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1511 int m_min, m_max, m;
1512 uintptr_t v;
1513 TranslationBlock *tb;
1515 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1516 return NULL;
1518 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1519 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1520 return NULL;
1522 /* binary search (cf Knuth) */
1523 m_min = 0;
1524 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1525 while (m_min <= m_max) {
1526 m = (m_min + m_max) >> 1;
1527 tb = &tcg_ctx.tb_ctx.tbs[m];
1528 v = (uintptr_t)tb->tc_ptr;
1529 if (v == tc_ptr) {
1530 return tb;
1531 } else if (tc_ptr < v) {
1532 m_max = m - 1;
1533 } else {
1534 m_min = m + 1;
1537 return &tcg_ctx.tb_ctx.tbs[m_max];
1540 #if !defined(CONFIG_USER_ONLY)
1541 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1543 ram_addr_t ram_addr;
1544 MemoryRegion *mr;
1545 hwaddr l = 1;
1547 rcu_read_lock();
1548 mr = address_space_translate(as, addr, &addr, &l, false);
1549 if (!(memory_region_is_ram(mr)
1550 || memory_region_is_romd(mr))) {
1551 rcu_read_unlock();
1552 return;
1554 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1555 + addr;
1556 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1557 rcu_read_unlock();
1559 #endif /* !defined(CONFIG_USER_ONLY) */
1561 void tb_check_watchpoint(CPUState *cpu)
1563 TranslationBlock *tb;
1565 tb = tb_find_pc(cpu->mem_io_pc);
1566 if (tb) {
1567 /* We can use retranslation to find the PC. */
1568 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1569 tb_phys_invalidate(tb, -1);
1570 } else {
1571 /* The exception probably happened in a helper. The CPU state should
1572 have been saved before calling it. Fetch the PC from there. */
1573 CPUArchState *env = cpu->env_ptr;
1574 target_ulong pc, cs_base;
1575 tb_page_addr_t addr;
1576 int flags;
1578 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1579 addr = get_page_addr_code(env, pc);
1580 tb_invalidate_phys_range(addr, addr + 1);
1584 #ifndef CONFIG_USER_ONLY
1585 /* in deterministic execution mode, instructions doing device I/Os
1586 must be at the end of the TB */
1587 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1589 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1590 CPUArchState *env = cpu->env_ptr;
1591 #endif
1592 TranslationBlock *tb;
1593 uint32_t n, cflags;
1594 target_ulong pc, cs_base;
1595 uint64_t flags;
1597 tb = tb_find_pc(retaddr);
1598 if (!tb) {
1599 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1600 (void *)retaddr);
1602 n = cpu->icount_decr.u16.low + tb->icount;
1603 cpu_restore_state_from_tb(cpu, tb, retaddr);
1604 /* Calculate how many instructions had been executed before the fault
1605 occurred. */
1606 n = n - cpu->icount_decr.u16.low;
1607 /* Generate a new TB ending on the I/O insn. */
1608 n++;
1609 /* On MIPS and SH, delay slot instructions can only be restarted if
1610 they were already the first instruction in the TB. If this is not
1611 the first instruction in a TB then re-execute the preceding
1612 branch. */
1613 #if defined(TARGET_MIPS)
1614 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1615 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1616 cpu->icount_decr.u16.low++;
1617 env->hflags &= ~MIPS_HFLAG_BMASK;
1619 #elif defined(TARGET_SH4)
1620 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1621 && n > 1) {
1622 env->pc -= 2;
1623 cpu->icount_decr.u16.low++;
1624 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1626 #endif
1627 /* This should never happen. */
1628 if (n > CF_COUNT_MASK) {
1629 cpu_abort(cpu, "TB too big during recompile");
1632 cflags = n | CF_LAST_IO;
1633 pc = tb->pc;
1634 cs_base = tb->cs_base;
1635 flags = tb->flags;
1636 tb_phys_invalidate(tb, -1);
1637 if (tb->cflags & CF_NOCACHE) {
1638 if (tb->orig_tb) {
1639 /* Invalidate original TB if this TB was generated in
1640 * cpu_exec_nocache() */
1641 tb_phys_invalidate(tb->orig_tb, -1);
1643 tb_free(tb);
1645 /* FIXME: In theory this could raise an exception. In practice
1646 we have already translated the block once so it's probably ok. */
1647 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1648 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1649 the first in the TB) then we end up generating a whole new TB and
1650 repeating the fault, which is horribly inefficient.
1651 Better would be to execute just this insn uncached, or generate a
1652 second new TB. */
1653 cpu_resume_from_signal(cpu, NULL);
1656 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1658 unsigned int i;
1660 /* Discard jump cache entries for any tb which might potentially
1661 overlap the flushed page. */
1662 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1663 memset(&cpu->tb_jmp_cache[i], 0,
1664 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1666 i = tb_jmp_cache_hash_page(addr);
1667 memset(&cpu->tb_jmp_cache[i], 0,
1668 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1671 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1673 int i, target_code_size, max_target_code_size;
1674 int direct_jmp_count, direct_jmp2_count, cross_page;
1675 TranslationBlock *tb;
1677 target_code_size = 0;
1678 max_target_code_size = 0;
1679 cross_page = 0;
1680 direct_jmp_count = 0;
1681 direct_jmp2_count = 0;
1682 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1683 tb = &tcg_ctx.tb_ctx.tbs[i];
1684 target_code_size += tb->size;
1685 if (tb->size > max_target_code_size) {
1686 max_target_code_size = tb->size;
1688 if (tb->page_addr[1] != -1) {
1689 cross_page++;
1691 if (tb->tb_next_offset[0] != 0xffff) {
1692 direct_jmp_count++;
1693 if (tb->tb_next_offset[1] != 0xffff) {
1694 direct_jmp2_count++;
1698 /* XXX: avoid using doubles ? */
1699 cpu_fprintf(f, "Translation buffer state:\n");
1700 cpu_fprintf(f, "gen code size %td/%zd\n",
1701 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1702 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1703 cpu_fprintf(f, "TB count %d/%d\n",
1704 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1705 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1706 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1707 tcg_ctx.tb_ctx.nb_tbs : 0,
1708 max_target_code_size);
1709 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1710 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1711 tcg_ctx.code_gen_buffer) /
1712 tcg_ctx.tb_ctx.nb_tbs : 0,
1713 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1714 tcg_ctx.code_gen_buffer) /
1715 target_code_size : 0);
1716 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1717 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1718 tcg_ctx.tb_ctx.nb_tbs : 0);
1719 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1720 direct_jmp_count,
1721 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1722 tcg_ctx.tb_ctx.nb_tbs : 0,
1723 direct_jmp2_count,
1724 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1725 tcg_ctx.tb_ctx.nb_tbs : 0);
1726 cpu_fprintf(f, "\nStatistics:\n");
1727 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1728 cpu_fprintf(f, "TB invalidate count %d\n",
1729 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1730 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1731 tcg_dump_info(f, cpu_fprintf);
1734 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1736 tcg_dump_op_count(f, cpu_fprintf);
1739 #else /* CONFIG_USER_ONLY */
1741 void cpu_interrupt(CPUState *cpu, int mask)
1743 cpu->interrupt_request |= mask;
1744 cpu->tcg_exit_req = 1;
1748 * Walks guest process memory "regions" one by one
1749 * and calls callback function 'fn' for each region.
1751 struct walk_memory_regions_data {
1752 walk_memory_regions_fn fn;
1753 void *priv;
1754 target_ulong start;
1755 int prot;
1758 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1759 target_ulong end, int new_prot)
1761 if (data->start != -1u) {
1762 int rc = data->fn(data->priv, data->start, end, data->prot);
1763 if (rc != 0) {
1764 return rc;
1768 data->start = (new_prot ? end : -1u);
1769 data->prot = new_prot;
1771 return 0;
1774 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1775 target_ulong base, int level, void **lp)
1777 target_ulong pa;
1778 int i, rc;
1780 if (*lp == NULL) {
1781 return walk_memory_regions_end(data, base, 0);
1784 if (level == 0) {
1785 PageDesc *pd = *lp;
1787 for (i = 0; i < V_L2_SIZE; ++i) {
1788 int prot = pd[i].flags;
1790 pa = base | (i << TARGET_PAGE_BITS);
1791 if (prot != data->prot) {
1792 rc = walk_memory_regions_end(data, pa, prot);
1793 if (rc != 0) {
1794 return rc;
1798 } else {
1799 void **pp = *lp;
1801 for (i = 0; i < V_L2_SIZE; ++i) {
1802 pa = base | ((target_ulong)i <<
1803 (TARGET_PAGE_BITS + V_L2_BITS * level));
1804 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1805 if (rc != 0) {
1806 return rc;
1811 return 0;
1814 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1816 struct walk_memory_regions_data data;
1817 uintptr_t i;
1819 data.fn = fn;
1820 data.priv = priv;
1821 data.start = -1u;
1822 data.prot = 0;
1824 for (i = 0; i < V_L1_SIZE; i++) {
1825 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1826 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1827 if (rc != 0) {
1828 return rc;
1832 return walk_memory_regions_end(&data, 0, 0);
1835 static int dump_region(void *priv, target_ulong start,
1836 target_ulong end, unsigned long prot)
1838 FILE *f = (FILE *)priv;
1840 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1841 " "TARGET_FMT_lx" %c%c%c\n",
1842 start, end, end - start,
1843 ((prot & PAGE_READ) ? 'r' : '-'),
1844 ((prot & PAGE_WRITE) ? 'w' : '-'),
1845 ((prot & PAGE_EXEC) ? 'x' : '-'));
1847 return 0;
1850 /* dump memory mappings */
1851 void page_dump(FILE *f)
1853 const int length = sizeof(target_ulong) * 2;
1854 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1855 length, "start", length, "end", length, "size", "prot");
1856 walk_memory_regions(f, dump_region);
1859 int page_get_flags(target_ulong address)
1861 PageDesc *p;
1863 p = page_find(address >> TARGET_PAGE_BITS);
1864 if (!p) {
1865 return 0;
1867 return p->flags;
1870 /* Modify the flags of a page and invalidate the code if necessary.
1871 The flag PAGE_WRITE_ORG is positioned automatically depending
1872 on PAGE_WRITE. The mmap_lock should already be held. */
1873 void page_set_flags(target_ulong start, target_ulong end, int flags)
1875 target_ulong addr, len;
1877 /* This function should never be called with addresses outside the
1878 guest address space. If this assert fires, it probably indicates
1879 a missing call to h2g_valid. */
1880 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1881 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1882 #endif
1883 assert(start < end);
1885 start = start & TARGET_PAGE_MASK;
1886 end = TARGET_PAGE_ALIGN(end);
1888 if (flags & PAGE_WRITE) {
1889 flags |= PAGE_WRITE_ORG;
1892 for (addr = start, len = end - start;
1893 len != 0;
1894 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1895 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1897 /* If the write protection bit is set, then we invalidate
1898 the code inside. */
1899 if (!(p->flags & PAGE_WRITE) &&
1900 (flags & PAGE_WRITE) &&
1901 p->first_tb) {
1902 tb_invalidate_phys_page(addr, 0, NULL, false);
1904 p->flags = flags;
1908 int page_check_range(target_ulong start, target_ulong len, int flags)
1910 PageDesc *p;
1911 target_ulong end;
1912 target_ulong addr;
1914 /* This function should never be called with addresses outside the
1915 guest address space. If this assert fires, it probably indicates
1916 a missing call to h2g_valid. */
1917 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1918 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1919 #endif
1921 if (len == 0) {
1922 return 0;
1924 if (start + len - 1 < start) {
1925 /* We've wrapped around. */
1926 return -1;
1929 /* must do before we loose bits in the next step */
1930 end = TARGET_PAGE_ALIGN(start + len);
1931 start = start & TARGET_PAGE_MASK;
1933 for (addr = start, len = end - start;
1934 len != 0;
1935 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1936 p = page_find(addr >> TARGET_PAGE_BITS);
1937 if (!p) {
1938 return -1;
1940 if (!(p->flags & PAGE_VALID)) {
1941 return -1;
1944 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1945 return -1;
1947 if (flags & PAGE_WRITE) {
1948 if (!(p->flags & PAGE_WRITE_ORG)) {
1949 return -1;
1951 /* unprotect the page if it was put read-only because it
1952 contains translated code */
1953 if (!(p->flags & PAGE_WRITE)) {
1954 if (!page_unprotect(addr, 0, NULL)) {
1955 return -1;
1960 return 0;
1963 /* called from signal handler: invalidate the code and unprotect the
1964 page. Return TRUE if the fault was successfully handled. */
1965 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1967 unsigned int prot;
1968 PageDesc *p;
1969 target_ulong host_start, host_end, addr;
1971 /* Technically this isn't safe inside a signal handler. However we
1972 know this only ever happens in a synchronous SEGV handler, so in
1973 practice it seems to be ok. */
1974 mmap_lock();
1976 p = page_find(address >> TARGET_PAGE_BITS);
1977 if (!p) {
1978 mmap_unlock();
1979 return 0;
1982 /* if the page was really writable, then we change its
1983 protection back to writable */
1984 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1985 host_start = address & qemu_host_page_mask;
1986 host_end = host_start + qemu_host_page_size;
1988 prot = 0;
1989 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1990 p = page_find(addr >> TARGET_PAGE_BITS);
1991 p->flags |= PAGE_WRITE;
1992 prot |= p->flags;
1994 /* and since the content will be modified, we must invalidate
1995 the corresponding translated code. */
1996 tb_invalidate_phys_page(addr, pc, puc, true);
1997 #ifdef DEBUG_TB_CHECK
1998 tb_invalidate_check(addr);
1999 #endif
2001 mprotect((void *)g2h(host_start), qemu_host_page_size,
2002 prot & PAGE_BITS);
2004 mmap_unlock();
2005 return 1;
2007 mmap_unlock();
2008 return 0;
2010 #endif /* CONFIG_USER_ONLY */