target/arm: Implement TPIDR2_EL0
[qemu/rayw.git] / target / arm / cpu.h
blob05d1e2e8dd145858e69e1dc46531338fc2d62c4a
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO (0)
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
37 #define EXCP_UDEF 1 /* undefined instruction */
38 #define EXCP_SWI 2 /* software interrupt */
39 #define EXCP_PREFETCH_ABORT 3
40 #define EXCP_DATA_ABORT 4
41 #define EXCP_IRQ 5
42 #define EXCP_FIQ 6
43 #define EXCP_BKPT 7
44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
46 #define EXCP_HVC 11 /* HyperVisor Call */
47 #define EXCP_HYP_TRAP 12
48 #define EXCP_SMC 13 /* Secure Monitor Call */
49 #define EXCP_VIRQ 14
50 #define EXCP_VFIQ 15
51 #define EXCP_SEMIHOST 16 /* semihosting call */
52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR 24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 #define ARMV7M_EXCP_RESET 1
63 #define ARMV7M_EXCP_NMI 2
64 #define ARMV7M_EXCP_HARD 3
65 #define ARMV7M_EXCP_MEM 4
66 #define ARMV7M_EXCP_BUS 5
67 #define ARMV7M_EXCP_USAGE 6
68 #define ARMV7M_EXCP_SECURE 7
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
74 /* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
83 enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
89 /* ARM-specific interrupt pending bits. */
90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
95 /* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
115 /* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
119 #define TARGET_INSN_START_EXTRA_WORDS 2
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
129 /* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
146 typedef struct DynamicGDBXMLInfo {
147 char *desc;
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
154 } DynamicGDBXMLInfo;
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
159 uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
162 #define GTIMER_PHYS 0
163 #define GTIMER_VIRT 1
164 #define GTIMER_HYP 2
165 #define GTIMER_SEC 3
166 #define GTIMER_HYPVIRT 4
167 #define NUM_GTIMERS 5
169 typedef struct {
170 uint64_t raw_tcr;
171 uint32_t mask;
172 uint32_t base_mask;
173 } TCR;
175 #define VTCR_NSW (1u << 29)
176 #define VTCR_NSA (1u << 30)
177 #define VSTCR_SW VTCR_NSW
178 #define VSTCR_SA VTCR_NSA
180 /* Define a maximum sized vector register.
181 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182 * For 64-bit, this is a 2048-bit SVE register.
184 * Note that the mapping between S, D, and Q views of the register bank
185 * differs between AArch64 and AArch32.
186 * In AArch32:
187 * Qn = regs[n].d[1]:regs[n].d[0]
188 * Dn = regs[n / 2].d[n & 1]
189 * Sn = regs[n / 4].d[n % 4 / 2],
190 * bits 31..0 for even n, and bits 63..32 for odd n
191 * (and regs[16] to regs[31] are inaccessible)
192 * In AArch64:
193 * Zn = regs[n].d[*]
194 * Qn = regs[n].d[1]:regs[n].d[0]
195 * Dn = regs[n].d[0]
196 * Sn = regs[n].d[0] bits 31..0
197 * Hn = regs[n].d[0] bits 15..0
199 * This corresponds to the architecturally defined mapping between
200 * the two execution states, and means we do not need to explicitly
201 * map these registers when changing states.
203 * Align the data for use with TCG host vector operations.
206 #ifdef TARGET_AARCH64
207 # define ARM_MAX_VQ 16
208 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
209 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
210 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
211 #else
212 # define ARM_MAX_VQ 1
213 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
214 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
215 static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
216 #endif
218 typedef struct ARMVectorReg {
219 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
220 } ARMVectorReg;
222 #ifdef TARGET_AARCH64
223 /* In AArch32 mode, predicate registers do not exist at all. */
224 typedef struct ARMPredicateReg {
225 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
226 } ARMPredicateReg;
228 /* In AArch32 mode, PAC keys do not exist at all. */
229 typedef struct ARMPACKey {
230 uint64_t lo, hi;
231 } ARMPACKey;
232 #endif
234 /* See the commentary above the TBFLAG field definitions. */
235 typedef struct CPUARMTBFlags {
236 uint32_t flags;
237 target_ulong flags2;
238 } CPUARMTBFlags;
240 typedef struct CPUArchState {
241 /* Regs for current mode. */
242 uint32_t regs[16];
244 /* 32/64 switch only happens when taking and returning from
245 * exceptions so the overlap semantics are taken care of then
246 * instead of having a complicated union.
248 /* Regs for A64 mode. */
249 uint64_t xregs[32];
250 uint64_t pc;
251 /* PSTATE isn't an architectural register for ARMv8. However, it is
252 * convenient for us to assemble the underlying state into a 32 bit format
253 * identical to the architectural format used for the SPSR. (This is also
254 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
255 * 'pstate' register are.) Of the PSTATE bits:
256 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
257 * semantics as for AArch32, as described in the comments on each field)
258 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
259 * DAIF (exception masks) are kept in env->daif
260 * BTYPE is kept in env->btype
261 * all other bits are stored in their correct places in env->pstate
263 uint32_t pstate;
264 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
265 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
267 /* Cached TBFLAGS state. See below for which bits are included. */
268 CPUARMTBFlags hflags;
270 /* Frequently accessed CPSR bits are stored separately for efficiency.
271 This contains all the other bits. Use cpsr_{read,write} to access
272 the whole CPSR. */
273 uint32_t uncached_cpsr;
274 uint32_t spsr;
276 /* Banked registers. */
277 uint64_t banked_spsr[8];
278 uint32_t banked_r13[8];
279 uint32_t banked_r14[8];
281 /* These hold r8-r12. */
282 uint32_t usr_regs[5];
283 uint32_t fiq_regs[5];
285 /* cpsr flag cache for faster execution */
286 uint32_t CF; /* 0 or 1 */
287 uint32_t VF; /* V is the bit 31. All other bits are undefined */
288 uint32_t NF; /* N is bit 31. All other bits are undefined. */
289 uint32_t ZF; /* Z set if zero. */
290 uint32_t QF; /* 0 or 1 */
291 uint32_t GE; /* cpsr[19:16] */
292 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
293 uint32_t btype; /* BTI branch type. spsr[11:10]. */
294 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
296 uint64_t elr_el[4]; /* AArch64 exception link regs */
297 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
299 /* System control coprocessor (cp15) */
300 struct {
301 uint32_t c0_cpuid;
302 union { /* Cache size selection */
303 struct {
304 uint64_t _unused_csselr0;
305 uint64_t csselr_ns;
306 uint64_t _unused_csselr1;
307 uint64_t csselr_s;
309 uint64_t csselr_el[4];
311 union { /* System control register. */
312 struct {
313 uint64_t _unused_sctlr;
314 uint64_t sctlr_ns;
315 uint64_t hsctlr;
316 uint64_t sctlr_s;
318 uint64_t sctlr_el[4];
320 uint64_t cpacr_el1; /* Architectural feature access control register */
321 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
322 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
323 uint64_t sder; /* Secure debug enable register. */
324 uint32_t nsacr; /* Non-secure access control register. */
325 union { /* MMU translation table base 0. */
326 struct {
327 uint64_t _unused_ttbr0_0;
328 uint64_t ttbr0_ns;
329 uint64_t _unused_ttbr0_1;
330 uint64_t ttbr0_s;
332 uint64_t ttbr0_el[4];
334 union { /* MMU translation table base 1. */
335 struct {
336 uint64_t _unused_ttbr1_0;
337 uint64_t ttbr1_ns;
338 uint64_t _unused_ttbr1_1;
339 uint64_t ttbr1_s;
341 uint64_t ttbr1_el[4];
343 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
344 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
345 /* MMU translation table base control. */
346 TCR tcr_el[4];
347 TCR vtcr_el2; /* Virtualization Translation Control. */
348 TCR vstcr_el2; /* Secure Virtualization Translation Control. */
349 uint32_t c2_data; /* MPU data cacheable bits. */
350 uint32_t c2_insn; /* MPU instruction cacheable bits. */
351 union { /* MMU domain access control register
352 * MPU write buffer control.
354 struct {
355 uint64_t dacr_ns;
356 uint64_t dacr_s;
358 struct {
359 uint64_t dacr32_el2;
362 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
363 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
364 uint64_t hcr_el2; /* Hypervisor configuration register */
365 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
366 uint64_t scr_el3; /* Secure configuration register. */
367 union { /* Fault status registers. */
368 struct {
369 uint64_t ifsr_ns;
370 uint64_t ifsr_s;
372 struct {
373 uint64_t ifsr32_el2;
376 union {
377 struct {
378 uint64_t _unused_dfsr;
379 uint64_t dfsr_ns;
380 uint64_t hsr;
381 uint64_t dfsr_s;
383 uint64_t esr_el[4];
385 uint32_t c6_region[8]; /* MPU base/size registers. */
386 union { /* Fault address registers. */
387 struct {
388 uint64_t _unused_far0;
389 #if HOST_BIG_ENDIAN
390 uint32_t ifar_ns;
391 uint32_t dfar_ns;
392 uint32_t ifar_s;
393 uint32_t dfar_s;
394 #else
395 uint32_t dfar_ns;
396 uint32_t ifar_ns;
397 uint32_t dfar_s;
398 uint32_t ifar_s;
399 #endif
400 uint64_t _unused_far3;
402 uint64_t far_el[4];
404 uint64_t hpfar_el2;
405 uint64_t hstr_el2;
406 union { /* Translation result. */
407 struct {
408 uint64_t _unused_par_0;
409 uint64_t par_ns;
410 uint64_t _unused_par_1;
411 uint64_t par_s;
413 uint64_t par_el[4];
416 uint32_t c9_insn; /* Cache lockdown registers. */
417 uint32_t c9_data;
418 uint64_t c9_pmcr; /* performance monitor control register */
419 uint64_t c9_pmcnten; /* perf monitor counter enables */
420 uint64_t c9_pmovsr; /* perf monitor overflow status */
421 uint64_t c9_pmuserenr; /* perf monitor user enable */
422 uint64_t c9_pmselr; /* perf monitor counter selection register */
423 uint64_t c9_pminten; /* perf monitor interrupt enables */
424 union { /* Memory attribute redirection */
425 struct {
426 #if HOST_BIG_ENDIAN
427 uint64_t _unused_mair_0;
428 uint32_t mair1_ns;
429 uint32_t mair0_ns;
430 uint64_t _unused_mair_1;
431 uint32_t mair1_s;
432 uint32_t mair0_s;
433 #else
434 uint64_t _unused_mair_0;
435 uint32_t mair0_ns;
436 uint32_t mair1_ns;
437 uint64_t _unused_mair_1;
438 uint32_t mair0_s;
439 uint32_t mair1_s;
440 #endif
442 uint64_t mair_el[4];
444 union { /* vector base address register */
445 struct {
446 uint64_t _unused_vbar;
447 uint64_t vbar_ns;
448 uint64_t hvbar;
449 uint64_t vbar_s;
451 uint64_t vbar_el[4];
453 uint32_t mvbar; /* (monitor) vector base address register */
454 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
455 struct { /* FCSE PID. */
456 uint32_t fcseidr_ns;
457 uint32_t fcseidr_s;
459 union { /* Context ID. */
460 struct {
461 uint64_t _unused_contextidr_0;
462 uint64_t contextidr_ns;
463 uint64_t _unused_contextidr_1;
464 uint64_t contextidr_s;
466 uint64_t contextidr_el[4];
468 union { /* User RW Thread register. */
469 struct {
470 uint64_t tpidrurw_ns;
471 uint64_t tpidrprw_ns;
472 uint64_t htpidr;
473 uint64_t _tpidr_el3;
475 uint64_t tpidr_el[4];
477 uint64_t tpidr2_el0;
478 /* The secure banks of these registers don't map anywhere */
479 uint64_t tpidrurw_s;
480 uint64_t tpidrprw_s;
481 uint64_t tpidruro_s;
483 union { /* User RO Thread register. */
484 uint64_t tpidruro_ns;
485 uint64_t tpidrro_el[1];
487 uint64_t c14_cntfrq; /* Counter Frequency register */
488 uint64_t c14_cntkctl; /* Timer Control register */
489 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
490 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
491 ARMGenericTimer c14_timer[NUM_GTIMERS];
492 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
493 uint32_t c15_ticonfig; /* TI925T configuration byte. */
494 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
495 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
496 uint32_t c15_threadid; /* TI debugger thread-ID. */
497 uint32_t c15_config_base_address; /* SCU base address. */
498 uint32_t c15_diagnostic; /* diagnostic register */
499 uint32_t c15_power_diagnostic;
500 uint32_t c15_power_control; /* power control */
501 uint64_t dbgbvr[16]; /* breakpoint value registers */
502 uint64_t dbgbcr[16]; /* breakpoint control registers */
503 uint64_t dbgwvr[16]; /* watchpoint value registers */
504 uint64_t dbgwcr[16]; /* watchpoint control registers */
505 uint64_t mdscr_el1;
506 uint64_t oslsr_el1; /* OS Lock Status */
507 uint64_t mdcr_el2;
508 uint64_t mdcr_el3;
509 /* Stores the architectural value of the counter *the last time it was
510 * updated* by pmccntr_op_start. Accesses should always be surrounded
511 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
512 * architecturally-correct value is being read/set.
514 uint64_t c15_ccnt;
515 /* Stores the delta between the architectural value and the underlying
516 * cycle count during normal operation. It is used to update c15_ccnt
517 * to be the correct architectural value before accesses. During
518 * accesses, c15_ccnt_delta contains the underlying count being used
519 * for the access, after which it reverts to the delta value in
520 * pmccntr_op_finish.
522 uint64_t c15_ccnt_delta;
523 uint64_t c14_pmevcntr[31];
524 uint64_t c14_pmevcntr_delta[31];
525 uint64_t c14_pmevtyper[31];
526 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
527 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
528 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
529 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
530 uint64_t gcr_el1;
531 uint64_t rgsr_el1;
533 /* Minimal RAS registers */
534 uint64_t disr_el1;
535 uint64_t vdisr_el2;
536 uint64_t vsesr_el2;
537 } cp15;
539 struct {
540 /* M profile has up to 4 stack pointers:
541 * a Main Stack Pointer and a Process Stack Pointer for each
542 * of the Secure and Non-Secure states. (If the CPU doesn't support
543 * the security extension then it has only two SPs.)
544 * In QEMU we always store the currently active SP in regs[13],
545 * and the non-active SP for the current security state in
546 * v7m.other_sp. The stack pointers for the inactive security state
547 * are stored in other_ss_msp and other_ss_psp.
548 * switch_v7m_security_state() is responsible for rearranging them
549 * when we change security state.
551 uint32_t other_sp;
552 uint32_t other_ss_msp;
553 uint32_t other_ss_psp;
554 uint32_t vecbase[M_REG_NUM_BANKS];
555 uint32_t basepri[M_REG_NUM_BANKS];
556 uint32_t control[M_REG_NUM_BANKS];
557 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
558 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
559 uint32_t hfsr; /* HardFault Status */
560 uint32_t dfsr; /* Debug Fault Status Register */
561 uint32_t sfsr; /* Secure Fault Status Register */
562 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
563 uint32_t bfar; /* BusFault Address */
564 uint32_t sfar; /* Secure Fault Address Register */
565 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
566 int exception;
567 uint32_t primask[M_REG_NUM_BANKS];
568 uint32_t faultmask[M_REG_NUM_BANKS];
569 uint32_t aircr; /* only holds r/w state if security extn implemented */
570 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
571 uint32_t csselr[M_REG_NUM_BANKS];
572 uint32_t scr[M_REG_NUM_BANKS];
573 uint32_t msplim[M_REG_NUM_BANKS];
574 uint32_t psplim[M_REG_NUM_BANKS];
575 uint32_t fpcar[M_REG_NUM_BANKS];
576 uint32_t fpccr[M_REG_NUM_BANKS];
577 uint32_t fpdscr[M_REG_NUM_BANKS];
578 uint32_t cpacr[M_REG_NUM_BANKS];
579 uint32_t nsacr;
580 uint32_t ltpsize;
581 uint32_t vpr;
582 } v7m;
584 /* Information associated with an exception about to be taken:
585 * code which raises an exception must set cs->exception_index and
586 * the relevant parts of this structure; the cpu_do_interrupt function
587 * will then set the guest-visible registers as part of the exception
588 * entry process.
590 struct {
591 uint32_t syndrome; /* AArch64 format syndrome register */
592 uint32_t fsr; /* AArch32 format fault status register info */
593 uint64_t vaddress; /* virtual addr associated with exception, if any */
594 uint32_t target_el; /* EL the exception should be targeted for */
595 /* If we implement EL2 we will also need to store information
596 * about the intermediate physical address for stage 2 faults.
598 } exception;
600 /* Information associated with an SError */
601 struct {
602 uint8_t pending;
603 uint8_t has_esr;
604 uint64_t esr;
605 } serror;
607 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
609 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
610 uint32_t irq_line_state;
612 /* Thumb-2 EE state. */
613 uint32_t teecr;
614 uint32_t teehbr;
616 /* VFP coprocessor state. */
617 struct {
618 ARMVectorReg zregs[32];
620 #ifdef TARGET_AARCH64
621 /* Store FFR as pregs[16] to make it easier to treat as any other. */
622 #define FFR_PRED_NUM 16
623 ARMPredicateReg pregs[17];
624 /* Scratch space for aa64 sve predicate temporary. */
625 ARMPredicateReg preg_tmp;
626 #endif
628 /* We store these fpcsr fields separately for convenience. */
629 uint32_t qc[4] QEMU_ALIGNED(16);
630 int vec_len;
631 int vec_stride;
633 uint32_t xregs[16];
635 /* Scratch space for aa32 neon expansion. */
636 uint32_t scratch[8];
638 /* There are a number of distinct float control structures:
640 * fp_status: is the "normal" fp status.
641 * fp_status_fp16: used for half-precision calculations
642 * standard_fp_status : the ARM "Standard FPSCR Value"
643 * standard_fp_status_fp16 : used for half-precision
644 * calculations with the ARM "Standard FPSCR Value"
646 * Half-precision operations are governed by a separate
647 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
648 * status structure to control this.
650 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
651 * round-to-nearest and is used by any operations (generally
652 * Neon) which the architecture defines as controlled by the
653 * standard FPSCR value rather than the FPSCR.
655 * The "standard FPSCR but for fp16 ops" is needed because
656 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
657 * using a fixed value for it.
659 * To avoid having to transfer exception bits around, we simply
660 * say that the FPSCR cumulative exception flags are the logical
661 * OR of the flags in the four fp statuses. This relies on the
662 * only thing which needs to read the exception flags being
663 * an explicit FPSCR read.
665 float_status fp_status;
666 float_status fp_status_f16;
667 float_status standard_fp_status;
668 float_status standard_fp_status_f16;
670 /* ZCR_EL[1-3] */
671 uint64_t zcr_el[4];
672 } vfp;
673 uint64_t exclusive_addr;
674 uint64_t exclusive_val;
675 uint64_t exclusive_high;
677 /* iwMMXt coprocessor state. */
678 struct {
679 uint64_t regs[16];
680 uint64_t val;
682 uint32_t cregs[16];
683 } iwmmxt;
685 #ifdef TARGET_AARCH64
686 struct {
687 ARMPACKey apia;
688 ARMPACKey apib;
689 ARMPACKey apda;
690 ARMPACKey apdb;
691 ARMPACKey apga;
692 } keys;
694 uint64_t scxtnum_el[4];
695 #endif
697 #if defined(CONFIG_USER_ONLY)
698 /* For usermode syscall translation. */
699 int eabi;
700 #endif
702 struct CPUBreakpoint *cpu_breakpoint[16];
703 struct CPUWatchpoint *cpu_watchpoint[16];
705 /* Fields up to this point are cleared by a CPU reset */
706 struct {} end_reset_fields;
708 /* Fields after this point are preserved across CPU reset. */
710 /* Internal CPU feature flags. */
711 uint64_t features;
713 /* PMSAv7 MPU */
714 struct {
715 uint32_t *drbar;
716 uint32_t *drsr;
717 uint32_t *dracr;
718 uint32_t rnr[M_REG_NUM_BANKS];
719 } pmsav7;
721 /* PMSAv8 MPU */
722 struct {
723 /* The PMSAv8 implementation also shares some PMSAv7 config
724 * and state:
725 * pmsav7.rnr (region number register)
726 * pmsav7_dregion (number of configured regions)
728 uint32_t *rbar[M_REG_NUM_BANKS];
729 uint32_t *rlar[M_REG_NUM_BANKS];
730 uint32_t mair0[M_REG_NUM_BANKS];
731 uint32_t mair1[M_REG_NUM_BANKS];
732 } pmsav8;
734 /* v8M SAU */
735 struct {
736 uint32_t *rbar;
737 uint32_t *rlar;
738 uint32_t rnr;
739 uint32_t ctrl;
740 } sau;
742 void *nvic;
743 const struct arm_boot_info *boot_info;
744 /* Store GICv3CPUState to access from this struct */
745 void *gicv3state;
747 #ifdef TARGET_TAGGED_ADDRESSES
748 /* Linux syscall tagged address support */
749 bool tagged_addr_enable;
750 #endif
751 } CPUARMState;
753 static inline void set_feature(CPUARMState *env, int feature)
755 env->features |= 1ULL << feature;
758 static inline void unset_feature(CPUARMState *env, int feature)
760 env->features &= ~(1ULL << feature);
764 * ARMELChangeHookFn:
765 * type of a function which can be registered via arm_register_el_change_hook()
766 * to get callbacks when the CPU changes its exception level or mode.
768 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
769 typedef struct ARMELChangeHook ARMELChangeHook;
770 struct ARMELChangeHook {
771 ARMELChangeHookFn *hook;
772 void *opaque;
773 QLIST_ENTRY(ARMELChangeHook) node;
776 /* These values map onto the return values for
777 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
778 typedef enum ARMPSCIState {
779 PSCI_ON = 0,
780 PSCI_OFF = 1,
781 PSCI_ON_PENDING = 2
782 } ARMPSCIState;
784 typedef struct ARMISARegisters ARMISARegisters;
787 * ARMCPU:
788 * @env: #CPUARMState
790 * An ARM CPU core.
792 struct ArchCPU {
793 /*< private >*/
794 CPUState parent_obj;
795 /*< public >*/
797 CPUNegativeOffsetState neg;
798 CPUARMState env;
800 /* Coprocessor information */
801 GHashTable *cp_regs;
802 /* For marshalling (mostly coprocessor) register state between the
803 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
804 * we use these arrays.
806 /* List of register indexes managed via these arrays; (full KVM style
807 * 64 bit indexes, not CPRegInfo 32 bit indexes)
809 uint64_t *cpreg_indexes;
810 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
811 uint64_t *cpreg_values;
812 /* Length of the indexes, values, reset_values arrays */
813 int32_t cpreg_array_len;
814 /* These are used only for migration: incoming data arrives in
815 * these fields and is sanity checked in post_load before copying
816 * to the working data structures above.
818 uint64_t *cpreg_vmstate_indexes;
819 uint64_t *cpreg_vmstate_values;
820 int32_t cpreg_vmstate_array_len;
822 DynamicGDBXMLInfo dyn_sysreg_xml;
823 DynamicGDBXMLInfo dyn_svereg_xml;
825 /* Timers used by the generic (architected) timer */
826 QEMUTimer *gt_timer[NUM_GTIMERS];
828 * Timer used by the PMU. Its state is restored after migration by
829 * pmu_op_finish() - it does not need other handling during migration
831 QEMUTimer *pmu_timer;
832 /* GPIO outputs for generic timer */
833 qemu_irq gt_timer_outputs[NUM_GTIMERS];
834 /* GPIO output for GICv3 maintenance interrupt signal */
835 qemu_irq gicv3_maintenance_interrupt;
836 /* GPIO output for the PMU interrupt */
837 qemu_irq pmu_interrupt;
839 /* MemoryRegion to use for secure physical accesses */
840 MemoryRegion *secure_memory;
842 /* MemoryRegion to use for allocation tag accesses */
843 MemoryRegion *tag_memory;
844 MemoryRegion *secure_tag_memory;
846 /* For v8M, pointer to the IDAU interface provided by board/SoC */
847 Object *idau;
849 /* 'compatible' string for this CPU for Linux device trees */
850 const char *dtb_compatible;
852 /* PSCI version for this CPU
853 * Bits[31:16] = Major Version
854 * Bits[15:0] = Minor Version
856 uint32_t psci_version;
858 /* Current power state, access guarded by BQL */
859 ARMPSCIState power_state;
861 /* CPU has virtualization extension */
862 bool has_el2;
863 /* CPU has security extension */
864 bool has_el3;
865 /* CPU has PMU (Performance Monitor Unit) */
866 bool has_pmu;
867 /* CPU has VFP */
868 bool has_vfp;
869 /* CPU has Neon */
870 bool has_neon;
871 /* CPU has M-profile DSP extension */
872 bool has_dsp;
874 /* CPU has memory protection unit */
875 bool has_mpu;
876 /* PMSAv7 MPU number of supported regions */
877 uint32_t pmsav7_dregion;
878 /* v8M SAU number of supported regions */
879 uint32_t sau_sregion;
881 /* PSCI conduit used to invoke PSCI methods
882 * 0 - disabled, 1 - smc, 2 - hvc
884 uint32_t psci_conduit;
886 /* For v8M, initial value of the Secure VTOR */
887 uint32_t init_svtor;
888 /* For v8M, initial value of the Non-secure VTOR */
889 uint32_t init_nsvtor;
891 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
892 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
894 uint32_t kvm_target;
896 /* KVM init features for this CPU */
897 uint32_t kvm_init_features[7];
899 /* KVM CPU state */
901 /* KVM virtual time adjustment */
902 bool kvm_adjvtime;
903 bool kvm_vtime_dirty;
904 uint64_t kvm_vtime;
906 /* KVM steal time */
907 OnOffAuto kvm_steal_time;
909 /* Uniprocessor system with MP extensions */
910 bool mp_is_up;
912 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
913 * and the probe failed (so we need to report the error in realize)
915 bool host_cpu_probe_failed;
917 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
918 * register.
920 int32_t core_count;
922 /* The instance init functions for implementation-specific subclasses
923 * set these fields to specify the implementation-dependent values of
924 * various constant registers and reset values of non-constant
925 * registers.
926 * Some of these might become QOM properties eventually.
927 * Field names match the official register names as defined in the
928 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
929 * is used for reset values of non-constant registers; no reset_
930 * prefix means a constant register.
931 * Some of these registers are split out into a substructure that
932 * is shared with the translators to control the ISA.
934 * Note that if you add an ID register to the ARMISARegisters struct
935 * you need to also update the 32-bit and 64-bit versions of the
936 * kvm_arm_get_host_cpu_features() function to correctly populate the
937 * field by reading the value from the KVM vCPU.
939 struct ARMISARegisters {
940 uint32_t id_isar0;
941 uint32_t id_isar1;
942 uint32_t id_isar2;
943 uint32_t id_isar3;
944 uint32_t id_isar4;
945 uint32_t id_isar5;
946 uint32_t id_isar6;
947 uint32_t id_mmfr0;
948 uint32_t id_mmfr1;
949 uint32_t id_mmfr2;
950 uint32_t id_mmfr3;
951 uint32_t id_mmfr4;
952 uint32_t id_pfr0;
953 uint32_t id_pfr1;
954 uint32_t id_pfr2;
955 uint32_t mvfr0;
956 uint32_t mvfr1;
957 uint32_t mvfr2;
958 uint32_t id_dfr0;
959 uint32_t dbgdidr;
960 uint64_t id_aa64isar0;
961 uint64_t id_aa64isar1;
962 uint64_t id_aa64pfr0;
963 uint64_t id_aa64pfr1;
964 uint64_t id_aa64mmfr0;
965 uint64_t id_aa64mmfr1;
966 uint64_t id_aa64mmfr2;
967 uint64_t id_aa64dfr0;
968 uint64_t id_aa64dfr1;
969 uint64_t id_aa64zfr0;
970 uint64_t id_aa64smfr0;
971 uint64_t reset_pmcr_el0;
972 } isar;
973 uint64_t midr;
974 uint32_t revidr;
975 uint32_t reset_fpsid;
976 uint64_t ctr;
977 uint32_t reset_sctlr;
978 uint64_t pmceid0;
979 uint64_t pmceid1;
980 uint32_t id_afr0;
981 uint64_t id_aa64afr0;
982 uint64_t id_aa64afr1;
983 uint64_t clidr;
984 uint64_t mp_affinity; /* MP ID without feature bits */
985 /* The elements of this array are the CCSIDR values for each cache,
986 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
988 uint64_t ccsidr[16];
989 uint64_t reset_cbar;
990 uint32_t reset_auxcr;
991 bool reset_hivecs;
994 * Intermediate values used during property parsing.
995 * Once finalized, the values should be read from ID_AA64*.
997 bool prop_pauth;
998 bool prop_pauth_impdef;
999 bool prop_lpa2;
1001 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1002 uint32_t dcz_blocksize;
1003 uint64_t rvbar_prop; /* Property/input signals. */
1005 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1006 int gic_num_lrs; /* number of list registers */
1007 int gic_vpribits; /* number of virtual priority bits */
1008 int gic_vprebits; /* number of virtual preemption bits */
1009 int gic_pribits; /* number of physical priority bits */
1011 /* Whether the cfgend input is high (i.e. this CPU should reset into
1012 * big-endian mode). This setting isn't used directly: instead it modifies
1013 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1014 * architecture version.
1016 bool cfgend;
1018 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1019 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1021 int32_t node_id; /* NUMA node this CPU belongs to */
1023 /* Used to synchronize KVM and QEMU in-kernel device levels */
1024 uint8_t device_irq_level;
1026 /* Used to set the maximum vector length the cpu will support. */
1027 uint32_t sve_max_vq;
1029 #ifdef CONFIG_USER_ONLY
1030 /* Used to set the default vector length at process start. */
1031 uint32_t sve_default_vq;
1032 #endif
1035 * In sve_vq_map each set bit is a supported vector length of
1036 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1037 * length in quadwords.
1039 * While processing properties during initialization, corresponding
1040 * sve_vq_init bits are set for bits in sve_vq_map that have been
1041 * set by properties.
1043 * Bits set in sve_vq_supported represent valid vector lengths for
1044 * the CPU type.
1046 uint32_t sve_vq_map;
1047 uint32_t sve_vq_init;
1048 uint32_t sve_vq_supported;
1050 /* Generic timer counter frequency, in Hz */
1051 uint64_t gt_cntfrq_hz;
1054 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1056 void arm_cpu_post_init(Object *obj);
1058 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1060 #ifndef CONFIG_USER_ONLY
1061 extern const VMStateDescription vmstate_arm_cpu;
1063 void arm_cpu_do_interrupt(CPUState *cpu);
1064 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1065 #endif /* !CONFIG_USER_ONLY */
1067 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1068 MemTxAttrs *attrs);
1070 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1071 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1074 * Helpers to dynamically generates XML descriptions of the sysregs
1075 * and SVE registers. Returns the number of registers in each set.
1077 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1078 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1080 /* Returns the dynamically generated XML for the gdb stub.
1081 * Returns a pointer to the XML contents for the specified XML file or NULL
1082 * if the XML name doesn't match the predefined one.
1084 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1086 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1087 int cpuid, void *opaque);
1088 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1089 int cpuid, void *opaque);
1091 #ifdef TARGET_AARCH64
1092 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1093 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1094 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1095 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1096 int new_el, bool el0_a64);
1097 void aarch64_add_sve_properties(Object *obj);
1098 void aarch64_add_pauth_properties(Object *obj);
1101 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1102 * The byte at offset i from the start of the in-memory representation contains
1103 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1104 * lowest offsets are stored in the lowest memory addresses, then that nearly
1105 * matches QEMU's representation, which is to use an array of host-endian
1106 * uint64_t's, where the lower offsets are at the lower indices. To complete
1107 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1109 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1111 #if HOST_BIG_ENDIAN
1112 int i;
1114 for (i = 0; i < nr; ++i) {
1115 dst[i] = bswap64(src[i]);
1118 return dst;
1119 #else
1120 return src;
1121 #endif
1124 #else
1125 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1126 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1127 int n, bool a)
1129 static inline void aarch64_add_sve_properties(Object *obj) { }
1130 #endif
1132 void aarch64_sync_32_to_64(CPUARMState *env);
1133 void aarch64_sync_64_to_32(CPUARMState *env);
1135 int fp_exception_el(CPUARMState *env, int cur_el);
1136 int sve_exception_el(CPUARMState *env, int cur_el);
1139 * sve_vqm1_for_el:
1140 * @env: CPUARMState
1141 * @el: exception level
1143 * Compute the current SVE vector length for @el, in units of
1144 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1146 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1148 static inline bool is_a64(CPUARMState *env)
1150 return env->aarch64;
1154 * pmu_op_start/finish
1155 * @env: CPUARMState
1157 * Convert all PMU counters between their delta form (the typical mode when
1158 * they are enabled) and the guest-visible values. These two calls must
1159 * surround any action which might affect the counters.
1161 void pmu_op_start(CPUARMState *env);
1162 void pmu_op_finish(CPUARMState *env);
1165 * Called when a PMU counter is due to overflow
1167 void arm_pmu_timer_cb(void *opaque);
1170 * Functions to register as EL change hooks for PMU mode filtering
1172 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1173 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1176 * pmu_init
1177 * @cpu: ARMCPU
1179 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1180 * for the current configuration
1182 void pmu_init(ARMCPU *cpu);
1184 /* SCTLR bit meanings. Several bits have been reused in newer
1185 * versions of the architecture; in that case we define constants
1186 * for both old and new bit meanings. Code which tests against those
1187 * bits should probably check or otherwise arrange that the CPU
1188 * is the architectural version it expects.
1190 #define SCTLR_M (1U << 0)
1191 #define SCTLR_A (1U << 1)
1192 #define SCTLR_C (1U << 2)
1193 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1194 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1195 #define SCTLR_SA (1U << 3) /* AArch64 only */
1196 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1197 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1198 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1199 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1200 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1201 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1202 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1203 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1204 #define SCTLR_ITD (1U << 7) /* v8 onward */
1205 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1206 #define SCTLR_SED (1U << 8) /* v8 onward */
1207 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1208 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1209 #define SCTLR_F (1U << 10) /* up to v6 */
1210 #define SCTLR_SW (1U << 10) /* v7 */
1211 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1212 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1213 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1214 #define SCTLR_I (1U << 12)
1215 #define SCTLR_V (1U << 13) /* AArch32 only */
1216 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1217 #define SCTLR_RR (1U << 14) /* up to v7 */
1218 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1219 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1220 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1221 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1222 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1223 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1224 #define SCTLR_BR (1U << 17) /* PMSA only */
1225 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1226 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1227 #define SCTLR_WXN (1U << 19)
1228 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1229 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1230 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1231 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1232 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1233 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1234 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1235 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1236 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1237 #define SCTLR_VE (1U << 24) /* up to v7 */
1238 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1239 #define SCTLR_EE (1U << 25)
1240 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1241 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1242 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1243 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1244 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1245 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1246 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1247 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1248 #define SCTLR_TE (1U << 30) /* AArch32 only */
1249 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1250 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1251 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1252 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1253 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1254 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1255 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1256 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1257 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1258 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1259 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1260 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1261 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1262 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1263 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1264 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1265 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1266 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1267 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1268 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1269 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1270 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1271 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1272 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1273 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
1275 /* Bit definitions for CPACR (AArch32 only) */
1276 FIELD(CPACR, CP10, 20, 2)
1277 FIELD(CPACR, CP11, 22, 2)
1278 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1279 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1280 FIELD(CPACR, ASEDIS, 31, 1)
1282 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1283 FIELD(CPACR_EL1, ZEN, 16, 2)
1284 FIELD(CPACR_EL1, FPEN, 20, 2)
1285 FIELD(CPACR_EL1, SMEN, 24, 2)
1286 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1288 /* Bit definitions for HCPTR (AArch32 only) */
1289 FIELD(HCPTR, TCP10, 10, 1)
1290 FIELD(HCPTR, TCP11, 11, 1)
1291 FIELD(HCPTR, TASE, 15, 1)
1292 FIELD(HCPTR, TTA, 20, 1)
1293 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1294 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1296 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1297 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1298 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1299 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1300 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1301 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1302 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1303 FIELD(CPTR_EL2, TTA, 28, 1)
1304 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1305 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1307 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1308 FIELD(CPTR_EL3, EZ, 8, 1)
1309 FIELD(CPTR_EL3, TFP, 10, 1)
1310 FIELD(CPTR_EL3, ESM, 12, 1)
1311 FIELD(CPTR_EL3, TTA, 20, 1)
1312 FIELD(CPTR_EL3, TAM, 30, 1)
1313 FIELD(CPTR_EL3, TCPAC, 31, 1)
1315 #define MDCR_EPMAD (1U << 21)
1316 #define MDCR_EDAD (1U << 20)
1317 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1318 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1319 #define MDCR_SDD (1U << 16)
1320 #define MDCR_SPD (3U << 14)
1321 #define MDCR_TDRA (1U << 11)
1322 #define MDCR_TDOSA (1U << 10)
1323 #define MDCR_TDA (1U << 9)
1324 #define MDCR_TDE (1U << 8)
1325 #define MDCR_HPME (1U << 7)
1326 #define MDCR_TPM (1U << 6)
1327 #define MDCR_TPMCR (1U << 5)
1328 #define MDCR_HPMN (0x1fU)
1330 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1331 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1333 #define CPSR_M (0x1fU)
1334 #define CPSR_T (1U << 5)
1335 #define CPSR_F (1U << 6)
1336 #define CPSR_I (1U << 7)
1337 #define CPSR_A (1U << 8)
1338 #define CPSR_E (1U << 9)
1339 #define CPSR_IT_2_7 (0xfc00U)
1340 #define CPSR_GE (0xfU << 16)
1341 #define CPSR_IL (1U << 20)
1342 #define CPSR_DIT (1U << 21)
1343 #define CPSR_PAN (1U << 22)
1344 #define CPSR_SSBS (1U << 23)
1345 #define CPSR_J (1U << 24)
1346 #define CPSR_IT_0_1 (3U << 25)
1347 #define CPSR_Q (1U << 27)
1348 #define CPSR_V (1U << 28)
1349 #define CPSR_C (1U << 29)
1350 #define CPSR_Z (1U << 30)
1351 #define CPSR_N (1U << 31)
1352 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1353 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1355 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1356 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1357 | CPSR_NZCV)
1358 /* Bits writable in user mode. */
1359 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1360 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1361 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1363 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1364 #define XPSR_EXCP 0x1ffU
1365 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1366 #define XPSR_IT_2_7 CPSR_IT_2_7
1367 #define XPSR_GE CPSR_GE
1368 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1369 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1370 #define XPSR_IT_0_1 CPSR_IT_0_1
1371 #define XPSR_Q CPSR_Q
1372 #define XPSR_V CPSR_V
1373 #define XPSR_C CPSR_C
1374 #define XPSR_Z CPSR_Z
1375 #define XPSR_N CPSR_N
1376 #define XPSR_NZCV CPSR_NZCV
1377 #define XPSR_IT CPSR_IT
1379 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1380 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1381 #define TTBCR_PD0 (1U << 4)
1382 #define TTBCR_PD1 (1U << 5)
1383 #define TTBCR_EPD0 (1U << 7)
1384 #define TTBCR_IRGN0 (3U << 8)
1385 #define TTBCR_ORGN0 (3U << 10)
1386 #define TTBCR_SH0 (3U << 12)
1387 #define TTBCR_T1SZ (3U << 16)
1388 #define TTBCR_A1 (1U << 22)
1389 #define TTBCR_EPD1 (1U << 23)
1390 #define TTBCR_IRGN1 (3U << 24)
1391 #define TTBCR_ORGN1 (3U << 26)
1392 #define TTBCR_SH1 (1U << 28)
1393 #define TTBCR_EAE (1U << 31)
1395 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1396 * Only these are valid when in AArch64 mode; in
1397 * AArch32 mode SPSRs are basically CPSR-format.
1399 #define PSTATE_SP (1U)
1400 #define PSTATE_M (0xFU)
1401 #define PSTATE_nRW (1U << 4)
1402 #define PSTATE_F (1U << 6)
1403 #define PSTATE_I (1U << 7)
1404 #define PSTATE_A (1U << 8)
1405 #define PSTATE_D (1U << 9)
1406 #define PSTATE_BTYPE (3U << 10)
1407 #define PSTATE_SSBS (1U << 12)
1408 #define PSTATE_IL (1U << 20)
1409 #define PSTATE_SS (1U << 21)
1410 #define PSTATE_PAN (1U << 22)
1411 #define PSTATE_UAO (1U << 23)
1412 #define PSTATE_DIT (1U << 24)
1413 #define PSTATE_TCO (1U << 25)
1414 #define PSTATE_V (1U << 28)
1415 #define PSTATE_C (1U << 29)
1416 #define PSTATE_Z (1U << 30)
1417 #define PSTATE_N (1U << 31)
1418 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1419 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1420 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1421 /* Mode values for AArch64 */
1422 #define PSTATE_MODE_EL3h 13
1423 #define PSTATE_MODE_EL3t 12
1424 #define PSTATE_MODE_EL2h 9
1425 #define PSTATE_MODE_EL2t 8
1426 #define PSTATE_MODE_EL1h 5
1427 #define PSTATE_MODE_EL1t 4
1428 #define PSTATE_MODE_EL0t 0
1430 /* Write a new value to v7m.exception, thus transitioning into or out
1431 * of Handler mode; this may result in a change of active stack pointer.
1433 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1435 /* Map EL and handler into a PSTATE_MODE. */
1436 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1438 return (el << 2) | handler;
1441 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1442 * interprocessing, so we don't attempt to sync with the cpsr state used by
1443 * the 32 bit decoder.
1445 static inline uint32_t pstate_read(CPUARMState *env)
1447 int ZF;
1449 ZF = (env->ZF == 0);
1450 return (env->NF & 0x80000000) | (ZF << 30)
1451 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1452 | env->pstate | env->daif | (env->btype << 10);
1455 static inline void pstate_write(CPUARMState *env, uint32_t val)
1457 env->ZF = (~val) & PSTATE_Z;
1458 env->NF = val;
1459 env->CF = (val >> 29) & 1;
1460 env->VF = (val << 3) & 0x80000000;
1461 env->daif = val & PSTATE_DAIF;
1462 env->btype = (val >> 10) & 3;
1463 env->pstate = val & ~CACHED_PSTATE_BITS;
1466 /* Return the current CPSR value. */
1467 uint32_t cpsr_read(CPUARMState *env);
1469 typedef enum CPSRWriteType {
1470 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1471 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1472 CPSRWriteRaw = 2,
1473 /* trust values, no reg bank switch, no hflags rebuild */
1474 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1475 } CPSRWriteType;
1478 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1479 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1480 * correspond to TB flags bits cached in the hflags, unless @write_type
1481 * is CPSRWriteRaw.
1483 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1484 CPSRWriteType write_type);
1486 /* Return the current xPSR value. */
1487 static inline uint32_t xpsr_read(CPUARMState *env)
1489 int ZF;
1490 ZF = (env->ZF == 0);
1491 return (env->NF & 0x80000000) | (ZF << 30)
1492 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1493 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1494 | ((env->condexec_bits & 0xfc) << 8)
1495 | (env->GE << 16)
1496 | env->v7m.exception;
1499 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1500 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1502 if (mask & XPSR_NZCV) {
1503 env->ZF = (~val) & XPSR_Z;
1504 env->NF = val;
1505 env->CF = (val >> 29) & 1;
1506 env->VF = (val << 3) & 0x80000000;
1508 if (mask & XPSR_Q) {
1509 env->QF = ((val & XPSR_Q) != 0);
1511 if (mask & XPSR_GE) {
1512 env->GE = (val & XPSR_GE) >> 16;
1514 #ifndef CONFIG_USER_ONLY
1515 if (mask & XPSR_T) {
1516 env->thumb = ((val & XPSR_T) != 0);
1518 if (mask & XPSR_IT_0_1) {
1519 env->condexec_bits &= ~3;
1520 env->condexec_bits |= (val >> 25) & 3;
1522 if (mask & XPSR_IT_2_7) {
1523 env->condexec_bits &= 3;
1524 env->condexec_bits |= (val >> 8) & 0xfc;
1526 if (mask & XPSR_EXCP) {
1527 /* Note that this only happens on exception exit */
1528 write_v7m_exception(env, val & XPSR_EXCP);
1530 #endif
1533 #define HCR_VM (1ULL << 0)
1534 #define HCR_SWIO (1ULL << 1)
1535 #define HCR_PTW (1ULL << 2)
1536 #define HCR_FMO (1ULL << 3)
1537 #define HCR_IMO (1ULL << 4)
1538 #define HCR_AMO (1ULL << 5)
1539 #define HCR_VF (1ULL << 6)
1540 #define HCR_VI (1ULL << 7)
1541 #define HCR_VSE (1ULL << 8)
1542 #define HCR_FB (1ULL << 9)
1543 #define HCR_BSU_MASK (3ULL << 10)
1544 #define HCR_DC (1ULL << 12)
1545 #define HCR_TWI (1ULL << 13)
1546 #define HCR_TWE (1ULL << 14)
1547 #define HCR_TID0 (1ULL << 15)
1548 #define HCR_TID1 (1ULL << 16)
1549 #define HCR_TID2 (1ULL << 17)
1550 #define HCR_TID3 (1ULL << 18)
1551 #define HCR_TSC (1ULL << 19)
1552 #define HCR_TIDCP (1ULL << 20)
1553 #define HCR_TACR (1ULL << 21)
1554 #define HCR_TSW (1ULL << 22)
1555 #define HCR_TPCP (1ULL << 23)
1556 #define HCR_TPU (1ULL << 24)
1557 #define HCR_TTLB (1ULL << 25)
1558 #define HCR_TVM (1ULL << 26)
1559 #define HCR_TGE (1ULL << 27)
1560 #define HCR_TDZ (1ULL << 28)
1561 #define HCR_HCD (1ULL << 29)
1562 #define HCR_TRVM (1ULL << 30)
1563 #define HCR_RW (1ULL << 31)
1564 #define HCR_CD (1ULL << 32)
1565 #define HCR_ID (1ULL << 33)
1566 #define HCR_E2H (1ULL << 34)
1567 #define HCR_TLOR (1ULL << 35)
1568 #define HCR_TERR (1ULL << 36)
1569 #define HCR_TEA (1ULL << 37)
1570 #define HCR_MIOCNCE (1ULL << 38)
1571 /* RES0 bit 39 */
1572 #define HCR_APK (1ULL << 40)
1573 #define HCR_API (1ULL << 41)
1574 #define HCR_NV (1ULL << 42)
1575 #define HCR_NV1 (1ULL << 43)
1576 #define HCR_AT (1ULL << 44)
1577 #define HCR_NV2 (1ULL << 45)
1578 #define HCR_FWB (1ULL << 46)
1579 #define HCR_FIEN (1ULL << 47)
1580 /* RES0 bit 48 */
1581 #define HCR_TID4 (1ULL << 49)
1582 #define HCR_TICAB (1ULL << 50)
1583 #define HCR_AMVOFFEN (1ULL << 51)
1584 #define HCR_TOCU (1ULL << 52)
1585 #define HCR_ENSCXT (1ULL << 53)
1586 #define HCR_TTLBIS (1ULL << 54)
1587 #define HCR_TTLBOS (1ULL << 55)
1588 #define HCR_ATA (1ULL << 56)
1589 #define HCR_DCT (1ULL << 57)
1590 #define HCR_TID5 (1ULL << 58)
1591 #define HCR_TWEDEN (1ULL << 59)
1592 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
1594 #define HCRX_ENAS0 (1ULL << 0)
1595 #define HCRX_ENALS (1ULL << 1)
1596 #define HCRX_ENASR (1ULL << 2)
1597 #define HCRX_FNXS (1ULL << 3)
1598 #define HCRX_FGTNXS (1ULL << 4)
1599 #define HCRX_SMPME (1ULL << 5)
1600 #define HCRX_TALLINT (1ULL << 6)
1601 #define HCRX_VINMI (1ULL << 7)
1602 #define HCRX_VFNMI (1ULL << 8)
1603 #define HCRX_CMOW (1ULL << 9)
1604 #define HCRX_MCE2 (1ULL << 10)
1605 #define HCRX_MSCEN (1ULL << 11)
1607 #define HPFAR_NS (1ULL << 63)
1609 #define SCR_NS (1U << 0)
1610 #define SCR_IRQ (1U << 1)
1611 #define SCR_FIQ (1U << 2)
1612 #define SCR_EA (1U << 3)
1613 #define SCR_FW (1U << 4)
1614 #define SCR_AW (1U << 5)
1615 #define SCR_NET (1U << 6)
1616 #define SCR_SMD (1U << 7)
1617 #define SCR_HCE (1U << 8)
1618 #define SCR_SIF (1U << 9)
1619 #define SCR_RW (1U << 10)
1620 #define SCR_ST (1U << 11)
1621 #define SCR_TWI (1U << 12)
1622 #define SCR_TWE (1U << 13)
1623 #define SCR_TLOR (1U << 14)
1624 #define SCR_TERR (1U << 15)
1625 #define SCR_APK (1U << 16)
1626 #define SCR_API (1U << 17)
1627 #define SCR_EEL2 (1U << 18)
1628 #define SCR_EASE (1U << 19)
1629 #define SCR_NMEA (1U << 20)
1630 #define SCR_FIEN (1U << 21)
1631 #define SCR_ENSCXT (1U << 25)
1632 #define SCR_ATA (1U << 26)
1633 #define SCR_FGTEN (1U << 27)
1634 #define SCR_ECVEN (1U << 28)
1635 #define SCR_TWEDEN (1U << 29)
1636 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1637 #define SCR_TME (1ULL << 34)
1638 #define SCR_AMVOFFEN (1ULL << 35)
1639 #define SCR_ENAS0 (1ULL << 36)
1640 #define SCR_ADEN (1ULL << 37)
1641 #define SCR_HXEN (1ULL << 38)
1642 #define SCR_TRNDR (1ULL << 40)
1643 #define SCR_ENTP2 (1ULL << 41)
1644 #define SCR_GPF (1ULL << 48)
1646 #define HSTR_TTEE (1 << 16)
1647 #define HSTR_TJDBX (1 << 17)
1649 /* Return the current FPSCR value. */
1650 uint32_t vfp_get_fpscr(CPUARMState *env);
1651 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1653 /* FPCR, Floating Point Control Register
1654 * FPSR, Floating Poiht Status Register
1656 * For A64 the FPSCR is split into two logically distinct registers,
1657 * FPCR and FPSR. However since they still use non-overlapping bits
1658 * we store the underlying state in fpscr and just mask on read/write.
1660 #define FPSR_MASK 0xf800009f
1661 #define FPCR_MASK 0x07ff9f00
1663 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1664 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1665 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1666 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1667 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1668 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1669 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1670 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1671 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1672 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1673 #define FPCR_AHP (1 << 26) /* Alternative half-precision */
1674 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1675 #define FPCR_V (1 << 28) /* FP overflow flag */
1676 #define FPCR_C (1 << 29) /* FP carry flag */
1677 #define FPCR_Z (1 << 30) /* FP zero flag */
1678 #define FPCR_N (1 << 31) /* FP negative flag */
1680 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1681 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1682 #define FPCR_LTPSIZE_LENGTH 3
1684 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1685 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1687 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1689 return vfp_get_fpscr(env) & FPSR_MASK;
1692 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1694 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1695 vfp_set_fpscr(env, new_fpscr);
1698 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1700 return vfp_get_fpscr(env) & FPCR_MASK;
1703 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1705 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1706 vfp_set_fpscr(env, new_fpscr);
1709 enum arm_cpu_mode {
1710 ARM_CPU_MODE_USR = 0x10,
1711 ARM_CPU_MODE_FIQ = 0x11,
1712 ARM_CPU_MODE_IRQ = 0x12,
1713 ARM_CPU_MODE_SVC = 0x13,
1714 ARM_CPU_MODE_MON = 0x16,
1715 ARM_CPU_MODE_ABT = 0x17,
1716 ARM_CPU_MODE_HYP = 0x1a,
1717 ARM_CPU_MODE_UND = 0x1b,
1718 ARM_CPU_MODE_SYS = 0x1f
1721 /* VFP system registers. */
1722 #define ARM_VFP_FPSID 0
1723 #define ARM_VFP_FPSCR 1
1724 #define ARM_VFP_MVFR2 5
1725 #define ARM_VFP_MVFR1 6
1726 #define ARM_VFP_MVFR0 7
1727 #define ARM_VFP_FPEXC 8
1728 #define ARM_VFP_FPINST 9
1729 #define ARM_VFP_FPINST2 10
1730 /* These ones are M-profile only */
1731 #define ARM_VFP_FPSCR_NZCVQC 2
1732 #define ARM_VFP_VPR 12
1733 #define ARM_VFP_P0 13
1734 #define ARM_VFP_FPCXT_NS 14
1735 #define ARM_VFP_FPCXT_S 15
1737 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1738 #define QEMU_VFP_FPSCR_NZCV 0xffff
1740 /* iwMMXt coprocessor control registers. */
1741 #define ARM_IWMMXT_wCID 0
1742 #define ARM_IWMMXT_wCon 1
1743 #define ARM_IWMMXT_wCSSF 2
1744 #define ARM_IWMMXT_wCASF 3
1745 #define ARM_IWMMXT_wCGR0 8
1746 #define ARM_IWMMXT_wCGR1 9
1747 #define ARM_IWMMXT_wCGR2 10
1748 #define ARM_IWMMXT_wCGR3 11
1750 /* V7M CCR bits */
1751 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1752 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1753 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1754 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1755 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1756 FIELD(V7M_CCR, STKALIGN, 9, 1)
1757 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1758 FIELD(V7M_CCR, DC, 16, 1)
1759 FIELD(V7M_CCR, IC, 17, 1)
1760 FIELD(V7M_CCR, BP, 18, 1)
1761 FIELD(V7M_CCR, LOB, 19, 1)
1762 FIELD(V7M_CCR, TRD, 20, 1)
1764 /* V7M SCR bits */
1765 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1766 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1767 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1768 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1770 /* V7M AIRCR bits */
1771 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1772 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1773 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1774 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1775 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1776 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1777 FIELD(V7M_AIRCR, PRIS, 14, 1)
1778 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1779 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1781 /* V7M CFSR bits for MMFSR */
1782 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1783 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1784 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1785 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1786 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1787 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1789 /* V7M CFSR bits for BFSR */
1790 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1791 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1792 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1793 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1794 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1795 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1796 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1798 /* V7M CFSR bits for UFSR */
1799 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1800 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1801 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1802 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1803 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1804 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1805 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1807 /* V7M CFSR bit masks covering all of the subregister bits */
1808 FIELD(V7M_CFSR, MMFSR, 0, 8)
1809 FIELD(V7M_CFSR, BFSR, 8, 8)
1810 FIELD(V7M_CFSR, UFSR, 16, 16)
1812 /* V7M HFSR bits */
1813 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1814 FIELD(V7M_HFSR, FORCED, 30, 1)
1815 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1817 /* V7M DFSR bits */
1818 FIELD(V7M_DFSR, HALTED, 0, 1)
1819 FIELD(V7M_DFSR, BKPT, 1, 1)
1820 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1821 FIELD(V7M_DFSR, VCATCH, 3, 1)
1822 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1824 /* V7M SFSR bits */
1825 FIELD(V7M_SFSR, INVEP, 0, 1)
1826 FIELD(V7M_SFSR, INVIS, 1, 1)
1827 FIELD(V7M_SFSR, INVER, 2, 1)
1828 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1829 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1830 FIELD(V7M_SFSR, LSPERR, 5, 1)
1831 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1832 FIELD(V7M_SFSR, LSERR, 7, 1)
1834 /* v7M MPU_CTRL bits */
1835 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1836 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1837 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1839 /* v7M CLIDR bits */
1840 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1841 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1842 FIELD(V7M_CLIDR, LOC, 24, 3)
1843 FIELD(V7M_CLIDR, LOUU, 27, 3)
1844 FIELD(V7M_CLIDR, ICB, 30, 2)
1846 FIELD(V7M_CSSELR, IND, 0, 1)
1847 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1848 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1849 * define a mask for this and check that it doesn't permit running off
1850 * the end of the array.
1852 FIELD(V7M_CSSELR, INDEX, 0, 4)
1854 /* v7M FPCCR bits */
1855 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1856 FIELD(V7M_FPCCR, USER, 1, 1)
1857 FIELD(V7M_FPCCR, S, 2, 1)
1858 FIELD(V7M_FPCCR, THREAD, 3, 1)
1859 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1860 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1861 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1862 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1863 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1864 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1865 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1866 FIELD(V7M_FPCCR, RES0, 11, 15)
1867 FIELD(V7M_FPCCR, TS, 26, 1)
1868 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1869 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1870 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1871 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1872 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1873 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1874 #define R_V7M_FPCCR_BANKED_MASK \
1875 (R_V7M_FPCCR_LSPACT_MASK | \
1876 R_V7M_FPCCR_USER_MASK | \
1877 R_V7M_FPCCR_THREAD_MASK | \
1878 R_V7M_FPCCR_MMRDY_MASK | \
1879 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1880 R_V7M_FPCCR_UFRDY_MASK | \
1881 R_V7M_FPCCR_ASPEN_MASK)
1883 /* v7M VPR bits */
1884 FIELD(V7M_VPR, P0, 0, 16)
1885 FIELD(V7M_VPR, MASK01, 16, 4)
1886 FIELD(V7M_VPR, MASK23, 20, 4)
1889 * System register ID fields.
1891 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1892 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1893 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1894 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1895 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1896 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1897 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1898 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1899 FIELD(CLIDR_EL1, LOC, 24, 3)
1900 FIELD(CLIDR_EL1, LOUU, 27, 3)
1901 FIELD(CLIDR_EL1, ICB, 30, 3)
1903 /* When FEAT_CCIDX is implemented */
1904 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1905 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1906 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1908 /* When FEAT_CCIDX is not implemented */
1909 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1910 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1911 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1913 FIELD(CTR_EL0, IMINLINE, 0, 4)
1914 FIELD(CTR_EL0, L1IP, 14, 2)
1915 FIELD(CTR_EL0, DMINLINE, 16, 4)
1916 FIELD(CTR_EL0, ERG, 20, 4)
1917 FIELD(CTR_EL0, CWG, 24, 4)
1918 FIELD(CTR_EL0, IDC, 28, 1)
1919 FIELD(CTR_EL0, DIC, 29, 1)
1920 FIELD(CTR_EL0, TMINLINE, 32, 6)
1922 FIELD(MIDR_EL1, REVISION, 0, 4)
1923 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1924 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1925 FIELD(MIDR_EL1, VARIANT, 20, 4)
1926 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1928 FIELD(ID_ISAR0, SWAP, 0, 4)
1929 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1930 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1931 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1932 FIELD(ID_ISAR0, COPROC, 16, 4)
1933 FIELD(ID_ISAR0, DEBUG, 20, 4)
1934 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1936 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1937 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1938 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1939 FIELD(ID_ISAR1, EXTEND, 12, 4)
1940 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1941 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1942 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1943 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1945 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1946 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1947 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1948 FIELD(ID_ISAR2, MULT, 12, 4)
1949 FIELD(ID_ISAR2, MULTS, 16, 4)
1950 FIELD(ID_ISAR2, MULTU, 20, 4)
1951 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1952 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1954 FIELD(ID_ISAR3, SATURATE, 0, 4)
1955 FIELD(ID_ISAR3, SIMD, 4, 4)
1956 FIELD(ID_ISAR3, SVC, 8, 4)
1957 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1958 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1959 FIELD(ID_ISAR3, T32COPY, 20, 4)
1960 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1961 FIELD(ID_ISAR3, T32EE, 28, 4)
1963 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1964 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1965 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1966 FIELD(ID_ISAR4, SMC, 12, 4)
1967 FIELD(ID_ISAR4, BARRIER, 16, 4)
1968 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1969 FIELD(ID_ISAR4, PSR_M, 24, 4)
1970 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1972 FIELD(ID_ISAR5, SEVL, 0, 4)
1973 FIELD(ID_ISAR5, AES, 4, 4)
1974 FIELD(ID_ISAR5, SHA1, 8, 4)
1975 FIELD(ID_ISAR5, SHA2, 12, 4)
1976 FIELD(ID_ISAR5, CRC32, 16, 4)
1977 FIELD(ID_ISAR5, RDM, 24, 4)
1978 FIELD(ID_ISAR5, VCMA, 28, 4)
1980 FIELD(ID_ISAR6, JSCVT, 0, 4)
1981 FIELD(ID_ISAR6, DP, 4, 4)
1982 FIELD(ID_ISAR6, FHM, 8, 4)
1983 FIELD(ID_ISAR6, SB, 12, 4)
1984 FIELD(ID_ISAR6, SPECRES, 16, 4)
1985 FIELD(ID_ISAR6, BF16, 20, 4)
1986 FIELD(ID_ISAR6, I8MM, 24, 4)
1988 FIELD(ID_MMFR0, VMSA, 0, 4)
1989 FIELD(ID_MMFR0, PMSA, 4, 4)
1990 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1991 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1992 FIELD(ID_MMFR0, TCM, 16, 4)
1993 FIELD(ID_MMFR0, AUXREG, 20, 4)
1994 FIELD(ID_MMFR0, FCSE, 24, 4)
1995 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1997 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1998 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1999 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2000 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2001 FIELD(ID_MMFR1, L1HVD, 16, 4)
2002 FIELD(ID_MMFR1, L1UNI, 20, 4)
2003 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2004 FIELD(ID_MMFR1, BPRED, 28, 4)
2006 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2007 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2008 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2009 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2010 FIELD(ID_MMFR2, UNITLB, 16, 4)
2011 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2012 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2013 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2015 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2016 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2017 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2018 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2019 FIELD(ID_MMFR3, PAN, 16, 4)
2020 FIELD(ID_MMFR3, COHWALK, 20, 4)
2021 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2022 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2024 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2025 FIELD(ID_MMFR4, AC2, 4, 4)
2026 FIELD(ID_MMFR4, XNX, 8, 4)
2027 FIELD(ID_MMFR4, CNP, 12, 4)
2028 FIELD(ID_MMFR4, HPDS, 16, 4)
2029 FIELD(ID_MMFR4, LSM, 20, 4)
2030 FIELD(ID_MMFR4, CCIDX, 24, 4)
2031 FIELD(ID_MMFR4, EVT, 28, 4)
2033 FIELD(ID_MMFR5, ETS, 0, 4)
2034 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2036 FIELD(ID_PFR0, STATE0, 0, 4)
2037 FIELD(ID_PFR0, STATE1, 4, 4)
2038 FIELD(ID_PFR0, STATE2, 8, 4)
2039 FIELD(ID_PFR0, STATE3, 12, 4)
2040 FIELD(ID_PFR0, CSV2, 16, 4)
2041 FIELD(ID_PFR0, AMU, 20, 4)
2042 FIELD(ID_PFR0, DIT, 24, 4)
2043 FIELD(ID_PFR0, RAS, 28, 4)
2045 FIELD(ID_PFR1, PROGMOD, 0, 4)
2046 FIELD(ID_PFR1, SECURITY, 4, 4)
2047 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2048 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2049 FIELD(ID_PFR1, GENTIMER, 16, 4)
2050 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2051 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2052 FIELD(ID_PFR1, GIC, 28, 4)
2054 FIELD(ID_PFR2, CSV3, 0, 4)
2055 FIELD(ID_PFR2, SSBS, 4, 4)
2056 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2058 FIELD(ID_AA64ISAR0, AES, 4, 4)
2059 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2060 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2061 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2062 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2063 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2064 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2065 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2066 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2067 FIELD(ID_AA64ISAR0, DP, 44, 4)
2068 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2069 FIELD(ID_AA64ISAR0, TS, 52, 4)
2070 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2071 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2073 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2074 FIELD(ID_AA64ISAR1, APA, 4, 4)
2075 FIELD(ID_AA64ISAR1, API, 8, 4)
2076 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2077 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2078 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2079 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2080 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2081 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2082 FIELD(ID_AA64ISAR1, SB, 36, 4)
2083 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2084 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2085 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2086 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2087 FIELD(ID_AA64ISAR1, XS, 56, 4)
2088 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2090 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2091 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2092 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2093 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2094 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2095 FIELD(ID_AA64ISAR2, BC, 20, 4)
2096 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2098 FIELD(ID_AA64PFR0, EL0, 0, 4)
2099 FIELD(ID_AA64PFR0, EL1, 4, 4)
2100 FIELD(ID_AA64PFR0, EL2, 8, 4)
2101 FIELD(ID_AA64PFR0, EL3, 12, 4)
2102 FIELD(ID_AA64PFR0, FP, 16, 4)
2103 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2104 FIELD(ID_AA64PFR0, GIC, 24, 4)
2105 FIELD(ID_AA64PFR0, RAS, 28, 4)
2106 FIELD(ID_AA64PFR0, SVE, 32, 4)
2107 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2108 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2109 FIELD(ID_AA64PFR0, AMU, 44, 4)
2110 FIELD(ID_AA64PFR0, DIT, 48, 4)
2111 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2112 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2114 FIELD(ID_AA64PFR1, BT, 0, 4)
2115 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2116 FIELD(ID_AA64PFR1, MTE, 8, 4)
2117 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2118 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2119 FIELD(ID_AA64PFR1, SME, 24, 4)
2120 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2121 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2122 FIELD(ID_AA64PFR1, NMI, 36, 4)
2124 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2125 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2126 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2127 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2128 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2129 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2130 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2131 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2132 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2133 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2134 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2135 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2136 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2137 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2139 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2140 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2141 FIELD(ID_AA64MMFR1, VH, 8, 4)
2142 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2143 FIELD(ID_AA64MMFR1, LO, 16, 4)
2144 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2145 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2146 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2147 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2148 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2149 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2150 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2151 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2152 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2153 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2155 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2156 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2157 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2158 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2159 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2160 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2161 FIELD(ID_AA64MMFR2, NV, 24, 4)
2162 FIELD(ID_AA64MMFR2, ST, 28, 4)
2163 FIELD(ID_AA64MMFR2, AT, 32, 4)
2164 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2165 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2166 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2167 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2168 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2169 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2171 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2172 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2173 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2174 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2175 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2176 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2177 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2178 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2179 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2180 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2181 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2182 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2183 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2185 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2186 FIELD(ID_AA64ZFR0, AES, 4, 4)
2187 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2188 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2189 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2190 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2191 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2192 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2193 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2195 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2196 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2197 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2198 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2199 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2200 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2201 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2202 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2204 FIELD(ID_DFR0, COPDBG, 0, 4)
2205 FIELD(ID_DFR0, COPSDBG, 4, 4)
2206 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2207 FIELD(ID_DFR0, COPTRC, 12, 4)
2208 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2209 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2210 FIELD(ID_DFR0, PERFMON, 24, 4)
2211 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2213 FIELD(ID_DFR1, MTPMU, 0, 4)
2214 FIELD(ID_DFR1, HPMN0, 4, 4)
2216 FIELD(DBGDIDR, SE_IMP, 12, 1)
2217 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2218 FIELD(DBGDIDR, VERSION, 16, 4)
2219 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2220 FIELD(DBGDIDR, BRPS, 24, 4)
2221 FIELD(DBGDIDR, WRPS, 28, 4)
2223 FIELD(MVFR0, SIMDREG, 0, 4)
2224 FIELD(MVFR0, FPSP, 4, 4)
2225 FIELD(MVFR0, FPDP, 8, 4)
2226 FIELD(MVFR0, FPTRAP, 12, 4)
2227 FIELD(MVFR0, FPDIVIDE, 16, 4)
2228 FIELD(MVFR0, FPSQRT, 20, 4)
2229 FIELD(MVFR0, FPSHVEC, 24, 4)
2230 FIELD(MVFR0, FPROUND, 28, 4)
2232 FIELD(MVFR1, FPFTZ, 0, 4)
2233 FIELD(MVFR1, FPDNAN, 4, 4)
2234 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2235 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2236 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2237 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2238 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2239 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2240 FIELD(MVFR1, FPHP, 24, 4)
2241 FIELD(MVFR1, SIMDFMAC, 28, 4)
2243 FIELD(MVFR2, SIMDMISC, 0, 4)
2244 FIELD(MVFR2, FPMISC, 4, 4)
2246 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2248 /* If adding a feature bit which corresponds to a Linux ELF
2249 * HWCAP bit, remember to update the feature-bit-to-hwcap
2250 * mapping in linux-user/elfload.c:get_elf_hwcap().
2252 enum arm_features {
2253 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2254 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
2255 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
2256 ARM_FEATURE_V6,
2257 ARM_FEATURE_V6K,
2258 ARM_FEATURE_V7,
2259 ARM_FEATURE_THUMB2,
2260 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
2261 ARM_FEATURE_NEON,
2262 ARM_FEATURE_M, /* Microcontroller profile. */
2263 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
2264 ARM_FEATURE_THUMB2EE,
2265 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
2266 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2267 ARM_FEATURE_V4T,
2268 ARM_FEATURE_V5,
2269 ARM_FEATURE_STRONGARM,
2270 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2271 ARM_FEATURE_GENERIC_TIMER,
2272 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2273 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2274 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2275 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2276 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2277 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2278 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2279 ARM_FEATURE_V8,
2280 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2281 ARM_FEATURE_CBAR, /* has cp15 CBAR */
2282 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2283 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2284 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2285 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2286 ARM_FEATURE_PMU, /* has PMU support */
2287 ARM_FEATURE_VBAR, /* has cp15 VBAR */
2288 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2289 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2290 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2293 static inline int arm_feature(CPUARMState *env, int feature)
2295 return (env->features & (1ULL << feature)) != 0;
2298 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2300 #if !defined(CONFIG_USER_ONLY)
2301 /* Return true if exception levels below EL3 are in secure state,
2302 * or would be following an exception return to that level.
2303 * Unlike arm_is_secure() (which is always a question about the
2304 * _current_ state of the CPU) this doesn't care about the current
2305 * EL or mode.
2307 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2309 if (arm_feature(env, ARM_FEATURE_EL3)) {
2310 return !(env->cp15.scr_el3 & SCR_NS);
2311 } else {
2312 /* If EL3 is not supported then the secure state is implementation
2313 * defined, in which case QEMU defaults to non-secure.
2315 return false;
2319 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2320 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2322 if (arm_feature(env, ARM_FEATURE_EL3)) {
2323 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2324 /* CPU currently in AArch64 state and EL3 */
2325 return true;
2326 } else if (!is_a64(env) &&
2327 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2328 /* CPU currently in AArch32 state and monitor mode */
2329 return true;
2332 return false;
2335 /* Return true if the processor is in secure state */
2336 static inline bool arm_is_secure(CPUARMState *env)
2338 if (arm_is_el3_or_mon(env)) {
2339 return true;
2341 return arm_is_secure_below_el3(env);
2345 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2346 * This corresponds to the pseudocode EL2Enabled()
2348 static inline bool arm_is_el2_enabled(CPUARMState *env)
2350 if (arm_feature(env, ARM_FEATURE_EL2)) {
2351 if (arm_is_secure_below_el3(env)) {
2352 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2354 return true;
2356 return false;
2359 #else
2360 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2362 return false;
2365 static inline bool arm_is_secure(CPUARMState *env)
2367 return false;
2370 static inline bool arm_is_el2_enabled(CPUARMState *env)
2372 return false;
2374 #endif
2377 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2378 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2379 * "for all purposes other than a direct read or write access of HCR_EL2."
2380 * Not included here is HCR_RW.
2382 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2383 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2385 /* Return true if the specified exception level is running in AArch64 state. */
2386 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2388 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2389 * and if we're not in EL0 then the state of EL0 isn't well defined.)
2391 assert(el >= 1 && el <= 3);
2392 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2394 /* The highest exception level is always at the maximum supported
2395 * register width, and then lower levels have a register width controlled
2396 * by bits in the SCR or HCR registers.
2398 if (el == 3) {
2399 return aa64;
2402 if (arm_feature(env, ARM_FEATURE_EL3) &&
2403 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2404 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2407 if (el == 2) {
2408 return aa64;
2411 if (arm_is_el2_enabled(env)) {
2412 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2415 return aa64;
2418 /* Function for determing whether guest cp register reads and writes should
2419 * access the secure or non-secure bank of a cp register. When EL3 is
2420 * operating in AArch32 state, the NS-bit determines whether the secure
2421 * instance of a cp register should be used. When EL3 is AArch64 (or if
2422 * it doesn't exist at all) then there is no register banking, and all
2423 * accesses are to the non-secure version.
2425 static inline bool access_secure_reg(CPUARMState *env)
2427 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2428 !arm_el_is_aa64(env, 3) &&
2429 !(env->cp15.scr_el3 & SCR_NS));
2431 return ret;
2434 /* Macros for accessing a specified CP register bank */
2435 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2436 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2438 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2439 do { \
2440 if (_secure) { \
2441 (_env)->cp15._regname##_s = (_val); \
2442 } else { \
2443 (_env)->cp15._regname##_ns = (_val); \
2445 } while (0)
2447 /* Macros for automatically accessing a specific CP register bank depending on
2448 * the current secure state of the system. These macros are not intended for
2449 * supporting instruction translation reads/writes as these are dependent
2450 * solely on the SCR.NS bit and not the mode.
2452 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2453 A32_BANKED_REG_GET((_env), _regname, \
2454 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2456 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2457 A32_BANKED_REG_SET((_env), _regname, \
2458 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2459 (_val))
2461 void arm_cpu_list(void);
2462 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2463 uint32_t cur_el, bool secure);
2465 /* Interface between CPU and Interrupt controller. */
2466 #ifndef CONFIG_USER_ONLY
2467 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2468 #else
2469 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2471 return true;
2473 #endif
2475 * armv7m_nvic_set_pending: mark the specified exception as pending
2476 * @opaque: the NVIC
2477 * @irq: the exception number to mark pending
2478 * @secure: false for non-banked exceptions or for the nonsecure
2479 * version of a banked exception, true for the secure version of a banked
2480 * exception.
2482 * Marks the specified exception as pending. Note that we will assert()
2483 * if @secure is true and @irq does not specify one of the fixed set
2484 * of architecturally banked exceptions.
2486 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2488 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2489 * @opaque: the NVIC
2490 * @irq: the exception number to mark pending
2491 * @secure: false for non-banked exceptions or for the nonsecure
2492 * version of a banked exception, true for the secure version of a banked
2493 * exception.
2495 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2496 * exceptions (exceptions generated in the course of trying to take
2497 * a different exception).
2499 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2501 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2502 * @opaque: the NVIC
2503 * @irq: the exception number to mark pending
2504 * @secure: false for non-banked exceptions or for the nonsecure
2505 * version of a banked exception, true for the secure version of a banked
2506 * exception.
2508 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2509 * generated in the course of lazy stacking of FP registers.
2511 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2513 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2514 * exception, and whether it targets Secure state
2515 * @opaque: the NVIC
2516 * @pirq: set to pending exception number
2517 * @ptargets_secure: set to whether pending exception targets Secure
2519 * This function writes the number of the highest priority pending
2520 * exception (the one which would be made active by
2521 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2522 * to true if the current highest priority pending exception should
2523 * be taken to Secure state, false for NS.
2525 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2526 bool *ptargets_secure);
2528 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2529 * @opaque: the NVIC
2531 * Move the current highest priority pending exception from the pending
2532 * state to the active state, and update v7m.exception to indicate that
2533 * it is the exception currently being handled.
2535 void armv7m_nvic_acknowledge_irq(void *opaque);
2537 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2538 * @opaque: the NVIC
2539 * @irq: the exception number to complete
2540 * @secure: true if this exception was secure
2542 * Returns: -1 if the irq was not active
2543 * 1 if completing this irq brought us back to base (no active irqs)
2544 * 0 if there is still an irq active after this one was completed
2545 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2547 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2549 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2550 * @opaque: the NVIC
2551 * @irq: the exception number to mark pending
2552 * @secure: false for non-banked exceptions or for the nonsecure
2553 * version of a banked exception, true for the secure version of a banked
2554 * exception.
2556 * Return whether an exception is "ready", i.e. whether the exception is
2557 * enabled and is configured at a priority which would allow it to
2558 * interrupt the current execution priority. This controls whether the
2559 * RDY bit for it in the FPCCR is set.
2561 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2563 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2564 * @opaque: the NVIC
2566 * Returns: the raw execution priority as defined by the v8M architecture.
2567 * This is the execution priority minus the effects of AIRCR.PRIS,
2568 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2569 * (v8M ARM ARM I_PKLD.)
2571 int armv7m_nvic_raw_execution_priority(void *opaque);
2573 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2574 * priority is negative for the specified security state.
2575 * @opaque: the NVIC
2576 * @secure: the security state to test
2577 * This corresponds to the pseudocode IsReqExecPriNeg().
2579 #ifndef CONFIG_USER_ONLY
2580 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2581 #else
2582 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2584 return false;
2586 #endif
2588 /* Interface for defining coprocessor registers.
2589 * Registers are defined in tables of arm_cp_reginfo structs
2590 * which are passed to define_arm_cp_regs().
2593 /* When looking up a coprocessor register we look for it
2594 * via an integer which encodes all of:
2595 * coprocessor number
2596 * Crn, Crm, opc1, opc2 fields
2597 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2598 * or via MRRC/MCRR?)
2599 * non-secure/secure bank (AArch32 only)
2600 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2601 * (In this case crn and opc2 should be zero.)
2602 * For AArch64, there is no 32/64 bit size distinction;
2603 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2604 * and 4 bit CRn and CRm. The encoding patterns are chosen
2605 * to be easy to convert to and from the KVM encodings, and also
2606 * so that the hashtable can contain both AArch32 and AArch64
2607 * registers (to allow for interprocessing where we might run
2608 * 32 bit code on a 64 bit core).
2610 /* This bit is private to our hashtable cpreg; in KVM register
2611 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2612 * in the upper bits of the 64 bit ID.
2614 #define CP_REG_AA64_SHIFT 28
2615 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2617 /* To enable banking of coprocessor registers depending on ns-bit we
2618 * add a bit to distinguish between secure and non-secure cpregs in the
2619 * hashtable.
2621 #define CP_REG_NS_SHIFT 29
2622 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2624 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2625 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2626 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2628 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2629 (CP_REG_AA64_MASK | \
2630 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2631 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2632 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2633 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2634 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2635 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2637 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2638 * version used as a key for the coprocessor register hashtable
2640 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2642 uint32_t cpregid = kvmid;
2643 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2644 cpregid |= CP_REG_AA64_MASK;
2645 } else {
2646 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2647 cpregid |= (1 << 15);
2650 /* KVM is always non-secure so add the NS flag on AArch32 register
2651 * entries.
2653 cpregid |= 1 << CP_REG_NS_SHIFT;
2655 return cpregid;
2658 /* Convert a truncated 32 bit hashtable key into the full
2659 * 64 bit KVM register ID.
2661 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2663 uint64_t kvmid;
2665 if (cpregid & CP_REG_AA64_MASK) {
2666 kvmid = cpregid & ~CP_REG_AA64_MASK;
2667 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2668 } else {
2669 kvmid = cpregid & ~(1 << 15);
2670 if (cpregid & (1 << 15)) {
2671 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2672 } else {
2673 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2676 return kvmid;
2679 /* Return the highest implemented Exception Level */
2680 static inline int arm_highest_el(CPUARMState *env)
2682 if (arm_feature(env, ARM_FEATURE_EL3)) {
2683 return 3;
2685 if (arm_feature(env, ARM_FEATURE_EL2)) {
2686 return 2;
2688 return 1;
2691 /* Return true if a v7M CPU is in Handler mode */
2692 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2694 return env->v7m.exception != 0;
2697 /* Return the current Exception Level (as per ARMv8; note that this differs
2698 * from the ARMv7 Privilege Level).
2700 static inline int arm_current_el(CPUARMState *env)
2702 if (arm_feature(env, ARM_FEATURE_M)) {
2703 return arm_v7m_is_handler_mode(env) ||
2704 !(env->v7m.control[env->v7m.secure] & 1);
2707 if (is_a64(env)) {
2708 return extract32(env->pstate, 2, 2);
2711 switch (env->uncached_cpsr & 0x1f) {
2712 case ARM_CPU_MODE_USR:
2713 return 0;
2714 case ARM_CPU_MODE_HYP:
2715 return 2;
2716 case ARM_CPU_MODE_MON:
2717 return 3;
2718 default:
2719 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2720 /* If EL3 is 32-bit then all secure privileged modes run in
2721 * EL3
2723 return 3;
2726 return 1;
2731 * write_list_to_cpustate
2732 * @cpu: ARMCPU
2734 * For each register listed in the ARMCPU cpreg_indexes list, write
2735 * its value from the cpreg_values list into the ARMCPUState structure.
2736 * This updates TCG's working data structures from KVM data or
2737 * from incoming migration state.
2739 * Returns: true if all register values were updated correctly,
2740 * false if some register was unknown or could not be written.
2741 * Note that we do not stop early on failure -- we will attempt
2742 * writing all registers in the list.
2744 bool write_list_to_cpustate(ARMCPU *cpu);
2747 * write_cpustate_to_list:
2748 * @cpu: ARMCPU
2749 * @kvm_sync: true if this is for syncing back to KVM
2751 * For each register listed in the ARMCPU cpreg_indexes list, write
2752 * its value from the ARMCPUState structure into the cpreg_values list.
2753 * This is used to copy info from TCG's working data structures into
2754 * KVM or for outbound migration.
2756 * @kvm_sync is true if we are doing this in order to sync the
2757 * register state back to KVM. In this case we will only update
2758 * values in the list if the previous list->cpustate sync actually
2759 * successfully wrote the CPU state. Otherwise we will keep the value
2760 * that is in the list.
2762 * Returns: true if all register values were read correctly,
2763 * false if some register was unknown or could not be read.
2764 * Note that we do not stop early on failure -- we will attempt
2765 * reading all registers in the list.
2767 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2769 #define ARM_CPUID_TI915T 0x54029152
2770 #define ARM_CPUID_TI925T 0x54029252
2772 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2773 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2774 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2776 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2778 #define cpu_list arm_cpu_list
2780 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2782 * If EL3 is 64-bit:
2783 * + NonSecure EL1 & 0 stage 1
2784 * + NonSecure EL1 & 0 stage 2
2785 * + NonSecure EL2
2786 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2787 * + Secure EL1 & 0
2788 * + Secure EL3
2789 * If EL3 is 32-bit:
2790 * + NonSecure PL1 & 0 stage 1
2791 * + NonSecure PL1 & 0 stage 2
2792 * + NonSecure PL2
2793 * + Secure PL0
2794 * + Secure PL1
2795 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2797 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2798 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2799 * because they may differ in access permissions even if the VA->PA map is
2800 * the same
2801 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2802 * translation, which means that we have one mmu_idx that deals with two
2803 * concatenated translation regimes [this sort of combined s1+2 TLB is
2804 * architecturally permitted]
2805 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2806 * handling via the TLB. The only way to do a stage 1 translation without
2807 * the immediate stage 2 translation is via the ATS or AT system insns,
2808 * which can be slow-pathed and always do a page table walk.
2809 * The only use of stage 2 translations is either as part of an s1+2
2810 * lookup or when loading the descriptors during a stage 1 page table walk,
2811 * and in both those cases we don't use the TLB.
2812 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2813 * translation regimes, because they map reasonably well to each other
2814 * and they can't both be active at the same time.
2815 * 5. we want to be able to use the TLB for accesses done as part of a
2816 * stage1 page table walk, rather than having to walk the stage2 page
2817 * table over and over.
2818 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2819 * Never (PAN) bit within PSTATE.
2821 * This gives us the following list of cases:
2823 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2824 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2825 * NS EL1 EL1&0 stage 1+2 +PAN
2826 * NS EL0 EL2&0
2827 * NS EL2 EL2&0
2828 * NS EL2 EL2&0 +PAN
2829 * NS EL2 (aka NS PL2)
2830 * S EL0 EL1&0 (aka S PL0)
2831 * S EL1 EL1&0 (not used if EL3 is 32 bit)
2832 * S EL1 EL1&0 +PAN
2833 * S EL3 (aka S PL1)
2835 * for a total of 11 different mmu_idx.
2837 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2838 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2839 * NS EL2 if we ever model a Cortex-R52).
2841 * M profile CPUs are rather different as they do not have a true MMU.
2842 * They have the following different MMU indexes:
2843 * User
2844 * Privileged
2845 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2846 * Privileged, execution priority negative (ditto)
2847 * If the CPU supports the v8M Security Extension then there are also:
2848 * Secure User
2849 * Secure Privileged
2850 * Secure User, execution priority negative
2851 * Secure Privileged, execution priority negative
2853 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2854 * are not quite the same -- different CPU types (most notably M profile
2855 * vs A/R profile) would like to use MMU indexes with different semantics,
2856 * but since we don't ever need to use all of those in a single CPU we
2857 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2858 * modes + total number of M profile MMU modes". The lower bits of
2859 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2860 * the same for any particular CPU.
2861 * Variables of type ARMMUIdx are always full values, and the core
2862 * index values are in variables of type 'int'.
2864 * Our enumeration includes at the end some entries which are not "true"
2865 * mmu_idx values in that they don't have corresponding TLBs and are only
2866 * valid for doing slow path page table walks.
2868 * The constant names here are patterned after the general style of the names
2869 * of the AT/ATS operations.
2870 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2871 * For M profile we arrange them to have a bit for priv, a bit for negpri
2872 * and a bit for secure.
2874 #define ARM_MMU_IDX_A 0x10 /* A profile */
2875 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2876 #define ARM_MMU_IDX_M 0x40 /* M profile */
2878 /* Meanings of the bits for A profile mmu idx values */
2879 #define ARM_MMU_IDX_A_NS 0x8
2881 /* Meanings of the bits for M profile mmu idx values */
2882 #define ARM_MMU_IDX_M_PRIV 0x1
2883 #define ARM_MMU_IDX_M_NEGPRI 0x2
2884 #define ARM_MMU_IDX_M_S 0x4 /* Secure */
2886 #define ARM_MMU_IDX_TYPE_MASK \
2887 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2888 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2890 typedef enum ARMMMUIdx {
2892 * A-profile.
2894 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
2895 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
2896 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
2897 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
2898 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
2899 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
2900 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
2901 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
2903 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2904 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2905 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2906 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2907 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2908 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2909 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2912 * These are not allocated TLBs and are used only for AT system
2913 * instructions or for the first stage of an S12 page table walk.
2915 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2916 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2917 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2918 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2919 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2920 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2922 * Not allocated a TLB: used only for second stage of an S12 page
2923 * table walk, or for descriptor loads during first stage of an S1
2924 * page table walk. Note that if we ever want to have a TLB for this
2925 * then various TLB flush insns which currently are no-ops or flush
2926 * only stage 1 MMU indexes will need to change to flush stage 2.
2928 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
2929 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
2932 * M-profile.
2934 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2935 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2936 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2937 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2938 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2939 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2940 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2941 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2942 } ARMMMUIdx;
2945 * Bit macros for the core-mmu-index values for each index,
2946 * for use when calling tlb_flush_by_mmuidx() and friends.
2948 #define TO_CORE_BIT(NAME) \
2949 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2951 typedef enum ARMMMUIdxBit {
2952 TO_CORE_BIT(E10_0),
2953 TO_CORE_BIT(E20_0),
2954 TO_CORE_BIT(E10_1),
2955 TO_CORE_BIT(E10_1_PAN),
2956 TO_CORE_BIT(E2),
2957 TO_CORE_BIT(E20_2),
2958 TO_CORE_BIT(E20_2_PAN),
2959 TO_CORE_BIT(SE10_0),
2960 TO_CORE_BIT(SE20_0),
2961 TO_CORE_BIT(SE10_1),
2962 TO_CORE_BIT(SE20_2),
2963 TO_CORE_BIT(SE10_1_PAN),
2964 TO_CORE_BIT(SE20_2_PAN),
2965 TO_CORE_BIT(SE2),
2966 TO_CORE_BIT(SE3),
2968 TO_CORE_BIT(MUser),
2969 TO_CORE_BIT(MPriv),
2970 TO_CORE_BIT(MUserNegPri),
2971 TO_CORE_BIT(MPrivNegPri),
2972 TO_CORE_BIT(MSUser),
2973 TO_CORE_BIT(MSPriv),
2974 TO_CORE_BIT(MSUserNegPri),
2975 TO_CORE_BIT(MSPrivNegPri),
2976 } ARMMMUIdxBit;
2978 #undef TO_CORE_BIT
2980 #define MMU_USER_IDX 0
2982 /* Indexes used when registering address spaces with cpu_address_space_init */
2983 typedef enum ARMASIdx {
2984 ARMASIdx_NS = 0,
2985 ARMASIdx_S = 1,
2986 ARMASIdx_TagNS = 2,
2987 ARMASIdx_TagS = 3,
2988 } ARMASIdx;
2990 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2992 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2993 * CSSELR is RAZ/WI.
2995 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2998 static inline bool arm_sctlr_b(CPUARMState *env)
3000 return
3001 /* We need not implement SCTLR.ITD in user-mode emulation, so
3002 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3003 * This lets people run BE32 binaries with "-cpu any".
3005 #ifndef CONFIG_USER_ONLY
3006 !arm_feature(env, ARM_FEATURE_V7) &&
3007 #endif
3008 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3011 uint64_t arm_sctlr(CPUARMState *env, int el);
3013 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3014 bool sctlr_b)
3016 #ifdef CONFIG_USER_ONLY
3018 * In system mode, BE32 is modelled in line with the
3019 * architecture (as word-invariant big-endianness), where loads
3020 * and stores are done little endian but from addresses which
3021 * are adjusted by XORing with the appropriate constant. So the
3022 * endianness to use for the raw data access is not affected by
3023 * SCTLR.B.
3024 * In user mode, however, we model BE32 as byte-invariant
3025 * big-endianness (because user-only code cannot tell the
3026 * difference), and so we need to use a data access endianness
3027 * that depends on SCTLR.B.
3029 if (sctlr_b) {
3030 return true;
3032 #endif
3033 /* In 32bit endianness is determined by looking at CPSR's E bit */
3034 return env->uncached_cpsr & CPSR_E;
3037 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3039 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3042 /* Return true if the processor is in big-endian mode. */
3043 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3045 if (!is_a64(env)) {
3046 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3047 } else {
3048 int cur_el = arm_current_el(env);
3049 uint64_t sctlr = arm_sctlr(env, cur_el);
3050 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3054 #include "exec/cpu-all.h"
3057 * We have more than 32-bits worth of state per TB, so we split the data
3058 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3059 * We collect these two parts in CPUARMTBFlags where they are named
3060 * flags and flags2 respectively.
3062 * The flags that are shared between all execution modes, TBFLAG_ANY,
3063 * are stored in flags. The flags that are specific to a given mode
3064 * are stores in flags2. Since cs_base is sized on the configured
3065 * address size, flags2 always has 64-bits for A64, and a minimum of
3066 * 32-bits for A32 and M32.
3068 * The bits for 32-bit A-profile and M-profile partially overlap:
3070 * 31 23 11 10 0
3071 * +-------------+----------+----------------+
3072 * | | | TBFLAG_A32 |
3073 * | TBFLAG_AM32 | +-----+----------+
3074 * | | |TBFLAG_M32|
3075 * +-------------+----------------+----------+
3076 * 31 23 6 5 0
3078 * Unless otherwise noted, these bits are cached in env->hflags.
3080 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3081 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3082 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3083 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3084 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3085 /* Target EL if we take a floating-point-disabled exception */
3086 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3087 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3088 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3089 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3092 * Bit usage when in AArch32 state, both A- and M-profile.
3094 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3095 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3098 * Bit usage when in AArch32 state, for A-profile only.
3100 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3101 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
3103 * We store the bottom two bits of the CPAR as TB flags and handle
3104 * checks on the other bits at runtime. This shares the same bits as
3105 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3106 * Not cached, because VECLEN+VECSTRIDE are not cached.
3108 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3109 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3110 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3111 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3113 * Indicates whether cp register reads and writes by guest code should access
3114 * the secure or nonsecure bank of banked registers; note that this is not
3115 * the same thing as the current security state of the processor!
3117 FIELD(TBFLAG_A32, NS, 10, 1)
3120 * Bit usage when in AArch32 state, for M-profile only.
3122 /* Handler (ie not Thread) mode */
3123 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3124 /* Whether we should generate stack-limit checks */
3125 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3126 /* Set if FPCCR.LSPACT is set */
3127 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
3128 /* Set if we must create a new FP context */
3129 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
3130 /* Set if FPCCR.S does not match current security state */
3131 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
3132 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3133 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
3136 * Bit usage when in AArch64 state
3138 FIELD(TBFLAG_A64, TBII, 0, 2)
3139 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3140 /* The current vector length, either NVL or SVL. */
3141 FIELD(TBFLAG_A64, VL, 4, 4)
3142 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3143 FIELD(TBFLAG_A64, BT, 9, 1)
3144 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3145 FIELD(TBFLAG_A64, TBID, 12, 2)
3146 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3147 FIELD(TBFLAG_A64, ATA, 15, 1)
3148 FIELD(TBFLAG_A64, TCMA, 16, 2)
3149 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3150 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3153 * Helpers for using the above.
3155 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3156 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3157 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3158 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3159 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3160 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3161 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3162 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3163 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3164 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3166 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3167 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3168 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3169 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3170 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3173 * cpu_mmu_index:
3174 * @env: The cpu environment
3175 * @ifetch: True for code access, false for data access.
3177 * Return the core mmu index for the current translation regime.
3178 * This function is used by generic TCG code paths.
3180 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3182 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3186 * sve_vq
3187 * @env: the cpu context
3189 * Return the VL cached within env->hflags, in units of quadwords.
3191 static inline int sve_vq(CPUARMState *env)
3193 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3196 static inline bool bswap_code(bool sctlr_b)
3198 #ifdef CONFIG_USER_ONLY
3199 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3200 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3201 * would also end up as a mixed-endian mode with BE code, LE data.
3203 return
3204 #if TARGET_BIG_ENDIAN
3206 #endif
3207 sctlr_b;
3208 #else
3209 /* All code access in ARM is little endian, and there are no loaders
3210 * doing swaps that need to be reversed
3212 return 0;
3213 #endif
3216 #ifdef CONFIG_USER_ONLY
3217 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3219 return
3220 #if TARGET_BIG_ENDIAN
3222 #endif
3223 arm_cpu_data_is_big_endian(env);
3225 #endif
3227 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3228 target_ulong *cs_base, uint32_t *flags);
3230 enum {
3231 QEMU_PSCI_CONDUIT_DISABLED = 0,
3232 QEMU_PSCI_CONDUIT_SMC = 1,
3233 QEMU_PSCI_CONDUIT_HVC = 2,
3236 #ifndef CONFIG_USER_ONLY
3237 /* Return the address space index to use for a memory access */
3238 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3240 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3243 /* Return the AddressSpace to use for a memory access
3244 * (which depends on whether the access is S or NS, and whether
3245 * the board gave us a separate AddressSpace for S accesses).
3247 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3249 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3251 #endif
3254 * arm_register_pre_el_change_hook:
3255 * Register a hook function which will be called immediately before this
3256 * CPU changes exception level or mode. The hook function will be
3257 * passed a pointer to the ARMCPU and the opaque data pointer passed
3258 * to this function when the hook was registered.
3260 * Note that if a pre-change hook is called, any registered post-change hooks
3261 * are guaranteed to subsequently be called.
3263 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3264 void *opaque);
3266 * arm_register_el_change_hook:
3267 * Register a hook function which will be called immediately after this
3268 * CPU changes exception level or mode. The hook function will be
3269 * passed a pointer to the ARMCPU and the opaque data pointer passed
3270 * to this function when the hook was registered.
3272 * Note that any registered hooks registered here are guaranteed to be called
3273 * if pre-change hooks have been.
3275 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3276 *opaque);
3279 * arm_rebuild_hflags:
3280 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3282 void arm_rebuild_hflags(CPUARMState *env);
3285 * aa32_vfp_dreg:
3286 * Return a pointer to the Dn register within env in 32-bit mode.
3288 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3290 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3294 * aa32_vfp_qreg:
3295 * Return a pointer to the Qn register within env in 32-bit mode.
3297 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3299 return &env->vfp.zregs[regno].d[0];
3303 * aa64_vfp_qreg:
3304 * Return a pointer to the Qn register within env in 64-bit mode.
3306 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3308 return &env->vfp.zregs[regno].d[0];
3311 /* Shared between translate-sve.c and sve_helper.c. */
3312 extern const uint64_t pred_esz_masks[4];
3314 /* Helper for the macros below, validating the argument type. */
3315 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3317 return x;
3321 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3322 * Using these should be a bit more self-documenting than using the
3323 * generic target bits directly.
3325 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3326 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3329 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3331 #define PAGE_BTI PAGE_TARGET_1
3332 #define PAGE_MTE PAGE_TARGET_2
3334 #ifdef TARGET_TAGGED_ADDRESSES
3336 * cpu_untagged_addr:
3337 * @cs: CPU context
3338 * @x: tagged address
3340 * Remove any address tag from @x. This is explicitly related to the
3341 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3343 * There should be a better place to put this, but we need this in
3344 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3346 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3348 ARMCPU *cpu = ARM_CPU(cs);
3349 if (cpu->env.tagged_addr_enable) {
3351 * TBI is enabled for userspace but not kernelspace addresses.
3352 * Only clear the tag if bit 55 is clear.
3354 x &= sextract64(x, 0, 56);
3356 return x;
3358 #endif
3361 * Naming convention for isar_feature functions:
3362 * Functions which test 32-bit ID registers should have _aa32_ in
3363 * their name. Functions which test 64-bit ID registers should have
3364 * _aa64_ in their name. These must only be used in code where we
3365 * know for certain that the CPU has AArch32 or AArch64 respectively
3366 * or where the correct answer for a CPU which doesn't implement that
3367 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3368 * system registers that are specific to that CPU state, for "should
3369 * we let this system register bit be set" tests where the 32-bit
3370 * flavour of the register doesn't have the bit, and so on).
3371 * Functions which simply ask "does this feature exist at all" have
3372 * _any_ in their name, and always return the logical OR of the _aa64_
3373 * and the _aa32_ function.
3377 * 32-bit feature tests via id registers.
3379 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3381 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3384 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3386 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3389 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3391 /* (M-profile) low-overhead loops and branch future */
3392 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3395 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3397 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3400 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3402 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3405 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3407 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3410 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3412 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3415 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3417 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3420 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3422 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3425 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3427 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3430 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3432 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3435 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3437 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3440 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3442 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3445 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3447 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3450 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3452 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3455 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3457 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3460 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3462 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3465 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3467 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3470 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3472 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3475 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3477 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3480 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3483 * Return true if M-profile state handling insns
3484 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3486 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3489 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3491 /* Sadly this is encoded differently for A-profile and M-profile */
3492 if (isar_feature_aa32_mprofile(id)) {
3493 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3494 } else {
3495 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3499 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3502 * Return true if MVE is supported (either integer or floating point).
3503 * We must check for M-profile as the MVFR1 field means something
3504 * else for A-profile.
3506 return isar_feature_aa32_mprofile(id) &&
3507 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3510 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3513 * Return true if MVE is supported (either integer or floating point).
3514 * We must check for M-profile as the MVFR1 field means something
3515 * else for A-profile.
3517 return isar_feature_aa32_mprofile(id) &&
3518 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3521 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3524 * Return true if either VFP or SIMD is implemented.
3525 * In this case, a minimum of VFP w/ D0-D15.
3527 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3530 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3532 /* Return true if D16-D31 are implemented */
3533 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3536 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3538 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3541 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3543 /* Return true if CPU supports single precision floating point, VFPv2 */
3544 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3547 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3549 /* Return true if CPU supports single precision floating point, VFPv3 */
3550 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3553 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3555 /* Return true if CPU supports double precision floating point, VFPv2 */
3556 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3559 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3561 /* Return true if CPU supports double precision floating point, VFPv3 */
3562 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3565 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3567 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3571 * We always set the FP and SIMD FP16 fields to indicate identical
3572 * levels of support (assuming SIMD is implemented at all), so
3573 * we only need one set of accessors.
3575 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3577 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3580 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3582 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3586 * Note that this ID register field covers both VFP and Neon FMAC,
3587 * so should usually be tested in combination with some other
3588 * check that confirms the presence of whichever of VFP or Neon is
3589 * relevant, to avoid accidentally enabling a Neon feature on
3590 * a VFP-no-Neon core or vice-versa.
3592 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3594 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3597 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3599 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3602 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3604 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3607 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3609 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3612 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3614 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3617 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3619 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3622 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3624 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3627 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3629 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3632 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3634 /* 0xf means "non-standard IMPDEF PMU" */
3635 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3636 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3639 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3641 /* 0xf means "non-standard IMPDEF PMU" */
3642 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3643 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3646 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3648 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3651 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3653 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3656 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3658 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3661 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3663 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3666 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3668 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3671 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3673 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3676 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3678 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3682 * 64-bit feature tests via id registers.
3684 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3686 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3689 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3691 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3694 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3696 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3699 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3701 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3704 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3706 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3709 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3711 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3714 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3716 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3719 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3721 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3724 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3726 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3729 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3731 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3734 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3736 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3739 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3741 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3744 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3746 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3749 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3751 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3754 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3756 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3759 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3761 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3764 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3766 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3769 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3771 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3774 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3777 * Return true if any form of pauth is enabled, as this
3778 * predicate controls migration of the 128-bit keys.
3780 return (id->id_aa64isar1 &
3781 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3782 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3783 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3784 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3787 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3790 * Return true if pauth is enabled with the architected QARMA algorithm.
3791 * QEMU will always set APA+GPA to the same value.
3793 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3796 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3798 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3801 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3803 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3806 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3808 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3811 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3813 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3816 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3818 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3821 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3823 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3826 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3828 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3831 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3833 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3836 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3838 /* We always set the AdvSIMD and FP fields identically. */
3839 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3842 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3844 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3845 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3848 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3850 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3853 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3855 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3858 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3860 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3863 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3865 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3868 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3870 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3873 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3875 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3878 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3880 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3883 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3885 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3888 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3890 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3893 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3895 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3898 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3900 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3903 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3905 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3908 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3910 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3913 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3915 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3918 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3920 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3923 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3925 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3928 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3930 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3933 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3935 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3938 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3940 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3943 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
3945 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
3948 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3950 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3951 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3954 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3956 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3957 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3960 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3962 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3965 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3967 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3970 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3972 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3975 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3977 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
3980 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
3982 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3983 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
3986 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
3988 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
3991 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
3993 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
3994 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
3997 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3999 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4002 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4004 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4007 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4009 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4012 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4014 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4017 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4019 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4020 if (key >= 2) {
4021 return true; /* FEAT_CSV2_2 */
4023 if (key == 1) {
4024 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4025 return key >= 2; /* FEAT_CSV2_1p2 */
4027 return false;
4030 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4032 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4035 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4037 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4040 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4042 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4045 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4047 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4050 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4052 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4055 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4057 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4060 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4062 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4065 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4067 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4070 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4072 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4075 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4077 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4080 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4082 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4085 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4087 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4090 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4092 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4095 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4097 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4100 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4102 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4106 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4108 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4110 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4113 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4115 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4118 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4120 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4123 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4125 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4128 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4130 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4133 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4135 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4138 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4140 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4143 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4145 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4149 * Forward to the above feature tests given an ARMCPU pointer.
4151 #define cpu_isar_feature(name, cpu) \
4152 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4154 #endif