4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm_int.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
39 #include "exec/ioport.h"
40 #include "standard-headers/asm-x86/hyperv.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci/msi.h"
43 #include "migration/migration.h"
44 #include "exec/memattrs.h"
49 #define DPRINTF(fmt, ...) \
50 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
52 #define DPRINTF(fmt, ...) \
56 #define MSR_KVM_WALL_CLOCK 0x11
57 #define MSR_KVM_SYSTEM_TIME 0x12
60 #define BUS_MCEERR_AR 4
63 #define BUS_MCEERR_AO 5
66 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
67 KVM_CAP_INFO(SET_TSS_ADDR
),
68 KVM_CAP_INFO(EXT_CPUID
),
69 KVM_CAP_INFO(MP_STATE
),
73 static bool has_msr_star
;
74 static bool has_msr_hsave_pa
;
75 static bool has_msr_tsc_aux
;
76 static bool has_msr_tsc_adjust
;
77 static bool has_msr_tsc_deadline
;
78 static bool has_msr_feature_control
;
79 static bool has_msr_async_pf_en
;
80 static bool has_msr_pv_eoi_en
;
81 static bool has_msr_misc_enable
;
82 static bool has_msr_smbase
;
83 static bool has_msr_bndcfgs
;
84 static bool has_msr_kvm_steal_time
;
85 static int lm_capable_kernel
;
86 static bool has_msr_hv_hypercall
;
87 static bool has_msr_hv_vapic
;
88 static bool has_msr_hv_tsc
;
89 static bool has_msr_hv_crash
;
90 static bool has_msr_hv_reset
;
91 static bool has_msr_hv_vpindex
;
92 static bool has_msr_hv_runtime
;
93 static bool has_msr_hv_synic
;
94 static bool has_msr_hv_stimer
;
95 static bool has_msr_mtrr
;
96 static bool has_msr_xss
;
98 static bool has_msr_architectural_pmu
;
99 static uint32_t num_architectural_pmu_counters
;
101 static int has_xsave
;
103 static int has_pit_state2
;
105 int kvm_has_pit_state2(void)
107 return has_pit_state2
;
110 bool kvm_has_smm(void)
112 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
115 bool kvm_allows_irq0_override(void)
117 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
120 static int kvm_get_tsc(CPUState
*cs
)
122 X86CPU
*cpu
= X86_CPU(cs
);
123 CPUX86State
*env
= &cpu
->env
;
125 struct kvm_msrs info
;
126 struct kvm_msr_entry entries
[1];
130 if (env
->tsc_valid
) {
134 msr_data
.info
.nmsrs
= 1;
135 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
136 env
->tsc_valid
= !runstate_is_running();
138 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
143 env
->tsc
= msr_data
.entries
[0].data
;
147 static inline void do_kvm_synchronize_tsc(void *arg
)
154 void kvm_synchronize_all_tsc(void)
160 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, cpu
);
165 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
167 struct kvm_cpuid2
*cpuid
;
170 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
171 cpuid
= g_malloc0(size
);
173 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
174 if (r
== 0 && cpuid
->nent
>= max
) {
182 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
190 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
193 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
195 struct kvm_cpuid2
*cpuid
;
197 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
203 static const struct kvm_para_features
{
206 } para_features
[] = {
207 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
208 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
209 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
210 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
213 static int get_para_features(KVMState
*s
)
217 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
218 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
219 features
|= (1 << para_features
[i
].feature
);
227 /* Returns the value for a specific register on the cpuid entry
229 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
249 /* Find matching entry for function/index on kvm_cpuid2 struct
251 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
256 for (i
= 0; i
< cpuid
->nent
; ++i
) {
257 if (cpuid
->entries
[i
].function
== function
&&
258 cpuid
->entries
[i
].index
== index
) {
259 return &cpuid
->entries
[i
];
266 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
267 uint32_t index
, int reg
)
269 struct kvm_cpuid2
*cpuid
;
271 uint32_t cpuid_1_edx
;
274 cpuid
= get_supported_cpuid(s
);
276 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
279 ret
= cpuid_entry_get_reg(entry
, reg
);
282 /* Fixups for the data returned by KVM, below */
284 if (function
== 1 && reg
== R_EDX
) {
285 /* KVM before 2.6.30 misreports the following features */
286 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
287 } else if (function
== 1 && reg
== R_ECX
) {
288 /* We can set the hypervisor flag, even if KVM does not return it on
289 * GET_SUPPORTED_CPUID
291 ret
|= CPUID_EXT_HYPERVISOR
;
292 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
293 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
294 * and the irqchip is in the kernel.
296 if (kvm_irqchip_in_kernel() &&
297 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
298 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
301 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
302 * without the in-kernel irqchip
304 if (!kvm_irqchip_in_kernel()) {
305 ret
&= ~CPUID_EXT_X2APIC
;
307 } else if (function
== 6 && reg
== R_EAX
) {
308 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
309 } else if (function
== 0x80000001 && reg
== R_EDX
) {
310 /* On Intel, kvm returns cpuid according to the Intel spec,
311 * so add missing bits according to the AMD spec:
313 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
314 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
319 /* fallback for older kernels */
320 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
321 ret
= get_para_features(s
);
327 typedef struct HWPoisonPage
{
329 QLIST_ENTRY(HWPoisonPage
) list
;
332 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
333 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
335 static void kvm_unpoison_all(void *param
)
337 HWPoisonPage
*page
, *next_page
;
339 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
340 QLIST_REMOVE(page
, list
);
341 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
346 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
350 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
351 if (page
->ram_addr
== ram_addr
) {
355 page
= g_new(HWPoisonPage
, 1);
356 page
->ram_addr
= ram_addr
;
357 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
360 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
365 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
368 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
373 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
375 CPUX86State
*env
= &cpu
->env
;
376 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
377 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
378 uint64_t mcg_status
= MCG_STATUS_MCIP
;
380 if (code
== BUS_MCEERR_AR
) {
381 status
|= MCI_STATUS_AR
| 0x134;
382 mcg_status
|= MCG_STATUS_EIPV
;
385 mcg_status
|= MCG_STATUS_RIPV
;
387 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
388 (MCM_ADDR_PHYS
<< 6) | 0xc,
389 cpu_x86_support_mca_broadcast(env
) ?
390 MCE_INJECT_BROADCAST
: 0);
393 static void hardware_memory_error(void)
395 fprintf(stderr
, "Hardware memory error!\n");
399 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
401 X86CPU
*cpu
= X86_CPU(c
);
402 CPUX86State
*env
= &cpu
->env
;
406 if ((env
->mcg_cap
& MCG_SER_P
) && addr
407 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
408 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
409 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
410 fprintf(stderr
, "Hardware memory error for memory used by "
411 "QEMU itself instead of guest system!\n");
412 /* Hope we are lucky for AO MCE */
413 if (code
== BUS_MCEERR_AO
) {
416 hardware_memory_error();
419 kvm_hwpoison_page_add(ram_addr
);
420 kvm_mce_inject(cpu
, paddr
, code
);
422 if (code
== BUS_MCEERR_AO
) {
424 } else if (code
== BUS_MCEERR_AR
) {
425 hardware_memory_error();
433 int kvm_arch_on_sigbus(int code
, void *addr
)
435 X86CPU
*cpu
= X86_CPU(first_cpu
);
437 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
441 /* Hope we are lucky for AO MCE */
442 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
443 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
445 fprintf(stderr
, "Hardware memory error for memory used by "
446 "QEMU itself instead of guest system!: %p\n", addr
);
449 kvm_hwpoison_page_add(ram_addr
);
450 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
452 if (code
== BUS_MCEERR_AO
) {
454 } else if (code
== BUS_MCEERR_AR
) {
455 hardware_memory_error();
463 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
465 CPUX86State
*env
= &cpu
->env
;
467 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
468 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
469 struct kvm_x86_mce mce
;
471 env
->exception_injected
= -1;
474 * There must be at least one bank in use if an MCE is pending.
475 * Find it and use its values for the event injection.
477 for (bank
= 0; bank
< bank_num
; bank
++) {
478 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
482 assert(bank
< bank_num
);
485 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
486 mce
.mcg_status
= env
->mcg_status
;
487 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
488 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
490 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
495 static void cpu_update_state(void *opaque
, int running
, RunState state
)
497 CPUX86State
*env
= opaque
;
500 env
->tsc_valid
= false;
504 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
506 X86CPU
*cpu
= X86_CPU(cs
);
510 #ifndef KVM_CPUID_SIGNATURE_NEXT
511 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
514 static bool hyperv_hypercall_available(X86CPU
*cpu
)
516 return cpu
->hyperv_vapic
||
517 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
520 static bool hyperv_enabled(X86CPU
*cpu
)
522 CPUState
*cs
= CPU(cpu
);
523 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
524 (hyperv_hypercall_available(cpu
) ||
526 cpu
->hyperv_relaxed_timing
||
529 cpu
->hyperv_vpindex
||
530 cpu
->hyperv_runtime
||
535 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
537 X86CPU
*cpu
= X86_CPU(cs
);
538 CPUX86State
*env
= &cpu
->env
;
545 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
546 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
549 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
550 * TSC frequency doesn't match the one we want.
552 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
553 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
555 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
556 error_report("warning: TSC frequency mismatch between "
557 "VM and host, and TSC scaling unavailable");
565 static Error
*invtsc_mig_blocker
;
567 #define KVM_MAX_CPUID_ENTRIES 100
569 int kvm_arch_init_vcpu(CPUState
*cs
)
572 struct kvm_cpuid2 cpuid
;
573 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
574 } QEMU_PACKED cpuid_data
;
575 X86CPU
*cpu
= X86_CPU(cs
);
576 CPUX86State
*env
= &cpu
->env
;
577 uint32_t limit
, i
, j
, cpuid_i
;
579 struct kvm_cpuid_entry2
*c
;
580 uint32_t signature
[3];
581 int kvm_base
= KVM_CPUID_SIGNATURE
;
584 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
588 /* Paravirtualization CPUIDs */
589 if (hyperv_enabled(cpu
)) {
590 c
= &cpuid_data
.entries
[cpuid_i
++];
591 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
592 if (!cpu
->hyperv_vendor_id
) {
593 memcpy(signature
, "Microsoft Hv", 12);
595 size_t len
= strlen(cpu
->hyperv_vendor_id
);
598 error_report("hv-vendor-id truncated to 12 characters");
601 memset(signature
, 0, 12);
602 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
604 c
->eax
= HYPERV_CPUID_MIN
;
605 c
->ebx
= signature
[0];
606 c
->ecx
= signature
[1];
607 c
->edx
= signature
[2];
609 c
= &cpuid_data
.entries
[cpuid_i
++];
610 c
->function
= HYPERV_CPUID_INTERFACE
;
611 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
612 c
->eax
= signature
[0];
617 c
= &cpuid_data
.entries
[cpuid_i
++];
618 c
->function
= HYPERV_CPUID_VERSION
;
622 c
= &cpuid_data
.entries
[cpuid_i
++];
623 c
->function
= HYPERV_CPUID_FEATURES
;
624 if (cpu
->hyperv_relaxed_timing
) {
625 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
627 if (cpu
->hyperv_vapic
) {
628 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
629 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
630 has_msr_hv_vapic
= true;
632 if (cpu
->hyperv_time
&&
633 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
634 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
635 c
->eax
|= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
637 has_msr_hv_tsc
= true;
639 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
640 c
->edx
|= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
642 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
643 c
->eax
|= HV_X64_MSR_RESET_AVAILABLE
;
645 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
646 c
->eax
|= HV_X64_MSR_VP_INDEX_AVAILABLE
;
648 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
649 c
->eax
|= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
651 if (cpu
->hyperv_synic
) {
654 if (!has_msr_hv_synic
||
655 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
656 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
660 c
->eax
|= HV_X64_MSR_SYNIC_AVAILABLE
;
661 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
662 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
663 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
666 if (cpu
->hyperv_stimer
) {
667 if (!has_msr_hv_stimer
) {
668 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
671 c
->eax
|= HV_X64_MSR_SYNTIMER_AVAILABLE
;
673 c
= &cpuid_data
.entries
[cpuid_i
++];
674 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
675 if (cpu
->hyperv_relaxed_timing
) {
676 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
678 if (has_msr_hv_vapic
) {
679 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
681 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
683 c
= &cpuid_data
.entries
[cpuid_i
++];
684 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
688 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
689 has_msr_hv_hypercall
= true;
692 if (cpu
->expose_kvm
) {
693 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
694 c
= &cpuid_data
.entries
[cpuid_i
++];
695 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
696 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
697 c
->ebx
= signature
[0];
698 c
->ecx
= signature
[1];
699 c
->edx
= signature
[2];
701 c
= &cpuid_data
.entries
[cpuid_i
++];
702 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
703 c
->eax
= env
->features
[FEAT_KVM
];
705 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
707 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
709 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
712 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
714 for (i
= 0; i
<= limit
; i
++) {
715 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
716 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
719 c
= &cpuid_data
.entries
[cpuid_i
++];
723 /* Keep reading function 2 till all the input is received */
727 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
728 KVM_CPUID_FLAG_STATE_READ_NEXT
;
729 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
730 times
= c
->eax
& 0xff;
732 for (j
= 1; j
< times
; ++j
) {
733 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
734 fprintf(stderr
, "cpuid_data is full, no space for "
735 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
738 c
= &cpuid_data
.entries
[cpuid_i
++];
740 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
741 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
749 if (i
== 0xd && j
== 64) {
753 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
755 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
757 if (i
== 4 && c
->eax
== 0) {
760 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
763 if (i
== 0xd && c
->eax
== 0) {
766 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
767 fprintf(stderr
, "cpuid_data is full, no space for "
768 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
771 c
= &cpuid_data
.entries
[cpuid_i
++];
777 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
785 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
786 if ((ver
& 0xff) > 0) {
787 has_msr_architectural_pmu
= true;
788 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
790 /* Shouldn't be more than 32, since that's the number of bits
791 * available in EBX to tell us _which_ counters are available.
794 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
795 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
800 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
802 for (i
= 0x80000000; i
<= limit
; i
++) {
803 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
804 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
807 c
= &cpuid_data
.entries
[cpuid_i
++];
811 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
814 /* Call Centaur's CPUID instructions they are supported. */
815 if (env
->cpuid_xlevel2
> 0) {
816 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
818 for (i
= 0xC0000000; i
<= limit
; i
++) {
819 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
820 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
823 c
= &cpuid_data
.entries
[cpuid_i
++];
827 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
831 cpuid_data
.cpuid
.nent
= cpuid_i
;
833 if (((env
->cpuid_version
>> 8)&0xF) >= 6
834 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
835 (CPUID_MCE
| CPUID_MCA
)
836 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
837 uint64_t mcg_cap
, unsupported_caps
;
841 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
843 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
847 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
848 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
849 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
853 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
854 if (unsupported_caps
) {
855 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
859 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
860 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
862 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
867 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
869 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
871 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
872 !!(c
->ecx
& CPUID_EXT_SMX
);
875 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
876 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
878 error_setg(&invtsc_mig_blocker
,
879 "State blocked by non-migratable CPU device"
881 migrate_add_blocker(invtsc_mig_blocker
);
883 vmstate_x86_cpu
.unmigratable
= 1;
886 cpuid_data
.cpuid
.padding
= 0;
887 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
892 r
= kvm_arch_set_tsc_khz(cs
);
897 /* vcpu's TSC frequency is either specified by user, or following
898 * the value used by KVM if the former is not present. In the
899 * latter case, we query it from KVM and record in env->tsc_khz,
900 * so that vcpu's TSC frequency can be migrated later via this field.
903 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
904 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
912 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
915 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
922 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
924 CPUX86State
*env
= &cpu
->env
;
926 env
->exception_injected
= -1;
927 env
->interrupt_injected
= -1;
929 if (kvm_irqchip_in_kernel()) {
930 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
931 KVM_MP_STATE_UNINITIALIZED
;
933 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
937 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
939 CPUX86State
*env
= &cpu
->env
;
941 /* APs get directly into wait-for-SIPI state. */
942 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
943 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
947 static int kvm_get_supported_msrs(KVMState
*s
)
949 static int kvm_supported_msrs
;
953 if (kvm_supported_msrs
== 0) {
954 struct kvm_msr_list msr_list
, *kvm_msr_list
;
956 kvm_supported_msrs
= -1;
958 /* Obtain MSR list from KVM. These are the MSRs that we must
961 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
962 if (ret
< 0 && ret
!= -E2BIG
) {
965 /* Old kernel modules had a bug and could write beyond the provided
966 memory. Allocate at least a safe amount of 1K. */
967 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
969 sizeof(msr_list
.indices
[0])));
971 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
972 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
976 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
977 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
981 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
982 has_msr_hsave_pa
= true;
985 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
986 has_msr_tsc_aux
= true;
989 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
990 has_msr_tsc_adjust
= true;
993 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
994 has_msr_tsc_deadline
= true;
997 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
998 has_msr_smbase
= true;
1001 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1002 has_msr_misc_enable
= true;
1005 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1006 has_msr_bndcfgs
= true;
1009 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1013 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1014 has_msr_hv_crash
= true;
1017 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1018 has_msr_hv_reset
= true;
1021 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1022 has_msr_hv_vpindex
= true;
1025 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1026 has_msr_hv_runtime
= true;
1029 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1030 has_msr_hv_synic
= true;
1033 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1034 has_msr_hv_stimer
= true;
1040 g_free(kvm_msr_list
);
1046 static Notifier smram_machine_done
;
1047 static KVMMemoryListener smram_listener
;
1048 static AddressSpace smram_address_space
;
1049 static MemoryRegion smram_as_root
;
1050 static MemoryRegion smram_as_mem
;
1052 static void register_smram_listener(Notifier
*n
, void *unused
)
1054 MemoryRegion
*smram
=
1055 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1057 /* Outer container... */
1058 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1059 memory_region_set_enabled(&smram_as_root
, true);
1061 /* ... with two regions inside: normal system memory with low
1064 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1065 get_system_memory(), 0, ~0ull);
1066 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1067 memory_region_set_enabled(&smram_as_mem
, true);
1070 /* ... SMRAM with higher priority */
1071 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1072 memory_region_set_enabled(smram
, true);
1075 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1076 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1077 &smram_address_space
, 1);
1080 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1082 uint64_t identity_base
= 0xfffbc000;
1083 uint64_t shadow_mem
;
1085 struct utsname utsname
;
1087 #ifdef KVM_CAP_XSAVE
1088 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1092 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1095 #ifdef KVM_CAP_PIT_STATE2
1096 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1099 ret
= kvm_get_supported_msrs(s
);
1105 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1108 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1109 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1110 * Since these must be part of guest physical memory, we need to allocate
1111 * them, both by setting their start addresses in the kernel and by
1112 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1114 * Older KVM versions may not support setting the identity map base. In
1115 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1118 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1119 /* Allows up to 16M BIOSes. */
1120 identity_base
= 0xfeffc000;
1122 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1128 /* Set TSS base one page after EPT identity map. */
1129 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1134 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1135 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1137 fprintf(stderr
, "e820_add_entry() table is full\n");
1140 qemu_register_reset(kvm_unpoison_all
, NULL
);
1142 shadow_mem
= machine_kvm_shadow_mem(ms
);
1143 if (shadow_mem
!= -1) {
1145 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1151 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1152 smram_machine_done
.notify
= register_smram_listener
;
1153 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1158 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1160 lhs
->selector
= rhs
->selector
;
1161 lhs
->base
= rhs
->base
;
1162 lhs
->limit
= rhs
->limit
;
1174 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1176 unsigned flags
= rhs
->flags
;
1177 lhs
->selector
= rhs
->selector
;
1178 lhs
->base
= rhs
->base
;
1179 lhs
->limit
= rhs
->limit
;
1180 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1181 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1182 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1183 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1184 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1185 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1186 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1187 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1188 lhs
->unusable
= !lhs
->present
;
1192 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1194 lhs
->selector
= rhs
->selector
;
1195 lhs
->base
= rhs
->base
;
1196 lhs
->limit
= rhs
->limit
;
1197 if (rhs
->unusable
) {
1200 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1201 (rhs
->present
* DESC_P_MASK
) |
1202 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1203 (rhs
->db
<< DESC_B_SHIFT
) |
1204 (rhs
->s
* DESC_S_MASK
) |
1205 (rhs
->l
<< DESC_L_SHIFT
) |
1206 (rhs
->g
* DESC_G_MASK
) |
1207 (rhs
->avl
* DESC_AVL_MASK
);
1211 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1214 *kvm_reg
= *qemu_reg
;
1216 *qemu_reg
= *kvm_reg
;
1220 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1222 CPUX86State
*env
= &cpu
->env
;
1223 struct kvm_regs regs
;
1227 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1233 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1234 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1235 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1236 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1237 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1238 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1239 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1240 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1241 #ifdef TARGET_X86_64
1242 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1243 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1244 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1245 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1246 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1247 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1248 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1249 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1252 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1253 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1256 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1262 static int kvm_put_fpu(X86CPU
*cpu
)
1264 CPUX86State
*env
= &cpu
->env
;
1268 memset(&fpu
, 0, sizeof fpu
);
1269 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1270 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1271 fpu
.fcw
= env
->fpuc
;
1272 fpu
.last_opcode
= env
->fpop
;
1273 fpu
.last_ip
= env
->fpip
;
1274 fpu
.last_dp
= env
->fpdp
;
1275 for (i
= 0; i
< 8; ++i
) {
1276 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1278 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1279 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1280 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1281 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1283 fpu
.mxcsr
= env
->mxcsr
;
1285 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1288 #define XSAVE_FCW_FSW 0
1289 #define XSAVE_FTW_FOP 1
1290 #define XSAVE_CWD_RIP 2
1291 #define XSAVE_CWD_RDP 4
1292 #define XSAVE_MXCSR 6
1293 #define XSAVE_ST_SPACE 8
1294 #define XSAVE_XMM_SPACE 40
1295 #define XSAVE_XSTATE_BV 128
1296 #define XSAVE_YMMH_SPACE 144
1297 #define XSAVE_BNDREGS 240
1298 #define XSAVE_BNDCSR 256
1299 #define XSAVE_OPMASK 272
1300 #define XSAVE_ZMM_Hi256 288
1301 #define XSAVE_Hi16_ZMM 416
1302 #define XSAVE_PKRU 672
1304 static int kvm_put_xsave(X86CPU
*cpu
)
1306 CPUX86State
*env
= &cpu
->env
;
1307 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1308 uint16_t cwd
, swd
, twd
;
1309 uint8_t *xmm
, *ymmh
, *zmmh
;
1313 return kvm_put_fpu(cpu
);
1316 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1318 swd
= env
->fpus
& ~(7 << 11);
1319 swd
|= (env
->fpstt
& 7) << 11;
1321 for (i
= 0; i
< 8; ++i
) {
1322 twd
|= (!env
->fptags
[i
]) << i
;
1324 xsave
->region
[XSAVE_FCW_FSW
] = (uint32_t)(swd
<< 16) + cwd
;
1325 xsave
->region
[XSAVE_FTW_FOP
] = (uint32_t)(env
->fpop
<< 16) + twd
;
1326 memcpy(&xsave
->region
[XSAVE_CWD_RIP
], &env
->fpip
, sizeof(env
->fpip
));
1327 memcpy(&xsave
->region
[XSAVE_CWD_RDP
], &env
->fpdp
, sizeof(env
->fpdp
));
1328 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
1329 sizeof env
->fpregs
);
1330 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
1331 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
1332 memcpy(&xsave
->region
[XSAVE_BNDREGS
], env
->bnd_regs
,
1333 sizeof env
->bnd_regs
);
1334 memcpy(&xsave
->region
[XSAVE_BNDCSR
], &env
->bndcs_regs
,
1335 sizeof(env
->bndcs_regs
));
1336 memcpy(&xsave
->region
[XSAVE_OPMASK
], env
->opmask_regs
,
1337 sizeof env
->opmask_regs
);
1339 xmm
= (uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1340 ymmh
= (uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1341 zmmh
= (uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1342 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1343 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1344 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1345 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1346 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1347 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1348 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1349 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1350 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1353 #ifdef TARGET_X86_64
1354 memcpy(&xsave
->region
[XSAVE_Hi16_ZMM
], &env
->xmm_regs
[16],
1355 16 * sizeof env
->xmm_regs
[16]);
1356 memcpy(&xsave
->region
[XSAVE_PKRU
], &env
->pkru
, sizeof env
->pkru
);
1358 r
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1362 static int kvm_put_xcrs(X86CPU
*cpu
)
1364 CPUX86State
*env
= &cpu
->env
;
1365 struct kvm_xcrs xcrs
= {};
1373 xcrs
.xcrs
[0].xcr
= 0;
1374 xcrs
.xcrs
[0].value
= env
->xcr0
;
1375 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1378 static int kvm_put_sregs(X86CPU
*cpu
)
1380 CPUX86State
*env
= &cpu
->env
;
1381 struct kvm_sregs sregs
;
1383 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1384 if (env
->interrupt_injected
>= 0) {
1385 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1386 (uint64_t)1 << (env
->interrupt_injected
% 64);
1389 if ((env
->eflags
& VM_MASK
)) {
1390 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1391 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1392 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1393 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1394 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1395 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1397 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1398 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1399 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1400 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1401 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1402 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1405 set_seg(&sregs
.tr
, &env
->tr
);
1406 set_seg(&sregs
.ldt
, &env
->ldt
);
1408 sregs
.idt
.limit
= env
->idt
.limit
;
1409 sregs
.idt
.base
= env
->idt
.base
;
1410 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1411 sregs
.gdt
.limit
= env
->gdt
.limit
;
1412 sregs
.gdt
.base
= env
->gdt
.base
;
1413 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1415 sregs
.cr0
= env
->cr
[0];
1416 sregs
.cr2
= env
->cr
[2];
1417 sregs
.cr3
= env
->cr
[3];
1418 sregs
.cr4
= env
->cr
[4];
1420 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1421 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1423 sregs
.efer
= env
->efer
;
1425 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1428 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
1429 uint32_t index
, uint64_t value
)
1431 entry
->index
= index
;
1432 entry
->reserved
= 0;
1433 entry
->data
= value
;
1436 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1438 CPUX86State
*env
= &cpu
->env
;
1440 struct kvm_msrs info
;
1441 struct kvm_msr_entry entries
[1];
1443 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1445 if (!has_msr_tsc_deadline
) {
1449 kvm_msr_entry_set(&msrs
[0], MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1451 msr_data
.info
= (struct kvm_msrs
) {
1455 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1459 * Provide a separate write service for the feature control MSR in order to
1460 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1461 * before writing any other state because forcibly leaving nested mode
1462 * invalidates the VCPU state.
1464 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1467 struct kvm_msrs info
;
1468 struct kvm_msr_entry entry
;
1471 kvm_msr_entry_set(&msr_data
.entry
, MSR_IA32_FEATURE_CONTROL
,
1472 cpu
->env
.msr_ia32_feature_control
);
1474 msr_data
.info
= (struct kvm_msrs
) {
1478 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1481 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1483 CPUX86State
*env
= &cpu
->env
;
1485 struct kvm_msrs info
;
1486 struct kvm_msr_entry entries
[150];
1488 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1491 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1492 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1493 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1494 kvm_msr_entry_set(&msrs
[n
++], MSR_PAT
, env
->pat
);
1496 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
1498 if (has_msr_hsave_pa
) {
1499 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1501 if (has_msr_tsc_aux
) {
1502 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_AUX
, env
->tsc_aux
);
1504 if (has_msr_tsc_adjust
) {
1505 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_ADJUST
, env
->tsc_adjust
);
1507 if (has_msr_misc_enable
) {
1508 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_MISC_ENABLE
,
1509 env
->msr_ia32_misc_enable
);
1511 if (has_msr_smbase
) {
1512 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SMBASE
, env
->smbase
);
1514 if (has_msr_bndcfgs
) {
1515 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1518 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_XSS
, env
->xss
);
1520 #ifdef TARGET_X86_64
1521 if (lm_capable_kernel
) {
1522 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
1523 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
1524 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
1525 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
1529 * The following MSRs have side effects on the guest or are too heavy
1530 * for normal writeback. Limit them to reset or full state updates.
1532 if (level
>= KVM_PUT_RESET_STATE
) {
1533 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
1534 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
1535 env
->system_time_msr
);
1536 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1537 if (has_msr_async_pf_en
) {
1538 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
1539 env
->async_pf_en_msr
);
1541 if (has_msr_pv_eoi_en
) {
1542 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_PV_EOI_EN
,
1543 env
->pv_eoi_en_msr
);
1545 if (has_msr_kvm_steal_time
) {
1546 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_STEAL_TIME
,
1547 env
->steal_time_msr
);
1549 if (has_msr_architectural_pmu
) {
1550 /* Stop the counter. */
1551 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1552 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1554 /* Set the counter values. */
1555 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1556 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR0
+ i
,
1557 env
->msr_fixed_counters
[i
]);
1559 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1560 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_PERFCTR0
+ i
,
1561 env
->msr_gp_counters
[i
]);
1562 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_EVNTSEL0
+ i
,
1563 env
->msr_gp_evtsel
[i
]);
1565 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_STATUS
,
1566 env
->msr_global_status
);
1567 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1568 env
->msr_global_ovf_ctrl
);
1570 /* Now start the PMU. */
1571 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
,
1572 env
->msr_fixed_ctr_ctrl
);
1573 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
,
1574 env
->msr_global_ctrl
);
1576 if (has_msr_hv_hypercall
) {
1577 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_GUEST_OS_ID
,
1578 env
->msr_hv_guest_os_id
);
1579 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_HYPERCALL
,
1580 env
->msr_hv_hypercall
);
1582 if (has_msr_hv_vapic
) {
1583 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_APIC_ASSIST_PAGE
,
1586 if (has_msr_hv_tsc
) {
1587 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_REFERENCE_TSC
,
1590 if (has_msr_hv_crash
) {
1593 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1594 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_P0
+ j
,
1595 env
->msr_hv_crash_params
[j
]);
1597 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_CTL
,
1598 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1600 if (has_msr_hv_runtime
) {
1601 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_VP_RUNTIME
,
1602 env
->msr_hv_runtime
);
1604 if (cpu
->hyperv_synic
) {
1607 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SCONTROL
,
1608 env
->msr_hv_synic_control
);
1609 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SVERSION
,
1610 env
->msr_hv_synic_version
);
1611 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SIEFP
,
1612 env
->msr_hv_synic_evt_page
);
1613 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SIMP
,
1614 env
->msr_hv_synic_msg_page
);
1616 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1617 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SINT0
+ j
,
1618 env
->msr_hv_synic_sint
[j
]);
1621 if (has_msr_hv_stimer
) {
1624 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1625 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_STIMER0_CONFIG
+ j
*2,
1626 env
->msr_hv_stimer_config
[j
]);
1629 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1630 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_STIMER0_COUNT
+ j
*2,
1631 env
->msr_hv_stimer_count
[j
]);
1635 kvm_msr_entry_set(&msrs
[n
++], MSR_MTRRdefType
, env
->mtrr_deftype
);
1636 kvm_msr_entry_set(&msrs
[n
++],
1637 MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1638 kvm_msr_entry_set(&msrs
[n
++],
1639 MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1640 kvm_msr_entry_set(&msrs
[n
++],
1641 MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1642 kvm_msr_entry_set(&msrs
[n
++],
1643 MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1644 kvm_msr_entry_set(&msrs
[n
++],
1645 MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1646 kvm_msr_entry_set(&msrs
[n
++],
1647 MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1648 kvm_msr_entry_set(&msrs
[n
++],
1649 MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1650 kvm_msr_entry_set(&msrs
[n
++],
1651 MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1652 kvm_msr_entry_set(&msrs
[n
++],
1653 MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1654 kvm_msr_entry_set(&msrs
[n
++],
1655 MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1656 kvm_msr_entry_set(&msrs
[n
++],
1657 MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1658 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1659 kvm_msr_entry_set(&msrs
[n
++],
1660 MSR_MTRRphysBase(i
), env
->mtrr_var
[i
].base
);
1661 kvm_msr_entry_set(&msrs
[n
++],
1662 MSR_MTRRphysMask(i
), env
->mtrr_var
[i
].mask
);
1666 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1667 * kvm_put_msr_feature_control. */
1672 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
1673 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
1674 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1675 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1679 msr_data
.info
= (struct kvm_msrs
) {
1683 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1688 static int kvm_get_fpu(X86CPU
*cpu
)
1690 CPUX86State
*env
= &cpu
->env
;
1694 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1699 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1700 env
->fpus
= fpu
.fsw
;
1701 env
->fpuc
= fpu
.fcw
;
1702 env
->fpop
= fpu
.last_opcode
;
1703 env
->fpip
= fpu
.last_ip
;
1704 env
->fpdp
= fpu
.last_dp
;
1705 for (i
= 0; i
< 8; ++i
) {
1706 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1708 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1709 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1710 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1711 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1713 env
->mxcsr
= fpu
.mxcsr
;
1718 static int kvm_get_xsave(X86CPU
*cpu
)
1720 CPUX86State
*env
= &cpu
->env
;
1721 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1723 const uint8_t *xmm
, *ymmh
, *zmmh
;
1724 uint16_t cwd
, swd
, twd
;
1727 return kvm_get_fpu(cpu
);
1730 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1735 cwd
= (uint16_t)xsave
->region
[XSAVE_FCW_FSW
];
1736 swd
= (uint16_t)(xsave
->region
[XSAVE_FCW_FSW
] >> 16);
1737 twd
= (uint16_t)xsave
->region
[XSAVE_FTW_FOP
];
1738 env
->fpop
= (uint16_t)(xsave
->region
[XSAVE_FTW_FOP
] >> 16);
1739 env
->fpstt
= (swd
>> 11) & 7;
1742 for (i
= 0; i
< 8; ++i
) {
1743 env
->fptags
[i
] = !((twd
>> i
) & 1);
1745 memcpy(&env
->fpip
, &xsave
->region
[XSAVE_CWD_RIP
], sizeof(env
->fpip
));
1746 memcpy(&env
->fpdp
, &xsave
->region
[XSAVE_CWD_RDP
], sizeof(env
->fpdp
));
1747 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
1748 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
1749 sizeof env
->fpregs
);
1750 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
1751 memcpy(env
->bnd_regs
, &xsave
->region
[XSAVE_BNDREGS
],
1752 sizeof env
->bnd_regs
);
1753 memcpy(&env
->bndcs_regs
, &xsave
->region
[XSAVE_BNDCSR
],
1754 sizeof(env
->bndcs_regs
));
1755 memcpy(env
->opmask_regs
, &xsave
->region
[XSAVE_OPMASK
],
1756 sizeof env
->opmask_regs
);
1758 xmm
= (const uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1759 ymmh
= (const uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1760 zmmh
= (const uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1761 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1762 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1763 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1764 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1765 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1766 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1767 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1768 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1769 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1772 #ifdef TARGET_X86_64
1773 memcpy(&env
->xmm_regs
[16], &xsave
->region
[XSAVE_Hi16_ZMM
],
1774 16 * sizeof env
->xmm_regs
[16]);
1775 memcpy(&env
->pkru
, &xsave
->region
[XSAVE_PKRU
], sizeof env
->pkru
);
1780 static int kvm_get_xcrs(X86CPU
*cpu
)
1782 CPUX86State
*env
= &cpu
->env
;
1784 struct kvm_xcrs xcrs
;
1790 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1795 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1796 /* Only support xcr0 now */
1797 if (xcrs
.xcrs
[i
].xcr
== 0) {
1798 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1805 static int kvm_get_sregs(X86CPU
*cpu
)
1807 CPUX86State
*env
= &cpu
->env
;
1808 struct kvm_sregs sregs
;
1812 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1817 /* There can only be one pending IRQ set in the bitmap at a time, so try
1818 to find it and save its number instead (-1 for none). */
1819 env
->interrupt_injected
= -1;
1820 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1821 if (sregs
.interrupt_bitmap
[i
]) {
1822 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1823 env
->interrupt_injected
= i
* 64 + bit
;
1828 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1829 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1830 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1831 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1832 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1833 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1835 get_seg(&env
->tr
, &sregs
.tr
);
1836 get_seg(&env
->ldt
, &sregs
.ldt
);
1838 env
->idt
.limit
= sregs
.idt
.limit
;
1839 env
->idt
.base
= sregs
.idt
.base
;
1840 env
->gdt
.limit
= sregs
.gdt
.limit
;
1841 env
->gdt
.base
= sregs
.gdt
.base
;
1843 env
->cr
[0] = sregs
.cr0
;
1844 env
->cr
[2] = sregs
.cr2
;
1845 env
->cr
[3] = sregs
.cr3
;
1846 env
->cr
[4] = sregs
.cr4
;
1848 env
->efer
= sregs
.efer
;
1850 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1852 #define HFLAG_COPY_MASK \
1853 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1854 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1855 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1856 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1858 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1859 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1860 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1861 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1862 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1863 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1865 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1866 hflags
|= HF_OSFXSR_MASK
;
1869 if (env
->efer
& MSR_EFER_LMA
) {
1870 hflags
|= HF_LMA_MASK
;
1873 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1874 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1876 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1877 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1878 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1879 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1880 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1881 !(hflags
& HF_CS32_MASK
)) {
1882 hflags
|= HF_ADDSEG_MASK
;
1884 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1885 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1888 env
->hflags
= hflags
;
1893 static int kvm_get_msrs(X86CPU
*cpu
)
1895 CPUX86State
*env
= &cpu
->env
;
1897 struct kvm_msrs info
;
1898 struct kvm_msr_entry entries
[150];
1900 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1904 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1905 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1906 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1907 msrs
[n
++].index
= MSR_PAT
;
1909 msrs
[n
++].index
= MSR_STAR
;
1911 if (has_msr_hsave_pa
) {
1912 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1914 if (has_msr_tsc_aux
) {
1915 msrs
[n
++].index
= MSR_TSC_AUX
;
1917 if (has_msr_tsc_adjust
) {
1918 msrs
[n
++].index
= MSR_TSC_ADJUST
;
1920 if (has_msr_tsc_deadline
) {
1921 msrs
[n
++].index
= MSR_IA32_TSCDEADLINE
;
1923 if (has_msr_misc_enable
) {
1924 msrs
[n
++].index
= MSR_IA32_MISC_ENABLE
;
1926 if (has_msr_smbase
) {
1927 msrs
[n
++].index
= MSR_IA32_SMBASE
;
1929 if (has_msr_feature_control
) {
1930 msrs
[n
++].index
= MSR_IA32_FEATURE_CONTROL
;
1932 if (has_msr_bndcfgs
) {
1933 msrs
[n
++].index
= MSR_IA32_BNDCFGS
;
1936 msrs
[n
++].index
= MSR_IA32_XSS
;
1940 if (!env
->tsc_valid
) {
1941 msrs
[n
++].index
= MSR_IA32_TSC
;
1942 env
->tsc_valid
= !runstate_is_running();
1945 #ifdef TARGET_X86_64
1946 if (lm_capable_kernel
) {
1947 msrs
[n
++].index
= MSR_CSTAR
;
1948 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1949 msrs
[n
++].index
= MSR_FMASK
;
1950 msrs
[n
++].index
= MSR_LSTAR
;
1953 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1954 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1955 if (has_msr_async_pf_en
) {
1956 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1958 if (has_msr_pv_eoi_en
) {
1959 msrs
[n
++].index
= MSR_KVM_PV_EOI_EN
;
1961 if (has_msr_kvm_steal_time
) {
1962 msrs
[n
++].index
= MSR_KVM_STEAL_TIME
;
1964 if (has_msr_architectural_pmu
) {
1965 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR_CTRL
;
1966 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_CTRL
;
1967 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_STATUS
;
1968 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_OVF_CTRL
;
1969 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1970 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR0
+ i
;
1972 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1973 msrs
[n
++].index
= MSR_P6_PERFCTR0
+ i
;
1974 msrs
[n
++].index
= MSR_P6_EVNTSEL0
+ i
;
1979 msrs
[n
++].index
= MSR_MCG_STATUS
;
1980 msrs
[n
++].index
= MSR_MCG_CTL
;
1981 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1982 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1986 if (has_msr_hv_hypercall
) {
1987 msrs
[n
++].index
= HV_X64_MSR_HYPERCALL
;
1988 msrs
[n
++].index
= HV_X64_MSR_GUEST_OS_ID
;
1990 if (has_msr_hv_vapic
) {
1991 msrs
[n
++].index
= HV_X64_MSR_APIC_ASSIST_PAGE
;
1993 if (has_msr_hv_tsc
) {
1994 msrs
[n
++].index
= HV_X64_MSR_REFERENCE_TSC
;
1996 if (has_msr_hv_crash
) {
1999 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2000 msrs
[n
++].index
= HV_X64_MSR_CRASH_P0
+ j
;
2003 if (has_msr_hv_runtime
) {
2004 msrs
[n
++].index
= HV_X64_MSR_VP_RUNTIME
;
2006 if (cpu
->hyperv_synic
) {
2009 msrs
[n
++].index
= HV_X64_MSR_SCONTROL
;
2010 msrs
[n
++].index
= HV_X64_MSR_SVERSION
;
2011 msrs
[n
++].index
= HV_X64_MSR_SIEFP
;
2012 msrs
[n
++].index
= HV_X64_MSR_SIMP
;
2013 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2014 msrs
[n
++].index
= msr
;
2017 if (has_msr_hv_stimer
) {
2020 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2022 msrs
[n
++].index
= msr
;
2026 msrs
[n
++].index
= MSR_MTRRdefType
;
2027 msrs
[n
++].index
= MSR_MTRRfix64K_00000
;
2028 msrs
[n
++].index
= MSR_MTRRfix16K_80000
;
2029 msrs
[n
++].index
= MSR_MTRRfix16K_A0000
;
2030 msrs
[n
++].index
= MSR_MTRRfix4K_C0000
;
2031 msrs
[n
++].index
= MSR_MTRRfix4K_C8000
;
2032 msrs
[n
++].index
= MSR_MTRRfix4K_D0000
;
2033 msrs
[n
++].index
= MSR_MTRRfix4K_D8000
;
2034 msrs
[n
++].index
= MSR_MTRRfix4K_E0000
;
2035 msrs
[n
++].index
= MSR_MTRRfix4K_E8000
;
2036 msrs
[n
++].index
= MSR_MTRRfix4K_F0000
;
2037 msrs
[n
++].index
= MSR_MTRRfix4K_F8000
;
2038 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2039 msrs
[n
++].index
= MSR_MTRRphysBase(i
);
2040 msrs
[n
++].index
= MSR_MTRRphysMask(i
);
2044 msr_data
.info
= (struct kvm_msrs
) {
2048 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
2053 for (i
= 0; i
< ret
; i
++) {
2054 uint32_t index
= msrs
[i
].index
;
2056 case MSR_IA32_SYSENTER_CS
:
2057 env
->sysenter_cs
= msrs
[i
].data
;
2059 case MSR_IA32_SYSENTER_ESP
:
2060 env
->sysenter_esp
= msrs
[i
].data
;
2062 case MSR_IA32_SYSENTER_EIP
:
2063 env
->sysenter_eip
= msrs
[i
].data
;
2066 env
->pat
= msrs
[i
].data
;
2069 env
->star
= msrs
[i
].data
;
2071 #ifdef TARGET_X86_64
2073 env
->cstar
= msrs
[i
].data
;
2075 case MSR_KERNELGSBASE
:
2076 env
->kernelgsbase
= msrs
[i
].data
;
2079 env
->fmask
= msrs
[i
].data
;
2082 env
->lstar
= msrs
[i
].data
;
2086 env
->tsc
= msrs
[i
].data
;
2089 env
->tsc_aux
= msrs
[i
].data
;
2091 case MSR_TSC_ADJUST
:
2092 env
->tsc_adjust
= msrs
[i
].data
;
2094 case MSR_IA32_TSCDEADLINE
:
2095 env
->tsc_deadline
= msrs
[i
].data
;
2097 case MSR_VM_HSAVE_PA
:
2098 env
->vm_hsave
= msrs
[i
].data
;
2100 case MSR_KVM_SYSTEM_TIME
:
2101 env
->system_time_msr
= msrs
[i
].data
;
2103 case MSR_KVM_WALL_CLOCK
:
2104 env
->wall_clock_msr
= msrs
[i
].data
;
2106 case MSR_MCG_STATUS
:
2107 env
->mcg_status
= msrs
[i
].data
;
2110 env
->mcg_ctl
= msrs
[i
].data
;
2112 case MSR_IA32_MISC_ENABLE
:
2113 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2115 case MSR_IA32_SMBASE
:
2116 env
->smbase
= msrs
[i
].data
;
2118 case MSR_IA32_FEATURE_CONTROL
:
2119 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2121 case MSR_IA32_BNDCFGS
:
2122 env
->msr_bndcfgs
= msrs
[i
].data
;
2125 env
->xss
= msrs
[i
].data
;
2128 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2129 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2130 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2133 case MSR_KVM_ASYNC_PF_EN
:
2134 env
->async_pf_en_msr
= msrs
[i
].data
;
2136 case MSR_KVM_PV_EOI_EN
:
2137 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2139 case MSR_KVM_STEAL_TIME
:
2140 env
->steal_time_msr
= msrs
[i
].data
;
2142 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2143 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2145 case MSR_CORE_PERF_GLOBAL_CTRL
:
2146 env
->msr_global_ctrl
= msrs
[i
].data
;
2148 case MSR_CORE_PERF_GLOBAL_STATUS
:
2149 env
->msr_global_status
= msrs
[i
].data
;
2151 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2152 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2154 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2155 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2157 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2158 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2160 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2161 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2163 case HV_X64_MSR_HYPERCALL
:
2164 env
->msr_hv_hypercall
= msrs
[i
].data
;
2166 case HV_X64_MSR_GUEST_OS_ID
:
2167 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2169 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2170 env
->msr_hv_vapic
= msrs
[i
].data
;
2172 case HV_X64_MSR_REFERENCE_TSC
:
2173 env
->msr_hv_tsc
= msrs
[i
].data
;
2175 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2176 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2178 case HV_X64_MSR_VP_RUNTIME
:
2179 env
->msr_hv_runtime
= msrs
[i
].data
;
2181 case HV_X64_MSR_SCONTROL
:
2182 env
->msr_hv_synic_control
= msrs
[i
].data
;
2184 case HV_X64_MSR_SVERSION
:
2185 env
->msr_hv_synic_version
= msrs
[i
].data
;
2187 case HV_X64_MSR_SIEFP
:
2188 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2190 case HV_X64_MSR_SIMP
:
2191 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2193 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2194 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2196 case HV_X64_MSR_STIMER0_CONFIG
:
2197 case HV_X64_MSR_STIMER1_CONFIG
:
2198 case HV_X64_MSR_STIMER2_CONFIG
:
2199 case HV_X64_MSR_STIMER3_CONFIG
:
2200 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2203 case HV_X64_MSR_STIMER0_COUNT
:
2204 case HV_X64_MSR_STIMER1_COUNT
:
2205 case HV_X64_MSR_STIMER2_COUNT
:
2206 case HV_X64_MSR_STIMER3_COUNT
:
2207 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2210 case MSR_MTRRdefType
:
2211 env
->mtrr_deftype
= msrs
[i
].data
;
2213 case MSR_MTRRfix64K_00000
:
2214 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2216 case MSR_MTRRfix16K_80000
:
2217 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2219 case MSR_MTRRfix16K_A0000
:
2220 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2222 case MSR_MTRRfix4K_C0000
:
2223 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2225 case MSR_MTRRfix4K_C8000
:
2226 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2228 case MSR_MTRRfix4K_D0000
:
2229 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2231 case MSR_MTRRfix4K_D8000
:
2232 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2234 case MSR_MTRRfix4K_E0000
:
2235 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2237 case MSR_MTRRfix4K_E8000
:
2238 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2240 case MSR_MTRRfix4K_F0000
:
2241 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2243 case MSR_MTRRfix4K_F8000
:
2244 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2246 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2248 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
2250 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2259 static int kvm_put_mp_state(X86CPU
*cpu
)
2261 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2263 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2266 static int kvm_get_mp_state(X86CPU
*cpu
)
2268 CPUState
*cs
= CPU(cpu
);
2269 CPUX86State
*env
= &cpu
->env
;
2270 struct kvm_mp_state mp_state
;
2273 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2277 env
->mp_state
= mp_state
.mp_state
;
2278 if (kvm_irqchip_in_kernel()) {
2279 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2284 static int kvm_get_apic(X86CPU
*cpu
)
2286 DeviceState
*apic
= cpu
->apic_state
;
2287 struct kvm_lapic_state kapic
;
2290 if (apic
&& kvm_irqchip_in_kernel()) {
2291 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2296 kvm_get_apic_state(apic
, &kapic
);
2301 static int kvm_put_apic(X86CPU
*cpu
)
2303 DeviceState
*apic
= cpu
->apic_state
;
2304 struct kvm_lapic_state kapic
;
2306 if (apic
&& kvm_irqchip_in_kernel()) {
2307 kvm_put_apic_state(apic
, &kapic
);
2309 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2314 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2316 CPUState
*cs
= CPU(cpu
);
2317 CPUX86State
*env
= &cpu
->env
;
2318 struct kvm_vcpu_events events
= {};
2320 if (!kvm_has_vcpu_events()) {
2324 events
.exception
.injected
= (env
->exception_injected
>= 0);
2325 events
.exception
.nr
= env
->exception_injected
;
2326 events
.exception
.has_error_code
= env
->has_error_code
;
2327 events
.exception
.error_code
= env
->error_code
;
2328 events
.exception
.pad
= 0;
2330 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2331 events
.interrupt
.nr
= env
->interrupt_injected
;
2332 events
.interrupt
.soft
= env
->soft_interrupt
;
2334 events
.nmi
.injected
= env
->nmi_injected
;
2335 events
.nmi
.pending
= env
->nmi_pending
;
2336 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2339 events
.sipi_vector
= env
->sipi_vector
;
2341 if (has_msr_smbase
) {
2342 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2343 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2344 if (kvm_irqchip_in_kernel()) {
2345 /* As soon as these are moved to the kernel, remove them
2346 * from cs->interrupt_request.
2348 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2349 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2350 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2352 /* Keep these in cs->interrupt_request. */
2353 events
.smi
.pending
= 0;
2354 events
.smi
.latched_init
= 0;
2356 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2360 if (level
>= KVM_PUT_RESET_STATE
) {
2362 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2365 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2368 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2370 CPUX86State
*env
= &cpu
->env
;
2371 struct kvm_vcpu_events events
;
2374 if (!kvm_has_vcpu_events()) {
2378 memset(&events
, 0, sizeof(events
));
2379 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2383 env
->exception_injected
=
2384 events
.exception
.injected
? events
.exception
.nr
: -1;
2385 env
->has_error_code
= events
.exception
.has_error_code
;
2386 env
->error_code
= events
.exception
.error_code
;
2388 env
->interrupt_injected
=
2389 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2390 env
->soft_interrupt
= events
.interrupt
.soft
;
2392 env
->nmi_injected
= events
.nmi
.injected
;
2393 env
->nmi_pending
= events
.nmi
.pending
;
2394 if (events
.nmi
.masked
) {
2395 env
->hflags2
|= HF2_NMI_MASK
;
2397 env
->hflags2
&= ~HF2_NMI_MASK
;
2400 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2401 if (events
.smi
.smm
) {
2402 env
->hflags
|= HF_SMM_MASK
;
2404 env
->hflags
&= ~HF_SMM_MASK
;
2406 if (events
.smi
.pending
) {
2407 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2409 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2411 if (events
.smi
.smm_inside_nmi
) {
2412 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2414 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2416 if (events
.smi
.latched_init
) {
2417 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2419 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2423 env
->sipi_vector
= events
.sipi_vector
;
2428 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2430 CPUState
*cs
= CPU(cpu
);
2431 CPUX86State
*env
= &cpu
->env
;
2433 unsigned long reinject_trap
= 0;
2435 if (!kvm_has_vcpu_events()) {
2436 if (env
->exception_injected
== 1) {
2437 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2438 } else if (env
->exception_injected
== 3) {
2439 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2441 env
->exception_injected
= -1;
2445 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2446 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2447 * by updating the debug state once again if single-stepping is on.
2448 * Another reason to call kvm_update_guest_debug here is a pending debug
2449 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2450 * reinject them via SET_GUEST_DEBUG.
2452 if (reinject_trap
||
2453 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2454 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2459 static int kvm_put_debugregs(X86CPU
*cpu
)
2461 CPUX86State
*env
= &cpu
->env
;
2462 struct kvm_debugregs dbgregs
;
2465 if (!kvm_has_debugregs()) {
2469 for (i
= 0; i
< 4; i
++) {
2470 dbgregs
.db
[i
] = env
->dr
[i
];
2472 dbgregs
.dr6
= env
->dr
[6];
2473 dbgregs
.dr7
= env
->dr
[7];
2476 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2479 static int kvm_get_debugregs(X86CPU
*cpu
)
2481 CPUX86State
*env
= &cpu
->env
;
2482 struct kvm_debugregs dbgregs
;
2485 if (!kvm_has_debugregs()) {
2489 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2493 for (i
= 0; i
< 4; i
++) {
2494 env
->dr
[i
] = dbgregs
.db
[i
];
2496 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2497 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2502 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2504 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2507 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2509 if (level
>= KVM_PUT_RESET_STATE
&& has_msr_feature_control
) {
2510 ret
= kvm_put_msr_feature_control(x86_cpu
);
2516 if (level
== KVM_PUT_FULL_STATE
) {
2517 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2518 * because TSC frequency mismatch shouldn't abort migration,
2519 * unless the user explicitly asked for a more strict TSC
2520 * setting (e.g. using an explicit "tsc-freq" option).
2522 kvm_arch_set_tsc_khz(cpu
);
2525 ret
= kvm_getput_regs(x86_cpu
, 1);
2529 ret
= kvm_put_xsave(x86_cpu
);
2533 ret
= kvm_put_xcrs(x86_cpu
);
2537 ret
= kvm_put_sregs(x86_cpu
);
2541 /* must be before kvm_put_msrs */
2542 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2546 ret
= kvm_put_msrs(x86_cpu
, level
);
2550 if (level
>= KVM_PUT_RESET_STATE
) {
2551 ret
= kvm_put_mp_state(x86_cpu
);
2555 ret
= kvm_put_apic(x86_cpu
);
2561 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2566 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2570 ret
= kvm_put_debugregs(x86_cpu
);
2575 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2582 int kvm_arch_get_registers(CPUState
*cs
)
2584 X86CPU
*cpu
= X86_CPU(cs
);
2587 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2589 ret
= kvm_getput_regs(cpu
, 0);
2593 ret
= kvm_get_xsave(cpu
);
2597 ret
= kvm_get_xcrs(cpu
);
2601 ret
= kvm_get_sregs(cpu
);
2605 ret
= kvm_get_msrs(cpu
);
2609 ret
= kvm_get_mp_state(cpu
);
2613 ret
= kvm_get_apic(cpu
);
2617 ret
= kvm_get_vcpu_events(cpu
);
2621 ret
= kvm_get_debugregs(cpu
);
2627 cpu_sync_bndcs_hflags(&cpu
->env
);
2631 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2633 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2634 CPUX86State
*env
= &x86_cpu
->env
;
2638 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2639 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2640 qemu_mutex_lock_iothread();
2641 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2642 qemu_mutex_unlock_iothread();
2643 DPRINTF("injected NMI\n");
2644 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2646 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2650 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2651 qemu_mutex_lock_iothread();
2652 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2653 qemu_mutex_unlock_iothread();
2654 DPRINTF("injected SMI\n");
2655 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2657 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2663 if (!kvm_pic_in_kernel()) {
2664 qemu_mutex_lock_iothread();
2667 /* Force the VCPU out of its inner loop to process any INIT requests
2668 * or (for userspace APIC, but it is cheap to combine the checks here)
2669 * pending TPR access reports.
2671 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2672 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2673 !(env
->hflags
& HF_SMM_MASK
)) {
2674 cpu
->exit_request
= 1;
2676 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2677 cpu
->exit_request
= 1;
2681 if (!kvm_pic_in_kernel()) {
2682 /* Try to inject an interrupt if the guest can accept it */
2683 if (run
->ready_for_interrupt_injection
&&
2684 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2685 (env
->eflags
& IF_MASK
)) {
2688 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2689 irq
= cpu_get_pic_interrupt(env
);
2691 struct kvm_interrupt intr
;
2694 DPRINTF("injected interrupt %d\n", irq
);
2695 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2698 "KVM: injection failed, interrupt lost (%s)\n",
2704 /* If we have an interrupt but the guest is not ready to receive an
2705 * interrupt, request an interrupt window exit. This will
2706 * cause a return to userspace as soon as the guest is ready to
2707 * receive interrupts. */
2708 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2709 run
->request_interrupt_window
= 1;
2711 run
->request_interrupt_window
= 0;
2714 DPRINTF("setting tpr\n");
2715 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2717 qemu_mutex_unlock_iothread();
2721 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2723 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2724 CPUX86State
*env
= &x86_cpu
->env
;
2726 if (run
->flags
& KVM_RUN_X86_SMM
) {
2727 env
->hflags
|= HF_SMM_MASK
;
2729 env
->hflags
&= HF_SMM_MASK
;
2732 env
->eflags
|= IF_MASK
;
2734 env
->eflags
&= ~IF_MASK
;
2737 /* We need to protect the apic state against concurrent accesses from
2738 * different threads in case the userspace irqchip is used. */
2739 if (!kvm_irqchip_in_kernel()) {
2740 qemu_mutex_lock_iothread();
2742 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2743 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2744 if (!kvm_irqchip_in_kernel()) {
2745 qemu_mutex_unlock_iothread();
2747 return cpu_get_mem_attrs(env
);
2750 int kvm_arch_process_async_events(CPUState
*cs
)
2752 X86CPU
*cpu
= X86_CPU(cs
);
2753 CPUX86State
*env
= &cpu
->env
;
2755 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2756 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2757 assert(env
->mcg_cap
);
2759 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2761 kvm_cpu_synchronize_state(cs
);
2763 if (env
->exception_injected
== EXCP08_DBLE
) {
2764 /* this means triple fault */
2765 qemu_system_reset_request();
2766 cs
->exit_request
= 1;
2769 env
->exception_injected
= EXCP12_MCHK
;
2770 env
->has_error_code
= 0;
2773 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2774 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2778 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2779 !(env
->hflags
& HF_SMM_MASK
)) {
2780 kvm_cpu_synchronize_state(cs
);
2784 if (kvm_irqchip_in_kernel()) {
2788 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2789 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2790 apic_poll_irq(cpu
->apic_state
);
2792 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2793 (env
->eflags
& IF_MASK
)) ||
2794 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2797 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2798 kvm_cpu_synchronize_state(cs
);
2801 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2802 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2803 kvm_cpu_synchronize_state(cs
);
2804 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2805 env
->tpr_access_type
);
2811 static int kvm_handle_halt(X86CPU
*cpu
)
2813 CPUState
*cs
= CPU(cpu
);
2814 CPUX86State
*env
= &cpu
->env
;
2816 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2817 (env
->eflags
& IF_MASK
)) &&
2818 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2826 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2828 CPUState
*cs
= CPU(cpu
);
2829 struct kvm_run
*run
= cs
->kvm_run
;
2831 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2832 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2837 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2839 static const uint8_t int3
= 0xcc;
2841 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2842 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2848 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2852 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2853 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2865 static int nb_hw_breakpoint
;
2867 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2871 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2872 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2873 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2880 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2881 target_ulong len
, int type
)
2884 case GDB_BREAKPOINT_HW
:
2887 case GDB_WATCHPOINT_WRITE
:
2888 case GDB_WATCHPOINT_ACCESS
:
2895 if (addr
& (len
- 1)) {
2907 if (nb_hw_breakpoint
== 4) {
2910 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2913 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2914 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2915 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2921 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2922 target_ulong len
, int type
)
2926 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
2931 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
2936 void kvm_arch_remove_all_hw_breakpoints(void)
2938 nb_hw_breakpoint
= 0;
2941 static CPUWatchpoint hw_watchpoint
;
2943 static int kvm_handle_debug(X86CPU
*cpu
,
2944 struct kvm_debug_exit_arch
*arch_info
)
2946 CPUState
*cs
= CPU(cpu
);
2947 CPUX86State
*env
= &cpu
->env
;
2951 if (arch_info
->exception
== 1) {
2952 if (arch_info
->dr6
& (1 << 14)) {
2953 if (cs
->singlestep_enabled
) {
2957 for (n
= 0; n
< 4; n
++) {
2958 if (arch_info
->dr6
& (1 << n
)) {
2959 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
2965 cs
->watchpoint_hit
= &hw_watchpoint
;
2966 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2967 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2971 cs
->watchpoint_hit
= &hw_watchpoint
;
2972 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2973 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
2979 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
2983 cpu_synchronize_state(cs
);
2984 assert(env
->exception_injected
== -1);
2987 env
->exception_injected
= arch_info
->exception
;
2988 env
->has_error_code
= 0;
2994 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
2996 const uint8_t type_code
[] = {
2997 [GDB_BREAKPOINT_HW
] = 0x0,
2998 [GDB_WATCHPOINT_WRITE
] = 0x1,
2999 [GDB_WATCHPOINT_ACCESS
] = 0x3
3001 const uint8_t len_code
[] = {
3002 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3006 if (kvm_sw_breakpoints_active(cpu
)) {
3007 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3009 if (nb_hw_breakpoint
> 0) {
3010 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3011 dbg
->arch
.debugreg
[7] = 0x0600;
3012 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3013 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3014 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3015 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3016 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3021 static bool host_supports_vmx(void)
3023 uint32_t ecx
, unused
;
3025 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3026 return ecx
& CPUID_EXT_VMX
;
3029 #define VMX_INVALID_GUEST_STATE 0x80000021
3031 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3033 X86CPU
*cpu
= X86_CPU(cs
);
3037 switch (run
->exit_reason
) {
3039 DPRINTF("handle_hlt\n");
3040 qemu_mutex_lock_iothread();
3041 ret
= kvm_handle_halt(cpu
);
3042 qemu_mutex_unlock_iothread();
3044 case KVM_EXIT_SET_TPR
:
3047 case KVM_EXIT_TPR_ACCESS
:
3048 qemu_mutex_lock_iothread();
3049 ret
= kvm_handle_tpr_access(cpu
);
3050 qemu_mutex_unlock_iothread();
3052 case KVM_EXIT_FAIL_ENTRY
:
3053 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3054 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3056 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3058 "\nIf you're running a guest on an Intel machine without "
3059 "unrestricted mode\n"
3060 "support, the failure can be most likely due to the guest "
3061 "entering an invalid\n"
3062 "state for Intel VT. For example, the guest maybe running "
3063 "in big real mode\n"
3064 "which is not supported on less recent Intel processors."
3069 case KVM_EXIT_EXCEPTION
:
3070 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3071 run
->ex
.exception
, run
->ex
.error_code
);
3074 case KVM_EXIT_DEBUG
:
3075 DPRINTF("kvm_exit_debug\n");
3076 qemu_mutex_lock_iothread();
3077 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3078 qemu_mutex_unlock_iothread();
3080 case KVM_EXIT_HYPERV
:
3081 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3083 case KVM_EXIT_IOAPIC_EOI
:
3084 ioapic_eoi_broadcast(run
->eoi
.vector
);
3088 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3096 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3098 X86CPU
*cpu
= X86_CPU(cs
);
3099 CPUX86State
*env
= &cpu
->env
;
3101 kvm_cpu_synchronize_state(cs
);
3102 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3103 ((env
->segs
[R_CS
].selector
& 3) != 3);
3106 void kvm_arch_init_irq_routing(KVMState
*s
)
3108 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3109 /* If kernel can't do irq routing, interrupt source
3110 * override 0->2 cannot be set up as required by HPET.
3111 * So we have to disable it.
3115 /* We know at this point that we're using the in-kernel
3116 * irqchip, so we can use irqfds, and on x86 we know
3117 * we can use msi via irqfd and GSI routing.
3119 kvm_msi_via_irqfd_allowed
= true;
3120 kvm_gsi_routing_allowed
= true;
3122 if (kvm_irqchip_is_split()) {
3125 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3126 MSI routes for signaling interrupts to the local apics. */
3127 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3128 struct MSIMessage msg
= { 0x0, 0x0 };
3129 if (kvm_irqchip_add_msi_route(s
, msg
, NULL
) < 0) {
3130 error_report("Could not enable split IRQ mode.");
3137 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3140 if (machine_kernel_irqchip_split(ms
)) {
3141 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3143 error_report("Could not enable split irqchip mode: %s\n",
3147 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3148 kvm_split_irqchip
= true;
3156 /* Classic KVM device assignment interface. Will remain x86 only. */
3157 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3158 uint32_t flags
, uint32_t *dev_id
)
3160 struct kvm_assigned_pci_dev dev_data
= {
3161 .segnr
= dev_addr
->domain
,
3162 .busnr
= dev_addr
->bus
,
3163 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3168 dev_data
.assigned_dev_id
=
3169 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3171 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3176 *dev_id
= dev_data
.assigned_dev_id
;
3181 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3183 struct kvm_assigned_pci_dev dev_data
= {
3184 .assigned_dev_id
= dev_id
,
3187 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3190 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3191 uint32_t irq_type
, uint32_t guest_irq
)
3193 struct kvm_assigned_irq assigned_irq
= {
3194 .assigned_dev_id
= dev_id
,
3195 .guest_irq
= guest_irq
,
3199 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3200 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3202 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3206 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3209 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3210 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3212 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3215 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3217 struct kvm_assigned_pci_dev dev_data
= {
3218 .assigned_dev_id
= dev_id
,
3219 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3222 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3225 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3228 struct kvm_assigned_irq assigned_irq
= {
3229 .assigned_dev_id
= dev_id
,
3233 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3236 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3238 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3239 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3242 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3244 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3245 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3248 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3250 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3251 KVM_DEV_IRQ_HOST_MSI
);
3254 bool kvm_device_msix_supported(KVMState
*s
)
3256 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3257 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3258 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3261 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3262 uint32_t nr_vectors
)
3264 struct kvm_assigned_msix_nr msix_nr
= {
3265 .assigned_dev_id
= dev_id
,
3266 .entry_nr
= nr_vectors
,
3269 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3272 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3275 struct kvm_assigned_msix_entry msix_entry
= {
3276 .assigned_dev_id
= dev_id
,
3281 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3284 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3286 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3287 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3290 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3292 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3293 KVM_DEV_IRQ_HOST_MSIX
);
3296 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3297 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3302 int kvm_arch_msi_data_to_gsi(uint32_t data
)