s390x/event-facility.c: remove unneeded labels
[qemu/rayw.git] / include / exec / memory.h
blobe85b7de99a2df19e079d2a6f4fc8541c1089878a
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 #define MEMORY_REGION(obj) \
38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 #define IOMMU_MEMORY_REGION(obj) \
42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
43 #define IOMMU_MEMORY_REGION_CLASS(klass) \
44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
45 TYPE_IOMMU_MEMORY_REGION)
46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
48 TYPE_IOMMU_MEMORY_REGION)
50 extern bool global_dirty_log;
52 typedef struct MemoryRegionOps MemoryRegionOps;
53 typedef struct MemoryRegionMmio MemoryRegionMmio;
55 struct MemoryRegionMmio {
56 CPUReadMemoryFunc *read[3];
57 CPUWriteMemoryFunc *write[3];
60 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
62 /* See address_space_translate: bit 0 is read, bit 1 is write. */
63 typedef enum {
64 IOMMU_NONE = 0,
65 IOMMU_RO = 1,
66 IOMMU_WO = 2,
67 IOMMU_RW = 3,
68 } IOMMUAccessFlags;
70 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
72 struct IOMMUTLBEntry {
73 AddressSpace *target_as;
74 hwaddr iova;
75 hwaddr translated_addr;
76 hwaddr addr_mask; /* 0xfff = 4k translation */
77 IOMMUAccessFlags perm;
81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
82 * register with one or multiple IOMMU Notifier capability bit(s).
84 typedef enum {
85 IOMMU_NOTIFIER_NONE = 0,
86 /* Notify cache invalidations */
87 IOMMU_NOTIFIER_UNMAP = 0x1,
88 /* Notify entry changes (newly created entries) */
89 IOMMU_NOTIFIER_MAP = 0x2,
90 } IOMMUNotifierFlag;
92 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
94 struct IOMMUNotifier;
95 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
96 IOMMUTLBEntry *data);
98 struct IOMMUNotifier {
99 IOMMUNotify notify;
100 IOMMUNotifierFlag notifier_flags;
101 /* Notify for address space range start <= addr <= end */
102 hwaddr start;
103 hwaddr end;
104 int iommu_idx;
105 QLIST_ENTRY(IOMMUNotifier) node;
107 typedef struct IOMMUNotifier IOMMUNotifier;
109 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
110 #define RAM_PREALLOC (1 << 0)
112 /* RAM is mmap-ed with MAP_SHARED */
113 #define RAM_SHARED (1 << 1)
115 /* Only a portion of RAM (used_length) is actually used, and migrated.
116 * This used_length size can change across reboots.
118 #define RAM_RESIZEABLE (1 << 2)
120 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
121 * zero the page and wake waiting processes.
122 * (Set during postcopy)
124 #define RAM_UF_ZEROPAGE (1 << 3)
126 /* RAM can be migrated */
127 #define RAM_MIGRATABLE (1 << 4)
129 /* RAM is a persistent kind memory */
130 #define RAM_PMEM (1 << 5)
132 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
133 IOMMUNotifierFlag flags,
134 hwaddr start, hwaddr end,
135 int iommu_idx)
137 n->notify = fn;
138 n->notifier_flags = flags;
139 n->start = start;
140 n->end = end;
141 n->iommu_idx = iommu_idx;
145 * Memory region callbacks
147 struct MemoryRegionOps {
148 /* Read from the memory region. @addr is relative to @mr; @size is
149 * in bytes. */
150 uint64_t (*read)(void *opaque,
151 hwaddr addr,
152 unsigned size);
153 /* Write to the memory region. @addr is relative to @mr; @size is
154 * in bytes. */
155 void (*write)(void *opaque,
156 hwaddr addr,
157 uint64_t data,
158 unsigned size);
160 MemTxResult (*read_with_attrs)(void *opaque,
161 hwaddr addr,
162 uint64_t *data,
163 unsigned size,
164 MemTxAttrs attrs);
165 MemTxResult (*write_with_attrs)(void *opaque,
166 hwaddr addr,
167 uint64_t data,
168 unsigned size,
169 MemTxAttrs attrs);
171 enum device_endian endianness;
172 /* Guest-visible constraints: */
173 struct {
174 /* If nonzero, specify bounds on access sizes beyond which a machine
175 * check is thrown.
177 unsigned min_access_size;
178 unsigned max_access_size;
179 /* If true, unaligned accesses are supported. Otherwise unaligned
180 * accesses throw machine checks.
182 bool unaligned;
184 * If present, and returns #false, the transaction is not accepted
185 * by the device (and results in machine dependent behaviour such
186 * as a machine check exception).
188 bool (*accepts)(void *opaque, hwaddr addr,
189 unsigned size, bool is_write,
190 MemTxAttrs attrs);
191 } valid;
192 /* Internal implementation constraints: */
193 struct {
194 /* If nonzero, specifies the minimum size implemented. Smaller sizes
195 * will be rounded upwards and a partial result will be returned.
197 unsigned min_access_size;
198 /* If nonzero, specifies the maximum size implemented. Larger sizes
199 * will be done as a series of accesses with smaller sizes.
201 unsigned max_access_size;
202 /* If true, unaligned accesses are supported. Otherwise all accesses
203 * are converted to (possibly multiple) naturally aligned accesses.
205 bool unaligned;
206 } impl;
209 typedef struct MemoryRegionClass {
210 /* private */
211 ObjectClass parent_class;
212 } MemoryRegionClass;
215 enum IOMMUMemoryRegionAttr {
216 IOMMU_ATTR_SPAPR_TCE_FD
220 * IOMMUMemoryRegionClass:
222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
223 * and provide an implementation of at least the @translate method here
224 * to handle requests to the memory region. Other methods are optional.
226 * The IOMMU implementation must use the IOMMU notifier infrastructure
227 * to report whenever mappings are changed, by calling
228 * memory_region_notify_iommu() (or, if necessary, by calling
229 * memory_region_notify_one() for each registered notifier).
231 * Conceptually an IOMMU provides a mapping from input address
232 * to an output TLB entry. If the IOMMU is aware of memory transaction
233 * attributes and the output TLB entry depends on the transaction
234 * attributes, we represent this using IOMMU indexes. Each index
235 * selects a particular translation table that the IOMMU has:
236 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
237 * @translate takes an input address and an IOMMU index
238 * and the mapping returned can only depend on the input address and the
239 * IOMMU index.
241 * Most IOMMUs don't care about the transaction attributes and support
242 * only a single IOMMU index. A more complex IOMMU might have one index
243 * for secure transactions and one for non-secure transactions.
245 typedef struct IOMMUMemoryRegionClass {
246 /* private */
247 MemoryRegionClass parent_class;
250 * Return a TLB entry that contains a given address.
252 * The IOMMUAccessFlags indicated via @flag are optional and may
253 * be specified as IOMMU_NONE to indicate that the caller needs
254 * the full translation information for both reads and writes. If
255 * the access flags are specified then the IOMMU implementation
256 * may use this as an optimization, to stop doing a page table
257 * walk as soon as it knows that the requested permissions are not
258 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
259 * full page table walk and report the permissions in the returned
260 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
261 * return different mappings for reads and writes.)
263 * The returned information remains valid while the caller is
264 * holding the big QEMU lock or is inside an RCU critical section;
265 * if the caller wishes to cache the mapping beyond that it must
266 * register an IOMMU notifier so it can invalidate its cached
267 * information when the IOMMU mapping changes.
269 * @iommu: the IOMMUMemoryRegion
270 * @hwaddr: address to be translated within the memory region
271 * @flag: requested access permissions
272 * @iommu_idx: IOMMU index for the translation
274 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
275 IOMMUAccessFlags flag, int iommu_idx);
276 /* Returns minimum supported page size in bytes.
277 * If this method is not provided then the minimum is assumed to
278 * be TARGET_PAGE_SIZE.
280 * @iommu: the IOMMUMemoryRegion
282 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
283 /* Called when IOMMU Notifier flag changes (ie when the set of
284 * events which IOMMU users are requesting notification for changes).
285 * Optional method -- need not be provided if the IOMMU does not
286 * need to know exactly which events must be notified.
288 * @iommu: the IOMMUMemoryRegion
289 * @old_flags: events which previously needed to be notified
290 * @new_flags: events which now need to be notified
292 * Returns 0 on success, or a negative errno; in particular
293 * returns -EINVAL if the new flag bitmap is not supported by the
294 * IOMMU memory region. In case of failure, the error object
295 * must be created
297 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
298 IOMMUNotifierFlag old_flags,
299 IOMMUNotifierFlag new_flags,
300 Error **errp);
301 /* Called to handle memory_region_iommu_replay().
303 * The default implementation of memory_region_iommu_replay() is to
304 * call the IOMMU translate method for every page in the address space
305 * with flag == IOMMU_NONE and then call the notifier if translate
306 * returns a valid mapping. If this method is implemented then it
307 * overrides the default behaviour, and must provide the full semantics
308 * of memory_region_iommu_replay(), by calling @notifier for every
309 * translation present in the IOMMU.
311 * Optional method -- an IOMMU only needs to provide this method
312 * if the default is inefficient or produces undesirable side effects.
314 * Note: this is not related to record-and-replay functionality.
316 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
318 /* Get IOMMU misc attributes. This is an optional method that
319 * can be used to allow users of the IOMMU to get implementation-specific
320 * information. The IOMMU implements this method to handle calls
321 * by IOMMU users to memory_region_iommu_get_attr() by filling in
322 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
323 * the IOMMU supports. If the method is unimplemented then
324 * memory_region_iommu_get_attr() will always return -EINVAL.
326 * @iommu: the IOMMUMemoryRegion
327 * @attr: attribute being queried
328 * @data: memory to fill in with the attribute data
330 * Returns 0 on success, or a negative errno; in particular
331 * returns -EINVAL for unrecognized or unimplemented attribute types.
333 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
334 void *data);
336 /* Return the IOMMU index to use for a given set of transaction attributes.
338 * Optional method: if an IOMMU only supports a single IOMMU index then
339 * the default implementation of memory_region_iommu_attrs_to_index()
340 * will return 0.
342 * The indexes supported by an IOMMU must be contiguous, starting at 0.
344 * @iommu: the IOMMUMemoryRegion
345 * @attrs: memory transaction attributes
347 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
349 /* Return the number of IOMMU indexes this IOMMU supports.
351 * Optional method: if this method is not provided, then
352 * memory_region_iommu_num_indexes() will return 1, indicating that
353 * only a single IOMMU index is supported.
355 * @iommu: the IOMMUMemoryRegion
357 int (*num_indexes)(IOMMUMemoryRegion *iommu);
358 } IOMMUMemoryRegionClass;
360 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
361 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
363 /** MemoryRegion:
365 * A struct representing a memory region.
367 struct MemoryRegion {
368 Object parent_obj;
370 /* private: */
372 /* The following fields should fit in a cache line */
373 bool romd_mode;
374 bool ram;
375 bool subpage;
376 bool readonly; /* For RAM regions */
377 bool nonvolatile;
378 bool rom_device;
379 bool flush_coalesced_mmio;
380 bool global_locking;
381 uint8_t dirty_log_mask;
382 bool is_iommu;
383 RAMBlock *ram_block;
384 Object *owner;
386 const MemoryRegionOps *ops;
387 void *opaque;
388 MemoryRegion *container;
389 Int128 size;
390 hwaddr addr;
391 void (*destructor)(MemoryRegion *mr);
392 uint64_t align;
393 bool terminates;
394 bool ram_device;
395 bool enabled;
396 bool warning_printed; /* For reservations */
397 uint8_t vga_logging_count;
398 MemoryRegion *alias;
399 hwaddr alias_offset;
400 int32_t priority;
401 QTAILQ_HEAD(, MemoryRegion) subregions;
402 QTAILQ_ENTRY(MemoryRegion) subregions_link;
403 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
404 const char *name;
405 unsigned ioeventfd_nb;
406 MemoryRegionIoeventfd *ioeventfds;
409 struct IOMMUMemoryRegion {
410 MemoryRegion parent_obj;
412 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
413 IOMMUNotifierFlag iommu_notify_flags;
416 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
417 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
420 * MemoryListener: callbacks structure for updates to the physical memory map
422 * Allows a component to adjust to changes in the guest-visible memory map.
423 * Use with memory_listener_register() and memory_listener_unregister().
425 struct MemoryListener {
427 * @begin:
429 * Called at the beginning of an address space update transaction.
430 * Followed by calls to #MemoryListener.region_add(),
431 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
432 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
433 * increasing address order.
435 * @listener: The #MemoryListener.
437 void (*begin)(MemoryListener *listener);
440 * @commit:
442 * Called at the end of an address space update transaction,
443 * after the last call to #MemoryListener.region_add(),
444 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
445 * #MemoryListener.log_start() and #MemoryListener.log_stop().
447 * @listener: The #MemoryListener.
449 void (*commit)(MemoryListener *listener);
452 * @region_add:
454 * Called during an address space update transaction,
455 * for a section of the address space that is new in this address space
456 * space since the last transaction.
458 * @listener: The #MemoryListener.
459 * @section: The new #MemoryRegionSection.
461 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
464 * @region_del:
466 * Called during an address space update transaction,
467 * for a section of the address space that has disappeared in the address
468 * space since the last transaction.
470 * @listener: The #MemoryListener.
471 * @section: The old #MemoryRegionSection.
473 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
476 * @region_nop:
478 * Called during an address space update transaction,
479 * for a section of the address space that is in the same place in the address
480 * space as in the last transaction.
482 * @listener: The #MemoryListener.
483 * @section: The #MemoryRegionSection.
485 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
488 * @log_start:
490 * Called during an address space update transaction, after
491 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
492 * #MemoryListener.region_nop(), if dirty memory logging clients have
493 * become active since the last transaction.
495 * @listener: The #MemoryListener.
496 * @section: The #MemoryRegionSection.
497 * @old: A bitmap of dirty memory logging clients that were active in
498 * the previous transaction.
499 * @new: A bitmap of dirty memory logging clients that are active in
500 * the current transaction.
502 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
503 int old, int new);
506 * @log_stop:
508 * Called during an address space update transaction, after
509 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
510 * #MemoryListener.region_nop() and possibly after
511 * #MemoryListener.log_start(), if dirty memory logging clients have
512 * become inactive since the last transaction.
514 * @listener: The #MemoryListener.
515 * @section: The #MemoryRegionSection.
516 * @old: A bitmap of dirty memory logging clients that were active in
517 * the previous transaction.
518 * @new: A bitmap of dirty memory logging clients that are active in
519 * the current transaction.
521 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
522 int old, int new);
525 * @log_sync:
527 * Called by memory_region_snapshot_and_clear_dirty() and
528 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
529 * copy of the dirty memory bitmap for a #MemoryRegionSection.
531 * @listener: The #MemoryListener.
532 * @section: The #MemoryRegionSection.
534 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
537 * @log_clear:
539 * Called before reading the dirty memory bitmap for a
540 * #MemoryRegionSection.
542 * @listener: The #MemoryListener.
543 * @section: The #MemoryRegionSection.
545 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
548 * @log_global_start:
550 * Called by memory_global_dirty_log_start(), which
551 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
552 * the address space. #MemoryListener.log_global_start() is also
553 * called when a #MemoryListener is added, if global dirty logging is
554 * active at that time.
556 * @listener: The #MemoryListener.
558 void (*log_global_start)(MemoryListener *listener);
561 * @log_global_stop:
563 * Called by memory_global_dirty_log_stop(), which
564 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
565 * the address space.
567 * @listener: The #MemoryListener.
569 void (*log_global_stop)(MemoryListener *listener);
572 * @log_global_after_sync:
574 * Called after reading the dirty memory bitmap
575 * for any #MemoryRegionSection.
577 * @listener: The #MemoryListener.
579 void (*log_global_after_sync)(MemoryListener *listener);
582 * @eventfd_add:
584 * Called during an address space update transaction,
585 * for a section of the address space that has had a new ioeventfd
586 * registration since the last transaction.
588 * @listener: The #MemoryListener.
589 * @section: The new #MemoryRegionSection.
590 * @match_data: The @match_data parameter for the new ioeventfd.
591 * @data: The @data parameter for the new ioeventfd.
592 * @e: The #EventNotifier parameter for the new ioeventfd.
594 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
595 bool match_data, uint64_t data, EventNotifier *e);
598 * @eventfd_del:
600 * Called during an address space update transaction,
601 * for a section of the address space that has dropped an ioeventfd
602 * registration since the last transaction.
604 * @listener: The #MemoryListener.
605 * @section: The new #MemoryRegionSection.
606 * @match_data: The @match_data parameter for the dropped ioeventfd.
607 * @data: The @data parameter for the dropped ioeventfd.
608 * @e: The #EventNotifier parameter for the dropped ioeventfd.
610 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
611 bool match_data, uint64_t data, EventNotifier *e);
614 * @coalesced_io_add:
616 * Called during an address space update transaction,
617 * for a section of the address space that has had a new coalesced
618 * MMIO range registration since the last transaction.
620 * @listener: The #MemoryListener.
621 * @section: The new #MemoryRegionSection.
622 * @addr: The starting address for the coalesced MMIO range.
623 * @len: The length of the coalesced MMIO range.
625 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
626 hwaddr addr, hwaddr len);
629 * @coalesced_io_del:
631 * Called during an address space update transaction,
632 * for a section of the address space that has dropped a coalesced
633 * MMIO range since the last transaction.
635 * @listener: The #MemoryListener.
636 * @section: The new #MemoryRegionSection.
637 * @addr: The starting address for the coalesced MMIO range.
638 * @len: The length of the coalesced MMIO range.
640 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
641 hwaddr addr, hwaddr len);
643 * @priority:
645 * Govern the order in which memory listeners are invoked. Lower priorities
646 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
647 * or "stop" callbacks.
649 unsigned priority;
651 /* private: */
652 AddressSpace *address_space;
653 QTAILQ_ENTRY(MemoryListener) link;
654 QTAILQ_ENTRY(MemoryListener) link_as;
658 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
660 struct AddressSpace {
661 /* private: */
662 struct rcu_head rcu;
663 char *name;
664 MemoryRegion *root;
666 /* Accessed via RCU. */
667 struct FlatView *current_map;
669 int ioeventfd_nb;
670 struct MemoryRegionIoeventfd *ioeventfds;
671 QTAILQ_HEAD(, MemoryListener) listeners;
672 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
675 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
676 typedef struct FlatRange FlatRange;
678 /* Flattened global view of current active memory hierarchy. Kept in sorted
679 * order.
681 struct FlatView {
682 struct rcu_head rcu;
683 unsigned ref;
684 FlatRange *ranges;
685 unsigned nr;
686 unsigned nr_allocated;
687 struct AddressSpaceDispatch *dispatch;
688 MemoryRegion *root;
691 static inline FlatView *address_space_to_flatview(AddressSpace *as)
693 return atomic_rcu_read(&as->current_map);
698 * MemoryRegionSection: describes a fragment of a #MemoryRegion
700 * @mr: the region, or %NULL if empty
701 * @fv: the flat view of the address space the region is mapped in
702 * @offset_within_region: the beginning of the section, relative to @mr's start
703 * @size: the size of the section; will not exceed @mr's boundaries
704 * @offset_within_address_space: the address of the first byte of the section
705 * relative to the region's address space
706 * @readonly: writes to this section are ignored
707 * @nonvolatile: this section is non-volatile
709 struct MemoryRegionSection {
710 Int128 size;
711 MemoryRegion *mr;
712 FlatView *fv;
713 hwaddr offset_within_region;
714 hwaddr offset_within_address_space;
715 bool readonly;
716 bool nonvolatile;
719 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
720 MemoryRegionSection *b)
722 return a->mr == b->mr &&
723 a->fv == b->fv &&
724 a->offset_within_region == b->offset_within_region &&
725 a->offset_within_address_space == b->offset_within_address_space &&
726 int128_eq(a->size, b->size) &&
727 a->readonly == b->readonly &&
728 a->nonvolatile == b->nonvolatile;
732 * memory_region_init: Initialize a memory region
734 * The region typically acts as a container for other memory regions. Use
735 * memory_region_add_subregion() to add subregions.
737 * @mr: the #MemoryRegion to be initialized
738 * @owner: the object that tracks the region's reference count
739 * @name: used for debugging; not visible to the user or ABI
740 * @size: size of the region; any subregions beyond this size will be clipped
742 void memory_region_init(MemoryRegion *mr,
743 struct Object *owner,
744 const char *name,
745 uint64_t size);
748 * memory_region_ref: Add 1 to a memory region's reference count
750 * Whenever memory regions are accessed outside the BQL, they need to be
751 * preserved against hot-unplug. MemoryRegions actually do not have their
752 * own reference count; they piggyback on a QOM object, their "owner".
753 * This function adds a reference to the owner.
755 * All MemoryRegions must have an owner if they can disappear, even if the
756 * device they belong to operates exclusively under the BQL. This is because
757 * the region could be returned at any time by memory_region_find, and this
758 * is usually under guest control.
760 * @mr: the #MemoryRegion
762 void memory_region_ref(MemoryRegion *mr);
765 * memory_region_unref: Remove 1 to a memory region's reference count
767 * Whenever memory regions are accessed outside the BQL, they need to be
768 * preserved against hot-unplug. MemoryRegions actually do not have their
769 * own reference count; they piggyback on a QOM object, their "owner".
770 * This function removes a reference to the owner and possibly destroys it.
772 * @mr: the #MemoryRegion
774 void memory_region_unref(MemoryRegion *mr);
777 * memory_region_init_io: Initialize an I/O memory region.
779 * Accesses into the region will cause the callbacks in @ops to be called.
780 * if @size is nonzero, subregions will be clipped to @size.
782 * @mr: the #MemoryRegion to be initialized.
783 * @owner: the object that tracks the region's reference count
784 * @ops: a structure containing read and write callbacks to be used when
785 * I/O is performed on the region.
786 * @opaque: passed to the read and write callbacks of the @ops structure.
787 * @name: used for debugging; not visible to the user or ABI
788 * @size: size of the region.
790 void memory_region_init_io(MemoryRegion *mr,
791 struct Object *owner,
792 const MemoryRegionOps *ops,
793 void *opaque,
794 const char *name,
795 uint64_t size);
798 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
799 * into the region will modify memory
800 * directly.
802 * @mr: the #MemoryRegion to be initialized.
803 * @owner: the object that tracks the region's reference count
804 * @name: Region name, becomes part of RAMBlock name used in migration stream
805 * must be unique within any device
806 * @size: size of the region.
807 * @errp: pointer to Error*, to store an error if it happens.
809 * Note that this function does not do anything to cause the data in the
810 * RAM memory region to be migrated; that is the responsibility of the caller.
812 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
813 struct Object *owner,
814 const char *name,
815 uint64_t size,
816 Error **errp);
819 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
820 * Accesses into the region will
821 * modify memory directly.
823 * @mr: the #MemoryRegion to be initialized.
824 * @owner: the object that tracks the region's reference count
825 * @name: Region name, becomes part of RAMBlock name used in migration stream
826 * must be unique within any device
827 * @size: size of the region.
828 * @share: allow remapping RAM to different addresses
829 * @errp: pointer to Error*, to store an error if it happens.
831 * Note that this function is similar to memory_region_init_ram_nomigrate.
832 * The only difference is part of the RAM region can be remapped.
834 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
835 struct Object *owner,
836 const char *name,
837 uint64_t size,
838 bool share,
839 Error **errp);
842 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
843 * RAM. Accesses into the region will
844 * modify memory directly. Only an initial
845 * portion of this RAM is actually used.
846 * The used size can change across reboots.
848 * @mr: the #MemoryRegion to be initialized.
849 * @owner: the object that tracks the region's reference count
850 * @name: Region name, becomes part of RAMBlock name used in migration stream
851 * must be unique within any device
852 * @size: used size of the region.
853 * @max_size: max size of the region.
854 * @resized: callback to notify owner about used size change.
855 * @errp: pointer to Error*, to store an error if it happens.
857 * Note that this function does not do anything to cause the data in the
858 * RAM memory region to be migrated; that is the responsibility of the caller.
860 void memory_region_init_resizeable_ram(MemoryRegion *mr,
861 struct Object *owner,
862 const char *name,
863 uint64_t size,
864 uint64_t max_size,
865 void (*resized)(const char*,
866 uint64_t length,
867 void *host),
868 Error **errp);
869 #ifdef CONFIG_POSIX
872 * memory_region_init_ram_from_file: Initialize RAM memory region with a
873 * mmap-ed backend.
875 * @mr: the #MemoryRegion to be initialized.
876 * @owner: the object that tracks the region's reference count
877 * @name: Region name, becomes part of RAMBlock name used in migration stream
878 * must be unique within any device
879 * @size: size of the region.
880 * @align: alignment of the region base address; if 0, the default alignment
881 * (getpagesize()) will be used.
882 * @ram_flags: Memory region features:
883 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
884 * - RAM_PMEM: the memory is persistent memory
885 * Other bits are ignored now.
886 * @path: the path in which to allocate the RAM.
887 * @errp: pointer to Error*, to store an error if it happens.
889 * Note that this function does not do anything to cause the data in the
890 * RAM memory region to be migrated; that is the responsibility of the caller.
892 void memory_region_init_ram_from_file(MemoryRegion *mr,
893 struct Object *owner,
894 const char *name,
895 uint64_t size,
896 uint64_t align,
897 uint32_t ram_flags,
898 const char *path,
899 Error **errp);
902 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
903 * mmap-ed backend.
905 * @mr: the #MemoryRegion to be initialized.
906 * @owner: the object that tracks the region's reference count
907 * @name: the name of the region.
908 * @size: size of the region.
909 * @share: %true if memory must be mmaped with the MAP_SHARED flag
910 * @fd: the fd to mmap.
911 * @errp: pointer to Error*, to store an error if it happens.
913 * Note that this function does not do anything to cause the data in the
914 * RAM memory region to be migrated; that is the responsibility of the caller.
916 void memory_region_init_ram_from_fd(MemoryRegion *mr,
917 struct Object *owner,
918 const char *name,
919 uint64_t size,
920 bool share,
921 int fd,
922 Error **errp);
923 #endif
926 * memory_region_init_ram_ptr: Initialize RAM memory region from a
927 * user-provided pointer. Accesses into the
928 * region will modify memory directly.
930 * @mr: the #MemoryRegion to be initialized.
931 * @owner: the object that tracks the region's reference count
932 * @name: Region name, becomes part of RAMBlock name used in migration stream
933 * must be unique within any device
934 * @size: size of the region.
935 * @ptr: memory to be mapped; must contain at least @size bytes.
937 * Note that this function does not do anything to cause the data in the
938 * RAM memory region to be migrated; that is the responsibility of the caller.
940 void memory_region_init_ram_ptr(MemoryRegion *mr,
941 struct Object *owner,
942 const char *name,
943 uint64_t size,
944 void *ptr);
947 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
948 * a user-provided pointer.
950 * A RAM device represents a mapping to a physical device, such as to a PCI
951 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
952 * into the VM address space and access to the region will modify memory
953 * directly. However, the memory region should not be included in a memory
954 * dump (device may not be enabled/mapped at the time of the dump), and
955 * operations incompatible with manipulating MMIO should be avoided. Replaces
956 * skip_dump flag.
958 * @mr: the #MemoryRegion to be initialized.
959 * @owner: the object that tracks the region's reference count
960 * @name: the name of the region.
961 * @size: size of the region.
962 * @ptr: memory to be mapped; must contain at least @size bytes.
964 * Note that this function does not do anything to cause the data in the
965 * RAM memory region to be migrated; that is the responsibility of the caller.
966 * (For RAM device memory regions, migrating the contents rarely makes sense.)
968 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
969 struct Object *owner,
970 const char *name,
971 uint64_t size,
972 void *ptr);
975 * memory_region_init_alias: Initialize a memory region that aliases all or a
976 * part of another memory region.
978 * @mr: the #MemoryRegion to be initialized.
979 * @owner: the object that tracks the region's reference count
980 * @name: used for debugging; not visible to the user or ABI
981 * @orig: the region to be referenced; @mr will be equivalent to
982 * @orig between @offset and @offset + @size - 1.
983 * @offset: start of the section in @orig to be referenced.
984 * @size: size of the region.
986 void memory_region_init_alias(MemoryRegion *mr,
987 struct Object *owner,
988 const char *name,
989 MemoryRegion *orig,
990 hwaddr offset,
991 uint64_t size);
994 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
996 * This has the same effect as calling memory_region_init_ram_nomigrate()
997 * and then marking the resulting region read-only with
998 * memory_region_set_readonly().
1000 * Note that this function does not do anything to cause the data in the
1001 * RAM side of the memory region to be migrated; that is the responsibility
1002 * of the caller.
1004 * @mr: the #MemoryRegion to be initialized.
1005 * @owner: the object that tracks the region's reference count
1006 * @name: Region name, becomes part of RAMBlock name used in migration stream
1007 * must be unique within any device
1008 * @size: size of the region.
1009 * @errp: pointer to Error*, to store an error if it happens.
1011 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1012 struct Object *owner,
1013 const char *name,
1014 uint64_t size,
1015 Error **errp);
1018 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1019 * Writes are handled via callbacks.
1021 * Note that this function does not do anything to cause the data in the
1022 * RAM side of the memory region to be migrated; that is the responsibility
1023 * of the caller.
1025 * @mr: the #MemoryRegion to be initialized.
1026 * @owner: the object that tracks the region's reference count
1027 * @ops: callbacks for write access handling (must not be NULL).
1028 * @opaque: passed to the read and write callbacks of the @ops structure.
1029 * @name: Region name, becomes part of RAMBlock name used in migration stream
1030 * must be unique within any device
1031 * @size: size of the region.
1032 * @errp: pointer to Error*, to store an error if it happens.
1034 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1035 struct Object *owner,
1036 const MemoryRegionOps *ops,
1037 void *opaque,
1038 const char *name,
1039 uint64_t size,
1040 Error **errp);
1043 * memory_region_init_iommu: Initialize a memory region of a custom type
1044 * that translates addresses
1046 * An IOMMU region translates addresses and forwards accesses to a target
1047 * memory region.
1049 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1050 * @_iommu_mr should be a pointer to enough memory for an instance of
1051 * that subclass, @instance_size is the size of that subclass, and
1052 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1053 * instance of the subclass, and its methods will then be called to handle
1054 * accesses to the memory region. See the documentation of
1055 * #IOMMUMemoryRegionClass for further details.
1057 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1058 * @instance_size: the IOMMUMemoryRegion subclass instance size
1059 * @mrtypename: the type name of the #IOMMUMemoryRegion
1060 * @owner: the object that tracks the region's reference count
1061 * @name: used for debugging; not visible to the user or ABI
1062 * @size: size of the region.
1064 void memory_region_init_iommu(void *_iommu_mr,
1065 size_t instance_size,
1066 const char *mrtypename,
1067 Object *owner,
1068 const char *name,
1069 uint64_t size);
1072 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1073 * region will modify memory directly.
1075 * @mr: the #MemoryRegion to be initialized
1076 * @owner: the object that tracks the region's reference count (must be
1077 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1078 * @name: name of the memory region
1079 * @size: size of the region in bytes
1080 * @errp: pointer to Error*, to store an error if it happens.
1082 * This function allocates RAM for a board model or device, and
1083 * arranges for it to be migrated (by calling vmstate_register_ram()
1084 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1085 * @owner is NULL).
1087 * TODO: Currently we restrict @owner to being either NULL (for
1088 * global RAM regions with no owner) or devices, so that we can
1089 * give the RAM block a unique name for migration purposes.
1090 * We should lift this restriction and allow arbitrary Objects.
1091 * If you pass a non-NULL non-device @owner then we will assert.
1093 void memory_region_init_ram(MemoryRegion *mr,
1094 struct Object *owner,
1095 const char *name,
1096 uint64_t size,
1097 Error **errp);
1100 * memory_region_init_rom: Initialize a ROM memory region.
1102 * This has the same effect as calling memory_region_init_ram()
1103 * and then marking the resulting region read-only with
1104 * memory_region_set_readonly(). This includes arranging for the
1105 * contents to be migrated.
1107 * TODO: Currently we restrict @owner to being either NULL (for
1108 * global RAM regions with no owner) or devices, so that we can
1109 * give the RAM block a unique name for migration purposes.
1110 * We should lift this restriction and allow arbitrary Objects.
1111 * If you pass a non-NULL non-device @owner then we will assert.
1113 * @mr: the #MemoryRegion to be initialized.
1114 * @owner: the object that tracks the region's reference count
1115 * @name: Region name, becomes part of RAMBlock name used in migration stream
1116 * must be unique within any device
1117 * @size: size of the region.
1118 * @errp: pointer to Error*, to store an error if it happens.
1120 void memory_region_init_rom(MemoryRegion *mr,
1121 struct Object *owner,
1122 const char *name,
1123 uint64_t size,
1124 Error **errp);
1127 * memory_region_init_rom_device: Initialize a ROM memory region.
1128 * Writes are handled via callbacks.
1130 * This function initializes a memory region backed by RAM for reads
1131 * and callbacks for writes, and arranges for the RAM backing to
1132 * be migrated (by calling vmstate_register_ram()
1133 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1134 * @owner is NULL).
1136 * TODO: Currently we restrict @owner to being either NULL (for
1137 * global RAM regions with no owner) or devices, so that we can
1138 * give the RAM block a unique name for migration purposes.
1139 * We should lift this restriction and allow arbitrary Objects.
1140 * If you pass a non-NULL non-device @owner then we will assert.
1142 * @mr: the #MemoryRegion to be initialized.
1143 * @owner: the object that tracks the region's reference count
1144 * @ops: callbacks for write access handling (must not be NULL).
1145 * @opaque: passed to the read and write callbacks of the @ops structure.
1146 * @name: Region name, becomes part of RAMBlock name used in migration stream
1147 * must be unique within any device
1148 * @size: size of the region.
1149 * @errp: pointer to Error*, to store an error if it happens.
1151 void memory_region_init_rom_device(MemoryRegion *mr,
1152 struct Object *owner,
1153 const MemoryRegionOps *ops,
1154 void *opaque,
1155 const char *name,
1156 uint64_t size,
1157 Error **errp);
1161 * memory_region_owner: get a memory region's owner.
1163 * @mr: the memory region being queried.
1165 struct Object *memory_region_owner(MemoryRegion *mr);
1168 * memory_region_size: get a memory region's size.
1170 * @mr: the memory region being queried.
1172 uint64_t memory_region_size(MemoryRegion *mr);
1175 * memory_region_is_ram: check whether a memory region is random access
1177 * Returns %true if a memory region is random access.
1179 * @mr: the memory region being queried
1181 static inline bool memory_region_is_ram(MemoryRegion *mr)
1183 return mr->ram;
1187 * memory_region_is_ram_device: check whether a memory region is a ram device
1189 * Returns %true if a memory region is a device backed ram region
1191 * @mr: the memory region being queried
1193 bool memory_region_is_ram_device(MemoryRegion *mr);
1196 * memory_region_is_romd: check whether a memory region is in ROMD mode
1198 * Returns %true if a memory region is a ROM device and currently set to allow
1199 * direct reads.
1201 * @mr: the memory region being queried
1203 static inline bool memory_region_is_romd(MemoryRegion *mr)
1205 return mr->rom_device && mr->romd_mode;
1209 * memory_region_get_iommu: check whether a memory region is an iommu
1211 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1212 * otherwise NULL.
1214 * @mr: the memory region being queried
1216 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1218 if (mr->alias) {
1219 return memory_region_get_iommu(mr->alias);
1221 if (mr->is_iommu) {
1222 return (IOMMUMemoryRegion *) mr;
1224 return NULL;
1228 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1229 * if an iommu or NULL if not
1231 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1232 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1234 * @iommu_mr: the memory region being queried
1236 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1237 IOMMUMemoryRegion *iommu_mr)
1239 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1242 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1245 * memory_region_iommu_get_min_page_size: get minimum supported page size
1246 * for an iommu
1248 * Returns minimum supported page size for an iommu.
1250 * @iommu_mr: the memory region being queried
1252 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1255 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1257 * The notification type will be decided by entry.perm bits:
1259 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1260 * - For MAP (newly added entry) notifies: set entry.perm to the
1261 * permission of the page (which is definitely !IOMMU_NONE).
1263 * Note: for any IOMMU implementation, an in-place mapping change
1264 * should be notified with an UNMAP followed by a MAP.
1266 * @iommu_mr: the memory region that was changed
1267 * @iommu_idx: the IOMMU index for the translation table which has changed
1268 * @entry: the new entry in the IOMMU translation table. The entry
1269 * replaces all old entries for the same virtual I/O address range.
1270 * Deleted entries have .@perm == 0.
1272 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1273 int iommu_idx,
1274 IOMMUTLBEntry entry);
1277 * memory_region_notify_one: notify a change in an IOMMU translation
1278 * entry to a single notifier
1280 * This works just like memory_region_notify_iommu(), but it only
1281 * notifies a specific notifier, not all of them.
1283 * @notifier: the notifier to be notified
1284 * @entry: the new entry in the IOMMU translation table. The entry
1285 * replaces all old entries for the same virtual I/O address range.
1286 * Deleted entries have .@perm == 0.
1288 void memory_region_notify_one(IOMMUNotifier *notifier,
1289 IOMMUTLBEntry *entry);
1292 * memory_region_register_iommu_notifier: register a notifier for changes to
1293 * IOMMU translation entries.
1295 * Returns 0 on success, or a negative errno otherwise. In particular,
1296 * -EINVAL indicates that at least one of the attributes of the notifier
1297 * is not supported (flag/range) by the IOMMU memory region. In case of error
1298 * the error object must be created.
1300 * @mr: the memory region to observe
1301 * @n: the IOMMUNotifier to be added; the notify callback receives a
1302 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1303 * ceases to be valid on exit from the notifier.
1304 * @errp: pointer to Error*, to store an error if it happens.
1306 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1307 IOMMUNotifier *n, Error **errp);
1310 * memory_region_iommu_replay: replay existing IOMMU translations to
1311 * a notifier with the minimum page granularity returned by
1312 * mr->iommu_ops->get_page_size().
1314 * Note: this is not related to record-and-replay functionality.
1316 * @iommu_mr: the memory region to observe
1317 * @n: the notifier to which to replay iommu mappings
1319 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1322 * memory_region_unregister_iommu_notifier: unregister a notifier for
1323 * changes to IOMMU translation entries.
1325 * @mr: the memory region which was observed and for which notity_stopped()
1326 * needs to be called
1327 * @n: the notifier to be removed.
1329 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1330 IOMMUNotifier *n);
1333 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1334 * defined on the IOMMU.
1336 * Returns 0 on success, or a negative errno otherwise. In particular,
1337 * -EINVAL indicates that the IOMMU does not support the requested
1338 * attribute.
1340 * @iommu_mr: the memory region
1341 * @attr: the requested attribute
1342 * @data: a pointer to the requested attribute data
1344 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1345 enum IOMMUMemoryRegionAttr attr,
1346 void *data);
1349 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1350 * use for translations with the given memory transaction attributes.
1352 * @iommu_mr: the memory region
1353 * @attrs: the memory transaction attributes
1355 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1356 MemTxAttrs attrs);
1359 * memory_region_iommu_num_indexes: return the total number of IOMMU
1360 * indexes that this IOMMU supports.
1362 * @iommu_mr: the memory region
1364 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1367 * memory_region_name: get a memory region's name
1369 * Returns the string that was used to initialize the memory region.
1371 * @mr: the memory region being queried
1373 const char *memory_region_name(const MemoryRegion *mr);
1376 * memory_region_is_logging: return whether a memory region is logging writes
1378 * Returns %true if the memory region is logging writes for the given client
1380 * @mr: the memory region being queried
1381 * @client: the client being queried
1383 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1386 * memory_region_get_dirty_log_mask: return the clients for which a
1387 * memory region is logging writes.
1389 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1390 * are the bit indices.
1392 * @mr: the memory region being queried
1394 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1397 * memory_region_is_rom: check whether a memory region is ROM
1399 * Returns %true if a memory region is read-only memory.
1401 * @mr: the memory region being queried
1403 static inline bool memory_region_is_rom(MemoryRegion *mr)
1405 return mr->ram && mr->readonly;
1409 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1411 * Returns %true is a memory region is non-volatile memory.
1413 * @mr: the memory region being queried
1415 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1417 return mr->nonvolatile;
1421 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1423 * Returns a file descriptor backing a file-based RAM memory region,
1424 * or -1 if the region is not a file-based RAM memory region.
1426 * @mr: the RAM or alias memory region being queried.
1428 int memory_region_get_fd(MemoryRegion *mr);
1431 * memory_region_from_host: Convert a pointer into a RAM memory region
1432 * and an offset within it.
1434 * Given a host pointer inside a RAM memory region (created with
1435 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1436 * the MemoryRegion and the offset within it.
1438 * Use with care; by the time this function returns, the returned pointer is
1439 * not protected by RCU anymore. If the caller is not within an RCU critical
1440 * section and does not hold the iothread lock, it must have other means of
1441 * protecting the pointer, such as a reference to the region that includes
1442 * the incoming ram_addr_t.
1444 * @ptr: the host pointer to be converted
1445 * @offset: the offset within memory region
1447 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1450 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1452 * Returns a host pointer to a RAM memory region (created with
1453 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1455 * Use with care; by the time this function returns, the returned pointer is
1456 * not protected by RCU anymore. If the caller is not within an RCU critical
1457 * section and does not hold the iothread lock, it must have other means of
1458 * protecting the pointer, such as a reference to the region that includes
1459 * the incoming ram_addr_t.
1461 * @mr: the memory region being queried.
1463 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1465 /* memory_region_ram_resize: Resize a RAM region.
1467 * Only legal before guest might have detected the memory size: e.g. on
1468 * incoming migration, or right after reset.
1470 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1471 * @newsize: the new size the region
1472 * @errp: pointer to Error*, to store an error if it happens.
1474 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1475 Error **errp);
1477 * memory_region_do_writeback: Trigger cache writeback or msync for
1478 * selected address range
1480 * @mr: the memory region to be updated
1481 * @addr: the initial address of the range to be written back
1482 * @size: the size of the range to be written back
1484 void memory_region_do_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1487 * memory_region_set_log: Turn dirty logging on or off for a region.
1489 * Turns dirty logging on or off for a specified client (display, migration).
1490 * Only meaningful for RAM regions.
1492 * @mr: the memory region being updated.
1493 * @log: whether dirty logging is to be enabled or disabled.
1494 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1496 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1499 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1501 * Marks a range of bytes as dirty, after it has been dirtied outside
1502 * guest code.
1504 * @mr: the memory region being dirtied.
1505 * @addr: the address (relative to the start of the region) being dirtied.
1506 * @size: size of the range being dirtied.
1508 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1509 hwaddr size);
1512 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1514 * This function is called when the caller wants to clear the remote
1515 * dirty bitmap of a memory range within the memory region. This can
1516 * be used by e.g. KVM to manually clear dirty log when
1517 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1518 * kernel.
1520 * @mr: the memory region to clear the dirty log upon
1521 * @start: start address offset within the memory region
1522 * @len: length of the memory region to clear dirty bitmap
1524 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1525 hwaddr len);
1528 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1529 * bitmap and clear it.
1531 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1532 * returns the snapshot. The snapshot can then be used to query dirty
1533 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1534 * querying the same page multiple times, which is especially useful for
1535 * display updates where the scanlines often are not page aligned.
1537 * The dirty bitmap region which gets copyed into the snapshot (and
1538 * cleared afterwards) can be larger than requested. The boundaries
1539 * are rounded up/down so complete bitmap longs (covering 64 pages on
1540 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1541 * isn't a problem for display updates as the extra pages are outside
1542 * the visible area, and in case the visible area changes a full
1543 * display redraw is due anyway. Should other use cases for this
1544 * function emerge we might have to revisit this implementation
1545 * detail.
1547 * Use g_free to release DirtyBitmapSnapshot.
1549 * @mr: the memory region being queried.
1550 * @addr: the address (relative to the start of the region) being queried.
1551 * @size: the size of the range being queried.
1552 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1554 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1555 hwaddr addr,
1556 hwaddr size,
1557 unsigned client);
1560 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1561 * in the specified dirty bitmap snapshot.
1563 * @mr: the memory region being queried.
1564 * @snap: the dirty bitmap snapshot
1565 * @addr: the address (relative to the start of the region) being queried.
1566 * @size: the size of the range being queried.
1568 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1569 DirtyBitmapSnapshot *snap,
1570 hwaddr addr, hwaddr size);
1573 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1574 * client.
1576 * Marks a range of pages as no longer dirty.
1578 * @mr: the region being updated.
1579 * @addr: the start of the subrange being cleaned.
1580 * @size: the size of the subrange being cleaned.
1581 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1582 * %DIRTY_MEMORY_VGA.
1584 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1585 hwaddr size, unsigned client);
1588 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1589 * TBs (for self-modifying code).
1591 * The MemoryRegionOps->write() callback of a ROM device must use this function
1592 * to mark byte ranges that have been modified internally, such as by directly
1593 * accessing the memory returned by memory_region_get_ram_ptr().
1595 * This function marks the range dirty and invalidates TBs so that TCG can
1596 * detect self-modifying code.
1598 * @mr: the region being flushed.
1599 * @addr: the start, relative to the start of the region, of the range being
1600 * flushed.
1601 * @size: the size, in bytes, of the range being flushed.
1603 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1606 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1608 * Allows a memory region to be marked as read-only (turning it into a ROM).
1609 * only useful on RAM regions.
1611 * @mr: the region being updated.
1612 * @readonly: whether rhe region is to be ROM or RAM.
1614 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1617 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1619 * Allows a memory region to be marked as non-volatile.
1620 * only useful on RAM regions.
1622 * @mr: the region being updated.
1623 * @nonvolatile: whether rhe region is to be non-volatile.
1625 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1628 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1630 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1631 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1632 * device is mapped to guest memory and satisfies read access directly.
1633 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1634 * Writes are always handled by the #MemoryRegion.write function.
1636 * @mr: the memory region to be updated
1637 * @romd_mode: %true to put the region into ROMD mode
1639 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1642 * memory_region_set_coalescing: Enable memory coalescing for the region.
1644 * Enabled writes to a region to be queued for later processing. MMIO ->write
1645 * callbacks may be delayed until a non-coalesced MMIO is issued.
1646 * Only useful for IO regions. Roughly similar to write-combining hardware.
1648 * @mr: the memory region to be write coalesced
1650 void memory_region_set_coalescing(MemoryRegion *mr);
1653 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1654 * a region.
1656 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1657 * Multiple calls can be issued coalesced disjoint ranges.
1659 * @mr: the memory region to be updated.
1660 * @offset: the start of the range within the region to be coalesced.
1661 * @size: the size of the subrange to be coalesced.
1663 void memory_region_add_coalescing(MemoryRegion *mr,
1664 hwaddr offset,
1665 uint64_t size);
1668 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1670 * Disables any coalescing caused by memory_region_set_coalescing() or
1671 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1672 * hardware.
1674 * @mr: the memory region to be updated.
1676 void memory_region_clear_coalescing(MemoryRegion *mr);
1679 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1680 * accesses.
1682 * Ensure that pending coalesced MMIO request are flushed before the memory
1683 * region is accessed. This property is automatically enabled for all regions
1684 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1686 * @mr: the memory region to be updated.
1688 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1691 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1692 * accesses.
1694 * Clear the automatic coalesced MMIO flushing enabled via
1695 * memory_region_set_flush_coalesced. Note that this service has no effect on
1696 * memory regions that have MMIO coalescing enabled for themselves. For them,
1697 * automatic flushing will stop once coalescing is disabled.
1699 * @mr: the memory region to be updated.
1701 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1704 * memory_region_clear_global_locking: Declares that access processing does
1705 * not depend on the QEMU global lock.
1707 * By clearing this property, accesses to the memory region will be processed
1708 * outside of QEMU's global lock (unless the lock is held on when issuing the
1709 * access request). In this case, the device model implementing the access
1710 * handlers is responsible for synchronization of concurrency.
1712 * @mr: the memory region to be updated.
1714 void memory_region_clear_global_locking(MemoryRegion *mr);
1717 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1718 * is written to a location.
1720 * Marks a word in an IO region (initialized with memory_region_init_io())
1721 * as a trigger for an eventfd event. The I/O callback will not be called.
1722 * The caller must be prepared to handle failure (that is, take the required
1723 * action if the callback _is_ called).
1725 * @mr: the memory region being updated.
1726 * @addr: the address within @mr that is to be monitored
1727 * @size: the size of the access to trigger the eventfd
1728 * @match_data: whether to match against @data, instead of just @addr
1729 * @data: the data to match against the guest write
1730 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1732 void memory_region_add_eventfd(MemoryRegion *mr,
1733 hwaddr addr,
1734 unsigned size,
1735 bool match_data,
1736 uint64_t data,
1737 EventNotifier *e);
1740 * memory_region_del_eventfd: Cancel an eventfd.
1742 * Cancels an eventfd trigger requested by a previous
1743 * memory_region_add_eventfd() call.
1745 * @mr: the memory region being updated.
1746 * @addr: the address within @mr that is to be monitored
1747 * @size: the size of the access to trigger the eventfd
1748 * @match_data: whether to match against @data, instead of just @addr
1749 * @data: the data to match against the guest write
1750 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1752 void memory_region_del_eventfd(MemoryRegion *mr,
1753 hwaddr addr,
1754 unsigned size,
1755 bool match_data,
1756 uint64_t data,
1757 EventNotifier *e);
1760 * memory_region_add_subregion: Add a subregion to a container.
1762 * Adds a subregion at @offset. The subregion may not overlap with other
1763 * subregions (except for those explicitly marked as overlapping). A region
1764 * may only be added once as a subregion (unless removed with
1765 * memory_region_del_subregion()); use memory_region_init_alias() if you
1766 * want a region to be a subregion in multiple locations.
1768 * @mr: the region to contain the new subregion; must be a container
1769 * initialized with memory_region_init().
1770 * @offset: the offset relative to @mr where @subregion is added.
1771 * @subregion: the subregion to be added.
1773 void memory_region_add_subregion(MemoryRegion *mr,
1774 hwaddr offset,
1775 MemoryRegion *subregion);
1777 * memory_region_add_subregion_overlap: Add a subregion to a container
1778 * with overlap.
1780 * Adds a subregion at @offset. The subregion may overlap with other
1781 * subregions. Conflicts are resolved by having a higher @priority hide a
1782 * lower @priority. Subregions without priority are taken as @priority 0.
1783 * A region may only be added once as a subregion (unless removed with
1784 * memory_region_del_subregion()); use memory_region_init_alias() if you
1785 * want a region to be a subregion in multiple locations.
1787 * @mr: the region to contain the new subregion; must be a container
1788 * initialized with memory_region_init().
1789 * @offset: the offset relative to @mr where @subregion is added.
1790 * @subregion: the subregion to be added.
1791 * @priority: used for resolving overlaps; highest priority wins.
1793 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1794 hwaddr offset,
1795 MemoryRegion *subregion,
1796 int priority);
1799 * memory_region_get_ram_addr: Get the ram address associated with a memory
1800 * region
1802 * @mr: the region to be queried
1804 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1806 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1808 * memory_region_del_subregion: Remove a subregion.
1810 * Removes a subregion from its container.
1812 * @mr: the container to be updated.
1813 * @subregion: the region being removed; must be a current subregion of @mr.
1815 void memory_region_del_subregion(MemoryRegion *mr,
1816 MemoryRegion *subregion);
1819 * memory_region_set_enabled: dynamically enable or disable a region
1821 * Enables or disables a memory region. A disabled memory region
1822 * ignores all accesses to itself and its subregions. It does not
1823 * obscure sibling subregions with lower priority - it simply behaves as
1824 * if it was removed from the hierarchy.
1826 * Regions default to being enabled.
1828 * @mr: the region to be updated
1829 * @enabled: whether to enable or disable the region
1831 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1834 * memory_region_set_address: dynamically update the address of a region
1836 * Dynamically updates the address of a region, relative to its container.
1837 * May be used on regions are currently part of a memory hierarchy.
1839 * @mr: the region to be updated
1840 * @addr: new address, relative to container region
1842 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1845 * memory_region_set_size: dynamically update the size of a region.
1847 * Dynamically updates the size of a region.
1849 * @mr: the region to be updated
1850 * @size: used size of the region.
1852 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1855 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1857 * Dynamically updates the offset into the target region that an alias points
1858 * to, as if the fourth argument to memory_region_init_alias() has changed.
1860 * @mr: the #MemoryRegion to be updated; should be an alias.
1861 * @offset: the new offset into the target memory region
1863 void memory_region_set_alias_offset(MemoryRegion *mr,
1864 hwaddr offset);
1867 * memory_region_present: checks if an address relative to a @container
1868 * translates into #MemoryRegion within @container
1870 * Answer whether a #MemoryRegion within @container covers the address
1871 * @addr.
1873 * @container: a #MemoryRegion within which @addr is a relative address
1874 * @addr: the area within @container to be searched
1876 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1879 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1880 * into any address space.
1882 * @mr: a #MemoryRegion which should be checked if it's mapped
1884 bool memory_region_is_mapped(MemoryRegion *mr);
1887 * memory_region_find: translate an address/size relative to a
1888 * MemoryRegion into a #MemoryRegionSection.
1890 * Locates the first #MemoryRegion within @mr that overlaps the range
1891 * given by @addr and @size.
1893 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1894 * It will have the following characteristics:
1895 * - @size = 0 iff no overlap was found
1896 * - @mr is non-%NULL iff an overlap was found
1898 * Remember that in the return value the @offset_within_region is
1899 * relative to the returned region (in the .@mr field), not to the
1900 * @mr argument.
1902 * Similarly, the .@offset_within_address_space is relative to the
1903 * address space that contains both regions, the passed and the
1904 * returned one. However, in the special case where the @mr argument
1905 * has no container (and thus is the root of the address space), the
1906 * following will hold:
1907 * - @offset_within_address_space >= @addr
1908 * - @offset_within_address_space + .@size <= @addr + @size
1910 * @mr: a MemoryRegion within which @addr is a relative address
1911 * @addr: start of the area within @as to be searched
1912 * @size: size of the area to be searched
1914 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1915 hwaddr addr, uint64_t size);
1918 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1920 * Synchronizes the dirty page log for all address spaces.
1922 void memory_global_dirty_log_sync(void);
1925 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1927 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1928 * This function must be called after the dirty log bitmap is cleared, and
1929 * before dirty guest memory pages are read. If you are using
1930 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1931 * care of doing this.
1933 void memory_global_after_dirty_log_sync(void);
1936 * memory_region_transaction_begin: Start a transaction.
1938 * During a transaction, changes will be accumulated and made visible
1939 * only when the transaction ends (is committed).
1941 void memory_region_transaction_begin(void);
1944 * memory_region_transaction_commit: Commit a transaction and make changes
1945 * visible to the guest.
1947 void memory_region_transaction_commit(void);
1950 * memory_listener_register: register callbacks to be called when memory
1951 * sections are mapped or unmapped into an address
1952 * space
1954 * @listener: an object containing the callbacks to be called
1955 * @filter: if non-%NULL, only regions in this address space will be observed
1957 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1960 * memory_listener_unregister: undo the effect of memory_listener_register()
1962 * @listener: an object containing the callbacks to be removed
1964 void memory_listener_unregister(MemoryListener *listener);
1967 * memory_global_dirty_log_start: begin dirty logging for all regions
1969 void memory_global_dirty_log_start(void);
1972 * memory_global_dirty_log_stop: end dirty logging for all regions
1974 void memory_global_dirty_log_stop(void);
1976 void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1979 * memory_region_dispatch_read: perform a read directly to the specified
1980 * MemoryRegion.
1982 * @mr: #MemoryRegion to access
1983 * @addr: address within that region
1984 * @pval: pointer to uint64_t which the data is written to
1985 * @op: size, sign, and endianness of the memory operation
1986 * @attrs: memory transaction attributes to use for the access
1988 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1989 hwaddr addr,
1990 uint64_t *pval,
1991 MemOp op,
1992 MemTxAttrs attrs);
1994 * memory_region_dispatch_write: perform a write directly to the specified
1995 * MemoryRegion.
1997 * @mr: #MemoryRegion to access
1998 * @addr: address within that region
1999 * @data: data to write
2000 * @op: size, sign, and endianness of the memory operation
2001 * @attrs: memory transaction attributes to use for the access
2003 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2004 hwaddr addr,
2005 uint64_t data,
2006 MemOp op,
2007 MemTxAttrs attrs);
2010 * address_space_init: initializes an address space
2012 * @as: an uninitialized #AddressSpace
2013 * @root: a #MemoryRegion that routes addresses for the address space
2014 * @name: an address space name. The name is only used for debugging
2015 * output.
2017 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2020 * address_space_destroy: destroy an address space
2022 * Releases all resources associated with an address space. After an address space
2023 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2024 * as well.
2026 * @as: address space to be destroyed
2028 void address_space_destroy(AddressSpace *as);
2031 * address_space_remove_listeners: unregister all listeners of an address space
2033 * Removes all callbacks previously registered with memory_listener_register()
2034 * for @as.
2036 * @as: an initialized #AddressSpace
2038 void address_space_remove_listeners(AddressSpace *as);
2041 * address_space_rw: read from or write to an address space.
2043 * Return a MemTxResult indicating whether the operation succeeded
2044 * or failed (eg unassigned memory, device rejected the transaction,
2045 * IOMMU fault).
2047 * @as: #AddressSpace to be accessed
2048 * @addr: address within that address space
2049 * @attrs: memory transaction attributes
2050 * @buf: buffer with the data transferred
2051 * @len: the number of bytes to read or write
2052 * @is_write: indicates the transfer direction
2054 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2055 MemTxAttrs attrs, uint8_t *buf,
2056 hwaddr len, bool is_write);
2059 * address_space_write: write to address space.
2061 * Return a MemTxResult indicating whether the operation succeeded
2062 * or failed (eg unassigned memory, device rejected the transaction,
2063 * IOMMU fault).
2065 * @as: #AddressSpace to be accessed
2066 * @addr: address within that address space
2067 * @attrs: memory transaction attributes
2068 * @buf: buffer with the data transferred
2069 * @len: the number of bytes to write
2071 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2072 MemTxAttrs attrs,
2073 const uint8_t *buf, hwaddr len);
2076 * address_space_write_rom: write to address space, including ROM.
2078 * This function writes to the specified address space, but will
2079 * write data to both ROM and RAM. This is used for non-guest
2080 * writes like writes from the gdb debug stub or initial loading
2081 * of ROM contents.
2083 * Note that portions of the write which attempt to write data to
2084 * a device will be silently ignored -- only real RAM and ROM will
2085 * be written to.
2087 * Return a MemTxResult indicating whether the operation succeeded
2088 * or failed (eg unassigned memory, device rejected the transaction,
2089 * IOMMU fault).
2091 * @as: #AddressSpace to be accessed
2092 * @addr: address within that address space
2093 * @attrs: memory transaction attributes
2094 * @buf: buffer with the data transferred
2095 * @len: the number of bytes to write
2097 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2098 MemTxAttrs attrs,
2099 const uint8_t *buf, hwaddr len);
2101 /* address_space_ld*: load from an address space
2102 * address_space_st*: store to an address space
2104 * These functions perform a load or store of the byte, word,
2105 * longword or quad to the specified address within the AddressSpace.
2106 * The _le suffixed functions treat the data as little endian;
2107 * _be indicates big endian; no suffix indicates "same endianness
2108 * as guest CPU".
2110 * The "guest CPU endianness" accessors are deprecated for use outside
2111 * target-* code; devices should be CPU-agnostic and use either the LE
2112 * or the BE accessors.
2114 * @as #AddressSpace to be accessed
2115 * @addr: address within that address space
2116 * @val: data value, for stores
2117 * @attrs: memory transaction attributes
2118 * @result: location to write the success/failure of the transaction;
2119 * if NULL, this information is discarded
2122 #define SUFFIX
2123 #define ARG1 as
2124 #define ARG1_DECL AddressSpace *as
2125 #include "exec/memory_ldst.inc.h"
2127 #define SUFFIX
2128 #define ARG1 as
2129 #define ARG1_DECL AddressSpace *as
2130 #include "exec/memory_ldst_phys.inc.h"
2132 struct MemoryRegionCache {
2133 void *ptr;
2134 hwaddr xlat;
2135 hwaddr len;
2136 FlatView *fv;
2137 MemoryRegionSection mrs;
2138 bool is_write;
2141 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2144 /* address_space_ld*_cached: load from a cached #MemoryRegion
2145 * address_space_st*_cached: store into a cached #MemoryRegion
2147 * These functions perform a load or store of the byte, word,
2148 * longword or quad to the specified address. The address is
2149 * a physical address in the AddressSpace, but it must lie within
2150 * a #MemoryRegion that was mapped with address_space_cache_init.
2152 * The _le suffixed functions treat the data as little endian;
2153 * _be indicates big endian; no suffix indicates "same endianness
2154 * as guest CPU".
2156 * The "guest CPU endianness" accessors are deprecated for use outside
2157 * target-* code; devices should be CPU-agnostic and use either the LE
2158 * or the BE accessors.
2160 * @cache: previously initialized #MemoryRegionCache to be accessed
2161 * @addr: address within the address space
2162 * @val: data value, for stores
2163 * @attrs: memory transaction attributes
2164 * @result: location to write the success/failure of the transaction;
2165 * if NULL, this information is discarded
2168 #define SUFFIX _cached_slow
2169 #define ARG1 cache
2170 #define ARG1_DECL MemoryRegionCache *cache
2171 #include "exec/memory_ldst.inc.h"
2173 /* Inline fast path for direct RAM access. */
2174 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2175 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2177 assert(addr < cache->len);
2178 if (likely(cache->ptr)) {
2179 return ldub_p(cache->ptr + addr);
2180 } else {
2181 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2185 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2186 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2188 assert(addr < cache->len);
2189 if (likely(cache->ptr)) {
2190 stb_p(cache->ptr + addr, val);
2191 } else {
2192 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2196 #define ENDIANNESS _le
2197 #include "exec/memory_ldst_cached.inc.h"
2199 #define ENDIANNESS _be
2200 #include "exec/memory_ldst_cached.inc.h"
2202 #define SUFFIX _cached
2203 #define ARG1 cache
2204 #define ARG1_DECL MemoryRegionCache *cache
2205 #include "exec/memory_ldst_phys.inc.h"
2207 /* address_space_cache_init: prepare for repeated access to a physical
2208 * memory region
2210 * @cache: #MemoryRegionCache to be filled
2211 * @as: #AddressSpace to be accessed
2212 * @addr: address within that address space
2213 * @len: length of buffer
2214 * @is_write: indicates the transfer direction
2216 * Will only work with RAM, and may map a subset of the requested range by
2217 * returning a value that is less than @len. On failure, return a negative
2218 * errno value.
2220 * Because it only works with RAM, this function can be used for
2221 * read-modify-write operations. In this case, is_write should be %true.
2223 * Note that addresses passed to the address_space_*_cached functions
2224 * are relative to @addr.
2226 int64_t address_space_cache_init(MemoryRegionCache *cache,
2227 AddressSpace *as,
2228 hwaddr addr,
2229 hwaddr len,
2230 bool is_write);
2233 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2235 * @cache: The #MemoryRegionCache to operate on.
2236 * @addr: The first physical address that was written, relative to the
2237 * address that was passed to @address_space_cache_init.
2238 * @access_len: The number of bytes that were written starting at @addr.
2240 void address_space_cache_invalidate(MemoryRegionCache *cache,
2241 hwaddr addr,
2242 hwaddr access_len);
2245 * address_space_cache_destroy: free a #MemoryRegionCache
2247 * @cache: The #MemoryRegionCache whose memory should be released.
2249 void address_space_cache_destroy(MemoryRegionCache *cache);
2251 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2252 * entry. Should be called from an RCU critical section.
2254 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2255 bool is_write, MemTxAttrs attrs);
2257 /* address_space_translate: translate an address range into an address space
2258 * into a MemoryRegion and an address range into that section. Should be
2259 * called from an RCU critical section, to avoid that the last reference
2260 * to the returned region disappears after address_space_translate returns.
2262 * @fv: #FlatView to be accessed
2263 * @addr: address within that address space
2264 * @xlat: pointer to address within the returned memory region section's
2265 * #MemoryRegion.
2266 * @len: pointer to length
2267 * @is_write: indicates the transfer direction
2268 * @attrs: memory attributes
2270 MemoryRegion *flatview_translate(FlatView *fv,
2271 hwaddr addr, hwaddr *xlat,
2272 hwaddr *len, bool is_write,
2273 MemTxAttrs attrs);
2275 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2276 hwaddr addr, hwaddr *xlat,
2277 hwaddr *len, bool is_write,
2278 MemTxAttrs attrs)
2280 return flatview_translate(address_space_to_flatview(as),
2281 addr, xlat, len, is_write, attrs);
2284 /* address_space_access_valid: check for validity of accessing an address
2285 * space range
2287 * Check whether memory is assigned to the given address space range, and
2288 * access is permitted by any IOMMU regions that are active for the address
2289 * space.
2291 * For now, addr and len should be aligned to a page size. This limitation
2292 * will be lifted in the future.
2294 * @as: #AddressSpace to be accessed
2295 * @addr: address within that address space
2296 * @len: length of the area to be checked
2297 * @is_write: indicates the transfer direction
2298 * @attrs: memory attributes
2300 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2301 bool is_write, MemTxAttrs attrs);
2303 /* address_space_map: map a physical memory region into a host virtual address
2305 * May map a subset of the requested range, given by and returned in @plen.
2306 * May return %NULL if resources needed to perform the mapping are exhausted.
2307 * Use only for reads OR writes - not for read-modify-write operations.
2308 * Use cpu_register_map_client() to know when retrying the map operation is
2309 * likely to succeed.
2311 * @as: #AddressSpace to be accessed
2312 * @addr: address within that address space
2313 * @plen: pointer to length of buffer; updated on return
2314 * @is_write: indicates the transfer direction
2315 * @attrs: memory attributes
2317 void *address_space_map(AddressSpace *as, hwaddr addr,
2318 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2320 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2322 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2323 * the amount of memory that was actually read or written by the caller.
2325 * @as: #AddressSpace used
2326 * @buffer: host pointer as returned by address_space_map()
2327 * @len: buffer length as returned by address_space_map()
2328 * @access_len: amount of data actually transferred
2329 * @is_write: indicates the transfer direction
2331 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2332 int is_write, hwaddr access_len);
2335 /* Internal functions, part of the implementation of address_space_read. */
2336 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2337 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2338 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2339 MemTxAttrs attrs, uint8_t *buf,
2340 hwaddr len, hwaddr addr1, hwaddr l,
2341 MemoryRegion *mr);
2342 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2344 /* Internal functions, part of the implementation of address_space_read_cached
2345 * and address_space_write_cached. */
2346 void address_space_read_cached_slow(MemoryRegionCache *cache,
2347 hwaddr addr, void *buf, hwaddr len);
2348 void address_space_write_cached_slow(MemoryRegionCache *cache,
2349 hwaddr addr, const void *buf, hwaddr len);
2351 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2353 if (is_write) {
2354 return memory_region_is_ram(mr) &&
2355 !mr->readonly && !memory_region_is_ram_device(mr);
2356 } else {
2357 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2358 memory_region_is_romd(mr);
2363 * address_space_read: read from an address space.
2365 * Return a MemTxResult indicating whether the operation succeeded
2366 * or failed (eg unassigned memory, device rejected the transaction,
2367 * IOMMU fault). Called within RCU critical section.
2369 * @as: #AddressSpace to be accessed
2370 * @addr: address within that address space
2371 * @attrs: memory transaction attributes
2372 * @buf: buffer with the data transferred
2373 * @len: length of the data transferred
2375 static inline __attribute__((__always_inline__))
2376 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2377 MemTxAttrs attrs, uint8_t *buf,
2378 hwaddr len)
2380 MemTxResult result = MEMTX_OK;
2381 hwaddr l, addr1;
2382 void *ptr;
2383 MemoryRegion *mr;
2384 FlatView *fv;
2386 if (__builtin_constant_p(len)) {
2387 if (len) {
2388 RCU_READ_LOCK_GUARD();
2389 fv = address_space_to_flatview(as);
2390 l = len;
2391 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2392 if (len == l && memory_access_is_direct(mr, false)) {
2393 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2394 memcpy(buf, ptr, len);
2395 } else {
2396 result = flatview_read_continue(fv, addr, attrs, buf, len,
2397 addr1, l, mr);
2400 } else {
2401 result = address_space_read_full(as, addr, attrs, buf, len);
2403 return result;
2407 * address_space_read_cached: read from a cached RAM region
2409 * @cache: Cached region to be addressed
2410 * @addr: address relative to the base of the RAM region
2411 * @buf: buffer with the data transferred
2412 * @len: length of the data transferred
2414 static inline void
2415 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2416 void *buf, hwaddr len)
2418 assert(addr < cache->len && len <= cache->len - addr);
2419 if (likely(cache->ptr)) {
2420 memcpy(buf, cache->ptr + addr, len);
2421 } else {
2422 address_space_read_cached_slow(cache, addr, buf, len);
2427 * address_space_write_cached: write to a cached RAM region
2429 * @cache: Cached region to be addressed
2430 * @addr: address relative to the base of the RAM region
2431 * @buf: buffer with the data transferred
2432 * @len: length of the data transferred
2434 static inline void
2435 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2436 void *buf, hwaddr len)
2438 assert(addr < cache->len && len <= cache->len - addr);
2439 if (likely(cache->ptr)) {
2440 memcpy(cache->ptr + addr, buf, len);
2441 } else {
2442 address_space_write_cached_slow(cache, addr, buf, len);
2446 #ifdef NEED_CPU_H
2447 /* enum device_endian to MemOp. */
2448 static inline MemOp devend_memop(enum device_endian end)
2450 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2451 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2453 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2454 /* Swap if non-host endianness or native (target) endianness */
2455 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2456 #else
2457 const int non_host_endianness =
2458 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2460 /* In this case, native (target) endianness needs no swap. */
2461 return (end == non_host_endianness) ? MO_BSWAP : 0;
2462 #endif
2464 #endif
2466 #endif
2468 #endif