target/ppc: cpu_init: Expose some SPR registration helpers
[qemu/rayw.git] / bsd-user / signal.c
blob0bc6d2edbd9312f140acffb133d5bc841ae41f83
1 /*
2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qemu.h"
23 #include "signal-common.h"
24 #include "trace.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "host-signal.h"
28 static struct target_sigaction sigact_table[TARGET_NSIG];
29 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
30 static void target_to_host_sigset_internal(sigset_t *d,
31 const target_sigset_t *s);
33 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
35 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
38 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
40 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
41 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
45 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
46 * (unlike Linux) these functions are just the identity mapping. This might not
47 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
49 int host_to_target_signal(int sig)
51 return sig;
54 int target_to_host_signal(int sig)
56 return sig;
59 static inline void target_sigemptyset(target_sigset_t *set)
61 memset(set, 0, sizeof(*set));
64 static inline void target_sigaddset(target_sigset_t *set, int signum)
66 signum--;
67 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
68 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
71 static inline int target_sigismember(const target_sigset_t *set, int signum)
73 signum--;
74 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
75 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
78 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
79 static inline void rewind_if_in_safe_syscall(void *puc)
81 ucontext_t *uc = (ucontext_t *)puc;
82 uintptr_t pcreg = host_signal_pc(uc);
84 if (pcreg > (uintptr_t)safe_syscall_start
85 && pcreg < (uintptr_t)safe_syscall_end) {
86 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
91 * Note: The following take advantage of the BSD signal property that all
92 * signals are available on all architectures.
94 static void host_to_target_sigset_internal(target_sigset_t *d,
95 const sigset_t *s)
97 int i;
99 target_sigemptyset(d);
100 for (i = 1; i <= NSIG; i++) {
101 if (sigismember(s, i)) {
102 target_sigaddset(d, host_to_target_signal(i));
107 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
109 target_sigset_t d1;
110 int i;
112 host_to_target_sigset_internal(&d1, s);
113 for (i = 0; i < _SIG_WORDS; i++) {
114 d->__bits[i] = tswap32(d1.__bits[i]);
118 static void target_to_host_sigset_internal(sigset_t *d,
119 const target_sigset_t *s)
121 int i;
123 sigemptyset(d);
124 for (i = 1; i <= TARGET_NSIG; i++) {
125 if (target_sigismember(s, i)) {
126 sigaddset(d, target_to_host_signal(i));
131 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
133 target_sigset_t s1;
134 int i;
136 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
137 s1.__bits[i] = tswap32(s->__bits[i]);
139 target_to_host_sigset_internal(d, &s1);
142 static bool has_trapno(int tsig)
144 return tsig == TARGET_SIGILL ||
145 tsig == TARGET_SIGFPE ||
146 tsig == TARGET_SIGSEGV ||
147 tsig == TARGET_SIGBUS ||
148 tsig == TARGET_SIGTRAP;
151 /* Siginfo conversion. */
154 * Populate tinfo w/o swapping based on guessing which fields are valid.
156 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
157 const siginfo_t *info)
159 int sig = host_to_target_signal(info->si_signo);
160 int si_code = info->si_code;
161 int si_type;
164 * Make sure we that the variable portion of the target siginfo is zeroed
165 * out so we don't leak anything into that.
167 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
170 * This is awkward, because we have to use a combination of the si_code and
171 * si_signo to figure out which of the union's members are valid.o We
172 * therefore make our best guess.
174 * Once we have made our guess, we record it in the top 16 bits of
175 * the si_code, so that tswap_siginfo() later can use it.
176 * tswap_siginfo() will strip these top bits out before writing
177 * si_code to the guest (sign-extending the lower bits).
179 tinfo->si_signo = sig;
180 tinfo->si_errno = info->si_errno;
181 tinfo->si_code = info->si_code;
182 tinfo->si_pid = info->si_pid;
183 tinfo->si_uid = info->si_uid;
184 tinfo->si_status = info->si_status;
185 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
187 * si_value is opaque to kernel. On all FreeBSD platforms,
188 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
189 * always will copy the larger element.
191 tinfo->si_value.sival_ptr =
192 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
194 switch (si_code) {
196 * All the SI_xxx codes that are defined here are global to
197 * all the signals (they have values that none of the other,
198 * more specific signal info will set).
200 case SI_USER:
201 case SI_LWP:
202 case SI_KERNEL:
203 case SI_QUEUE:
204 case SI_ASYNCIO:
206 * Only the fixed parts are valid (though FreeBSD doesn't always
207 * set all the fields to non-zero values.
209 si_type = QEMU_SI_NOINFO;
210 break;
211 case SI_TIMER:
212 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
213 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
214 si_type = QEMU_SI_TIMER;
215 break;
216 case SI_MESGQ:
217 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
218 si_type = QEMU_SI_MESGQ;
219 break;
220 default:
222 * We have to go based on the signal number now to figure out
223 * what's valid.
225 si_type = QEMU_SI_NOINFO;
226 if (has_trapno(sig)) {
227 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
228 si_type = QEMU_SI_FAULT;
230 #ifdef TARGET_SIGPOLL
232 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
233 * a chance it may popup in the future.
235 if (sig == TARGET_SIGPOLL) {
236 tinfo->_reason._poll._band = info->_reason._poll._band;
237 si_type = QEMU_SI_POLL;
239 #endif
241 * Unsure that this can actually be generated, and our support for
242 * capsicum is somewhere between weak and non-existant, but if we get
243 * one, then we know what to save.
245 #ifdef QEMU_SI_CAPSICUM
246 if (sig == TARGET_SIGTRAP) {
247 tinfo->_reason._capsicum._syscall =
248 info->_reason._capsicum._syscall;
249 si_type = QEMU_SI_CAPSICUM;
251 #endif
252 break;
254 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
257 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
259 int si_type = extract32(info->si_code, 24, 8);
260 int si_code = sextract32(info->si_code, 0, 24);
262 __put_user(info->si_signo, &tinfo->si_signo);
263 __put_user(info->si_errno, &tinfo->si_errno);
264 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
265 __put_user(info->si_pid, &tinfo->si_pid);
266 __put_user(info->si_uid, &tinfo->si_uid);
267 __put_user(info->si_status, &tinfo->si_status);
268 __put_user(info->si_addr, &tinfo->si_addr);
270 * Unswapped, because we passed it through mostly untouched. si_value is
271 * opaque to the kernel, so we didn't bother with potentially wasting cycles
272 * to swap it into host byte order.
274 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
277 * We can use our internal marker of which fields in the structure
278 * are valid, rather than duplicating the guesswork of
279 * host_to_target_siginfo_noswap() here.
281 switch (si_type) {
282 case QEMU_SI_NOINFO: /* No additional info */
283 break;
284 case QEMU_SI_FAULT:
285 __put_user(info->_reason._fault._trapno,
286 &tinfo->_reason._fault._trapno);
287 break;
288 case QEMU_SI_TIMER:
289 __put_user(info->_reason._timer._timerid,
290 &tinfo->_reason._timer._timerid);
291 __put_user(info->_reason._timer._overrun,
292 &tinfo->_reason._timer._overrun);
293 break;
294 case QEMU_SI_MESGQ:
295 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
296 break;
297 case QEMU_SI_POLL:
298 /* Note: Not generated on FreeBSD */
299 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
300 break;
301 #ifdef QEMU_SI_CAPSICUM
302 case QEMU_SI_CAPSICUM:
303 __put_user(info->_reason._capsicum._syscall,
304 &tinfo->_reason._capsicum._syscall);
305 break;
306 #endif
307 default:
308 g_assert_not_reached();
312 int block_signals(void)
314 TaskState *ts = (TaskState *)thread_cpu->opaque;
315 sigset_t set;
318 * It's OK to block everything including SIGSEGV, because we won't run any
319 * further guest code before unblocking signals in
320 * process_pending_signals(). We depend on the FreeBSD behaivor here where
321 * this will only affect this thread's signal mask. We don't use
322 * pthread_sigmask which might seem more correct because that routine also
323 * does odd things with SIGCANCEL to implement pthread_cancel().
325 sigfillset(&set);
326 sigprocmask(SIG_SETMASK, &set, 0);
328 return qatomic_xchg(&ts->signal_pending, 1);
331 /* Returns 1 if given signal should dump core if not handled. */
332 static int core_dump_signal(int sig)
334 switch (sig) {
335 case TARGET_SIGABRT:
336 case TARGET_SIGFPE:
337 case TARGET_SIGILL:
338 case TARGET_SIGQUIT:
339 case TARGET_SIGSEGV:
340 case TARGET_SIGTRAP:
341 case TARGET_SIGBUS:
342 return 1;
343 default:
344 return 0;
348 /* Abort execution with signal. */
349 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
351 CPUArchState *env = thread_cpu->env_ptr;
352 CPUState *cpu = env_cpu(env);
353 TaskState *ts = cpu->opaque;
354 int core_dumped = 0;
355 int host_sig;
356 struct sigaction act;
358 host_sig = target_to_host_signal(target_sig);
359 gdb_signalled(env, target_sig);
361 /* Dump core if supported by target binary format */
362 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
363 stop_all_tasks();
364 core_dumped =
365 ((*ts->bprm->core_dump)(target_sig, env) == 0);
367 if (core_dumped) {
368 struct rlimit nodump;
371 * We already dumped the core of target process, we don't want
372 * a coredump of qemu itself.
374 getrlimit(RLIMIT_CORE, &nodump);
375 nodump.rlim_cur = 0;
376 setrlimit(RLIMIT_CORE, &nodump);
377 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
378 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
382 * The proper exit code for dying from an uncaught signal is
383 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
384 * a negative value. To get the proper exit code we need to
385 * actually die from an uncaught signal. Here the default signal
386 * handler is installed, we send ourself a signal and we wait for
387 * it to arrive.
389 memset(&act, 0, sizeof(act));
390 sigfillset(&act.sa_mask);
391 act.sa_handler = SIG_DFL;
392 sigaction(host_sig, &act, NULL);
394 kill(getpid(), host_sig);
397 * Make sure the signal isn't masked (just reuse the mask inside
398 * of act).
400 sigdelset(&act.sa_mask, host_sig);
401 sigsuspend(&act.sa_mask);
403 /* unreachable */
404 abort();
408 * Queue a signal so that it will be send to the virtual CPU as soon as
409 * possible.
411 void queue_signal(CPUArchState *env, int sig, int si_type,
412 target_siginfo_t *info)
414 CPUState *cpu = env_cpu(env);
415 TaskState *ts = cpu->opaque;
417 trace_user_queue_signal(env, sig);
419 info->si_code = deposit32(info->si_code, 24, 8, si_type);
421 ts->sync_signal.info = *info;
422 ts->sync_signal.pending = sig;
423 /* Signal that a new signal is pending. */
424 qatomic_set(&ts->signal_pending, 1);
425 return;
428 static int fatal_signal(int sig)
431 switch (sig) {
432 case TARGET_SIGCHLD:
433 case TARGET_SIGURG:
434 case TARGET_SIGWINCH:
435 case TARGET_SIGINFO:
436 /* Ignored by default. */
437 return 0;
438 case TARGET_SIGCONT:
439 case TARGET_SIGSTOP:
440 case TARGET_SIGTSTP:
441 case TARGET_SIGTTIN:
442 case TARGET_SIGTTOU:
443 /* Job control signals. */
444 return 0;
445 default:
446 return 1;
451 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
452 * 'force' part is handled in process_pending_signals().
454 void force_sig_fault(int sig, int code, abi_ulong addr)
456 CPUState *cpu = thread_cpu;
457 CPUArchState *env = cpu->env_ptr;
458 target_siginfo_t info = {};
460 info.si_signo = sig;
461 info.si_errno = 0;
462 info.si_code = code;
463 info.si_addr = addr;
464 queue_signal(env, sig, QEMU_SI_FAULT, &info);
467 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
469 CPUArchState *env = thread_cpu->env_ptr;
470 CPUState *cpu = env_cpu(env);
471 TaskState *ts = cpu->opaque;
472 target_siginfo_t tinfo;
473 ucontext_t *uc = puc;
474 struct emulated_sigtable *k;
475 int guest_sig;
476 uintptr_t pc = 0;
477 bool sync_sig = false;
480 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
481 * handling wrt signal blocking and unwinding.
483 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
484 MMUAccessType access_type;
485 uintptr_t host_addr;
486 abi_ptr guest_addr;
487 bool is_write;
489 host_addr = (uintptr_t)info->si_addr;
492 * Convert forcefully to guest address space: addresses outside
493 * reserved_va are still valid to report via SEGV_MAPERR.
495 guest_addr = h2g_nocheck(host_addr);
497 pc = host_signal_pc(uc);
498 is_write = host_signal_write(info, uc);
499 access_type = adjust_signal_pc(&pc, is_write);
501 if (host_sig == SIGSEGV) {
502 bool maperr = true;
504 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
505 /* If this was a write to a TB protected page, restart. */
506 if (is_write &&
507 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
508 pc, guest_addr)) {
509 return;
513 * With reserved_va, the whole address space is PROT_NONE,
514 * which means that we may get ACCERR when we want MAPERR.
516 if (page_get_flags(guest_addr) & PAGE_VALID) {
517 maperr = false;
518 } else {
519 info->si_code = SEGV_MAPERR;
523 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
524 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
525 } else {
526 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
527 if (info->si_code == BUS_ADRALN) {
528 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
532 sync_sig = true;
535 /* Get the target signal number. */
536 guest_sig = host_to_target_signal(host_sig);
537 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
538 return;
540 trace_user_host_signal(cpu, host_sig, guest_sig);
542 host_to_target_siginfo_noswap(&tinfo, info);
544 k = &ts->sigtab[guest_sig - 1];
545 k->info = tinfo;
546 k->pending = guest_sig;
547 ts->signal_pending = 1;
550 * For synchronous signals, unwind the cpu state to the faulting
551 * insn and then exit back to the main loop so that the signal
552 * is delivered immediately.
554 if (sync_sig) {
555 cpu->exception_index = EXCP_INTERRUPT;
556 cpu_loop_exit_restore(cpu, pc);
559 rewind_if_in_safe_syscall(puc);
562 * Block host signals until target signal handler entered. We
563 * can't block SIGSEGV or SIGBUS while we're executing guest
564 * code in case the guest code provokes one in the window between
565 * now and it getting out to the main loop. Signals will be
566 * unblocked again in process_pending_signals().
568 sigfillset(&uc->uc_sigmask);
569 sigdelset(&uc->uc_sigmask, SIGSEGV);
570 sigdelset(&uc->uc_sigmask, SIGBUS);
572 /* Interrupt the virtual CPU as soon as possible. */
573 cpu_exit(thread_cpu);
576 /* do_sigaltstack() returns target values and errnos. */
577 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
578 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
580 TaskState *ts = (TaskState *)thread_cpu->opaque;
581 int ret;
582 target_stack_t oss;
584 if (uoss_addr) {
585 /* Save current signal stack params */
586 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
587 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
588 oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
591 if (uss_addr) {
592 target_stack_t *uss;
593 target_stack_t ss;
594 size_t minstacksize = TARGET_MINSIGSTKSZ;
596 ret = -TARGET_EFAULT;
597 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
598 goto out;
600 __get_user(ss.ss_sp, &uss->ss_sp);
601 __get_user(ss.ss_size, &uss->ss_size);
602 __get_user(ss.ss_flags, &uss->ss_flags);
603 unlock_user_struct(uss, uss_addr, 0);
605 ret = -TARGET_EPERM;
606 if (on_sig_stack(ts, sp)) {
607 goto out;
610 ret = -TARGET_EINVAL;
611 if (ss.ss_flags != TARGET_SS_DISABLE
612 && ss.ss_flags != TARGET_SS_ONSTACK
613 && ss.ss_flags != 0) {
614 goto out;
617 if (ss.ss_flags == TARGET_SS_DISABLE) {
618 ss.ss_size = 0;
619 ss.ss_sp = 0;
620 } else {
621 ret = -TARGET_ENOMEM;
622 if (ss.ss_size < minstacksize) {
623 goto out;
627 ts->sigaltstack_used.ss_sp = ss.ss_sp;
628 ts->sigaltstack_used.ss_size = ss.ss_size;
631 if (uoss_addr) {
632 ret = -TARGET_EFAULT;
633 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
634 goto out;
638 ret = 0;
639 out:
640 return ret;
643 /* do_sigaction() return host values and errnos */
644 int do_sigaction(int sig, const struct target_sigaction *act,
645 struct target_sigaction *oact)
647 struct target_sigaction *k;
648 struct sigaction act1;
649 int host_sig;
650 int ret = 0;
652 if (sig < 1 || sig > TARGET_NSIG) {
653 return -TARGET_EINVAL;
656 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
657 act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
658 return -TARGET_EINVAL;
661 if (block_signals()) {
662 return -TARGET_ERESTART;
665 k = &sigact_table[sig - 1];
666 if (oact) {
667 oact->_sa_handler = tswapal(k->_sa_handler);
668 oact->sa_flags = tswap32(k->sa_flags);
669 oact->sa_mask = k->sa_mask;
671 if (act) {
672 k->_sa_handler = tswapal(act->_sa_handler);
673 k->sa_flags = tswap32(act->sa_flags);
674 k->sa_mask = act->sa_mask;
676 /* Update the host signal state. */
677 host_sig = target_to_host_signal(sig);
678 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
679 memset(&act1, 0, sizeof(struct sigaction));
680 sigfillset(&act1.sa_mask);
681 act1.sa_flags = SA_SIGINFO;
682 if (k->sa_flags & TARGET_SA_RESTART) {
683 act1.sa_flags |= SA_RESTART;
686 * Note: It is important to update the host kernel signal mask to
687 * avoid getting unexpected interrupted system calls.
689 if (k->_sa_handler == TARGET_SIG_IGN) {
690 act1.sa_sigaction = (void *)SIG_IGN;
691 } else if (k->_sa_handler == TARGET_SIG_DFL) {
692 if (fatal_signal(sig)) {
693 act1.sa_sigaction = host_signal_handler;
694 } else {
695 act1.sa_sigaction = (void *)SIG_DFL;
697 } else {
698 act1.sa_sigaction = host_signal_handler;
700 ret = sigaction(host_sig, &act1, NULL);
703 return ret;
706 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
707 CPUArchState *env, size_t frame_size)
709 TaskState *ts = (TaskState *)thread_cpu->opaque;
710 abi_ulong sp;
712 /* Use default user stack */
713 sp = get_sp_from_cpustate(env);
715 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
716 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
719 /* TODO: make this a target_arch function / define */
720 #if defined(TARGET_ARM)
721 return (sp - frame_size) & ~7;
722 #elif defined(TARGET_AARCH64)
723 return (sp - frame_size) & ~15;
724 #else
725 return sp - frame_size;
726 #endif
729 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
731 static void setup_frame(int sig, int code, struct target_sigaction *ka,
732 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
734 struct target_sigframe *frame;
735 abi_ulong frame_addr;
736 int i;
738 frame_addr = get_sigframe(ka, env, sizeof(*frame));
739 trace_user_setup_frame(env, frame_addr);
740 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
741 unlock_user_struct(frame, frame_addr, 1);
742 dump_core_and_abort(TARGET_SIGILL);
743 return;
746 memset(frame, 0, sizeof(*frame));
747 setup_sigframe_arch(env, frame_addr, frame, 0);
749 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
750 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
753 if (tinfo) {
754 frame->sf_si.si_signo = tinfo->si_signo;
755 frame->sf_si.si_errno = tinfo->si_errno;
756 frame->sf_si.si_code = tinfo->si_code;
757 frame->sf_si.si_pid = tinfo->si_pid;
758 frame->sf_si.si_uid = tinfo->si_uid;
759 frame->sf_si.si_status = tinfo->si_status;
760 frame->sf_si.si_addr = tinfo->si_addr;
761 /* see host_to_target_siginfo_noswap() for more details */
762 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
764 * At this point, whatever is in the _reason union is complete
765 * and in target order, so just copy the whole thing over, even
766 * if it's too large for this specific signal.
767 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
768 * that's so.
770 memcpy(&frame->sf_si._reason, &tinfo->_reason,
771 sizeof(tinfo->_reason));
774 set_sigtramp_args(env, sig, frame, frame_addr, ka);
776 unlock_user_struct(frame, frame_addr, 1);
779 static int reset_signal_mask(target_ucontext_t *ucontext)
781 int i;
782 sigset_t blocked;
783 target_sigset_t target_set;
784 TaskState *ts = (TaskState *)thread_cpu->opaque;
786 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
787 if (__get_user(target_set.__bits[i],
788 &ucontext->uc_sigmask.__bits[i])) {
789 return -TARGET_EFAULT;
792 target_to_host_sigset_internal(&blocked, &target_set);
793 ts->signal_mask = blocked;
795 return 0;
798 /* See sys/$M/$M/exec_machdep.c sigreturn() */
799 long do_sigreturn(CPUArchState *env, abi_ulong addr)
801 long ret;
802 abi_ulong target_ucontext;
803 target_ucontext_t *ucontext = NULL;
805 /* Get the target ucontext address from the stack frame */
806 ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
807 if (is_error(ret)) {
808 return ret;
810 trace_user_do_sigreturn(env, addr);
811 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
812 goto badframe;
815 /* Set the register state back to before the signal. */
816 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
817 goto badframe;
820 /* And reset the signal mask. */
821 if (reset_signal_mask(ucontext)) {
822 goto badframe;
825 unlock_user_struct(ucontext, target_ucontext, 0);
826 return -TARGET_EJUSTRETURN;
828 badframe:
829 if (ucontext != NULL) {
830 unlock_user_struct(ucontext, target_ucontext, 0);
832 return -TARGET_EFAULT;
835 void signal_init(void)
837 TaskState *ts = (TaskState *)thread_cpu->opaque;
838 struct sigaction act;
839 struct sigaction oact;
840 int i;
841 int host_sig;
843 /* Set the signal mask from the host mask. */
844 sigprocmask(0, 0, &ts->signal_mask);
846 sigfillset(&act.sa_mask);
847 act.sa_sigaction = host_signal_handler;
848 act.sa_flags = SA_SIGINFO;
850 for (i = 1; i <= TARGET_NSIG; i++) {
851 #ifdef CONFIG_GPROF
852 if (i == TARGET_SIGPROF) {
853 continue;
855 #endif
856 host_sig = target_to_host_signal(i);
857 sigaction(host_sig, NULL, &oact);
858 if (oact.sa_sigaction == (void *)SIG_IGN) {
859 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
860 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
861 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
864 * If there's already a handler installed then something has
865 * gone horribly wrong, so don't even try to handle that case.
866 * Install some handlers for our own use. We need at least
867 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
868 * trap all signals because it affects syscall interrupt
869 * behavior. But do trap all default-fatal signals.
871 if (fatal_signal(i)) {
872 sigaction(host_sig, &act, NULL);
877 static void handle_pending_signal(CPUArchState *env, int sig,
878 struct emulated_sigtable *k)
880 CPUState *cpu = env_cpu(env);
881 TaskState *ts = cpu->opaque;
882 struct target_sigaction *sa;
883 int code;
884 sigset_t set;
885 abi_ulong handler;
886 target_siginfo_t tinfo;
887 target_sigset_t target_old_set;
889 trace_user_handle_signal(env, sig);
891 k->pending = 0;
893 sig = gdb_handlesig(cpu, sig);
894 if (!sig) {
895 sa = NULL;
896 handler = TARGET_SIG_IGN;
897 } else {
898 sa = &sigact_table[sig - 1];
899 handler = sa->_sa_handler;
902 if (do_strace) {
903 print_taken_signal(sig, &k->info);
906 if (handler == TARGET_SIG_DFL) {
908 * default handler : ignore some signal. The other are job
909 * control or fatal.
911 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
912 sig == TARGET_SIGTTOU) {
913 kill(getpid(), SIGSTOP);
914 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
915 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
916 sig != TARGET_SIGCONT) {
917 dump_core_and_abort(sig);
919 } else if (handler == TARGET_SIG_IGN) {
920 /* ignore sig */
921 } else if (handler == TARGET_SIG_ERR) {
922 dump_core_and_abort(sig);
923 } else {
924 /* compute the blocked signals during the handler execution */
925 sigset_t *blocked_set;
927 target_to_host_sigset(&set, &sa->sa_mask);
929 * SA_NODEFER indicates that the current signal should not be
930 * blocked during the handler.
932 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
933 sigaddset(&set, target_to_host_signal(sig));
937 * Save the previous blocked signal state to restore it at the
938 * end of the signal execution (see do_sigreturn).
940 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
942 blocked_set = ts->in_sigsuspend ?
943 &ts->sigsuspend_mask : &ts->signal_mask;
944 sigorset(&ts->signal_mask, blocked_set, &set);
945 ts->in_sigsuspend = false;
946 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
948 /* XXX VM86 on x86 ??? */
950 code = k->info.si_code; /* From host, so no si_type */
951 /* prepare the stack frame of the virtual CPU */
952 if (sa->sa_flags & TARGET_SA_SIGINFO) {
953 tswap_siginfo(&tinfo, &k->info);
954 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
955 } else {
956 setup_frame(sig, code, sa, &target_old_set, NULL, env);
958 if (sa->sa_flags & TARGET_SA_RESETHAND) {
959 sa->_sa_handler = TARGET_SIG_DFL;
964 void process_pending_signals(CPUArchState *env)
966 CPUState *cpu = env_cpu(env);
967 int sig;
968 sigset_t *blocked_set, set;
969 struct emulated_sigtable *k;
970 TaskState *ts = cpu->opaque;
972 while (qatomic_read(&ts->signal_pending)) {
973 sigfillset(&set);
974 sigprocmask(SIG_SETMASK, &set, 0);
976 restart_scan:
977 sig = ts->sync_signal.pending;
978 if (sig) {
980 * Synchronous signals are forced by the emulated CPU in some way.
981 * If they are set to ignore, restore the default handler (see
982 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
983 * though maybe this is done only when forcing exit for non SIGCHLD.
985 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
986 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
987 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
988 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
990 handle_pending_signal(env, sig, &ts->sync_signal);
993 k = ts->sigtab;
994 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
995 blocked_set = ts->in_sigsuspend ?
996 &ts->sigsuspend_mask : &ts->signal_mask;
997 if (k->pending &&
998 !sigismember(blocked_set, target_to_host_signal(sig))) {
999 handle_pending_signal(env, sig, k);
1001 * Restart scan from the beginning, as handle_pending_signal
1002 * might have resulted in a new synchronous signal (eg SIGSEGV).
1004 goto restart_scan;
1009 * Unblock signals and check one more time. Unblocking signals may cause
1010 * us to take another host signal, which will set signal_pending again.
1012 qatomic_set(&ts->signal_pending, 0);
1013 ts->in_sigsuspend = false;
1014 set = ts->signal_mask;
1015 sigdelset(&set, SIGSEGV);
1016 sigdelset(&set, SIGBUS);
1017 sigprocmask(SIG_SETMASK, &set, 0);
1019 ts->in_sigsuspend = false;
1022 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1023 MMUAccessType access_type, bool maperr, uintptr_t ra)
1025 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1027 if (tcg_ops->record_sigsegv) {
1028 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1031 force_sig_fault(TARGET_SIGSEGV,
1032 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1033 addr);
1034 cpu->exception_index = EXCP_INTERRUPT;
1035 cpu_loop_exit_restore(cpu, ra);
1038 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1039 MMUAccessType access_type, uintptr_t ra)
1041 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1043 if (tcg_ops->record_sigbus) {
1044 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1047 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1048 cpu->exception_index = EXCP_INTERRUPT;
1049 cpu_loop_exit_restore(cpu, ra);