2 * RISC-V ACLINT (Advanced Core Local Interruptor)
3 * URL: https://github.com/riscv/riscv-aclint
5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6 * Copyright (c) 2017 SiFive, Inc.
7 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
9 * This provides real-time clock, timer and interprocessor interrupts.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms and conditions of the GNU General Public License,
13 * version 2 or later, as published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * You should have received a copy of the GNU General Public License along with
21 * this program. If not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
35 #include "migration/vmstate.h"
37 typedef struct riscv_aclint_mtimer_callback
{
38 RISCVAclintMTimerState
*s
;
40 } riscv_aclint_mtimer_callback
;
42 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq
)
44 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
45 timebase_freq
, NANOSECONDS_PER_SECOND
);
48 static uint64_t cpu_riscv_read_rtc(void *opaque
)
50 RISCVAclintMTimerState
*mtimer
= opaque
;
51 return cpu_riscv_read_rtc_raw(mtimer
->timebase_freq
) + mtimer
->time_delta
;
55 * Called when timecmp is written to update the QEMU timer or immediately
56 * trigger timer interrupt if mtimecmp <= current timer value.
58 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState
*mtimer
,
63 uint32_t timebase_freq
= mtimer
->timebase_freq
;
67 uint64_t rtc_r
= cpu_riscv_read_rtc(mtimer
);
69 /* Compute the relative hartid w.r.t the socket */
70 hartid
= hartid
- mtimer
->hartid_base
;
72 mtimer
->timecmp
[hartid
] = value
;
73 if (mtimer
->timecmp
[hartid
] <= rtc_r
) {
75 * If we're setting an MTIMECMP value in the "past",
76 * immediately raise the timer interrupt
78 qemu_irq_raise(mtimer
->timer_irqs
[hartid
]);
82 /* otherwise, set up the future timer interrupt */
83 qemu_irq_lower(mtimer
->timer_irqs
[hartid
]);
84 diff
= mtimer
->timecmp
[hartid
] - rtc_r
;
85 /* back to ns (note args switched in muldiv64) */
86 uint64_t ns_diff
= muldiv64(diff
, NANOSECONDS_PER_SECOND
, timebase_freq
);
89 * check if ns_diff overflowed and check if the addition would potentially
92 if ((NANOSECONDS_PER_SECOND
> timebase_freq
&& ns_diff
< diff
) ||
93 ns_diff
> INT64_MAX
) {
97 * as it is very unlikely qemu_clock_get_ns will return a value
98 * greater than INT64_MAX, no additional check is needed for an
99 * unsigned integer overflow.
101 next
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + ns_diff
;
103 * if ns_diff is INT64_MAX next may still be outside the range
104 * of a signed integer.
106 next
= MIN(next
, INT64_MAX
);
109 timer_mod(mtimer
->timers
[hartid
], next
);
113 * Callback used when the timer set using timer_mod expires.
114 * Should raise the timer interrupt line
116 static void riscv_aclint_mtimer_cb(void *opaque
)
118 riscv_aclint_mtimer_callback
*state
= opaque
;
120 qemu_irq_raise(state
->s
->timer_irqs
[state
->num
]);
123 /* CPU read MTIMER register */
124 static uint64_t riscv_aclint_mtimer_read(void *opaque
, hwaddr addr
,
127 RISCVAclintMTimerState
*mtimer
= opaque
;
129 if (addr
>= mtimer
->timecmp_base
&&
130 addr
< (mtimer
->timecmp_base
+ (mtimer
->num_harts
<< 3))) {
131 size_t hartid
= mtimer
->hartid_base
+
132 ((addr
- mtimer
->timecmp_base
) >> 3);
133 CPUState
*cpu
= qemu_get_cpu(hartid
);
134 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
136 qemu_log_mask(LOG_GUEST_ERROR
,
137 "aclint-mtimer: invalid hartid: %zu", hartid
);
138 } else if ((addr
& 0x7) == 0) {
139 /* timecmp_lo for RV32/RV64 or timecmp for RV64 */
140 uint64_t timecmp
= mtimer
->timecmp
[hartid
];
141 return (size
== 4) ? (timecmp
& 0xFFFFFFFF) : timecmp
;
142 } else if ((addr
& 0x7) == 4) {
144 uint64_t timecmp
= mtimer
->timecmp
[hartid
];
145 return (timecmp
>> 32) & 0xFFFFFFFF;
147 qemu_log_mask(LOG_UNIMP
,
148 "aclint-mtimer: invalid read: %08x", (uint32_t)addr
);
151 } else if (addr
== mtimer
->time_base
) {
152 /* time_lo for RV32/RV64 or timecmp for RV64 */
153 uint64_t rtc
= cpu_riscv_read_rtc(mtimer
);
154 return (size
== 4) ? (rtc
& 0xFFFFFFFF) : rtc
;
155 } else if (addr
== mtimer
->time_base
+ 4) {
157 return (cpu_riscv_read_rtc(mtimer
) >> 32) & 0xFFFFFFFF;
160 qemu_log_mask(LOG_UNIMP
,
161 "aclint-mtimer: invalid read: %08x", (uint32_t)addr
);
165 /* CPU write MTIMER register */
166 static void riscv_aclint_mtimer_write(void *opaque
, hwaddr addr
,
167 uint64_t value
, unsigned size
)
169 RISCVAclintMTimerState
*mtimer
= opaque
;
172 if (addr
>= mtimer
->timecmp_base
&&
173 addr
< (mtimer
->timecmp_base
+ (mtimer
->num_harts
<< 3))) {
174 size_t hartid
= mtimer
->hartid_base
+
175 ((addr
- mtimer
->timecmp_base
) >> 3);
176 CPUState
*cpu
= qemu_get_cpu(hartid
);
177 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
179 qemu_log_mask(LOG_GUEST_ERROR
,
180 "aclint-mtimer: invalid hartid: %zu", hartid
);
181 } else if ((addr
& 0x7) == 0) {
183 /* timecmp_lo for RV32/RV64 */
184 uint64_t timecmp_hi
= mtimer
->timecmp
[hartid
] >> 32;
185 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
), hartid
,
186 timecmp_hi
<< 32 | (value
& 0xFFFFFFFF));
188 /* timecmp for RV64 */
189 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
), hartid
,
192 } else if ((addr
& 0x7) == 4) {
194 /* timecmp_hi for RV32/RV64 */
195 uint64_t timecmp_lo
= mtimer
->timecmp
[hartid
];
196 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
), hartid
,
197 value
<< 32 | (timecmp_lo
& 0xFFFFFFFF));
199 qemu_log_mask(LOG_GUEST_ERROR
,
200 "aclint-mtimer: invalid timecmp_hi write: %08x",
204 qemu_log_mask(LOG_UNIMP
,
205 "aclint-mtimer: invalid timecmp write: %08x",
209 } else if (addr
== mtimer
->time_base
|| addr
== mtimer
->time_base
+ 4) {
210 uint64_t rtc_r
= cpu_riscv_read_rtc_raw(mtimer
->timebase_freq
);
212 if (addr
== mtimer
->time_base
) {
214 /* time_lo for RV32/RV64 */
215 mtimer
->time_delta
= ((rtc_r
& ~0xFFFFFFFFULL
) | value
) - rtc_r
;
218 mtimer
->time_delta
= value
- rtc_r
;
222 /* time_hi for RV32/RV64 */
223 mtimer
->time_delta
= (value
<< 32 | (rtc_r
& 0xFFFFFFFF)) - rtc_r
;
225 qemu_log_mask(LOG_GUEST_ERROR
,
226 "aclint-mtimer: invalid time_hi write: %08x",
232 /* Check if timer interrupt is triggered for each hart. */
233 for (i
= 0; i
< mtimer
->num_harts
; i
++) {
234 CPUState
*cpu
= qemu_get_cpu(mtimer
->hartid_base
+ i
);
235 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
239 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
),
240 mtimer
->hartid_base
+ i
,
246 qemu_log_mask(LOG_UNIMP
,
247 "aclint-mtimer: invalid write: %08x", (uint32_t)addr
);
250 static const MemoryRegionOps riscv_aclint_mtimer_ops
= {
251 .read
= riscv_aclint_mtimer_read
,
252 .write
= riscv_aclint_mtimer_write
,
253 .endianness
= DEVICE_LITTLE_ENDIAN
,
255 .min_access_size
= 4,
259 .min_access_size
= 4,
260 .max_access_size
= 8,
264 static Property riscv_aclint_mtimer_properties
[] = {
265 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState
,
267 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState
, num_harts
, 1),
268 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState
,
269 timecmp_base
, RISCV_ACLINT_DEFAULT_MTIMECMP
),
270 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState
,
271 time_base
, RISCV_ACLINT_DEFAULT_MTIME
),
272 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState
,
273 aperture_size
, RISCV_ACLINT_DEFAULT_MTIMER_SIZE
),
274 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState
,
276 DEFINE_PROP_END_OF_LIST(),
279 static void riscv_aclint_mtimer_realize(DeviceState
*dev
, Error
**errp
)
281 RISCVAclintMTimerState
*s
= RISCV_ACLINT_MTIMER(dev
);
284 memory_region_init_io(&s
->mmio
, OBJECT(dev
), &riscv_aclint_mtimer_ops
,
285 s
, TYPE_RISCV_ACLINT_MTIMER
, s
->aperture_size
);
286 sysbus_init_mmio(SYS_BUS_DEVICE(dev
), &s
->mmio
);
288 s
->timer_irqs
= g_new(qemu_irq
, s
->num_harts
);
289 qdev_init_gpio_out(dev
, s
->timer_irqs
, s
->num_harts
);
291 s
->timers
= g_new0(QEMUTimer
*, s
->num_harts
);
292 s
->timecmp
= g_new0(uint64_t, s
->num_harts
);
293 /* Claim timer interrupt bits */
294 for (i
= 0; i
< s
->num_harts
; i
++) {
295 RISCVCPU
*cpu
= RISCV_CPU(qemu_get_cpu(s
->hartid_base
+ i
));
296 if (riscv_cpu_claim_interrupts(cpu
, MIP_MTIP
) < 0) {
297 error_report("MTIP already claimed");
303 static void riscv_aclint_mtimer_reset_enter(Object
*obj
, ResetType type
)
306 * According to RISC-V ACLINT spec:
307 * - On MTIMER device reset, the MTIME register is cleared to zero.
308 * - On MTIMER device reset, the MTIMECMP registers are in unknown state.
310 RISCVAclintMTimerState
*mtimer
= RISCV_ACLINT_MTIMER(obj
);
313 * Clear mtime register by writing to 0 it.
314 * Pending mtime interrupts will also be cleared at the same time.
316 riscv_aclint_mtimer_write(mtimer
, mtimer
->time_base
, 0, 8);
319 static const VMStateDescription vmstate_riscv_mtimer
= {
320 .name
= "riscv_mtimer",
322 .minimum_version_id
= 1,
323 .fields
= (VMStateField
[]) {
324 VMSTATE_VARRAY_UINT32(timecmp
, RISCVAclintMTimerState
,
326 vmstate_info_uint64
, uint64_t),
327 VMSTATE_END_OF_LIST()
331 static void riscv_aclint_mtimer_class_init(ObjectClass
*klass
, void *data
)
333 DeviceClass
*dc
= DEVICE_CLASS(klass
);
334 dc
->realize
= riscv_aclint_mtimer_realize
;
335 device_class_set_props(dc
, riscv_aclint_mtimer_properties
);
336 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
337 rc
->phases
.enter
= riscv_aclint_mtimer_reset_enter
;
338 dc
->vmsd
= &vmstate_riscv_mtimer
;
341 static const TypeInfo riscv_aclint_mtimer_info
= {
342 .name
= TYPE_RISCV_ACLINT_MTIMER
,
343 .parent
= TYPE_SYS_BUS_DEVICE
,
344 .instance_size
= sizeof(RISCVAclintMTimerState
),
345 .class_init
= riscv_aclint_mtimer_class_init
,
349 * Create ACLINT MTIMER device.
351 DeviceState
*riscv_aclint_mtimer_create(hwaddr addr
, hwaddr size
,
352 uint32_t hartid_base
, uint32_t num_harts
,
353 uint32_t timecmp_base
, uint32_t time_base
, uint32_t timebase_freq
,
357 DeviceState
*dev
= qdev_new(TYPE_RISCV_ACLINT_MTIMER
);
358 RISCVAclintMTimerState
*s
= RISCV_ACLINT_MTIMER(dev
);
360 assert(num_harts
<= RISCV_ACLINT_MAX_HARTS
);
361 assert(!(addr
& 0x7));
362 assert(!(timecmp_base
& 0x7));
363 assert(!(time_base
& 0x7));
365 qdev_prop_set_uint32(dev
, "hartid-base", hartid_base
);
366 qdev_prop_set_uint32(dev
, "num-harts", num_harts
);
367 qdev_prop_set_uint32(dev
, "timecmp-base", timecmp_base
);
368 qdev_prop_set_uint32(dev
, "time-base", time_base
);
369 qdev_prop_set_uint32(dev
, "aperture-size", size
);
370 qdev_prop_set_uint32(dev
, "timebase-freq", timebase_freq
);
371 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
372 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, addr
);
374 for (i
= 0; i
< num_harts
; i
++) {
375 CPUState
*cpu
= qemu_get_cpu(hartid_base
+ i
);
376 RISCVCPU
*rvcpu
= RISCV_CPU(cpu
);
377 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
378 riscv_aclint_mtimer_callback
*cb
=
379 g_new0(riscv_aclint_mtimer_callback
, 1);
385 if (provide_rdtime
) {
386 riscv_cpu_set_rdtime_fn(env
, cpu_riscv_read_rtc
, dev
);
391 s
->timers
[i
] = timer_new_ns(QEMU_CLOCK_VIRTUAL
,
392 &riscv_aclint_mtimer_cb
, cb
);
395 qdev_connect_gpio_out(dev
, i
,
396 qdev_get_gpio_in(DEVICE(rvcpu
), IRQ_M_TIMER
));
402 /* CPU read [M|S]SWI register */
403 static uint64_t riscv_aclint_swi_read(void *opaque
, hwaddr addr
,
406 RISCVAclintSwiState
*swi
= opaque
;
408 if (addr
< (swi
->num_harts
<< 2)) {
409 size_t hartid
= swi
->hartid_base
+ (addr
>> 2);
410 CPUState
*cpu
= qemu_get_cpu(hartid
);
411 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
413 qemu_log_mask(LOG_GUEST_ERROR
,
414 "aclint-swi: invalid hartid: %zu", hartid
);
415 } else if ((addr
& 0x3) == 0) {
416 return (swi
->sswi
) ? 0 : ((env
->mip
& MIP_MSIP
) > 0);
420 qemu_log_mask(LOG_UNIMP
,
421 "aclint-swi: invalid read: %08x", (uint32_t)addr
);
425 /* CPU write [M|S]SWI register */
426 static void riscv_aclint_swi_write(void *opaque
, hwaddr addr
, uint64_t value
,
429 RISCVAclintSwiState
*swi
= opaque
;
431 if (addr
< (swi
->num_harts
<< 2)) {
432 size_t hartid
= swi
->hartid_base
+ (addr
>> 2);
433 CPUState
*cpu
= qemu_get_cpu(hartid
);
434 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
436 qemu_log_mask(LOG_GUEST_ERROR
,
437 "aclint-swi: invalid hartid: %zu", hartid
);
438 } else if ((addr
& 0x3) == 0) {
440 qemu_irq_raise(swi
->soft_irqs
[hartid
- swi
->hartid_base
]);
443 qemu_irq_lower(swi
->soft_irqs
[hartid
- swi
->hartid_base
]);
450 qemu_log_mask(LOG_UNIMP
,
451 "aclint-swi: invalid write: %08x", (uint32_t)addr
);
454 static const MemoryRegionOps riscv_aclint_swi_ops
= {
455 .read
= riscv_aclint_swi_read
,
456 .write
= riscv_aclint_swi_write
,
457 .endianness
= DEVICE_LITTLE_ENDIAN
,
459 .min_access_size
= 4,
464 static Property riscv_aclint_swi_properties
[] = {
465 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState
, hartid_base
, 0),
466 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState
, num_harts
, 1),
467 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState
, sswi
, false),
468 DEFINE_PROP_END_OF_LIST(),
471 static void riscv_aclint_swi_realize(DeviceState
*dev
, Error
**errp
)
473 RISCVAclintSwiState
*swi
= RISCV_ACLINT_SWI(dev
);
476 memory_region_init_io(&swi
->mmio
, OBJECT(dev
), &riscv_aclint_swi_ops
, swi
,
477 TYPE_RISCV_ACLINT_SWI
, RISCV_ACLINT_SWI_SIZE
);
478 sysbus_init_mmio(SYS_BUS_DEVICE(dev
), &swi
->mmio
);
480 swi
->soft_irqs
= g_new(qemu_irq
, swi
->num_harts
);
481 qdev_init_gpio_out(dev
, swi
->soft_irqs
, swi
->num_harts
);
483 /* Claim software interrupt bits */
484 for (i
= 0; i
< swi
->num_harts
; i
++) {
485 RISCVCPU
*cpu
= RISCV_CPU(qemu_get_cpu(swi
->hartid_base
+ i
));
486 /* We don't claim mip.SSIP because it is writable by software */
487 if (riscv_cpu_claim_interrupts(cpu
, swi
->sswi
? 0 : MIP_MSIP
) < 0) {
488 error_report("MSIP already claimed");
494 static void riscv_aclint_swi_reset_enter(Object
*obj
, ResetType type
)
497 * According to RISC-V ACLINT spec:
498 * - On MSWI device reset, each MSIP register is cleared to zero.
500 * p.s. SSWI device reset does nothing since SETSIP register always reads 0.
502 RISCVAclintSwiState
*swi
= RISCV_ACLINT_SWI(obj
);
506 for (i
= 0; i
< swi
->num_harts
; i
++) {
507 /* Clear MSIP registers by lowering software interrupts. */
508 qemu_irq_lower(swi
->soft_irqs
[i
]);
513 static void riscv_aclint_swi_class_init(ObjectClass
*klass
, void *data
)
515 DeviceClass
*dc
= DEVICE_CLASS(klass
);
516 dc
->realize
= riscv_aclint_swi_realize
;
517 device_class_set_props(dc
, riscv_aclint_swi_properties
);
518 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
519 rc
->phases
.enter
= riscv_aclint_swi_reset_enter
;
522 static const TypeInfo riscv_aclint_swi_info
= {
523 .name
= TYPE_RISCV_ACLINT_SWI
,
524 .parent
= TYPE_SYS_BUS_DEVICE
,
525 .instance_size
= sizeof(RISCVAclintSwiState
),
526 .class_init
= riscv_aclint_swi_class_init
,
530 * Create ACLINT [M|S]SWI device.
532 DeviceState
*riscv_aclint_swi_create(hwaddr addr
, uint32_t hartid_base
,
533 uint32_t num_harts
, bool sswi
)
536 DeviceState
*dev
= qdev_new(TYPE_RISCV_ACLINT_SWI
);
538 assert(num_harts
<= RISCV_ACLINT_MAX_HARTS
);
539 assert(!(addr
& 0x3));
541 qdev_prop_set_uint32(dev
, "hartid-base", hartid_base
);
542 qdev_prop_set_uint32(dev
, "num-harts", num_harts
);
543 qdev_prop_set_uint32(dev
, "sswi", sswi
? true : false);
544 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
545 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, addr
);
547 for (i
= 0; i
< num_harts
; i
++) {
548 CPUState
*cpu
= qemu_get_cpu(hartid_base
+ i
);
549 RISCVCPU
*rvcpu
= RISCV_CPU(cpu
);
551 qdev_connect_gpio_out(dev
, i
,
552 qdev_get_gpio_in(DEVICE(rvcpu
),
553 (sswi
) ? IRQ_S_SOFT
: IRQ_M_SOFT
));
559 static void riscv_aclint_register_types(void)
561 type_register_static(&riscv_aclint_mtimer_info
);
562 type_register_static(&riscv_aclint_swi_info
);
565 type_init(riscv_aclint_register_types
)