spapr: Fix reset of transient DR connectors
[qemu/rayw.git] / hw / ppc / spapr_drc.c
blob5b5e2ac58a7ea689f1856f67442155d6a2e648b5
1 /*
2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
4 * Copyright IBM Corp. 2014
6 * Authors:
7 * Michael Roth <mdroth@linux.vnet.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
38 return 1 << drck->typeshift;
41 uint32_t spapr_drc_index(SpaprDrc *drc)
43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
45 /* no set format for a drc index: it only needs to be globally
46 * unique. this is how we encode the DRC type on bare-metal
47 * however, so might as well do that here
49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50 | (drc->id & DRC_INDEX_ID_MASK);
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
55 switch (drc->state) {
56 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57 return RTAS_OUT_SUCCESS; /* Nothing to do */
58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59 break; /* see below */
60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61 return RTAS_OUT_PARAM_ERROR; /* not allowed */
62 default:
63 g_assert_not_reached();
66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
68 if (drc->unplug_requested) {
69 uint32_t drc_index = spapr_drc_index(drc);
70 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71 spapr_drc_detach(drc);
74 return RTAS_OUT_SUCCESS;
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
79 switch (drc->state) {
80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82 return RTAS_OUT_SUCCESS; /* Nothing to do */
83 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84 break; /* see below */
85 default:
86 g_assert_not_reached();
89 /* cannot unisolate a non-existent resource, and, or resources
90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91 * 13.5.3.5)
93 if (!drc->dev) {
94 return RTAS_OUT_NO_SUCH_INDICATOR;
97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98 drc->ccs_offset = drc->fdt_start_offset;
99 drc->ccs_depth = 0;
101 return RTAS_OUT_SUCCESS;
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
106 switch (drc->state) {
107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109 return RTAS_OUT_SUCCESS; /* Nothing to do */
110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111 break; /* see below */
112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113 return RTAS_OUT_PARAM_ERROR; /* not allowed */
114 default:
115 g_assert_not_reached();
119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120 * belong to a DIMM device that is marked for removal.
122 * Currently the guest userspace tool drmgr that drives the memory
123 * hotplug/unplug will just try to remove a set of 'removable' LMBs
124 * in response to a hot unplug request that is based on drc-count.
125 * If the LMB being removed doesn't belong to a DIMM device that is
126 * actually being unplugged, fail the isolation request here.
128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129 && !drc->unplug_requested) {
130 return RTAS_OUT_HW_ERROR;
133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
135 /* if we're awaiting release, but still in an unconfigured state,
136 * it's likely the guest is still in the process of configuring
137 * the device and is transitioning the devices to an ISOLATED
138 * state as a part of that process. so we only complete the
139 * removal when this transition happens for a device in a
140 * configured state, as suggested by the state diagram from PAPR+
141 * 2.7, 13.4
143 if (drc->unplug_requested) {
144 uint32_t drc_index = spapr_drc_index(drc);
145 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146 spapr_drc_detach(drc);
148 return RTAS_OUT_SUCCESS;
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
153 switch (drc->state) {
154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156 return RTAS_OUT_SUCCESS; /* Nothing to do */
157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158 break; /* see below */
159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161 default:
162 g_assert_not_reached();
165 /* Move to AVAILABLE state should have ensured device was present */
166 g_assert(drc->dev);
168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169 drc->ccs_offset = drc->fdt_start_offset;
170 drc->ccs_depth = 0;
172 return RTAS_OUT_SUCCESS;
175 static uint32_t drc_set_usable(SpaprDrc *drc)
177 switch (drc->state) {
178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181 return RTAS_OUT_SUCCESS; /* Nothing to do */
182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183 break; /* see below */
184 default:
185 g_assert_not_reached();
188 /* if there's no resource/device associated with the DRC, there's
189 * no way for us to put it in an allocation state consistent with
190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191 * result in an RTAS return code of -3 / "no such indicator"
193 if (!drc->dev) {
194 return RTAS_OUT_NO_SUCH_INDICATOR;
196 if (drc->unplug_requested) {
197 /* Don't allow the guest to move a device away from UNUSABLE
198 * state when we want to unplug it */
199 return RTAS_OUT_NO_SUCH_INDICATOR;
202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
204 return RTAS_OUT_SUCCESS;
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
209 switch (drc->state) {
210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211 return RTAS_OUT_SUCCESS; /* Nothing to do */
212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213 break; /* see below */
214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217 default:
218 g_assert_not_reached();
221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222 if (drc->unplug_requested) {
223 uint32_t drc_index = spapr_drc_index(drc);
224 trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225 spapr_drc_detach(drc);
228 return RTAS_OUT_SUCCESS;
231 static char *spapr_drc_name(SpaprDrc *drc)
233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
235 /* human-readable name for a DRC to encode into the DT
236 * description. this is mainly only used within a guest in place
237 * of the unique DRC index.
239 * in the case of VIO/PCI devices, it corresponds to a "location
240 * code" that maps a logical device/function (DRC index) to a
241 * physical (or virtual in the case of VIO) location in the system
242 * by chaining together the "location label" for each
243 * encapsulating component.
245 * since this is more to do with diagnosing physical hardware
246 * issues than guest compatibility, we choose location codes/DRC
247 * names that adhere to the documented format, but avoid encoding
248 * the entire topology information into the label/code, instead
249 * just using the location codes based on the labels for the
250 * endpoints (VIO/PCI adaptor connectors), which is basically just
251 * "C" followed by an integer ID.
253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254 * location codes as documented by PAPR+ v2.7, 12.3.1.5
256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
260 * dr-entity-sense sensor value
261 * returned via get-sensor-state RTAS calls
262 * as expected by state diagram in PAPR+ 2.7, 13.4
263 * based on the current allocation/indicator/power states
264 * for the DR connector.
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
268 /* this assumes all PCI devices are assigned to a 'live insertion'
269 * power domain, where QEMU manages power state automatically as
270 * opposed to the guest. present, non-PCI resources are unaffected
271 * by power state.
273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274 : SPAPR_DR_ENTITY_SENSE_EMPTY;
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
279 switch (drc->state) {
280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285 g_assert(drc->dev);
286 return SPAPR_DR_ENTITY_SENSE_PRESENT;
287 default:
288 g_assert_not_reached();
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293 void *opaque, Error **errp)
295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296 uint32_t value = spapr_drc_index(drc);
297 visit_type_uint32(v, name, &value, errp);
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301 void *opaque, Error **errp)
303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304 QNull *null = NULL;
305 int fdt_offset_next, fdt_offset, fdt_depth;
306 void *fdt;
308 if (!drc->fdt) {
309 visit_type_null(v, NULL, &null, errp);
310 qobject_unref(null);
311 return;
314 fdt = drc->fdt;
315 fdt_offset = drc->fdt_start_offset;
316 fdt_depth = 0;
318 do {
319 const char *name = NULL;
320 const struct fdt_property *prop = NULL;
321 int prop_len = 0, name_len = 0;
322 uint32_t tag;
323 bool ok;
325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326 switch (tag) {
327 case FDT_BEGIN_NODE:
328 fdt_depth++;
329 name = fdt_get_name(fdt, fdt_offset, &name_len);
330 if (!visit_start_struct(v, name, NULL, 0, errp)) {
331 return;
333 break;
334 case FDT_END_NODE:
335 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
336 g_assert(fdt_depth > 0);
337 ok = visit_check_struct(v, errp);
338 visit_end_struct(v, NULL);
339 if (!ok) {
340 return;
342 fdt_depth--;
343 break;
344 case FDT_PROP: {
345 int i;
346 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
347 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
348 if (!visit_start_list(v, name, NULL, 0, errp)) {
349 return;
351 for (i = 0; i < prop_len; i++) {
352 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
353 errp)) {
354 return;
357 ok = visit_check_list(v, errp);
358 visit_end_list(v, NULL);
359 if (!ok) {
360 return;
362 break;
364 default:
365 error_report("device FDT in unexpected state: %d", tag);
366 abort();
368 fdt_offset = fdt_offset_next;
369 } while (fdt_depth != 0);
372 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d)
374 trace_spapr_drc_attach(spapr_drc_index(drc));
376 g_assert(!drc->dev);
377 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
378 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
380 drc->dev = d;
382 object_property_add_link(OBJECT(drc), "device",
383 object_get_typename(OBJECT(drc->dev)),
384 (Object **)(&drc->dev),
385 NULL, 0);
388 static void spapr_drc_release(SpaprDrc *drc)
390 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
392 drck->release(drc->dev);
394 drc->unplug_requested = false;
395 g_free(drc->fdt);
396 drc->fdt = NULL;
397 drc->fdt_start_offset = 0;
398 object_property_del(OBJECT(drc), "device");
399 drc->dev = NULL;
402 void spapr_drc_detach(SpaprDrc *drc)
404 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
406 trace_spapr_drc_detach(spapr_drc_index(drc));
408 g_assert(drc->dev);
410 drc->unplug_requested = true;
412 if (drc->state != drck->empty_state) {
413 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
414 return;
417 spapr_drc_release(drc);
420 bool spapr_drc_reset(SpaprDrc *drc)
422 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
423 bool unplug_completed = false;
425 trace_spapr_drc_reset(spapr_drc_index(drc));
427 /* immediately upon reset we can safely assume DRCs whose devices
428 * are pending removal can be safely removed.
430 if (drc->unplug_requested) {
431 spapr_drc_release(drc);
432 unplug_completed = true;
435 if (drc->dev) {
436 /* A device present at reset is ready to go, same as coldplugged */
437 drc->state = drck->ready_state;
439 * Ensure that we are able to send the FDT fragment again
440 * via configure-connector call if the guest requests.
442 drc->ccs_offset = drc->fdt_start_offset;
443 drc->ccs_depth = 0;
444 } else {
445 drc->state = drck->empty_state;
446 drc->ccs_offset = -1;
447 drc->ccs_depth = -1;
450 return unplug_completed;
453 static bool spapr_drc_unplug_requested_needed(void *opaque)
455 return spapr_drc_unplug_requested(opaque);
458 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
459 .name = "spapr_drc/unplug_requested",
460 .version_id = 1,
461 .minimum_version_id = 1,
462 .needed = spapr_drc_unplug_requested_needed,
463 .fields = (VMStateField []) {
464 VMSTATE_BOOL(unplug_requested, SpaprDrc),
465 VMSTATE_END_OF_LIST()
469 static bool spapr_drc_needed(void *opaque)
471 SpaprDrc *drc = opaque;
472 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
475 * If no dev is plugged in there is no need to migrate the DRC state
476 * nor to reset the DRC at CAS.
478 if (!drc->dev) {
479 return false;
483 * We need to reset the DRC at CAS or to migrate the DRC state if it's
484 * not equal to the expected long-term state, which is the same as the
485 * coldplugged initial state, or if an unplug request is pending.
487 return drc->state != drck->ready_state ||
488 spapr_drc_unplug_requested(drc);
491 static const VMStateDescription vmstate_spapr_drc = {
492 .name = "spapr_drc",
493 .version_id = 1,
494 .minimum_version_id = 1,
495 .needed = spapr_drc_needed,
496 .fields = (VMStateField []) {
497 VMSTATE_UINT32(state, SpaprDrc),
498 VMSTATE_END_OF_LIST()
500 .subsections = (const VMStateDescription * []) {
501 &vmstate_spapr_drc_unplug_requested,
502 NULL
506 static void realize(DeviceState *d, Error **errp)
508 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
509 Object *root_container;
510 gchar *link_name;
511 const char *child_name;
513 trace_spapr_drc_realize(spapr_drc_index(drc));
514 /* NOTE: we do this as part of realize/unrealize due to the fact
515 * that the guest will communicate with the DRC via RTAS calls
516 * referencing the global DRC index. By unlinking the DRC
517 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
518 * inaccessible by the guest, since lookups rely on this path
519 * existing in the composition tree
521 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
522 link_name = g_strdup_printf("%x", spapr_drc_index(drc));
523 child_name = object_get_canonical_path_component(OBJECT(drc));
524 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
525 object_property_add_alias(root_container, link_name,
526 drc->owner, child_name);
527 g_free(link_name);
528 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
529 drc);
530 trace_spapr_drc_realize_complete(spapr_drc_index(drc));
533 static void unrealize(DeviceState *d)
535 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
536 Object *root_container;
537 gchar *name;
539 trace_spapr_drc_unrealize(spapr_drc_index(drc));
540 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
541 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
542 name = g_strdup_printf("%x", spapr_drc_index(drc));
543 object_property_del(root_container, name);
544 g_free(name);
547 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
548 uint32_t id)
550 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
551 char *prop_name;
553 drc->id = id;
554 drc->owner = owner;
555 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
556 spapr_drc_index(drc));
557 object_property_add_child(owner, prop_name, OBJECT(drc));
558 object_unref(OBJECT(drc));
559 qdev_realize(DEVICE(drc), NULL, NULL);
560 g_free(prop_name);
562 return drc;
565 static void spapr_dr_connector_instance_init(Object *obj)
567 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
568 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
570 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
571 object_property_add(obj, "index", "uint32", prop_get_index,
572 NULL, NULL, NULL);
573 object_property_add(obj, "fdt", "struct", prop_get_fdt,
574 NULL, NULL, NULL);
575 drc->state = drck->empty_state;
578 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
580 DeviceClass *dk = DEVICE_CLASS(k);
582 dk->realize = realize;
583 dk->unrealize = unrealize;
585 * Reason: DR connector needs to be wired to either the machine or to a
586 * PHB in spapr_dr_connector_new().
588 dk->user_creatable = false;
591 static bool drc_physical_needed(void *opaque)
593 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
594 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
596 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
597 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
598 return false;
600 return true;
603 static const VMStateDescription vmstate_spapr_drc_physical = {
604 .name = "spapr_drc/physical",
605 .version_id = 1,
606 .minimum_version_id = 1,
607 .needed = drc_physical_needed,
608 .fields = (VMStateField []) {
609 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
610 VMSTATE_END_OF_LIST()
614 static void drc_physical_reset(void *opaque)
616 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
617 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
619 if (drc->dev) {
620 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
621 } else {
622 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
626 static void realize_physical(DeviceState *d, Error **errp)
628 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
629 Error *local_err = NULL;
631 realize(d, &local_err);
632 if (local_err) {
633 error_propagate(errp, local_err);
634 return;
637 vmstate_register(VMSTATE_IF(drcp),
638 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
639 &vmstate_spapr_drc_physical, drcp);
640 qemu_register_reset(drc_physical_reset, drcp);
643 static void unrealize_physical(DeviceState *d)
645 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
647 unrealize(d);
648 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
649 qemu_unregister_reset(drc_physical_reset, drcp);
652 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
654 DeviceClass *dk = DEVICE_CLASS(k);
655 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
657 dk->realize = realize_physical;
658 dk->unrealize = unrealize_physical;
659 drck->dr_entity_sense = physical_entity_sense;
660 drck->isolate = drc_isolate_physical;
661 drck->unisolate = drc_unisolate_physical;
662 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
663 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
666 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
668 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
670 drck->dr_entity_sense = logical_entity_sense;
671 drck->isolate = drc_isolate_logical;
672 drck->unisolate = drc_unisolate_logical;
673 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
674 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
677 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
679 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
681 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
682 drck->typename = "CPU";
683 drck->drc_name_prefix = "CPU ";
684 drck->release = spapr_core_release;
685 drck->dt_populate = spapr_core_dt_populate;
688 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
690 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
692 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
693 drck->typename = "28";
694 drck->drc_name_prefix = "C";
695 drck->release = spapr_phb_remove_pci_device_cb;
696 drck->dt_populate = spapr_pci_dt_populate;
699 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
701 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
703 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
704 drck->typename = "MEM";
705 drck->drc_name_prefix = "LMB ";
706 drck->release = spapr_lmb_release;
707 drck->dt_populate = spapr_lmb_dt_populate;
710 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
712 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
714 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
715 drck->typename = "PHB";
716 drck->drc_name_prefix = "PHB ";
717 drck->release = spapr_phb_release;
718 drck->dt_populate = spapr_phb_dt_populate;
721 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
723 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
725 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
726 drck->typename = "PMEM";
727 drck->drc_name_prefix = "PMEM ";
728 drck->release = NULL;
729 drck->dt_populate = spapr_pmem_dt_populate;
732 static const TypeInfo spapr_dr_connector_info = {
733 .name = TYPE_SPAPR_DR_CONNECTOR,
734 .parent = TYPE_DEVICE,
735 .instance_size = sizeof(SpaprDrc),
736 .instance_init = spapr_dr_connector_instance_init,
737 .class_size = sizeof(SpaprDrcClass),
738 .class_init = spapr_dr_connector_class_init,
739 .abstract = true,
742 static const TypeInfo spapr_drc_physical_info = {
743 .name = TYPE_SPAPR_DRC_PHYSICAL,
744 .parent = TYPE_SPAPR_DR_CONNECTOR,
745 .instance_size = sizeof(SpaprDrcPhysical),
746 .class_init = spapr_drc_physical_class_init,
747 .abstract = true,
750 static const TypeInfo spapr_drc_logical_info = {
751 .name = TYPE_SPAPR_DRC_LOGICAL,
752 .parent = TYPE_SPAPR_DR_CONNECTOR,
753 .class_init = spapr_drc_logical_class_init,
754 .abstract = true,
757 static const TypeInfo spapr_drc_cpu_info = {
758 .name = TYPE_SPAPR_DRC_CPU,
759 .parent = TYPE_SPAPR_DRC_LOGICAL,
760 .class_init = spapr_drc_cpu_class_init,
763 static const TypeInfo spapr_drc_pci_info = {
764 .name = TYPE_SPAPR_DRC_PCI,
765 .parent = TYPE_SPAPR_DRC_PHYSICAL,
766 .class_init = spapr_drc_pci_class_init,
769 static const TypeInfo spapr_drc_lmb_info = {
770 .name = TYPE_SPAPR_DRC_LMB,
771 .parent = TYPE_SPAPR_DRC_LOGICAL,
772 .class_init = spapr_drc_lmb_class_init,
775 static const TypeInfo spapr_drc_phb_info = {
776 .name = TYPE_SPAPR_DRC_PHB,
777 .parent = TYPE_SPAPR_DRC_LOGICAL,
778 .instance_size = sizeof(SpaprDrc),
779 .class_init = spapr_drc_phb_class_init,
782 static const TypeInfo spapr_drc_pmem_info = {
783 .name = TYPE_SPAPR_DRC_PMEM,
784 .parent = TYPE_SPAPR_DRC_LOGICAL,
785 .class_init = spapr_drc_pmem_class_init,
788 /* helper functions for external users */
790 SpaprDrc *spapr_drc_by_index(uint32_t index)
792 Object *obj;
793 gchar *name;
795 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
796 obj = object_resolve_path(name, NULL);
797 g_free(name);
799 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
802 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
804 SpaprDrcClass *drck
805 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
807 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
808 | (id & DRC_INDEX_ID_MASK));
812 * spapr_dt_drc
814 * @fdt: libfdt device tree
815 * @path: path in the DT to generate properties
816 * @owner: parent Object/DeviceState for which to generate DRC
817 * descriptions for
818 * @drc_type_mask: mask of SpaprDrcType values corresponding
819 * to the types of DRCs to generate entries for
821 * generate OF properties to describe DRC topology/indices to guests
823 * as documented in PAPR+ v2.1, 13.5.2
825 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
827 Object *root_container;
828 ObjectProperty *prop;
829 ObjectPropertyIterator iter;
830 uint32_t drc_count = 0;
831 GArray *drc_indexes, *drc_power_domains;
832 GString *drc_names, *drc_types;
833 int ret;
836 * This should really be only called once per node since it overwrites
837 * the OF properties if they already exist.
839 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL));
841 /* the first entry of each properties is a 32-bit integer encoding
842 * the number of elements in the array. we won't know this until
843 * we complete the iteration through all the matching DRCs, but
844 * reserve the space now and set the offsets accordingly so we
845 * can fill them in later.
847 drc_indexes = g_array_new(false, true, sizeof(uint32_t));
848 drc_indexes = g_array_set_size(drc_indexes, 1);
849 drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
850 drc_power_domains = g_array_set_size(drc_power_domains, 1);
851 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
852 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
854 /* aliases for all DRConnector objects will be rooted in QOM
855 * composition tree at DRC_CONTAINER_PATH
857 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
859 object_property_iter_init(&iter, root_container);
860 while ((prop = object_property_iter_next(&iter))) {
861 Object *obj;
862 SpaprDrc *drc;
863 SpaprDrcClass *drck;
864 char *drc_name = NULL;
865 uint32_t drc_index, drc_power_domain;
867 if (!strstart(prop->type, "link<", NULL)) {
868 continue;
871 obj = object_property_get_link(root_container, prop->name,
872 &error_abort);
873 drc = SPAPR_DR_CONNECTOR(obj);
874 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
876 if (owner && (drc->owner != owner)) {
877 continue;
880 if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
881 continue;
884 drc_count++;
886 /* ibm,drc-indexes */
887 drc_index = cpu_to_be32(spapr_drc_index(drc));
888 g_array_append_val(drc_indexes, drc_index);
890 /* ibm,drc-power-domains */
891 drc_power_domain = cpu_to_be32(-1);
892 g_array_append_val(drc_power_domains, drc_power_domain);
894 /* ibm,drc-names */
895 drc_name = spapr_drc_name(drc);
896 drc_names = g_string_append(drc_names, drc_name);
897 drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
898 g_free(drc_name);
900 /* ibm,drc-types */
901 drc_types = g_string_append(drc_types, drck->typename);
902 drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
905 /* now write the drc count into the space we reserved at the
906 * beginning of the arrays previously
908 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
909 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
910 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
911 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
913 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
914 drc_indexes->data,
915 drc_indexes->len * sizeof(uint32_t));
916 if (ret) {
917 error_report("Couldn't create ibm,drc-indexes property");
918 goto out;
921 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
922 drc_power_domains->data,
923 drc_power_domains->len * sizeof(uint32_t));
924 if (ret) {
925 error_report("Couldn't finalize ibm,drc-power-domains property");
926 goto out;
929 ret = fdt_setprop(fdt, offset, "ibm,drc-names",
930 drc_names->str, drc_names->len);
931 if (ret) {
932 error_report("Couldn't finalize ibm,drc-names property");
933 goto out;
936 ret = fdt_setprop(fdt, offset, "ibm,drc-types",
937 drc_types->str, drc_types->len);
938 if (ret) {
939 error_report("Couldn't finalize ibm,drc-types property");
940 goto out;
943 out:
944 g_array_free(drc_indexes, true);
945 g_array_free(drc_power_domains, true);
946 g_string_free(drc_names, true);
947 g_string_free(drc_types, true);
949 return ret;
953 * RTAS calls
956 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
958 SpaprDrc *drc = spapr_drc_by_index(idx);
959 SpaprDrcClass *drck;
961 if (!drc) {
962 return RTAS_OUT_NO_SUCH_INDICATOR;
965 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
967 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
969 switch (state) {
970 case SPAPR_DR_ISOLATION_STATE_ISOLATED:
971 return drck->isolate(drc);
973 case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
974 return drck->unisolate(drc);
976 default:
977 return RTAS_OUT_PARAM_ERROR;
981 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
983 SpaprDrc *drc = spapr_drc_by_index(idx);
985 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
986 return RTAS_OUT_NO_SUCH_INDICATOR;
989 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
991 switch (state) {
992 case SPAPR_DR_ALLOCATION_STATE_USABLE:
993 return drc_set_usable(drc);
995 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
996 return drc_set_unusable(drc);
998 default:
999 return RTAS_OUT_PARAM_ERROR;
1003 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1005 SpaprDrc *drc = spapr_drc_by_index(idx);
1007 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1008 return RTAS_OUT_NO_SUCH_INDICATOR;
1010 if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1011 && (state != SPAPR_DR_INDICATOR_ACTIVE)
1012 && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1013 && (state != SPAPR_DR_INDICATOR_ACTION)) {
1014 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1017 trace_spapr_drc_set_dr_indicator(idx, state);
1018 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1019 return RTAS_OUT_SUCCESS;
1022 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1023 uint32_t token,
1024 uint32_t nargs, target_ulong args,
1025 uint32_t nret, target_ulong rets)
1027 uint32_t type, idx, state;
1028 uint32_t ret = RTAS_OUT_SUCCESS;
1030 if (nargs != 3 || nret != 1) {
1031 ret = RTAS_OUT_PARAM_ERROR;
1032 goto out;
1035 type = rtas_ld(args, 0);
1036 idx = rtas_ld(args, 1);
1037 state = rtas_ld(args, 2);
1039 switch (type) {
1040 case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1041 ret = rtas_set_isolation_state(idx, state);
1042 break;
1043 case RTAS_SENSOR_TYPE_DR:
1044 ret = rtas_set_dr_indicator(idx, state);
1045 break;
1046 case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1047 ret = rtas_set_allocation_state(idx, state);
1048 break;
1049 default:
1050 ret = RTAS_OUT_NOT_SUPPORTED;
1053 out:
1054 rtas_st(rets, 0, ret);
1057 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1058 uint32_t token, uint32_t nargs,
1059 target_ulong args, uint32_t nret,
1060 target_ulong rets)
1062 uint32_t sensor_type;
1063 uint32_t sensor_index;
1064 uint32_t sensor_state = 0;
1065 SpaprDrc *drc;
1066 SpaprDrcClass *drck;
1067 uint32_t ret = RTAS_OUT_SUCCESS;
1069 if (nargs != 2 || nret != 2) {
1070 ret = RTAS_OUT_PARAM_ERROR;
1071 goto out;
1074 sensor_type = rtas_ld(args, 0);
1075 sensor_index = rtas_ld(args, 1);
1077 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1078 /* currently only DR-related sensors are implemented */
1079 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1080 sensor_type);
1081 ret = RTAS_OUT_NOT_SUPPORTED;
1082 goto out;
1085 drc = spapr_drc_by_index(sensor_index);
1086 if (!drc) {
1087 trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1088 ret = RTAS_OUT_PARAM_ERROR;
1089 goto out;
1091 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1092 sensor_state = drck->dr_entity_sense(drc);
1094 out:
1095 rtas_st(rets, 0, ret);
1096 rtas_st(rets, 1, sensor_state);
1099 /* configure-connector work area offsets, int32_t units for field
1100 * indexes, bytes for field offset/len values.
1102 * as documented by PAPR+ v2.7, 13.5.3.5
1104 #define CC_IDX_NODE_NAME_OFFSET 2
1105 #define CC_IDX_PROP_NAME_OFFSET 2
1106 #define CC_IDX_PROP_LEN 3
1107 #define CC_IDX_PROP_DATA_OFFSET 4
1108 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1109 #define CC_WA_LEN 4096
1111 static void configure_connector_st(target_ulong addr, target_ulong offset,
1112 const void *buf, size_t len)
1114 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1115 buf, MIN(len, CC_WA_LEN - offset));
1118 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1119 SpaprMachineState *spapr,
1120 uint32_t token, uint32_t nargs,
1121 target_ulong args, uint32_t nret,
1122 target_ulong rets)
1124 uint64_t wa_addr;
1125 uint64_t wa_offset;
1126 uint32_t drc_index;
1127 SpaprDrc *drc;
1128 SpaprDrcClass *drck;
1129 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1130 int rc;
1132 if (nargs != 2 || nret != 1) {
1133 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1134 return;
1137 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1139 drc_index = rtas_ld(wa_addr, 0);
1140 drc = spapr_drc_by_index(drc_index);
1141 if (!drc) {
1142 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1143 rc = RTAS_OUT_PARAM_ERROR;
1144 goto out;
1147 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1148 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1149 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1150 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1152 * Need to unisolate the device before configuring
1153 * or it should already be in configured state to
1154 * allow configure-connector be called repeatedly.
1156 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1157 goto out;
1160 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1162 if (!drc->fdt) {
1163 void *fdt;
1164 int fdt_size;
1166 fdt = create_device_tree(&fdt_size);
1168 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1169 NULL)) {
1170 g_free(fdt);
1171 rc = SPAPR_DR_CC_RESPONSE_ERROR;
1172 goto out;
1175 drc->fdt = fdt;
1176 drc->ccs_offset = drc->fdt_start_offset;
1177 drc->ccs_depth = 0;
1180 do {
1181 uint32_t tag;
1182 const char *name;
1183 const struct fdt_property *prop;
1184 int fdt_offset_next, prop_len;
1186 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1188 switch (tag) {
1189 case FDT_BEGIN_NODE:
1190 drc->ccs_depth++;
1191 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1193 /* provide the name of the next OF node */
1194 wa_offset = CC_VAL_DATA_OFFSET;
1195 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1196 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1197 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1198 break;
1199 case FDT_END_NODE:
1200 drc->ccs_depth--;
1201 if (drc->ccs_depth == 0) {
1202 uint32_t drc_index = spapr_drc_index(drc);
1204 /* done sending the device tree, move to configured state */
1205 trace_spapr_drc_set_configured(drc_index);
1206 drc->state = drck->ready_state;
1208 * Ensure that we are able to send the FDT fragment
1209 * again via configure-connector call if the guest requests.
1211 drc->ccs_offset = drc->fdt_start_offset;
1212 drc->ccs_depth = 0;
1213 fdt_offset_next = drc->fdt_start_offset;
1214 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1215 } else {
1216 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1218 break;
1219 case FDT_PROP:
1220 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1221 &prop_len);
1222 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1224 /* provide the name of the next OF property */
1225 wa_offset = CC_VAL_DATA_OFFSET;
1226 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1227 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1229 /* provide the length and value of the OF property. data gets
1230 * placed immediately after NULL terminator of the OF property's
1231 * name string
1233 wa_offset += strlen(name) + 1,
1234 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1235 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1236 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1237 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1238 break;
1239 case FDT_END:
1240 resp = SPAPR_DR_CC_RESPONSE_ERROR;
1241 default:
1242 /* keep seeking for an actionable tag */
1243 break;
1245 if (drc->ccs_offset >= 0) {
1246 drc->ccs_offset = fdt_offset_next;
1248 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1250 rc = resp;
1251 out:
1252 rtas_st(rets, 0, rc);
1255 static void spapr_drc_register_types(void)
1257 type_register_static(&spapr_dr_connector_info);
1258 type_register_static(&spapr_drc_physical_info);
1259 type_register_static(&spapr_drc_logical_info);
1260 type_register_static(&spapr_drc_cpu_info);
1261 type_register_static(&spapr_drc_pci_info);
1262 type_register_static(&spapr_drc_lmb_info);
1263 type_register_static(&spapr_drc_phb_info);
1264 type_register_static(&spapr_drc_pmem_info);
1266 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1267 rtas_set_indicator);
1268 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1269 rtas_get_sensor_state);
1270 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1271 rtas_ibm_configure_connector);
1273 type_init(spapr_drc_register_types)