2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
23 #include "signal-common.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "host-signal.h"
28 static struct target_sigaction sigact_table
[TARGET_NSIG
];
29 static void host_signal_handler(int host_sig
, siginfo_t
*info
, void *puc
);
30 static void target_to_host_sigset_internal(sigset_t
*d
,
31 const target_sigset_t
*s
);
33 static inline int on_sig_stack(TaskState
*ts
, unsigned long sp
)
35 return sp
- ts
->sigaltstack_used
.ss_sp
< ts
->sigaltstack_used
.ss_size
;
38 static inline int sas_ss_flags(TaskState
*ts
, unsigned long sp
)
40 return ts
->sigaltstack_used
.ss_size
== 0 ? SS_DISABLE
:
41 on_sig_stack(ts
, sp
) ? SS_ONSTACK
: 0;
45 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
46 * (unlike Linux) these functions are just the identity mapping. This might not
47 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
49 int host_to_target_signal(int sig
)
54 int target_to_host_signal(int sig
)
59 static inline void target_sigemptyset(target_sigset_t
*set
)
61 memset(set
, 0, sizeof(*set
));
64 static inline void target_sigaddset(target_sigset_t
*set
, int signum
)
67 uint32_t mask
= (uint32_t)1 << (signum
% TARGET_NSIG_BPW
);
68 set
->__bits
[signum
/ TARGET_NSIG_BPW
] |= mask
;
71 static inline int target_sigismember(const target_sigset_t
*set
, int signum
)
74 abi_ulong mask
= (abi_ulong
)1 << (signum
% TARGET_NSIG_BPW
);
75 return (set
->__bits
[signum
/ TARGET_NSIG_BPW
] & mask
) != 0;
78 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
79 static inline void rewind_if_in_safe_syscall(void *puc
)
81 ucontext_t
*uc
= (ucontext_t
*)puc
;
82 uintptr_t pcreg
= host_signal_pc(uc
);
84 if (pcreg
> (uintptr_t)safe_syscall_start
85 && pcreg
< (uintptr_t)safe_syscall_end
) {
86 host_signal_set_pc(uc
, (uintptr_t)safe_syscall_start
);
91 * Note: The following take advantage of the BSD signal property that all
92 * signals are available on all architectures.
94 static void host_to_target_sigset_internal(target_sigset_t
*d
,
99 target_sigemptyset(d
);
100 for (i
= 1; i
<= NSIG
; i
++) {
101 if (sigismember(s
, i
)) {
102 target_sigaddset(d
, host_to_target_signal(i
));
107 void host_to_target_sigset(target_sigset_t
*d
, const sigset_t
*s
)
112 host_to_target_sigset_internal(&d1
, s
);
113 for (i
= 0; i
< _SIG_WORDS
; i
++) {
114 d
->__bits
[i
] = tswap32(d1
.__bits
[i
]);
118 static void target_to_host_sigset_internal(sigset_t
*d
,
119 const target_sigset_t
*s
)
124 for (i
= 1; i
<= TARGET_NSIG
; i
++) {
125 if (target_sigismember(s
, i
)) {
126 sigaddset(d
, target_to_host_signal(i
));
131 void target_to_host_sigset(sigset_t
*d
, const target_sigset_t
*s
)
136 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
137 s1
.__bits
[i
] = tswap32(s
->__bits
[i
]);
139 target_to_host_sigset_internal(d
, &s1
);
142 static bool has_trapno(int tsig
)
144 return tsig
== TARGET_SIGILL
||
145 tsig
== TARGET_SIGFPE
||
146 tsig
== TARGET_SIGSEGV
||
147 tsig
== TARGET_SIGBUS
||
148 tsig
== TARGET_SIGTRAP
;
151 /* Siginfo conversion. */
154 * Populate tinfo w/o swapping based on guessing which fields are valid.
156 static inline void host_to_target_siginfo_noswap(target_siginfo_t
*tinfo
,
157 const siginfo_t
*info
)
159 int sig
= host_to_target_signal(info
->si_signo
);
160 int si_code
= info
->si_code
;
164 * Make sure we that the variable portion of the target siginfo is zeroed
165 * out so we don't leak anything into that.
167 memset(&tinfo
->_reason
, 0, sizeof(tinfo
->_reason
));
170 * This is awkward, because we have to use a combination of the si_code and
171 * si_signo to figure out which of the union's members are valid.o We
172 * therefore make our best guess.
174 * Once we have made our guess, we record it in the top 16 bits of
175 * the si_code, so that tswap_siginfo() later can use it.
176 * tswap_siginfo() will strip these top bits out before writing
177 * si_code to the guest (sign-extending the lower bits).
179 tinfo
->si_signo
= sig
;
180 tinfo
->si_errno
= info
->si_errno
;
181 tinfo
->si_code
= info
->si_code
;
182 tinfo
->si_pid
= info
->si_pid
;
183 tinfo
->si_uid
= info
->si_uid
;
184 tinfo
->si_status
= info
->si_status
;
185 tinfo
->si_addr
= (abi_ulong
)(unsigned long)info
->si_addr
;
187 * si_value is opaque to kernel. On all FreeBSD platforms,
188 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
189 * always will copy the larger element.
191 tinfo
->si_value
.sival_ptr
=
192 (abi_ulong
)(unsigned long)info
->si_value
.sival_ptr
;
196 * All the SI_xxx codes that are defined here are global to
197 * all the signals (they have values that none of the other,
198 * more specific signal info will set).
206 * Only the fixed parts are valid (though FreeBSD doesn't always
207 * set all the fields to non-zero values.
209 si_type
= QEMU_SI_NOINFO
;
212 tinfo
->_reason
._timer
._timerid
= info
->_reason
._timer
._timerid
;
213 tinfo
->_reason
._timer
._overrun
= info
->_reason
._timer
._overrun
;
214 si_type
= QEMU_SI_TIMER
;
217 tinfo
->_reason
._mesgq
._mqd
= info
->_reason
._mesgq
._mqd
;
218 si_type
= QEMU_SI_MESGQ
;
222 * We have to go based on the signal number now to figure out
225 si_type
= QEMU_SI_NOINFO
;
226 if (has_trapno(sig
)) {
227 tinfo
->_reason
._fault
._trapno
= info
->_reason
._fault
._trapno
;
228 si_type
= QEMU_SI_FAULT
;
230 #ifdef TARGET_SIGPOLL
232 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
233 * a chance it may popup in the future.
235 if (sig
== TARGET_SIGPOLL
) {
236 tinfo
->_reason
._poll
._band
= info
->_reason
._poll
._band
;
237 si_type
= QEMU_SI_POLL
;
241 * Unsure that this can actually be generated, and our support for
242 * capsicum is somewhere between weak and non-existant, but if we get
243 * one, then we know what to save.
245 #ifdef QEMU_SI_CAPSICUM
246 if (sig
== TARGET_SIGTRAP
) {
247 tinfo
->_reason
._capsicum
._syscall
=
248 info
->_reason
._capsicum
._syscall
;
249 si_type
= QEMU_SI_CAPSICUM
;
254 tinfo
->si_code
= deposit32(si_code
, 24, 8, si_type
);
257 static void tswap_siginfo(target_siginfo_t
*tinfo
, const target_siginfo_t
*info
)
259 int si_type
= extract32(info
->si_code
, 24, 8);
260 int si_code
= sextract32(info
->si_code
, 0, 24);
262 __put_user(info
->si_signo
, &tinfo
->si_signo
);
263 __put_user(info
->si_errno
, &tinfo
->si_errno
);
264 __put_user(si_code
, &tinfo
->si_code
); /* Zero out si_type, it's internal */
265 __put_user(info
->si_pid
, &tinfo
->si_pid
);
266 __put_user(info
->si_uid
, &tinfo
->si_uid
);
267 __put_user(info
->si_status
, &tinfo
->si_status
);
268 __put_user(info
->si_addr
, &tinfo
->si_addr
);
270 * Unswapped, because we passed it through mostly untouched. si_value is
271 * opaque to the kernel, so we didn't bother with potentially wasting cycles
272 * to swap it into host byte order.
274 tinfo
->si_value
.sival_ptr
= info
->si_value
.sival_ptr
;
277 * We can use our internal marker of which fields in the structure
278 * are valid, rather than duplicating the guesswork of
279 * host_to_target_siginfo_noswap() here.
282 case QEMU_SI_NOINFO
: /* No additional info */
285 __put_user(info
->_reason
._fault
._trapno
,
286 &tinfo
->_reason
._fault
._trapno
);
289 __put_user(info
->_reason
._timer
._timerid
,
290 &tinfo
->_reason
._timer
._timerid
);
291 __put_user(info
->_reason
._timer
._overrun
,
292 &tinfo
->_reason
._timer
._overrun
);
295 __put_user(info
->_reason
._mesgq
._mqd
, &tinfo
->_reason
._mesgq
._mqd
);
298 /* Note: Not generated on FreeBSD */
299 __put_user(info
->_reason
._poll
._band
, &tinfo
->_reason
._poll
._band
);
301 #ifdef QEMU_SI_CAPSICUM
302 case QEMU_SI_CAPSICUM
:
303 __put_user(info
->_reason
._capsicum
._syscall
,
304 &tinfo
->_reason
._capsicum
._syscall
);
308 g_assert_not_reached();
312 int block_signals(void)
314 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
318 * It's OK to block everything including SIGSEGV, because we won't run any
319 * further guest code before unblocking signals in
320 * process_pending_signals(). We depend on the FreeBSD behaivor here where
321 * this will only affect this thread's signal mask. We don't use
322 * pthread_sigmask which might seem more correct because that routine also
323 * does odd things with SIGCANCEL to implement pthread_cancel().
326 sigprocmask(SIG_SETMASK
, &set
, 0);
328 return qatomic_xchg(&ts
->signal_pending
, 1);
331 /* Returns 1 if given signal should dump core if not handled. */
332 static int core_dump_signal(int sig
)
348 /* Abort execution with signal. */
349 static void QEMU_NORETURN
dump_core_and_abort(int target_sig
)
351 CPUArchState
*env
= thread_cpu
->env_ptr
;
352 CPUState
*cpu
= env_cpu(env
);
353 TaskState
*ts
= cpu
->opaque
;
356 struct sigaction act
;
358 host_sig
= target_to_host_signal(target_sig
);
359 gdb_signalled(env
, target_sig
);
361 /* Dump core if supported by target binary format */
362 if (core_dump_signal(target_sig
) && (ts
->bprm
->core_dump
!= NULL
)) {
365 ((*ts
->bprm
->core_dump
)(target_sig
, env
) == 0);
368 struct rlimit nodump
;
371 * We already dumped the core of target process, we don't want
372 * a coredump of qemu itself.
374 getrlimit(RLIMIT_CORE
, &nodump
);
376 setrlimit(RLIMIT_CORE
, &nodump
);
377 (void) fprintf(stderr
, "qemu: uncaught target signal %d (%s) "
378 "- %s\n", target_sig
, strsignal(host_sig
), "core dumped");
382 * The proper exit code for dying from an uncaught signal is
383 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
384 * a negative value. To get the proper exit code we need to
385 * actually die from an uncaught signal. Here the default signal
386 * handler is installed, we send ourself a signal and we wait for
389 memset(&act
, 0, sizeof(act
));
390 sigfillset(&act
.sa_mask
);
391 act
.sa_handler
= SIG_DFL
;
392 sigaction(host_sig
, &act
, NULL
);
394 kill(getpid(), host_sig
);
397 * Make sure the signal isn't masked (just reuse the mask inside
400 sigdelset(&act
.sa_mask
, host_sig
);
401 sigsuspend(&act
.sa_mask
);
408 * Queue a signal so that it will be send to the virtual CPU as soon as
411 void queue_signal(CPUArchState
*env
, int sig
, int si_type
,
412 target_siginfo_t
*info
)
414 CPUState
*cpu
= env_cpu(env
);
415 TaskState
*ts
= cpu
->opaque
;
417 trace_user_queue_signal(env
, sig
);
419 info
->si_code
= deposit32(info
->si_code
, 24, 8, si_type
);
421 ts
->sync_signal
.info
= *info
;
422 ts
->sync_signal
.pending
= sig
;
423 /* Signal that a new signal is pending. */
424 qatomic_set(&ts
->signal_pending
, 1);
428 static int fatal_signal(int sig
)
434 case TARGET_SIGWINCH
:
436 /* Ignored by default. */
443 /* Job control signals. */
451 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
452 * 'force' part is handled in process_pending_signals().
454 void force_sig_fault(int sig
, int code
, abi_ulong addr
)
456 CPUState
*cpu
= thread_cpu
;
457 CPUArchState
*env
= cpu
->env_ptr
;
458 target_siginfo_t info
= {};
464 queue_signal(env
, sig
, QEMU_SI_FAULT
, &info
);
467 static void host_signal_handler(int host_sig
, siginfo_t
*info
, void *puc
)
469 CPUArchState
*env
= thread_cpu
->env_ptr
;
470 CPUState
*cpu
= env_cpu(env
);
471 TaskState
*ts
= cpu
->opaque
;
472 target_siginfo_t tinfo
;
473 ucontext_t
*uc
= puc
;
474 struct emulated_sigtable
*k
;
477 bool sync_sig
= false;
480 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
481 * handling wrt signal blocking and unwinding.
483 if ((host_sig
== SIGSEGV
|| host_sig
== SIGBUS
) && info
->si_code
> 0) {
484 MMUAccessType access_type
;
489 host_addr
= (uintptr_t)info
->si_addr
;
492 * Convert forcefully to guest address space: addresses outside
493 * reserved_va are still valid to report via SEGV_MAPERR.
495 guest_addr
= h2g_nocheck(host_addr
);
497 pc
= host_signal_pc(uc
);
498 is_write
= host_signal_write(info
, uc
);
499 access_type
= adjust_signal_pc(&pc
, is_write
);
501 if (host_sig
== SIGSEGV
) {
504 if (info
->si_code
== SEGV_ACCERR
&& h2g_valid(host_addr
)) {
505 /* If this was a write to a TB protected page, restart. */
507 handle_sigsegv_accerr_write(cpu
, &uc
->uc_sigmask
,
513 * With reserved_va, the whole address space is PROT_NONE,
514 * which means that we may get ACCERR when we want MAPERR.
516 if (page_get_flags(guest_addr
) & PAGE_VALID
) {
519 info
->si_code
= SEGV_MAPERR
;
523 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
524 cpu_loop_exit_sigsegv(cpu
, guest_addr
, access_type
, maperr
, pc
);
526 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
527 if (info
->si_code
== BUS_ADRALN
) {
528 cpu_loop_exit_sigbus(cpu
, guest_addr
, access_type
, pc
);
535 /* Get the target signal number. */
536 guest_sig
= host_to_target_signal(host_sig
);
537 if (guest_sig
< 1 || guest_sig
> TARGET_NSIG
) {
540 trace_user_host_signal(cpu
, host_sig
, guest_sig
);
542 host_to_target_siginfo_noswap(&tinfo
, info
);
544 k
= &ts
->sigtab
[guest_sig
- 1];
546 k
->pending
= guest_sig
;
547 ts
->signal_pending
= 1;
550 * For synchronous signals, unwind the cpu state to the faulting
551 * insn and then exit back to the main loop so that the signal
552 * is delivered immediately.
555 cpu
->exception_index
= EXCP_INTERRUPT
;
556 cpu_loop_exit_restore(cpu
, pc
);
559 rewind_if_in_safe_syscall(puc
);
562 * Block host signals until target signal handler entered. We
563 * can't block SIGSEGV or SIGBUS while we're executing guest
564 * code in case the guest code provokes one in the window between
565 * now and it getting out to the main loop. Signals will be
566 * unblocked again in process_pending_signals().
568 sigfillset(&uc
->uc_sigmask
);
569 sigdelset(&uc
->uc_sigmask
, SIGSEGV
);
570 sigdelset(&uc
->uc_sigmask
, SIGBUS
);
572 /* Interrupt the virtual CPU as soon as possible. */
573 cpu_exit(thread_cpu
);
576 /* do_sigaltstack() returns target values and errnos. */
577 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
578 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
, abi_ulong sp
)
580 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
585 /* Save current signal stack params */
586 oss
.ss_sp
= tswapl(ts
->sigaltstack_used
.ss_sp
);
587 oss
.ss_size
= tswapl(ts
->sigaltstack_used
.ss_size
);
588 oss
.ss_flags
= tswapl(sas_ss_flags(ts
, sp
));
594 size_t minstacksize
= TARGET_MINSIGSTKSZ
;
596 ret
= -TARGET_EFAULT
;
597 if (!lock_user_struct(VERIFY_READ
, uss
, uss_addr
, 1)) {
600 __get_user(ss
.ss_sp
, &uss
->ss_sp
);
601 __get_user(ss
.ss_size
, &uss
->ss_size
);
602 __get_user(ss
.ss_flags
, &uss
->ss_flags
);
603 unlock_user_struct(uss
, uss_addr
, 0);
606 if (on_sig_stack(ts
, sp
)) {
610 ret
= -TARGET_EINVAL
;
611 if (ss
.ss_flags
!= TARGET_SS_DISABLE
612 && ss
.ss_flags
!= TARGET_SS_ONSTACK
613 && ss
.ss_flags
!= 0) {
617 if (ss
.ss_flags
== TARGET_SS_DISABLE
) {
621 ret
= -TARGET_ENOMEM
;
622 if (ss
.ss_size
< minstacksize
) {
627 ts
->sigaltstack_used
.ss_sp
= ss
.ss_sp
;
628 ts
->sigaltstack_used
.ss_size
= ss
.ss_size
;
632 ret
= -TARGET_EFAULT
;
633 if (copy_to_user(uoss_addr
, &oss
, sizeof(oss
))) {
643 /* do_sigaction() return host values and errnos */
644 int do_sigaction(int sig
, const struct target_sigaction
*act
,
645 struct target_sigaction
*oact
)
647 struct target_sigaction
*k
;
648 struct sigaction act1
;
652 if (sig
< 1 || sig
> TARGET_NSIG
) {
653 return -TARGET_EINVAL
;
656 if ((sig
== TARGET_SIGKILL
|| sig
== TARGET_SIGSTOP
) &&
657 act
!= NULL
&& act
->_sa_handler
!= TARGET_SIG_DFL
) {
658 return -TARGET_EINVAL
;
661 if (block_signals()) {
662 return -TARGET_ERESTART
;
665 k
= &sigact_table
[sig
- 1];
667 oact
->_sa_handler
= tswapal(k
->_sa_handler
);
668 oact
->sa_flags
= tswap32(k
->sa_flags
);
669 oact
->sa_mask
= k
->sa_mask
;
672 k
->_sa_handler
= tswapal(act
->_sa_handler
);
673 k
->sa_flags
= tswap32(act
->sa_flags
);
674 k
->sa_mask
= act
->sa_mask
;
676 /* Update the host signal state. */
677 host_sig
= target_to_host_signal(sig
);
678 if (host_sig
!= SIGSEGV
&& host_sig
!= SIGBUS
) {
679 memset(&act1
, 0, sizeof(struct sigaction
));
680 sigfillset(&act1
.sa_mask
);
681 act1
.sa_flags
= SA_SIGINFO
;
682 if (k
->sa_flags
& TARGET_SA_RESTART
) {
683 act1
.sa_flags
|= SA_RESTART
;
686 * Note: It is important to update the host kernel signal mask to
687 * avoid getting unexpected interrupted system calls.
689 if (k
->_sa_handler
== TARGET_SIG_IGN
) {
690 act1
.sa_sigaction
= (void *)SIG_IGN
;
691 } else if (k
->_sa_handler
== TARGET_SIG_DFL
) {
692 if (fatal_signal(sig
)) {
693 act1
.sa_sigaction
= host_signal_handler
;
695 act1
.sa_sigaction
= (void *)SIG_DFL
;
698 act1
.sa_sigaction
= host_signal_handler
;
700 ret
= sigaction(host_sig
, &act1
, NULL
);
706 static inline abi_ulong
get_sigframe(struct target_sigaction
*ka
,
707 CPUArchState
*env
, size_t frame_size
)
709 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
712 /* Use default user stack */
713 sp
= get_sp_from_cpustate(env
);
715 if ((ka
->sa_flags
& TARGET_SA_ONSTACK
) && sas_ss_flags(ts
, sp
) == 0) {
716 sp
= ts
->sigaltstack_used
.ss_sp
+ ts
->sigaltstack_used
.ss_size
;
719 /* TODO: make this a target_arch function / define */
720 #if defined(TARGET_ARM)
721 return (sp
- frame_size
) & ~7;
722 #elif defined(TARGET_AARCH64)
723 return (sp
- frame_size
) & ~15;
725 return sp
- frame_size
;
729 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
731 static void setup_frame(int sig
, int code
, struct target_sigaction
*ka
,
732 target_sigset_t
*set
, target_siginfo_t
*tinfo
, CPUArchState
*env
)
734 struct target_sigframe
*frame
;
735 abi_ulong frame_addr
;
738 frame_addr
= get_sigframe(ka
, env
, sizeof(*frame
));
739 trace_user_setup_frame(env
, frame_addr
);
740 if (!lock_user_struct(VERIFY_WRITE
, frame
, frame_addr
, 0)) {
741 unlock_user_struct(frame
, frame_addr
, 1);
742 dump_core_and_abort(TARGET_SIGILL
);
746 memset(frame
, 0, sizeof(*frame
));
747 setup_sigframe_arch(env
, frame_addr
, frame
, 0);
749 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
750 __put_user(set
->__bits
[i
], &frame
->sf_uc
.uc_sigmask
.__bits
[i
]);
754 frame
->sf_si
.si_signo
= tinfo
->si_signo
;
755 frame
->sf_si
.si_errno
= tinfo
->si_errno
;
756 frame
->sf_si
.si_code
= tinfo
->si_code
;
757 frame
->sf_si
.si_pid
= tinfo
->si_pid
;
758 frame
->sf_si
.si_uid
= tinfo
->si_uid
;
759 frame
->sf_si
.si_status
= tinfo
->si_status
;
760 frame
->sf_si
.si_addr
= tinfo
->si_addr
;
761 /* see host_to_target_siginfo_noswap() for more details */
762 frame
->sf_si
.si_value
.sival_ptr
= tinfo
->si_value
.sival_ptr
;
764 * At this point, whatever is in the _reason union is complete
765 * and in target order, so just copy the whole thing over, even
766 * if it's too large for this specific signal.
767 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
770 memcpy(&frame
->sf_si
._reason
, &tinfo
->_reason
,
771 sizeof(tinfo
->_reason
));
774 set_sigtramp_args(env
, sig
, frame
, frame_addr
, ka
);
776 unlock_user_struct(frame
, frame_addr
, 1);
779 static int reset_signal_mask(target_ucontext_t
*ucontext
)
783 target_sigset_t target_set
;
784 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
786 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
787 if (__get_user(target_set
.__bits
[i
],
788 &ucontext
->uc_sigmask
.__bits
[i
])) {
789 return -TARGET_EFAULT
;
792 target_to_host_sigset_internal(&blocked
, &target_set
);
793 ts
->signal_mask
= blocked
;
798 /* See sys/$M/$M/exec_machdep.c sigreturn() */
799 long do_sigreturn(CPUArchState
*env
, abi_ulong addr
)
802 abi_ulong target_ucontext
;
803 target_ucontext_t
*ucontext
= NULL
;
805 /* Get the target ucontext address from the stack frame */
806 ret
= get_ucontext_sigreturn(env
, addr
, &target_ucontext
);
810 trace_user_do_sigreturn(env
, addr
);
811 if (!lock_user_struct(VERIFY_READ
, ucontext
, target_ucontext
, 0)) {
815 /* Set the register state back to before the signal. */
816 if (set_mcontext(env
, &ucontext
->uc_mcontext
, 1)) {
820 /* And reset the signal mask. */
821 if (reset_signal_mask(ucontext
)) {
825 unlock_user_struct(ucontext
, target_ucontext
, 0);
826 return -TARGET_EJUSTRETURN
;
829 if (ucontext
!= NULL
) {
830 unlock_user_struct(ucontext
, target_ucontext
, 0);
832 return -TARGET_EFAULT
;
835 void signal_init(void)
837 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
838 struct sigaction act
;
839 struct sigaction oact
;
843 /* Set the signal mask from the host mask. */
844 sigprocmask(0, 0, &ts
->signal_mask
);
846 sigfillset(&act
.sa_mask
);
847 act
.sa_sigaction
= host_signal_handler
;
848 act
.sa_flags
= SA_SIGINFO
;
850 for (i
= 1; i
<= TARGET_NSIG
; i
++) {
852 if (i
== TARGET_SIGPROF
) {
856 host_sig
= target_to_host_signal(i
);
857 sigaction(host_sig
, NULL
, &oact
);
858 if (oact
.sa_sigaction
== (void *)SIG_IGN
) {
859 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_IGN
;
860 } else if (oact
.sa_sigaction
== (void *)SIG_DFL
) {
861 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_DFL
;
864 * If there's already a handler installed then something has
865 * gone horribly wrong, so don't even try to handle that case.
866 * Install some handlers for our own use. We need at least
867 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
868 * trap all signals because it affects syscall interrupt
869 * behavior. But do trap all default-fatal signals.
871 if (fatal_signal(i
)) {
872 sigaction(host_sig
, &act
, NULL
);
877 static void handle_pending_signal(CPUArchState
*env
, int sig
,
878 struct emulated_sigtable
*k
)
880 CPUState
*cpu
= env_cpu(env
);
881 TaskState
*ts
= cpu
->opaque
;
882 struct target_sigaction
*sa
;
886 target_siginfo_t tinfo
;
887 target_sigset_t target_old_set
;
889 trace_user_handle_signal(env
, sig
);
893 sig
= gdb_handlesig(cpu
, sig
);
896 handler
= TARGET_SIG_IGN
;
898 sa
= &sigact_table
[sig
- 1];
899 handler
= sa
->_sa_handler
;
903 print_taken_signal(sig
, &k
->info
);
906 if (handler
== TARGET_SIG_DFL
) {
908 * default handler : ignore some signal. The other are job
911 if (sig
== TARGET_SIGTSTP
|| sig
== TARGET_SIGTTIN
||
912 sig
== TARGET_SIGTTOU
) {
913 kill(getpid(), SIGSTOP
);
914 } else if (sig
!= TARGET_SIGCHLD
&& sig
!= TARGET_SIGURG
&&
915 sig
!= TARGET_SIGINFO
&& sig
!= TARGET_SIGWINCH
&&
916 sig
!= TARGET_SIGCONT
) {
917 dump_core_and_abort(sig
);
919 } else if (handler
== TARGET_SIG_IGN
) {
921 } else if (handler
== TARGET_SIG_ERR
) {
922 dump_core_and_abort(sig
);
924 /* compute the blocked signals during the handler execution */
925 sigset_t
*blocked_set
;
927 target_to_host_sigset(&set
, &sa
->sa_mask
);
929 * SA_NODEFER indicates that the current signal should not be
930 * blocked during the handler.
932 if (!(sa
->sa_flags
& TARGET_SA_NODEFER
)) {
933 sigaddset(&set
, target_to_host_signal(sig
));
937 * Save the previous blocked signal state to restore it at the
938 * end of the signal execution (see do_sigreturn).
940 host_to_target_sigset_internal(&target_old_set
, &ts
->signal_mask
);
942 blocked_set
= ts
->in_sigsuspend
?
943 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
944 sigorset(&ts
->signal_mask
, blocked_set
, &set
);
945 ts
->in_sigsuspend
= false;
946 sigprocmask(SIG_SETMASK
, &ts
->signal_mask
, NULL
);
948 /* XXX VM86 on x86 ??? */
950 code
= k
->info
.si_code
; /* From host, so no si_type */
951 /* prepare the stack frame of the virtual CPU */
952 if (sa
->sa_flags
& TARGET_SA_SIGINFO
) {
953 tswap_siginfo(&tinfo
, &k
->info
);
954 setup_frame(sig
, code
, sa
, &target_old_set
, &tinfo
, env
);
956 setup_frame(sig
, code
, sa
, &target_old_set
, NULL
, env
);
958 if (sa
->sa_flags
& TARGET_SA_RESETHAND
) {
959 sa
->_sa_handler
= TARGET_SIG_DFL
;
964 void process_pending_signals(CPUArchState
*env
)
966 CPUState
*cpu
= env_cpu(env
);
968 sigset_t
*blocked_set
, set
;
969 struct emulated_sigtable
*k
;
970 TaskState
*ts
= cpu
->opaque
;
972 while (qatomic_read(&ts
->signal_pending
)) {
974 sigprocmask(SIG_SETMASK
, &set
, 0);
977 sig
= ts
->sync_signal
.pending
;
980 * Synchronous signals are forced by the emulated CPU in some way.
981 * If they are set to ignore, restore the default handler (see
982 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
983 * though maybe this is done only when forcing exit for non SIGCHLD.
985 if (sigismember(&ts
->signal_mask
, target_to_host_signal(sig
)) ||
986 sigact_table
[sig
- 1]._sa_handler
== TARGET_SIG_IGN
) {
987 sigdelset(&ts
->signal_mask
, target_to_host_signal(sig
));
988 sigact_table
[sig
- 1]._sa_handler
= TARGET_SIG_DFL
;
990 handle_pending_signal(env
, sig
, &ts
->sync_signal
);
994 for (sig
= 1; sig
<= TARGET_NSIG
; sig
++, k
++) {
995 blocked_set
= ts
->in_sigsuspend
?
996 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
998 !sigismember(blocked_set
, target_to_host_signal(sig
))) {
999 handle_pending_signal(env
, sig
, k
);
1001 * Restart scan from the beginning, as handle_pending_signal
1002 * might have resulted in a new synchronous signal (eg SIGSEGV).
1009 * Unblock signals and check one more time. Unblocking signals may cause
1010 * us to take another host signal, which will set signal_pending again.
1012 qatomic_set(&ts
->signal_pending
, 0);
1013 ts
->in_sigsuspend
= false;
1014 set
= ts
->signal_mask
;
1015 sigdelset(&set
, SIGSEGV
);
1016 sigdelset(&set
, SIGBUS
);
1017 sigprocmask(SIG_SETMASK
, &set
, 0);
1019 ts
->in_sigsuspend
= false;
1022 void cpu_loop_exit_sigsegv(CPUState
*cpu
, target_ulong addr
,
1023 MMUAccessType access_type
, bool maperr
, uintptr_t ra
)
1025 const struct TCGCPUOps
*tcg_ops
= CPU_GET_CLASS(cpu
)->tcg_ops
;
1027 if (tcg_ops
->record_sigsegv
) {
1028 tcg_ops
->record_sigsegv(cpu
, addr
, access_type
, maperr
, ra
);
1031 force_sig_fault(TARGET_SIGSEGV
,
1032 maperr
? TARGET_SEGV_MAPERR
: TARGET_SEGV_ACCERR
,
1034 cpu
->exception_index
= EXCP_INTERRUPT
;
1035 cpu_loop_exit_restore(cpu
, ra
);
1038 void cpu_loop_exit_sigbus(CPUState
*cpu
, target_ulong addr
,
1039 MMUAccessType access_type
, uintptr_t ra
)
1041 const struct TCGCPUOps
*tcg_ops
= CPU_GET_CLASS(cpu
)->tcg_ops
;
1043 if (tcg_ops
->record_sigbus
) {
1044 tcg_ops
->record_sigbus(cpu
, addr
, access_type
, ra
);
1047 force_sig_fault(TARGET_SIGBUS
, TARGET_BUS_ADRALN
, addr
);
1048 cpu
->exception_index
= EXCP_INTERRUPT
;
1049 cpu_loop_exit_restore(cpu
, ra
);