hw/block/nvme: function formatting fix
[qemu/rayw.git] / hw / block / nvme.c
blob79a087a41ce8d1e5012b1324b389cad2108bcc9a
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
21 * -device nvme,serial=<serial>,id=<bus_name>, \
22 * cmb_size_mb=<cmb_size_mb[optional]>, \
23 * [pmrdev=<mem_backend_file_id>,] \
24 * max_ioqpairs=<N[optional]>, \
25 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
26 * mdts=<N[optional]>,vsl=<N[optional]>, \
27 * zoned.zasl=<N[optional]>, \
28 * subsys=<subsys_id>
29 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
30 * zoned=<true|false[optional]>, \
31 * subsys=<subsys_id>,detached=<true|false[optional]>
33 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
34 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
35 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
36 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
38 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
39 * For example:
40 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
41 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
43 * The PMR will use BAR 4/5 exclusively.
45 * To place controller(s) and namespace(s) to a subsystem, then provide
46 * nvme-subsys device as above.
48 * nvme subsystem device parameters
49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50 * - `nqn`
51 * This parameter provides the `<nqn_id>` part of the string
52 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
53 * of subsystem controllers. Note that `<nqn_id>` should be unique per
54 * subsystem, but this is not enforced by QEMU. If not specified, it will
55 * default to the value of the `id` parameter (`<subsys_id>`).
57 * nvme device parameters
58 * ~~~~~~~~~~~~~~~~~~~~~~
59 * - `subsys`
60 * Specifying this parameter attaches the controller to the subsystem and
61 * the SUBNQN field in the controller will report the NQN of the subsystem
62 * device. This also enables multi controller capability represented in
63 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
64 * Namesapce Sharing Capabilities).
66 * - `aerl`
67 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
68 * of concurrently outstanding Asynchronous Event Request commands support
69 * by the controller. This is a 0's based value.
71 * - `aer_max_queued`
72 * This is the maximum number of events that the device will enqueue for
73 * completion when there are no outstanding AERs. When the maximum number of
74 * enqueued events are reached, subsequent events will be dropped.
76 * - `mdts`
77 * Indicates the maximum data transfer size for a command that transfers data
78 * between host-accessible memory and the controller. The value is specified
79 * as a power of two (2^n) and is in units of the minimum memory page size
80 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
82 * - `vsl`
83 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
84 * this value is specified as a power of two (2^n) and is in units of the
85 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
86 * KiB).
88 * - `zoned.zasl`
89 * Indicates the maximum data transfer size for the Zone Append command. Like
90 * `mdts`, the value is specified as a power of two (2^n) and is in units of
91 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
92 * defaulting to the value of `mdts`).
94 * nvme namespace device parameters
95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96 * - `shared`
97 * When the parent nvme device (as defined explicitly by the 'bus' parameter
98 * or implicitly by the most recently defined NvmeBus) is linked to an
99 * nvme-subsys device, the namespace will be attached to all controllers in
100 * the subsystem. If set to 'off' (the default), the namespace will remain a
101 * private namespace and may only be attached to a single controller at a
102 * time.
104 * - `detached`
105 * This parameter is only valid together with the `subsys` parameter. If left
106 * at the default value (`false/off`), the namespace will be attached to all
107 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
108 * namespace will be be available in the subsystem not not attached to any
109 * controllers.
111 * Setting `zoned` to true selects Zoned Command Set at the namespace.
112 * In this case, the following namespace properties are available to configure
113 * zoned operation:
114 * zoned.zone_size=<zone size in bytes, default: 128MiB>
115 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
117 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
118 * The value 0 (default) forces zone capacity to be the same as zone
119 * size. The value of this property may not exceed zone size.
121 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
122 * This value needs to be specified in 64B units. If it is zero,
123 * namespace(s) will not support zone descriptor extensions.
125 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
126 * The default value means there is no limit to the number of
127 * concurrently active zones.
129 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
130 * The default value means there is no limit to the number of
131 * concurrently open zones.
133 * zoned.cross_read=<enable RAZB, default: false>
134 * Setting this property to true enables Read Across Zone Boundaries.
137 #include "qemu/osdep.h"
138 #include "qemu/units.h"
139 #include "qemu/error-report.h"
140 #include "hw/block/block.h"
141 #include "hw/pci/msix.h"
142 #include "hw/pci/pci.h"
143 #include "hw/qdev-properties.h"
144 #include "migration/vmstate.h"
145 #include "sysemu/sysemu.h"
146 #include "qapi/error.h"
147 #include "qapi/visitor.h"
148 #include "sysemu/hostmem.h"
149 #include "sysemu/block-backend.h"
150 #include "exec/memory.h"
151 #include "qemu/log.h"
152 #include "qemu/module.h"
153 #include "qemu/cutils.h"
154 #include "trace.h"
155 #include "nvme.h"
156 #include "nvme-ns.h"
157 #include "nvme-dif.h"
159 #define NVME_MAX_IOQPAIRS 0xffff
160 #define NVME_DB_SIZE 4
161 #define NVME_SPEC_VER 0x00010400
162 #define NVME_CMB_BIR 2
163 #define NVME_PMR_BIR 4
164 #define NVME_TEMPERATURE 0x143
165 #define NVME_TEMPERATURE_WARNING 0x157
166 #define NVME_TEMPERATURE_CRITICAL 0x175
167 #define NVME_NUM_FW_SLOTS 1
169 #define NVME_GUEST_ERR(trace, fmt, ...) \
170 do { \
171 (trace_##trace)(__VA_ARGS__); \
172 qemu_log_mask(LOG_GUEST_ERROR, #trace \
173 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
174 } while (0)
176 static const bool nvme_feature_support[NVME_FID_MAX] = {
177 [NVME_ARBITRATION] = true,
178 [NVME_POWER_MANAGEMENT] = true,
179 [NVME_TEMPERATURE_THRESHOLD] = true,
180 [NVME_ERROR_RECOVERY] = true,
181 [NVME_VOLATILE_WRITE_CACHE] = true,
182 [NVME_NUMBER_OF_QUEUES] = true,
183 [NVME_INTERRUPT_COALESCING] = true,
184 [NVME_INTERRUPT_VECTOR_CONF] = true,
185 [NVME_WRITE_ATOMICITY] = true,
186 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
187 [NVME_TIMESTAMP] = true,
188 [NVME_COMMAND_SET_PROFILE] = true,
191 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
192 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
193 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
194 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
195 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
196 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
197 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
198 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
201 static const uint32_t nvme_cse_acs[256] = {
202 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
203 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
204 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
205 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
206 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
207 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
208 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
209 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
210 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
211 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
212 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
213 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
216 static const uint32_t nvme_cse_iocs_none[256];
218 static const uint32_t nvme_cse_iocs_nvm[256] = {
219 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
220 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
221 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
222 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
223 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
224 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
225 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
226 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
229 static const uint32_t nvme_cse_iocs_zoned[256] = {
230 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
231 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
232 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
233 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
234 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
235 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
236 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
237 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
238 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
239 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
240 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
243 static void nvme_process_sq(void *opaque);
245 static uint16_t nvme_sqid(NvmeRequest *req)
247 return le16_to_cpu(req->sq->sqid);
250 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
251 NvmeZoneState state)
253 if (QTAILQ_IN_USE(zone, entry)) {
254 switch (nvme_get_zone_state(zone)) {
255 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
256 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
257 break;
258 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
259 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
260 break;
261 case NVME_ZONE_STATE_CLOSED:
262 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
263 break;
264 case NVME_ZONE_STATE_FULL:
265 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
266 default:
271 nvme_set_zone_state(zone, state);
273 switch (state) {
274 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
275 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
276 break;
277 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
278 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
279 break;
280 case NVME_ZONE_STATE_CLOSED:
281 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
282 break;
283 case NVME_ZONE_STATE_FULL:
284 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
285 case NVME_ZONE_STATE_READ_ONLY:
286 break;
287 default:
288 zone->d.za = 0;
293 * Check if we can open a zone without exceeding open/active limits.
294 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
296 static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
298 if (ns->params.max_active_zones != 0 &&
299 ns->nr_active_zones + act > ns->params.max_active_zones) {
300 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
301 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
303 if (ns->params.max_open_zones != 0 &&
304 ns->nr_open_zones + opn > ns->params.max_open_zones) {
305 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
306 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
309 return NVME_SUCCESS;
312 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
314 hwaddr hi, lo;
316 if (!n->cmb.cmse) {
317 return false;
320 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
321 hi = lo + int128_get64(n->cmb.mem.size);
323 return addr >= lo && addr < hi;
326 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
328 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
329 return &n->cmb.buf[addr - base];
332 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
334 hwaddr hi;
336 if (!n->pmr.cmse) {
337 return false;
340 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
342 return addr >= n->pmr.cba && addr < hi;
345 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
347 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
350 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
352 hwaddr hi = addr + size - 1;
353 if (hi < addr) {
354 return 1;
357 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
358 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
359 return 0;
362 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
363 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
364 return 0;
367 return pci_dma_read(&n->parent_obj, addr, buf, size);
370 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, void *buf, int size)
372 hwaddr hi = addr + size - 1;
373 if (hi < addr) {
374 return 1;
377 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
378 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
379 return 0;
382 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
383 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
384 return 0;
387 return pci_dma_write(&n->parent_obj, addr, buf, size);
390 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
392 return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces);
395 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
397 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
400 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
402 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
405 static void nvme_inc_cq_tail(NvmeCQueue *cq)
407 cq->tail++;
408 if (cq->tail >= cq->size) {
409 cq->tail = 0;
410 cq->phase = !cq->phase;
414 static void nvme_inc_sq_head(NvmeSQueue *sq)
416 sq->head = (sq->head + 1) % sq->size;
419 static uint8_t nvme_cq_full(NvmeCQueue *cq)
421 return (cq->tail + 1) % cq->size == cq->head;
424 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
426 return sq->head == sq->tail;
429 static void nvme_irq_check(NvmeCtrl *n)
431 if (msix_enabled(&(n->parent_obj))) {
432 return;
434 if (~n->bar.intms & n->irq_status) {
435 pci_irq_assert(&n->parent_obj);
436 } else {
437 pci_irq_deassert(&n->parent_obj);
441 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
443 if (cq->irq_enabled) {
444 if (msix_enabled(&(n->parent_obj))) {
445 trace_pci_nvme_irq_msix(cq->vector);
446 msix_notify(&(n->parent_obj), cq->vector);
447 } else {
448 trace_pci_nvme_irq_pin();
449 assert(cq->vector < 32);
450 n->irq_status |= 1 << cq->vector;
451 nvme_irq_check(n);
453 } else {
454 trace_pci_nvme_irq_masked();
458 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
460 if (cq->irq_enabled) {
461 if (msix_enabled(&(n->parent_obj))) {
462 return;
463 } else {
464 assert(cq->vector < 32);
465 n->irq_status &= ~(1 << cq->vector);
466 nvme_irq_check(n);
471 static void nvme_req_clear(NvmeRequest *req)
473 req->ns = NULL;
474 req->opaque = NULL;
475 req->aiocb = NULL;
476 memset(&req->cqe, 0x0, sizeof(req->cqe));
477 req->status = NVME_SUCCESS;
480 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
482 if (dma) {
483 pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
484 sg->flags = NVME_SG_DMA;
485 } else {
486 qemu_iovec_init(&sg->iov, 0);
489 sg->flags |= NVME_SG_ALLOC;
492 static inline void nvme_sg_unmap(NvmeSg *sg)
494 if (!(sg->flags & NVME_SG_ALLOC)) {
495 return;
498 if (sg->flags & NVME_SG_DMA) {
499 qemu_sglist_destroy(&sg->qsg);
500 } else {
501 qemu_iovec_destroy(&sg->iov);
504 memset(sg, 0x0, sizeof(*sg));
508 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
509 * holds both data and metadata. This function splits the data and metadata
510 * into two separate QSG/IOVs.
512 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
513 NvmeSg *mdata)
515 NvmeSg *dst = data;
516 size_t size = nvme_lsize(ns);
517 size_t msize = nvme_msize(ns);
518 uint32_t trans_len, count = size;
519 uint64_t offset = 0;
520 bool dma = sg->flags & NVME_SG_DMA;
521 size_t sge_len;
522 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
523 int sg_idx = 0;
525 assert(sg->flags & NVME_SG_ALLOC);
527 while (sg_len) {
528 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
530 trans_len = MIN(sg_len, count);
531 trans_len = MIN(trans_len, sge_len - offset);
533 if (dst) {
534 if (dma) {
535 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
536 trans_len);
537 } else {
538 qemu_iovec_add(&dst->iov,
539 sg->iov.iov[sg_idx].iov_base + offset,
540 trans_len);
544 sg_len -= trans_len;
545 count -= trans_len;
546 offset += trans_len;
548 if (count == 0) {
549 dst = (dst == data) ? mdata : data;
550 count = (dst == data) ? size : msize;
553 if (sge_len == offset) {
554 offset = 0;
555 sg_idx++;
560 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
561 size_t len)
563 if (!len) {
564 return NVME_SUCCESS;
567 trace_pci_nvme_map_addr_cmb(addr, len);
569 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
570 return NVME_DATA_TRAS_ERROR;
573 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
575 return NVME_SUCCESS;
578 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
579 size_t len)
581 if (!len) {
582 return NVME_SUCCESS;
585 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
586 return NVME_DATA_TRAS_ERROR;
589 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
591 return NVME_SUCCESS;
594 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
596 bool cmb = false, pmr = false;
598 if (!len) {
599 return NVME_SUCCESS;
602 trace_pci_nvme_map_addr(addr, len);
604 if (nvme_addr_is_cmb(n, addr)) {
605 cmb = true;
606 } else if (nvme_addr_is_pmr(n, addr)) {
607 pmr = true;
610 if (cmb || pmr) {
611 if (sg->flags & NVME_SG_DMA) {
612 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
615 if (cmb) {
616 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
617 } else {
618 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
622 if (!(sg->flags & NVME_SG_DMA)) {
623 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
626 qemu_sglist_add(&sg->qsg, addr, len);
628 return NVME_SUCCESS;
631 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
633 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
636 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
637 uint64_t prp2, uint32_t len)
639 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
640 trans_len = MIN(len, trans_len);
641 int num_prps = (len >> n->page_bits) + 1;
642 uint16_t status;
643 int ret;
645 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
647 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
649 status = nvme_map_addr(n, sg, prp1, trans_len);
650 if (status) {
651 goto unmap;
654 len -= trans_len;
655 if (len) {
656 if (len > n->page_size) {
657 uint64_t prp_list[n->max_prp_ents];
658 uint32_t nents, prp_trans;
659 int i = 0;
662 * The first PRP list entry, pointed to by PRP2 may contain offset.
663 * Hence, we need to calculate the number of entries in based on
664 * that offset.
666 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
667 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
668 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
669 if (ret) {
670 trace_pci_nvme_err_addr_read(prp2);
671 status = NVME_DATA_TRAS_ERROR;
672 goto unmap;
674 while (len != 0) {
675 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
677 if (i == nents - 1 && len > n->page_size) {
678 if (unlikely(prp_ent & (n->page_size - 1))) {
679 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
680 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
681 goto unmap;
684 i = 0;
685 nents = (len + n->page_size - 1) >> n->page_bits;
686 nents = MIN(nents, n->max_prp_ents);
687 prp_trans = nents * sizeof(uint64_t);
688 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
689 prp_trans);
690 if (ret) {
691 trace_pci_nvme_err_addr_read(prp_ent);
692 status = NVME_DATA_TRAS_ERROR;
693 goto unmap;
695 prp_ent = le64_to_cpu(prp_list[i]);
698 if (unlikely(prp_ent & (n->page_size - 1))) {
699 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
700 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
701 goto unmap;
704 trans_len = MIN(len, n->page_size);
705 status = nvme_map_addr(n, sg, prp_ent, trans_len);
706 if (status) {
707 goto unmap;
710 len -= trans_len;
711 i++;
713 } else {
714 if (unlikely(prp2 & (n->page_size - 1))) {
715 trace_pci_nvme_err_invalid_prp2_align(prp2);
716 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
717 goto unmap;
719 status = nvme_map_addr(n, sg, prp2, len);
720 if (status) {
721 goto unmap;
726 return NVME_SUCCESS;
728 unmap:
729 nvme_sg_unmap(sg);
730 return status;
734 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
735 * number of bytes mapped in len.
737 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
738 NvmeSglDescriptor *segment, uint64_t nsgld,
739 size_t *len, NvmeCmd *cmd)
741 dma_addr_t addr, trans_len;
742 uint32_t dlen;
743 uint16_t status;
745 for (int i = 0; i < nsgld; i++) {
746 uint8_t type = NVME_SGL_TYPE(segment[i].type);
748 switch (type) {
749 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
750 if (cmd->opcode == NVME_CMD_WRITE) {
751 continue;
753 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
754 break;
755 case NVME_SGL_DESCR_TYPE_SEGMENT:
756 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
757 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
758 default:
759 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
762 dlen = le32_to_cpu(segment[i].len);
764 if (!dlen) {
765 continue;
768 if (*len == 0) {
770 * All data has been mapped, but the SGL contains additional
771 * segments and/or descriptors. The controller might accept
772 * ignoring the rest of the SGL.
774 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
775 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
776 break;
779 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
780 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
783 trans_len = MIN(*len, dlen);
785 if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
786 goto next;
789 addr = le64_to_cpu(segment[i].addr);
791 if (UINT64_MAX - addr < dlen) {
792 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
795 status = nvme_map_addr(n, sg, addr, trans_len);
796 if (status) {
797 return status;
800 next:
801 *len -= trans_len;
804 return NVME_SUCCESS;
807 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
808 size_t len, NvmeCmd *cmd)
811 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
812 * dynamically allocating a potentially huge SGL. The spec allows the SGL
813 * to be larger (as in number of bytes required to describe the SGL
814 * descriptors and segment chain) than the command transfer size, so it is
815 * not bounded by MDTS.
817 const int SEG_CHUNK_SIZE = 256;
819 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
820 uint64_t nsgld;
821 uint32_t seg_len;
822 uint16_t status;
823 hwaddr addr;
824 int ret;
826 sgld = &sgl;
827 addr = le64_to_cpu(sgl.addr);
829 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
831 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
834 * If the entire transfer can be described with a single data block it can
835 * be mapped directly.
837 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
838 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
839 if (status) {
840 goto unmap;
843 goto out;
846 for (;;) {
847 switch (NVME_SGL_TYPE(sgld->type)) {
848 case NVME_SGL_DESCR_TYPE_SEGMENT:
849 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
850 break;
851 default:
852 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
855 seg_len = le32_to_cpu(sgld->len);
857 /* check the length of the (Last) Segment descriptor */
858 if ((!seg_len || seg_len & 0xf) &&
859 (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
860 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
863 if (UINT64_MAX - addr < seg_len) {
864 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
867 nsgld = seg_len / sizeof(NvmeSglDescriptor);
869 while (nsgld > SEG_CHUNK_SIZE) {
870 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
871 trace_pci_nvme_err_addr_read(addr);
872 status = NVME_DATA_TRAS_ERROR;
873 goto unmap;
876 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
877 &len, cmd);
878 if (status) {
879 goto unmap;
882 nsgld -= SEG_CHUNK_SIZE;
883 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
886 ret = nvme_addr_read(n, addr, segment, nsgld *
887 sizeof(NvmeSglDescriptor));
888 if (ret) {
889 trace_pci_nvme_err_addr_read(addr);
890 status = NVME_DATA_TRAS_ERROR;
891 goto unmap;
894 last_sgld = &segment[nsgld - 1];
897 * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
898 * then we are done.
900 switch (NVME_SGL_TYPE(last_sgld->type)) {
901 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
902 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
903 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
904 if (status) {
905 goto unmap;
908 goto out;
910 default:
911 break;
915 * If the last descriptor was not a Data Block or Bit Bucket, then the
916 * current segment must not be a Last Segment.
918 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
919 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
920 goto unmap;
923 sgld = last_sgld;
924 addr = le64_to_cpu(sgld->addr);
927 * Do not map the last descriptor; it will be a Segment or Last Segment
928 * descriptor and is handled by the next iteration.
930 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
931 if (status) {
932 goto unmap;
936 out:
937 /* if there is any residual left in len, the SGL was too short */
938 if (len) {
939 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
940 goto unmap;
943 return NVME_SUCCESS;
945 unmap:
946 nvme_sg_unmap(sg);
947 return status;
950 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
951 NvmeCmd *cmd)
953 uint64_t prp1, prp2;
955 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
956 case NVME_PSDT_PRP:
957 prp1 = le64_to_cpu(cmd->dptr.prp1);
958 prp2 = le64_to_cpu(cmd->dptr.prp2);
960 return nvme_map_prp(n, sg, prp1, prp2, len);
961 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
962 case NVME_PSDT_SGL_MPTR_SGL:
963 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
964 default:
965 return NVME_INVALID_FIELD;
969 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
970 NvmeCmd *cmd)
972 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
973 hwaddr mptr = le64_to_cpu(cmd->mptr);
974 uint16_t status;
976 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
977 NvmeSglDescriptor sgl;
979 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
980 return NVME_DATA_TRAS_ERROR;
983 status = nvme_map_sgl(n, sg, sgl, len, cmd);
984 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
985 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
988 return status;
991 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
992 status = nvme_map_addr(n, sg, mptr, len);
993 if (status) {
994 nvme_sg_unmap(sg);
997 return status;
1000 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1002 NvmeNamespace *ns = req->ns;
1003 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1004 uint16_t ctrl = le16_to_cpu(rw->control);
1005 size_t len = nvme_l2b(ns, nlb);
1006 uint16_t status;
1008 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
1009 (ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
1010 goto out;
1013 if (nvme_ns_ext(ns)) {
1014 NvmeSg sg;
1016 len += nvme_m2b(ns, nlb);
1018 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1019 if (status) {
1020 return status;
1023 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1024 nvme_sg_split(&sg, ns, &req->sg, NULL);
1025 nvme_sg_unmap(&sg);
1027 return NVME_SUCCESS;
1030 out:
1031 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1034 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1036 NvmeNamespace *ns = req->ns;
1037 size_t len = nvme_m2b(ns, nlb);
1038 uint16_t status;
1040 if (nvme_ns_ext(ns)) {
1041 NvmeSg sg;
1043 len += nvme_l2b(ns, nlb);
1045 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1046 if (status) {
1047 return status;
1050 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1051 nvme_sg_split(&sg, ns, NULL, &req->sg);
1052 nvme_sg_unmap(&sg);
1054 return NVME_SUCCESS;
1057 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1060 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1061 uint32_t len, uint32_t bytes,
1062 int32_t skip_bytes, int64_t offset,
1063 NvmeTxDirection dir)
1065 hwaddr addr;
1066 uint32_t trans_len, count = bytes;
1067 bool dma = sg->flags & NVME_SG_DMA;
1068 int64_t sge_len;
1069 int sg_idx = 0;
1070 int ret;
1072 assert(sg->flags & NVME_SG_ALLOC);
1074 while (len) {
1075 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1077 if (sge_len - offset < 0) {
1078 offset -= sge_len;
1079 sg_idx++;
1080 continue;
1083 if (sge_len == offset) {
1084 offset = 0;
1085 sg_idx++;
1086 continue;
1089 trans_len = MIN(len, count);
1090 trans_len = MIN(trans_len, sge_len - offset);
1092 if (dma) {
1093 addr = sg->qsg.sg[sg_idx].base + offset;
1094 } else {
1095 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1098 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1099 ret = nvme_addr_read(n, addr, ptr, trans_len);
1100 } else {
1101 ret = nvme_addr_write(n, addr, ptr, trans_len);
1104 if (ret) {
1105 return NVME_DATA_TRAS_ERROR;
1108 ptr += trans_len;
1109 len -= trans_len;
1110 count -= trans_len;
1111 offset += trans_len;
1113 if (count == 0) {
1114 count = bytes;
1115 offset += skip_bytes;
1119 return NVME_SUCCESS;
1122 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len,
1123 NvmeTxDirection dir)
1125 assert(sg->flags & NVME_SG_ALLOC);
1127 if (sg->flags & NVME_SG_DMA) {
1128 uint64_t residual;
1130 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1131 residual = dma_buf_write(ptr, len, &sg->qsg);
1132 } else {
1133 residual = dma_buf_read(ptr, len, &sg->qsg);
1136 if (unlikely(residual)) {
1137 trace_pci_nvme_err_invalid_dma();
1138 return NVME_INVALID_FIELD | NVME_DNR;
1140 } else {
1141 size_t bytes;
1143 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1144 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1145 } else {
1146 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1149 if (unlikely(bytes != len)) {
1150 trace_pci_nvme_err_invalid_dma();
1151 return NVME_INVALID_FIELD | NVME_DNR;
1155 return NVME_SUCCESS;
1158 static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1159 NvmeRequest *req)
1161 uint16_t status;
1163 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1164 if (status) {
1165 return status;
1168 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1171 static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1172 NvmeRequest *req)
1174 uint16_t status;
1176 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1177 if (status) {
1178 return status;
1181 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1184 uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1185 NvmeTxDirection dir, NvmeRequest *req)
1187 NvmeNamespace *ns = req->ns;
1188 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1189 uint16_t ctrl = le16_to_cpu(rw->control);
1191 if (nvme_ns_ext(ns) &&
1192 !(ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
1193 size_t lsize = nvme_lsize(ns);
1194 size_t msize = nvme_msize(ns);
1196 return nvme_tx_interleaved(n, &req->sg, ptr, len, lsize, msize, 0,
1197 dir);
1200 return nvme_tx(n, &req->sg, ptr, len, dir);
1203 uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1204 NvmeTxDirection dir, NvmeRequest *req)
1206 NvmeNamespace *ns = req->ns;
1207 uint16_t status;
1209 if (nvme_ns_ext(ns)) {
1210 size_t lsize = nvme_lsize(ns);
1211 size_t msize = nvme_msize(ns);
1213 return nvme_tx_interleaved(n, &req->sg, ptr, len, msize, lsize, lsize,
1214 dir);
1217 nvme_sg_unmap(&req->sg);
1219 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1220 if (status) {
1221 return status;
1224 return nvme_tx(n, &req->sg, ptr, len, dir);
1227 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1228 BlockCompletionFunc *cb, NvmeRequest *req)
1230 assert(req->sg.flags & NVME_SG_ALLOC);
1232 if (req->sg.flags & NVME_SG_DMA) {
1233 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1234 cb, req);
1235 } else {
1236 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1240 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1241 BlockCompletionFunc *cb, NvmeRequest *req)
1243 assert(req->sg.flags & NVME_SG_ALLOC);
1245 if (req->sg.flags & NVME_SG_DMA) {
1246 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1247 cb, req);
1248 } else {
1249 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1253 static void nvme_post_cqes(void *opaque)
1255 NvmeCQueue *cq = opaque;
1256 NvmeCtrl *n = cq->ctrl;
1257 NvmeRequest *req, *next;
1258 int ret;
1260 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1261 NvmeSQueue *sq;
1262 hwaddr addr;
1264 if (nvme_cq_full(cq)) {
1265 break;
1268 sq = req->sq;
1269 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1270 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1271 req->cqe.sq_head = cpu_to_le16(sq->head);
1272 addr = cq->dma_addr + cq->tail * n->cqe_size;
1273 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1274 sizeof(req->cqe));
1275 if (ret) {
1276 trace_pci_nvme_err_addr_write(addr);
1277 trace_pci_nvme_err_cfs();
1278 n->bar.csts = NVME_CSTS_FAILED;
1279 break;
1281 QTAILQ_REMOVE(&cq->req_list, req, entry);
1282 nvme_inc_cq_tail(cq);
1283 nvme_sg_unmap(&req->sg);
1284 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1286 if (cq->tail != cq->head) {
1287 nvme_irq_assert(n, cq);
1291 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1293 assert(cq->cqid == req->sq->cqid);
1294 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1295 req->status);
1297 if (req->status) {
1298 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1299 req->status, req->cmd.opcode);
1302 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1303 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1304 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1307 static void nvme_process_aers(void *opaque)
1309 NvmeCtrl *n = opaque;
1310 NvmeAsyncEvent *event, *next;
1312 trace_pci_nvme_process_aers(n->aer_queued);
1314 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1315 NvmeRequest *req;
1316 NvmeAerResult *result;
1318 /* can't post cqe if there is nothing to complete */
1319 if (!n->outstanding_aers) {
1320 trace_pci_nvme_no_outstanding_aers();
1321 break;
1324 /* ignore if masked (cqe posted, but event not cleared) */
1325 if (n->aer_mask & (1 << event->result.event_type)) {
1326 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1327 continue;
1330 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1331 n->aer_queued--;
1333 n->aer_mask |= 1 << event->result.event_type;
1334 n->outstanding_aers--;
1336 req = n->aer_reqs[n->outstanding_aers];
1338 result = (NvmeAerResult *) &req->cqe.result;
1339 result->event_type = event->result.event_type;
1340 result->event_info = event->result.event_info;
1341 result->log_page = event->result.log_page;
1342 g_free(event);
1344 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1345 result->log_page);
1347 nvme_enqueue_req_completion(&n->admin_cq, req);
1351 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1352 uint8_t event_info, uint8_t log_page)
1354 NvmeAsyncEvent *event;
1356 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1358 if (n->aer_queued == n->params.aer_max_queued) {
1359 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1360 return;
1363 event = g_new(NvmeAsyncEvent, 1);
1364 event->result = (NvmeAerResult) {
1365 .event_type = event_type,
1366 .event_info = event_info,
1367 .log_page = log_page,
1370 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1371 n->aer_queued++;
1373 nvme_process_aers(n);
1376 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1378 uint8_t aer_info;
1380 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1381 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1382 return;
1385 switch (event) {
1386 case NVME_SMART_SPARE:
1387 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1388 break;
1389 case NVME_SMART_TEMPERATURE:
1390 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1391 break;
1392 case NVME_SMART_RELIABILITY:
1393 case NVME_SMART_MEDIA_READ_ONLY:
1394 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1395 case NVME_SMART_PMR_UNRELIABLE:
1396 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1397 break;
1398 default:
1399 return;
1402 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1405 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1407 n->aer_mask &= ~(1 << event_type);
1408 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1409 nvme_process_aers(n);
1413 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1415 uint8_t mdts = n->params.mdts;
1417 if (mdts && len > n->page_size << mdts) {
1418 trace_pci_nvme_err_mdts(len);
1419 return NVME_INVALID_FIELD | NVME_DNR;
1422 return NVME_SUCCESS;
1425 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1426 uint32_t nlb)
1428 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1430 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1431 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1432 return NVME_LBA_RANGE | NVME_DNR;
1435 return NVME_SUCCESS;
1438 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1439 uint32_t nlb)
1441 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1443 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1444 int64_t offset = nvme_l2b(ns, slba);
1445 bool zeroed;
1446 int ret;
1448 Error *local_err = NULL;
1451 * `pnum` holds the number of bytes after offset that shares the same
1452 * allocation status as the byte at offset. If `pnum` is different from
1453 * `bytes`, we should check the allocation status of the next range and
1454 * continue this until all bytes have been checked.
1456 do {
1457 bytes -= pnum;
1459 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1460 if (ret < 0) {
1461 error_setg_errno(&local_err, -ret, "unable to get block status");
1462 error_report_err(local_err);
1464 return NVME_INTERNAL_DEV_ERROR;
1467 zeroed = !!(ret & BDRV_BLOCK_ZERO);
1469 trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed);
1471 if (zeroed) {
1472 return NVME_DULB;
1475 offset += pnum;
1476 } while (pnum != bytes);
1478 return NVME_SUCCESS;
1481 static void nvme_aio_err(NvmeRequest *req, int ret)
1483 uint16_t status = NVME_SUCCESS;
1484 Error *local_err = NULL;
1486 switch (req->cmd.opcode) {
1487 case NVME_CMD_READ:
1488 status = NVME_UNRECOVERED_READ;
1489 break;
1490 case NVME_CMD_FLUSH:
1491 case NVME_CMD_WRITE:
1492 case NVME_CMD_WRITE_ZEROES:
1493 case NVME_CMD_ZONE_APPEND:
1494 status = NVME_WRITE_FAULT;
1495 break;
1496 default:
1497 status = NVME_INTERNAL_DEV_ERROR;
1498 break;
1501 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1503 error_setg_errno(&local_err, -ret, "aio failed");
1504 error_report_err(local_err);
1507 * Set the command status code to the first encountered error but allow a
1508 * subsequent Internal Device Error to trump it.
1510 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1511 return;
1514 req->status = status;
1517 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1519 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1520 slba / ns->zone_size;
1523 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1525 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1527 assert(zone_idx < ns->num_zones);
1528 return &ns->zone_array[zone_idx];
1531 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1533 uint64_t zslba = zone->d.zslba;
1535 switch (nvme_get_zone_state(zone)) {
1536 case NVME_ZONE_STATE_EMPTY:
1537 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1538 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1539 case NVME_ZONE_STATE_CLOSED:
1540 return NVME_SUCCESS;
1541 case NVME_ZONE_STATE_FULL:
1542 trace_pci_nvme_err_zone_is_full(zslba);
1543 return NVME_ZONE_FULL;
1544 case NVME_ZONE_STATE_OFFLINE:
1545 trace_pci_nvme_err_zone_is_offline(zslba);
1546 return NVME_ZONE_OFFLINE;
1547 case NVME_ZONE_STATE_READ_ONLY:
1548 trace_pci_nvme_err_zone_is_read_only(zslba);
1549 return NVME_ZONE_READ_ONLY;
1550 default:
1551 assert(false);
1554 return NVME_INTERNAL_DEV_ERROR;
1557 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1558 uint64_t slba, uint32_t nlb)
1560 uint64_t zcap = nvme_zone_wr_boundary(zone);
1561 uint16_t status;
1563 status = nvme_check_zone_state_for_write(zone);
1564 if (status) {
1565 return status;
1568 if (unlikely(slba != zone->w_ptr)) {
1569 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr);
1570 return NVME_ZONE_INVALID_WRITE;
1573 if (unlikely((slba + nlb) > zcap)) {
1574 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1575 return NVME_ZONE_BOUNDARY_ERROR;
1578 return NVME_SUCCESS;
1581 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1583 switch (nvme_get_zone_state(zone)) {
1584 case NVME_ZONE_STATE_EMPTY:
1585 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1586 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1587 case NVME_ZONE_STATE_FULL:
1588 case NVME_ZONE_STATE_CLOSED:
1589 case NVME_ZONE_STATE_READ_ONLY:
1590 return NVME_SUCCESS;
1591 case NVME_ZONE_STATE_OFFLINE:
1592 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1593 return NVME_ZONE_OFFLINE;
1594 default:
1595 assert(false);
1598 return NVME_INTERNAL_DEV_ERROR;
1601 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1602 uint32_t nlb)
1604 NvmeZone *zone = nvme_get_zone_by_slba(ns, slba);
1605 uint64_t bndry = nvme_zone_rd_boundary(ns, zone);
1606 uint64_t end = slba + nlb;
1607 uint16_t status;
1609 status = nvme_check_zone_state_for_read(zone);
1610 if (status) {
1612 } else if (unlikely(end > bndry)) {
1613 if (!ns->params.cross_zone_read) {
1614 status = NVME_ZONE_BOUNDARY_ERROR;
1615 } else {
1617 * Read across zone boundary - check that all subsequent
1618 * zones that are being read have an appropriate state.
1620 do {
1621 zone++;
1622 status = nvme_check_zone_state_for_read(zone);
1623 if (status) {
1624 break;
1626 } while (end > nvme_zone_rd_boundary(ns, zone));
1630 return status;
1633 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1635 switch (nvme_get_zone_state(zone)) {
1636 case NVME_ZONE_STATE_FULL:
1637 return NVME_SUCCESS;
1639 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1640 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1641 nvme_aor_dec_open(ns);
1642 /* fallthrough */
1643 case NVME_ZONE_STATE_CLOSED:
1644 nvme_aor_dec_active(ns);
1645 /* fallthrough */
1646 case NVME_ZONE_STATE_EMPTY:
1647 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1648 return NVME_SUCCESS;
1650 default:
1651 return NVME_ZONE_INVAL_TRANSITION;
1655 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1657 switch (nvme_get_zone_state(zone)) {
1658 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1659 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1660 nvme_aor_dec_open(ns);
1661 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1662 /* fall through */
1663 case NVME_ZONE_STATE_CLOSED:
1664 return NVME_SUCCESS;
1666 default:
1667 return NVME_ZONE_INVAL_TRANSITION;
1671 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1673 NvmeZone *zone;
1675 if (ns->params.max_open_zones &&
1676 ns->nr_open_zones == ns->params.max_open_zones) {
1677 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1678 if (zone) {
1680 * Automatically close this implicitly open zone.
1682 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1683 nvme_zrm_close(ns, zone);
1688 static uint16_t __nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone,
1689 bool implicit)
1691 int act = 0;
1692 uint16_t status;
1694 switch (nvme_get_zone_state(zone)) {
1695 case NVME_ZONE_STATE_EMPTY:
1696 act = 1;
1698 /* fallthrough */
1700 case NVME_ZONE_STATE_CLOSED:
1701 nvme_zrm_auto_transition_zone(ns);
1702 status = nvme_aor_check(ns, act, 1);
1703 if (status) {
1704 return status;
1707 if (act) {
1708 nvme_aor_inc_active(ns);
1711 nvme_aor_inc_open(ns);
1713 if (implicit) {
1714 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1715 return NVME_SUCCESS;
1718 /* fallthrough */
1720 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1721 if (implicit) {
1722 return NVME_SUCCESS;
1725 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1727 /* fallthrough */
1729 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1730 return NVME_SUCCESS;
1732 default:
1733 return NVME_ZONE_INVAL_TRANSITION;
1737 static inline uint16_t nvme_zrm_auto(NvmeNamespace *ns, NvmeZone *zone)
1739 return __nvme_zrm_open(ns, zone, true);
1742 static inline uint16_t nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone)
1744 return __nvme_zrm_open(ns, zone, false);
1747 static void __nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1748 uint32_t nlb)
1750 zone->d.wp += nlb;
1752 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1753 nvme_zrm_finish(ns, zone);
1757 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1759 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1760 NvmeZone *zone;
1761 uint64_t slba;
1762 uint32_t nlb;
1764 slba = le64_to_cpu(rw->slba);
1765 nlb = le16_to_cpu(rw->nlb) + 1;
1766 zone = nvme_get_zone_by_slba(ns, slba);
1768 __nvme_advance_zone_wp(ns, zone, nlb);
1771 static inline bool nvme_is_write(NvmeRequest *req)
1773 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1775 return rw->opcode == NVME_CMD_WRITE ||
1776 rw->opcode == NVME_CMD_ZONE_APPEND ||
1777 rw->opcode == NVME_CMD_WRITE_ZEROES;
1780 static void nvme_misc_cb(void *opaque, int ret)
1782 NvmeRequest *req = opaque;
1783 NvmeNamespace *ns = req->ns;
1785 BlockBackend *blk = ns->blkconf.blk;
1786 BlockAcctCookie *acct = &req->acct;
1787 BlockAcctStats *stats = blk_get_stats(blk);
1789 trace_pci_nvme_misc_cb(nvme_cid(req), blk_name(blk));
1791 if (ret) {
1792 block_acct_failed(stats, acct);
1793 nvme_aio_err(req, ret);
1794 } else {
1795 block_acct_done(stats, acct);
1798 nvme_enqueue_req_completion(nvme_cq(req), req);
1801 void nvme_rw_complete_cb(void *opaque, int ret)
1803 NvmeRequest *req = opaque;
1804 NvmeNamespace *ns = req->ns;
1805 BlockBackend *blk = ns->blkconf.blk;
1806 BlockAcctCookie *acct = &req->acct;
1807 BlockAcctStats *stats = blk_get_stats(blk);
1809 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
1811 if (ret) {
1812 block_acct_failed(stats, acct);
1813 nvme_aio_err(req, ret);
1814 } else {
1815 block_acct_done(stats, acct);
1818 if (ns->params.zoned && nvme_is_write(req)) {
1819 nvme_finalize_zoned_write(ns, req);
1822 nvme_enqueue_req_completion(nvme_cq(req), req);
1825 static void nvme_rw_cb(void *opaque, int ret)
1827 NvmeRequest *req = opaque;
1828 NvmeNamespace *ns = req->ns;
1830 BlockBackend *blk = ns->blkconf.blk;
1832 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
1834 if (ret) {
1835 goto out;
1838 if (nvme_msize(ns)) {
1839 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1840 uint64_t slba = le64_to_cpu(rw->slba);
1841 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
1842 uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
1844 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
1845 size_t mlen = nvme_m2b(ns, nlb);
1847 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
1848 BDRV_REQ_MAY_UNMAP,
1849 nvme_rw_complete_cb, req);
1850 return;
1853 if (nvme_ns_ext(ns) || req->cmd.mptr) {
1854 uint16_t status;
1856 nvme_sg_unmap(&req->sg);
1857 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
1858 if (status) {
1859 ret = -EFAULT;
1860 goto out;
1863 if (req->cmd.opcode == NVME_CMD_READ) {
1864 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
1867 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
1871 out:
1872 nvme_rw_complete_cb(req, ret);
1875 struct nvme_aio_format_ctx {
1876 NvmeRequest *req;
1877 NvmeNamespace *ns;
1879 /* number of outstanding write zeroes for this namespace */
1880 int *count;
1883 static void nvme_aio_format_cb(void *opaque, int ret)
1885 struct nvme_aio_format_ctx *ctx = opaque;
1886 NvmeRequest *req = ctx->req;
1887 NvmeNamespace *ns = ctx->ns;
1888 uintptr_t *num_formats = (uintptr_t *)&req->opaque;
1889 int *count = ctx->count;
1891 g_free(ctx);
1893 if (ret) {
1894 nvme_aio_err(req, ret);
1897 if (--(*count)) {
1898 return;
1901 g_free(count);
1902 ns->status = 0x0;
1904 if (--(*num_formats)) {
1905 return;
1908 nvme_enqueue_req_completion(nvme_cq(req), req);
1911 struct nvme_aio_flush_ctx {
1912 NvmeRequest *req;
1913 NvmeNamespace *ns;
1914 BlockAcctCookie acct;
1917 static void nvme_aio_flush_cb(void *opaque, int ret)
1919 struct nvme_aio_flush_ctx *ctx = opaque;
1920 NvmeRequest *req = ctx->req;
1921 uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
1923 BlockBackend *blk = ctx->ns->blkconf.blk;
1924 BlockAcctCookie *acct = &ctx->acct;
1925 BlockAcctStats *stats = blk_get_stats(blk);
1927 trace_pci_nvme_aio_flush_cb(nvme_cid(req), blk_name(blk));
1929 if (!ret) {
1930 block_acct_done(stats, acct);
1931 } else {
1932 block_acct_failed(stats, acct);
1933 nvme_aio_err(req, ret);
1936 (*num_flushes)--;
1937 g_free(ctx);
1939 if (*num_flushes) {
1940 return;
1943 nvme_enqueue_req_completion(nvme_cq(req), req);
1946 static void nvme_verify_cb(void *opaque, int ret)
1948 NvmeBounceContext *ctx = opaque;
1949 NvmeRequest *req = ctx->req;
1950 NvmeNamespace *ns = req->ns;
1951 BlockBackend *blk = ns->blkconf.blk;
1952 BlockAcctCookie *acct = &req->acct;
1953 BlockAcctStats *stats = blk_get_stats(blk);
1954 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1955 uint64_t slba = le64_to_cpu(rw->slba);
1956 uint16_t ctrl = le16_to_cpu(rw->control);
1957 uint16_t apptag = le16_to_cpu(rw->apptag);
1958 uint16_t appmask = le16_to_cpu(rw->appmask);
1959 uint32_t reftag = le32_to_cpu(rw->reftag);
1960 uint16_t status;
1962 trace_pci_nvme_verify_cb(nvme_cid(req), NVME_RW_PRINFO(ctrl), apptag,
1963 appmask, reftag);
1965 if (ret) {
1966 block_acct_failed(stats, acct);
1967 nvme_aio_err(req, ret);
1968 goto out;
1971 block_acct_done(stats, acct);
1973 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
1974 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
1975 ctx->mdata.iov.size, slba);
1976 if (status) {
1977 req->status = status;
1978 goto out;
1981 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
1982 ctx->mdata.bounce, ctx->mdata.iov.size,
1983 ctrl, slba, apptag, appmask, reftag);
1986 out:
1987 qemu_iovec_destroy(&ctx->data.iov);
1988 g_free(ctx->data.bounce);
1990 qemu_iovec_destroy(&ctx->mdata.iov);
1991 g_free(ctx->mdata.bounce);
1993 g_free(ctx);
1995 nvme_enqueue_req_completion(nvme_cq(req), req);
1999 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2001 NvmeBounceContext *ctx = opaque;
2002 NvmeRequest *req = ctx->req;
2003 NvmeNamespace *ns = req->ns;
2004 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2005 uint64_t slba = le64_to_cpu(rw->slba);
2006 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2007 size_t mlen = nvme_m2b(ns, nlb);
2008 uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
2009 BlockBackend *blk = ns->blkconf.blk;
2011 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2013 if (ret) {
2014 goto out;
2017 ctx->mdata.bounce = g_malloc(mlen);
2019 qemu_iovec_reset(&ctx->mdata.iov);
2020 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2022 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2023 nvme_verify_cb, ctx);
2024 return;
2026 out:
2027 nvme_verify_cb(ctx, ret);
2030 static void nvme_aio_discard_cb(void *opaque, int ret)
2032 NvmeRequest *req = opaque;
2033 uintptr_t *discards = (uintptr_t *)&req->opaque;
2035 trace_pci_nvme_aio_discard_cb(nvme_cid(req));
2037 if (ret) {
2038 nvme_aio_err(req, ret);
2041 (*discards)--;
2043 if (*discards) {
2044 return;
2047 nvme_enqueue_req_completion(nvme_cq(req), req);
2050 struct nvme_zone_reset_ctx {
2051 NvmeRequest *req;
2052 NvmeZone *zone;
2055 static void nvme_aio_zone_reset_complete_cb(void *opaque, int ret)
2057 struct nvme_zone_reset_ctx *ctx = opaque;
2058 NvmeRequest *req = ctx->req;
2059 NvmeNamespace *ns = req->ns;
2060 NvmeZone *zone = ctx->zone;
2061 uintptr_t *resets = (uintptr_t *)&req->opaque;
2063 if (ret) {
2064 nvme_aio_err(req, ret);
2065 goto out;
2068 switch (nvme_get_zone_state(zone)) {
2069 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
2070 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
2071 nvme_aor_dec_open(ns);
2072 /* fall through */
2073 case NVME_ZONE_STATE_CLOSED:
2074 nvme_aor_dec_active(ns);
2075 /* fall through */
2076 case NVME_ZONE_STATE_FULL:
2077 zone->w_ptr = zone->d.zslba;
2078 zone->d.wp = zone->w_ptr;
2079 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
2080 /* fall through */
2081 default:
2082 break;
2085 out:
2086 g_free(ctx);
2088 (*resets)--;
2090 if (*resets) {
2091 return;
2094 nvme_enqueue_req_completion(nvme_cq(req), req);
2097 static void nvme_aio_zone_reset_cb(void *opaque, int ret)
2099 struct nvme_zone_reset_ctx *ctx = opaque;
2100 NvmeRequest *req = ctx->req;
2101 NvmeNamespace *ns = req->ns;
2102 NvmeZone *zone = ctx->zone;
2104 trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req), zone->d.zslba);
2106 if (ret) {
2107 goto out;
2110 if (nvme_msize(ns)) {
2111 int64_t offset = ns->mdata_offset + nvme_m2b(ns, zone->d.zslba);
2113 blk_aio_pwrite_zeroes(ns->blkconf.blk, offset,
2114 nvme_m2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
2115 nvme_aio_zone_reset_complete_cb, ctx);
2116 return;
2119 out:
2120 nvme_aio_zone_reset_complete_cb(opaque, ret);
2123 struct nvme_copy_ctx {
2124 int copies;
2125 uint8_t *bounce;
2126 uint8_t *mbounce;
2127 uint32_t nlb;
2128 NvmeCopySourceRange *ranges;
2131 struct nvme_copy_in_ctx {
2132 NvmeRequest *req;
2133 QEMUIOVector iov;
2134 NvmeCopySourceRange *range;
2137 static void nvme_copy_complete_cb(void *opaque, int ret)
2139 NvmeRequest *req = opaque;
2140 NvmeNamespace *ns = req->ns;
2141 struct nvme_copy_ctx *ctx = req->opaque;
2143 if (ret) {
2144 block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
2145 nvme_aio_err(req, ret);
2146 goto out;
2149 block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
2151 out:
2152 if (ns->params.zoned) {
2153 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2154 uint64_t sdlba = le64_to_cpu(copy->sdlba);
2155 NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
2157 __nvme_advance_zone_wp(ns, zone, ctx->nlb);
2160 g_free(ctx->bounce);
2161 g_free(ctx->mbounce);
2162 g_free(ctx);
2164 nvme_enqueue_req_completion(nvme_cq(req), req);
2167 static void nvme_copy_cb(void *opaque, int ret)
2169 NvmeRequest *req = opaque;
2170 NvmeNamespace *ns = req->ns;
2171 struct nvme_copy_ctx *ctx = req->opaque;
2173 trace_pci_nvme_copy_cb(nvme_cid(req));
2175 if (ret) {
2176 goto out;
2179 if (nvme_msize(ns)) {
2180 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2181 uint64_t sdlba = le64_to_cpu(copy->sdlba);
2182 int64_t offset = ns->mdata_offset + nvme_m2b(ns, sdlba);
2184 qemu_iovec_reset(&req->sg.iov);
2185 qemu_iovec_add(&req->sg.iov, ctx->mbounce, nvme_m2b(ns, ctx->nlb));
2187 req->aiocb = blk_aio_pwritev(ns->blkconf.blk, offset, &req->sg.iov, 0,
2188 nvme_copy_complete_cb, req);
2189 return;
2192 out:
2193 nvme_copy_complete_cb(opaque, ret);
2196 static void nvme_copy_in_complete(NvmeRequest *req)
2198 NvmeNamespace *ns = req->ns;
2199 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2200 struct nvme_copy_ctx *ctx = req->opaque;
2201 uint64_t sdlba = le64_to_cpu(copy->sdlba);
2202 uint16_t status;
2204 trace_pci_nvme_copy_in_complete(nvme_cid(req));
2206 block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
2208 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2209 uint16_t prinfor = (copy->control[0] >> 4) & 0xf;
2210 uint16_t prinfow = (copy->control[2] >> 2) & 0xf;
2211 uint16_t nr = copy->nr + 1;
2212 NvmeCopySourceRange *range;
2213 uint64_t slba;
2214 uint32_t nlb;
2215 uint16_t apptag, appmask;
2216 uint32_t reftag;
2217 uint8_t *buf = ctx->bounce, *mbuf = ctx->mbounce;
2218 size_t len, mlen;
2219 int i;
2222 * The dif helpers expects prinfo to be similar to the control field of
2223 * the NvmeRwCmd, so shift by 10 to fake it.
2225 prinfor = prinfor << 10;
2226 prinfow = prinfow << 10;
2228 for (i = 0; i < nr; i++) {
2229 range = &ctx->ranges[i];
2230 slba = le64_to_cpu(range->slba);
2231 nlb = le16_to_cpu(range->nlb) + 1;
2232 len = nvme_l2b(ns, nlb);
2233 mlen = nvme_m2b(ns, nlb);
2234 apptag = le16_to_cpu(range->apptag);
2235 appmask = le16_to_cpu(range->appmask);
2236 reftag = le32_to_cpu(range->reftag);
2238 status = nvme_dif_check(ns, buf, len, mbuf, mlen, prinfor, slba,
2239 apptag, appmask, reftag);
2240 if (status) {
2241 goto invalid;
2244 buf += len;
2245 mbuf += mlen;
2248 apptag = le16_to_cpu(copy->apptag);
2249 appmask = le16_to_cpu(copy->appmask);
2250 reftag = le32_to_cpu(copy->reftag);
2252 if (prinfow & NVME_RW_PRINFO_PRACT) {
2253 size_t len = nvme_l2b(ns, ctx->nlb);
2254 size_t mlen = nvme_m2b(ns, ctx->nlb);
2256 status = nvme_check_prinfo(ns, prinfow, sdlba, reftag);
2257 if (status) {
2258 goto invalid;
2261 nvme_dif_pract_generate_dif(ns, ctx->bounce, len, ctx->mbounce,
2262 mlen, apptag, reftag);
2263 } else {
2264 status = nvme_dif_check(ns, ctx->bounce, len, ctx->mbounce, mlen,
2265 prinfow, sdlba, apptag, appmask, reftag);
2266 if (status) {
2267 goto invalid;
2272 status = nvme_check_bounds(ns, sdlba, ctx->nlb);
2273 if (status) {
2274 goto invalid;
2277 if (ns->params.zoned) {
2278 NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
2280 status = nvme_check_zone_write(ns, zone, sdlba, ctx->nlb);
2281 if (status) {
2282 goto invalid;
2285 status = nvme_zrm_auto(ns, zone);
2286 if (status) {
2287 goto invalid;
2290 zone->w_ptr += ctx->nlb;
2293 qemu_iovec_init(&req->sg.iov, 1);
2294 qemu_iovec_add(&req->sg.iov, ctx->bounce, nvme_l2b(ns, ctx->nlb));
2296 block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
2297 BLOCK_ACCT_WRITE);
2299 req->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, sdlba),
2300 &req->sg.iov, 0, nvme_copy_cb, req);
2302 return;
2304 invalid:
2305 req->status = status;
2307 g_free(ctx->bounce);
2308 g_free(ctx);
2310 nvme_enqueue_req_completion(nvme_cq(req), req);
2313 static void nvme_aio_copy_in_cb(void *opaque, int ret)
2315 struct nvme_copy_in_ctx *in_ctx = opaque;
2316 NvmeRequest *req = in_ctx->req;
2317 NvmeNamespace *ns = req->ns;
2318 struct nvme_copy_ctx *ctx = req->opaque;
2320 qemu_iovec_destroy(&in_ctx->iov);
2321 g_free(in_ctx);
2323 trace_pci_nvme_aio_copy_in_cb(nvme_cid(req));
2325 if (ret) {
2326 nvme_aio_err(req, ret);
2329 ctx->copies--;
2331 if (ctx->copies) {
2332 return;
2335 if (req->status) {
2336 block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
2338 g_free(ctx->bounce);
2339 g_free(ctx->mbounce);
2340 g_free(ctx);
2342 nvme_enqueue_req_completion(nvme_cq(req), req);
2344 return;
2347 nvme_copy_in_complete(req);
2350 struct nvme_compare_ctx {
2351 struct {
2352 QEMUIOVector iov;
2353 uint8_t *bounce;
2354 } data;
2356 struct {
2357 QEMUIOVector iov;
2358 uint8_t *bounce;
2359 } mdata;
2362 static void nvme_compare_mdata_cb(void *opaque, int ret)
2364 NvmeRequest *req = opaque;
2365 NvmeNamespace *ns = req->ns;
2366 NvmeCtrl *n = nvme_ctrl(req);
2367 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2368 uint16_t ctrl = le16_to_cpu(rw->control);
2369 uint16_t apptag = le16_to_cpu(rw->apptag);
2370 uint16_t appmask = le16_to_cpu(rw->appmask);
2371 uint32_t reftag = le32_to_cpu(rw->reftag);
2372 struct nvme_compare_ctx *ctx = req->opaque;
2373 g_autofree uint8_t *buf = NULL;
2374 BlockBackend *blk = ns->blkconf.blk;
2375 BlockAcctCookie *acct = &req->acct;
2376 BlockAcctStats *stats = blk_get_stats(blk);
2377 uint16_t status = NVME_SUCCESS;
2379 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2381 if (ret) {
2382 block_acct_failed(stats, acct);
2383 nvme_aio_err(req, ret);
2384 goto out;
2387 buf = g_malloc(ctx->mdata.iov.size);
2389 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2390 NVME_TX_DIRECTION_TO_DEVICE, req);
2391 if (status) {
2392 req->status = status;
2393 goto out;
2396 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2397 uint64_t slba = le64_to_cpu(rw->slba);
2398 uint8_t *bufp;
2399 uint8_t *mbufp = ctx->mdata.bounce;
2400 uint8_t *end = mbufp + ctx->mdata.iov.size;
2401 size_t msize = nvme_msize(ns);
2402 int16_t pil = 0;
2404 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2405 ctx->mdata.bounce, ctx->mdata.iov.size, ctrl,
2406 slba, apptag, appmask, reftag);
2407 if (status) {
2408 req->status = status;
2409 goto out;
2413 * When formatted with protection information, do not compare the DIF
2414 * tuple.
2416 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2417 pil = nvme_msize(ns) - sizeof(NvmeDifTuple);
2420 for (bufp = buf; mbufp < end; bufp += msize, mbufp += msize) {
2421 if (memcmp(bufp + pil, mbufp + pil, msize - pil)) {
2422 req->status = NVME_CMP_FAILURE;
2423 goto out;
2427 goto out;
2430 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2431 req->status = NVME_CMP_FAILURE;
2432 goto out;
2435 block_acct_done(stats, acct);
2437 out:
2438 qemu_iovec_destroy(&ctx->data.iov);
2439 g_free(ctx->data.bounce);
2441 qemu_iovec_destroy(&ctx->mdata.iov);
2442 g_free(ctx->mdata.bounce);
2444 g_free(ctx);
2446 nvme_enqueue_req_completion(nvme_cq(req), req);
2449 static void nvme_compare_data_cb(void *opaque, int ret)
2451 NvmeRequest *req = opaque;
2452 NvmeCtrl *n = nvme_ctrl(req);
2453 NvmeNamespace *ns = req->ns;
2454 BlockBackend *blk = ns->blkconf.blk;
2455 BlockAcctCookie *acct = &req->acct;
2456 BlockAcctStats *stats = blk_get_stats(blk);
2458 struct nvme_compare_ctx *ctx = req->opaque;
2459 g_autofree uint8_t *buf = NULL;
2460 uint16_t status;
2462 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2464 if (ret) {
2465 block_acct_failed(stats, acct);
2466 nvme_aio_err(req, ret);
2467 goto out;
2470 buf = g_malloc(ctx->data.iov.size);
2472 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2473 NVME_TX_DIRECTION_TO_DEVICE, req);
2474 if (status) {
2475 req->status = status;
2476 goto out;
2479 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2480 req->status = NVME_CMP_FAILURE;
2481 goto out;
2484 if (nvme_msize(ns)) {
2485 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2486 uint64_t slba = le64_to_cpu(rw->slba);
2487 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2488 size_t mlen = nvme_m2b(ns, nlb);
2489 uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
2491 ctx->mdata.bounce = g_malloc(mlen);
2493 qemu_iovec_init(&ctx->mdata.iov, 1);
2494 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2496 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2497 nvme_compare_mdata_cb, req);
2498 return;
2501 block_acct_done(stats, acct);
2503 out:
2504 qemu_iovec_destroy(&ctx->data.iov);
2505 g_free(ctx->data.bounce);
2506 g_free(ctx);
2508 nvme_enqueue_req_completion(nvme_cq(req), req);
2511 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2513 NvmeNamespace *ns = req->ns;
2514 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2516 uint32_t attr = le32_to_cpu(dsm->attributes);
2517 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2519 uint16_t status = NVME_SUCCESS;
2521 trace_pci_nvme_dsm(nvme_cid(req), nvme_nsid(ns), nr, attr);
2523 if (attr & NVME_DSMGMT_AD) {
2524 int64_t offset;
2525 size_t len;
2526 NvmeDsmRange range[nr];
2527 uintptr_t *discards = (uintptr_t *)&req->opaque;
2529 status = nvme_h2c(n, (uint8_t *)range, sizeof(range), req);
2530 if (status) {
2531 return status;
2535 * AIO callbacks may be called immediately, so initialize discards to 1
2536 * to make sure the the callback does not complete the request before
2537 * all discards have been issued.
2539 *discards = 1;
2541 for (int i = 0; i < nr; i++) {
2542 uint64_t slba = le64_to_cpu(range[i].slba);
2543 uint32_t nlb = le32_to_cpu(range[i].nlb);
2545 if (nvme_check_bounds(ns, slba, nlb)) {
2546 continue;
2549 trace_pci_nvme_dsm_deallocate(nvme_cid(req), nvme_nsid(ns), slba,
2550 nlb);
2552 if (nlb > n->dmrsl) {
2553 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2556 offset = nvme_l2b(ns, slba);
2557 len = nvme_l2b(ns, nlb);
2559 while (len) {
2560 size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
2562 (*discards)++;
2564 blk_aio_pdiscard(ns->blkconf.blk, offset, bytes,
2565 nvme_aio_discard_cb, req);
2567 offset += bytes;
2568 len -= bytes;
2572 /* account for the 1-initialization */
2573 (*discards)--;
2575 if (*discards) {
2576 status = NVME_NO_COMPLETE;
2577 } else {
2578 status = req->status;
2582 return status;
2585 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2587 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2588 NvmeNamespace *ns = req->ns;
2589 BlockBackend *blk = ns->blkconf.blk;
2590 uint64_t slba = le64_to_cpu(rw->slba);
2591 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2592 size_t len = nvme_l2b(ns, nlb);
2593 int64_t offset = nvme_l2b(ns, slba);
2594 uint16_t ctrl = le16_to_cpu(rw->control);
2595 uint32_t reftag = le32_to_cpu(rw->reftag);
2596 NvmeBounceContext *ctx = NULL;
2597 uint16_t status;
2599 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2601 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2602 status = nvme_check_prinfo(ns, ctrl, slba, reftag);
2603 if (status) {
2604 return status;
2607 if (ctrl & NVME_RW_PRINFO_PRACT) {
2608 return NVME_INVALID_PROT_INFO | NVME_DNR;
2612 if (len > n->page_size << n->params.vsl) {
2613 return NVME_INVALID_FIELD | NVME_DNR;
2616 status = nvme_check_bounds(ns, slba, nlb);
2617 if (status) {
2618 return status;
2621 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2622 status = nvme_check_dulbe(ns, slba, nlb);
2623 if (status) {
2624 return status;
2628 ctx = g_new0(NvmeBounceContext, 1);
2629 ctx->req = req;
2631 ctx->data.bounce = g_malloc(len);
2633 qemu_iovec_init(&ctx->data.iov, 1);
2634 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2636 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2637 BLOCK_ACCT_READ);
2639 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2640 nvme_verify_mdata_in_cb, ctx);
2641 return NVME_NO_COMPLETE;
2644 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2646 NvmeNamespace *ns = req->ns;
2647 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2649 uint16_t nr = copy->nr + 1;
2650 uint8_t format = copy->control[0] & 0xf;
2653 * Shift the PRINFOR/PRINFOW values by 10 to allow reusing the
2654 * NVME_RW_PRINFO constants.
2656 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf) << 10;
2657 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf) << 10;
2659 uint32_t nlb = 0;
2660 uint8_t *bounce = NULL, *bouncep = NULL;
2661 uint8_t *mbounce = NULL, *mbouncep = NULL;
2662 struct nvme_copy_ctx *ctx;
2663 uint16_t status;
2664 int i;
2666 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2668 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2669 ((prinfor & NVME_RW_PRINFO_PRACT) != (prinfow & NVME_RW_PRINFO_PRACT))) {
2670 return NVME_INVALID_FIELD | NVME_DNR;
2673 if (!(n->id_ctrl.ocfs & (1 << format))) {
2674 trace_pci_nvme_err_copy_invalid_format(format);
2675 return NVME_INVALID_FIELD | NVME_DNR;
2678 if (nr > ns->id_ns.msrc + 1) {
2679 return NVME_CMD_SIZE_LIMIT | NVME_DNR;
2682 ctx = g_new(struct nvme_copy_ctx, 1);
2683 ctx->ranges = g_new(NvmeCopySourceRange, nr);
2685 status = nvme_h2c(n, (uint8_t *)ctx->ranges,
2686 nr * sizeof(NvmeCopySourceRange), req);
2687 if (status) {
2688 goto out;
2691 for (i = 0; i < nr; i++) {
2692 uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
2693 uint32_t _nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
2695 if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2696 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2697 goto out;
2700 status = nvme_check_bounds(ns, slba, _nlb);
2701 if (status) {
2702 goto out;
2705 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2706 status = nvme_check_dulbe(ns, slba, _nlb);
2707 if (status) {
2708 goto out;
2712 if (ns->params.zoned) {
2713 status = nvme_check_zone_read(ns, slba, _nlb);
2714 if (status) {
2715 goto out;
2719 nlb += _nlb;
2722 if (nlb > le32_to_cpu(ns->id_ns.mcl)) {
2723 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2724 goto out;
2727 bounce = bouncep = g_malloc(nvme_l2b(ns, nlb));
2728 if (nvme_msize(ns)) {
2729 mbounce = mbouncep = g_malloc(nvme_m2b(ns, nlb));
2732 block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
2733 BLOCK_ACCT_READ);
2735 ctx->bounce = bounce;
2736 ctx->mbounce = mbounce;
2737 ctx->nlb = nlb;
2738 ctx->copies = 1;
2740 req->opaque = ctx;
2742 for (i = 0; i < nr; i++) {
2743 uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
2744 uint32_t nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
2746 size_t len = nvme_l2b(ns, nlb);
2747 int64_t offset = nvme_l2b(ns, slba);
2749 trace_pci_nvme_copy_source_range(slba, nlb);
2751 struct nvme_copy_in_ctx *in_ctx = g_new(struct nvme_copy_in_ctx, 1);
2752 in_ctx->req = req;
2754 qemu_iovec_init(&in_ctx->iov, 1);
2755 qemu_iovec_add(&in_ctx->iov, bouncep, len);
2757 ctx->copies++;
2759 blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
2760 nvme_aio_copy_in_cb, in_ctx);
2762 bouncep += len;
2764 if (nvme_msize(ns)) {
2765 len = nvme_m2b(ns, nlb);
2766 offset = ns->mdata_offset + nvme_m2b(ns, slba);
2768 in_ctx = g_new(struct nvme_copy_in_ctx, 1);
2769 in_ctx->req = req;
2771 qemu_iovec_init(&in_ctx->iov, 1);
2772 qemu_iovec_add(&in_ctx->iov, mbouncep, len);
2774 ctx->copies++;
2776 blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
2777 nvme_aio_copy_in_cb, in_ctx);
2779 mbouncep += len;
2783 /* account for the 1-initialization */
2784 ctx->copies--;
2786 if (!ctx->copies) {
2787 nvme_copy_in_complete(req);
2790 return NVME_NO_COMPLETE;
2792 out:
2793 g_free(ctx->ranges);
2794 g_free(ctx);
2796 return status;
2799 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
2801 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2802 NvmeNamespace *ns = req->ns;
2803 BlockBackend *blk = ns->blkconf.blk;
2804 uint64_t slba = le64_to_cpu(rw->slba);
2805 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2806 uint16_t ctrl = le16_to_cpu(rw->control);
2807 size_t data_len = nvme_l2b(ns, nlb);
2808 size_t len = data_len;
2809 int64_t offset = nvme_l2b(ns, slba);
2810 struct nvme_compare_ctx *ctx = NULL;
2811 uint16_t status;
2813 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2815 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (ctrl & NVME_RW_PRINFO_PRACT)) {
2816 return NVME_INVALID_PROT_INFO | NVME_DNR;
2819 if (nvme_ns_ext(ns)) {
2820 len += nvme_m2b(ns, nlb);
2823 status = nvme_check_mdts(n, len);
2824 if (status) {
2825 return status;
2828 status = nvme_check_bounds(ns, slba, nlb);
2829 if (status) {
2830 return status;
2833 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2834 status = nvme_check_dulbe(ns, slba, nlb);
2835 if (status) {
2836 return status;
2840 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
2841 if (status) {
2842 return status;
2845 ctx = g_new(struct nvme_compare_ctx, 1);
2846 ctx->data.bounce = g_malloc(data_len);
2848 req->opaque = ctx;
2850 qemu_iovec_init(&ctx->data.iov, 1);
2851 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
2853 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
2854 BLOCK_ACCT_READ);
2855 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
2856 nvme_compare_data_cb, req);
2858 return NVME_NO_COMPLETE;
2861 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
2863 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
2864 uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
2865 uint16_t status;
2866 struct nvme_aio_flush_ctx *ctx;
2867 NvmeNamespace *ns;
2869 trace_pci_nvme_flush(nvme_cid(req), nsid);
2871 if (nsid != NVME_NSID_BROADCAST) {
2872 req->ns = nvme_ns(n, nsid);
2873 if (unlikely(!req->ns)) {
2874 return NVME_INVALID_FIELD | NVME_DNR;
2877 block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
2878 BLOCK_ACCT_FLUSH);
2879 req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_misc_cb, req);
2880 return NVME_NO_COMPLETE;
2883 /* 1-initialize; see comment in nvme_dsm */
2884 *num_flushes = 1;
2886 for (int i = 1; i <= n->num_namespaces; i++) {
2887 ns = nvme_ns(n, i);
2888 if (!ns) {
2889 continue;
2892 ctx = g_new(struct nvme_aio_flush_ctx, 1);
2893 ctx->req = req;
2894 ctx->ns = ns;
2896 (*num_flushes)++;
2898 block_acct_start(blk_get_stats(ns->blkconf.blk), &ctx->acct, 0,
2899 BLOCK_ACCT_FLUSH);
2900 blk_aio_flush(ns->blkconf.blk, nvme_aio_flush_cb, ctx);
2903 /* account for the 1-initialization */
2904 (*num_flushes)--;
2906 if (*num_flushes) {
2907 status = NVME_NO_COMPLETE;
2908 } else {
2909 status = req->status;
2912 return status;
2915 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
2917 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2918 NvmeNamespace *ns = req->ns;
2919 uint64_t slba = le64_to_cpu(rw->slba);
2920 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2921 uint16_t ctrl = le16_to_cpu(rw->control);
2922 uint64_t data_size = nvme_l2b(ns, nlb);
2923 uint64_t mapped_size = data_size;
2924 uint64_t data_offset;
2925 BlockBackend *blk = ns->blkconf.blk;
2926 uint16_t status;
2928 if (nvme_ns_ext(ns)) {
2929 mapped_size += nvme_m2b(ns, nlb);
2931 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2932 bool pract = ctrl & NVME_RW_PRINFO_PRACT;
2934 if (pract && nvme_msize(ns) == 8) {
2935 mapped_size = data_size;
2940 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
2942 status = nvme_check_mdts(n, mapped_size);
2943 if (status) {
2944 goto invalid;
2947 status = nvme_check_bounds(ns, slba, nlb);
2948 if (status) {
2949 goto invalid;
2952 if (ns->params.zoned) {
2953 status = nvme_check_zone_read(ns, slba, nlb);
2954 if (status) {
2955 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
2956 goto invalid;
2960 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2961 status = nvme_check_dulbe(ns, slba, nlb);
2962 if (status) {
2963 goto invalid;
2967 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2968 return nvme_dif_rw(n, req);
2971 status = nvme_map_data(n, nlb, req);
2972 if (status) {
2973 goto invalid;
2976 data_offset = nvme_l2b(ns, slba);
2978 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
2979 BLOCK_ACCT_READ);
2980 nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
2981 return NVME_NO_COMPLETE;
2983 invalid:
2984 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
2985 return status | NVME_DNR;
2988 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
2989 bool wrz)
2991 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2992 NvmeNamespace *ns = req->ns;
2993 uint64_t slba = le64_to_cpu(rw->slba);
2994 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2995 uint16_t ctrl = le16_to_cpu(rw->control);
2996 uint64_t data_size = nvme_l2b(ns, nlb);
2997 uint64_t mapped_size = data_size;
2998 uint64_t data_offset;
2999 NvmeZone *zone;
3000 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3001 BlockBackend *blk = ns->blkconf.blk;
3002 uint16_t status;
3004 if (nvme_ns_ext(ns)) {
3005 mapped_size += nvme_m2b(ns, nlb);
3007 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3008 bool pract = ctrl & NVME_RW_PRINFO_PRACT;
3010 if (pract && nvme_msize(ns) == 8) {
3011 mapped_size -= nvme_m2b(ns, nlb);
3016 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3017 nvme_nsid(ns), nlb, mapped_size, slba);
3019 if (!wrz) {
3020 status = nvme_check_mdts(n, mapped_size);
3021 if (status) {
3022 goto invalid;
3026 status = nvme_check_bounds(ns, slba, nlb);
3027 if (status) {
3028 goto invalid;
3031 if (ns->params.zoned) {
3032 zone = nvme_get_zone_by_slba(ns, slba);
3034 if (append) {
3035 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3037 if (unlikely(slba != zone->d.zslba)) {
3038 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3039 status = NVME_INVALID_FIELD;
3040 goto invalid;
3043 if (n->params.zasl &&
3044 data_size > (uint64_t)n->page_size << n->params.zasl) {
3045 trace_pci_nvme_err_zasl(data_size);
3046 return NVME_INVALID_FIELD | NVME_DNR;
3049 slba = zone->w_ptr;
3050 rw->slba = cpu_to_le64(slba);
3051 res->slba = cpu_to_le64(slba);
3053 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3054 case NVME_ID_NS_DPS_TYPE_1:
3055 if (!piremap) {
3056 return NVME_INVALID_PROT_INFO | NVME_DNR;
3059 /* fallthrough */
3061 case NVME_ID_NS_DPS_TYPE_2:
3062 if (piremap) {
3063 uint32_t reftag = le32_to_cpu(rw->reftag);
3064 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3067 break;
3069 case NVME_ID_NS_DPS_TYPE_3:
3070 if (piremap) {
3071 return NVME_INVALID_PROT_INFO | NVME_DNR;
3074 break;
3078 status = nvme_check_zone_write(ns, zone, slba, nlb);
3079 if (status) {
3080 goto invalid;
3083 status = nvme_zrm_auto(ns, zone);
3084 if (status) {
3085 goto invalid;
3088 zone->w_ptr += nlb;
3091 data_offset = nvme_l2b(ns, slba);
3093 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3094 return nvme_dif_rw(n, req);
3097 if (!wrz) {
3098 status = nvme_map_data(n, nlb, req);
3099 if (status) {
3100 goto invalid;
3103 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3104 BLOCK_ACCT_WRITE);
3105 nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3106 } else {
3107 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3108 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3109 req);
3112 return NVME_NO_COMPLETE;
3114 invalid:
3115 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3116 return status | NVME_DNR;
3119 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3121 return nvme_do_write(n, req, false, false);
3124 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3126 return nvme_do_write(n, req, false, true);
3129 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3131 return nvme_do_write(n, req, true, false);
3134 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3135 uint64_t *slba, uint32_t *zone_idx)
3137 uint32_t dw10 = le32_to_cpu(c->cdw10);
3138 uint32_t dw11 = le32_to_cpu(c->cdw11);
3140 if (!ns->params.zoned) {
3141 trace_pci_nvme_err_invalid_opc(c->opcode);
3142 return NVME_INVALID_OPCODE | NVME_DNR;
3145 *slba = ((uint64_t)dw11) << 32 | dw10;
3146 if (unlikely(*slba >= ns->id_ns.nsze)) {
3147 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3148 *slba = 0;
3149 return NVME_LBA_RANGE | NVME_DNR;
3152 *zone_idx = nvme_zone_idx(ns, *slba);
3153 assert(*zone_idx < ns->num_zones);
3155 return NVME_SUCCESS;
3158 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3159 NvmeRequest *);
3161 enum NvmeZoneProcessingMask {
3162 NVME_PROC_CURRENT_ZONE = 0,
3163 NVME_PROC_OPENED_ZONES = 1 << 0,
3164 NVME_PROC_CLOSED_ZONES = 1 << 1,
3165 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3166 NVME_PROC_FULL_ZONES = 1 << 3,
3169 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3170 NvmeZoneState state, NvmeRequest *req)
3172 return nvme_zrm_open(ns, zone);
3175 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3176 NvmeZoneState state, NvmeRequest *req)
3178 return nvme_zrm_close(ns, zone);
3181 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3182 NvmeZoneState state, NvmeRequest *req)
3184 return nvme_zrm_finish(ns, zone);
3187 static uint16_t nvme_reset_zone(NvmeNamespace *ns, NvmeZone *zone,
3188 NvmeZoneState state, NvmeRequest *req)
3190 uintptr_t *resets = (uintptr_t *)&req->opaque;
3191 struct nvme_zone_reset_ctx *ctx;
3193 switch (state) {
3194 case NVME_ZONE_STATE_EMPTY:
3195 return NVME_SUCCESS;
3196 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3197 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3198 case NVME_ZONE_STATE_CLOSED:
3199 case NVME_ZONE_STATE_FULL:
3200 break;
3201 default:
3202 return NVME_ZONE_INVAL_TRANSITION;
3206 * The zone reset aio callback needs to know the zone that is being reset
3207 * in order to transition the zone on completion.
3209 ctx = g_new(struct nvme_zone_reset_ctx, 1);
3210 ctx->req = req;
3211 ctx->zone = zone;
3213 (*resets)++;
3215 blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba),
3216 nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
3217 nvme_aio_zone_reset_cb, ctx);
3219 return NVME_NO_COMPLETE;
3222 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3223 NvmeZoneState state, NvmeRequest *req)
3225 switch (state) {
3226 case NVME_ZONE_STATE_READ_ONLY:
3227 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3228 /* fall through */
3229 case NVME_ZONE_STATE_OFFLINE:
3230 return NVME_SUCCESS;
3231 default:
3232 return NVME_ZONE_INVAL_TRANSITION;
3236 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3238 uint16_t status;
3239 uint8_t state = nvme_get_zone_state(zone);
3241 if (state == NVME_ZONE_STATE_EMPTY) {
3242 status = nvme_aor_check(ns, 1, 0);
3243 if (status) {
3244 return status;
3246 nvme_aor_inc_active(ns);
3247 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3248 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3249 return NVME_SUCCESS;
3252 return NVME_ZONE_INVAL_TRANSITION;
3255 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3256 enum NvmeZoneProcessingMask proc_mask,
3257 op_handler_t op_hndlr, NvmeRequest *req)
3259 uint16_t status = NVME_SUCCESS;
3260 NvmeZoneState zs = nvme_get_zone_state(zone);
3261 bool proc_zone;
3263 switch (zs) {
3264 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3265 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3266 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3267 break;
3268 case NVME_ZONE_STATE_CLOSED:
3269 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3270 break;
3271 case NVME_ZONE_STATE_READ_ONLY:
3272 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3273 break;
3274 case NVME_ZONE_STATE_FULL:
3275 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3276 break;
3277 default:
3278 proc_zone = false;
3281 if (proc_zone) {
3282 status = op_hndlr(ns, zone, zs, req);
3285 return status;
3288 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3289 enum NvmeZoneProcessingMask proc_mask,
3290 op_handler_t op_hndlr, NvmeRequest *req)
3292 NvmeZone *next;
3293 uint16_t status = NVME_SUCCESS;
3294 int i;
3296 if (!proc_mask) {
3297 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3298 } else {
3299 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3300 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3301 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3302 req);
3303 if (status && status != NVME_NO_COMPLETE) {
3304 goto out;
3308 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3309 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3310 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3311 req);
3312 if (status && status != NVME_NO_COMPLETE) {
3313 goto out;
3317 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3318 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3319 req);
3320 if (status && status != NVME_NO_COMPLETE) {
3321 goto out;
3325 if (proc_mask & NVME_PROC_FULL_ZONES) {
3326 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3327 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3328 req);
3329 if (status && status != NVME_NO_COMPLETE) {
3330 goto out;
3335 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3336 for (i = 0; i < ns->num_zones; i++, zone++) {
3337 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3338 req);
3339 if (status && status != NVME_NO_COMPLETE) {
3340 goto out;
3346 out:
3347 return status;
3350 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3352 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3353 NvmeNamespace *ns = req->ns;
3354 NvmeZone *zone;
3355 uintptr_t *resets;
3356 uint8_t *zd_ext;
3357 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3358 uint64_t slba = 0;
3359 uint32_t zone_idx = 0;
3360 uint16_t status;
3361 uint8_t action;
3362 bool all;
3363 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3365 action = dw13 & 0xff;
3366 all = dw13 & 0x100;
3368 req->status = NVME_SUCCESS;
3370 if (!all) {
3371 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3372 if (status) {
3373 return status;
3377 zone = &ns->zone_array[zone_idx];
3378 if (slba != zone->d.zslba) {
3379 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3380 return NVME_INVALID_FIELD | NVME_DNR;
3383 switch (action) {
3385 case NVME_ZONE_ACTION_OPEN:
3386 if (all) {
3387 proc_mask = NVME_PROC_CLOSED_ZONES;
3389 trace_pci_nvme_open_zone(slba, zone_idx, all);
3390 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3391 break;
3393 case NVME_ZONE_ACTION_CLOSE:
3394 if (all) {
3395 proc_mask = NVME_PROC_OPENED_ZONES;
3397 trace_pci_nvme_close_zone(slba, zone_idx, all);
3398 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3399 break;
3401 case NVME_ZONE_ACTION_FINISH:
3402 if (all) {
3403 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3405 trace_pci_nvme_finish_zone(slba, zone_idx, all);
3406 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3407 break;
3409 case NVME_ZONE_ACTION_RESET:
3410 resets = (uintptr_t *)&req->opaque;
3412 if (all) {
3413 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES |
3414 NVME_PROC_FULL_ZONES;
3416 trace_pci_nvme_reset_zone(slba, zone_idx, all);
3418 *resets = 1;
3420 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_reset_zone, req);
3422 (*resets)--;
3424 return *resets ? NVME_NO_COMPLETE : req->status;
3426 case NVME_ZONE_ACTION_OFFLINE:
3427 if (all) {
3428 proc_mask = NVME_PROC_READ_ONLY_ZONES;
3430 trace_pci_nvme_offline_zone(slba, zone_idx, all);
3431 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3432 break;
3434 case NVME_ZONE_ACTION_SET_ZD_EXT:
3435 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3436 if (all || !ns->params.zd_extension_size) {
3437 return NVME_INVALID_FIELD | NVME_DNR;
3439 zd_ext = nvme_get_zd_extension(ns, zone_idx);
3440 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3441 if (status) {
3442 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3443 return status;
3446 status = nvme_set_zd_ext(ns, zone);
3447 if (status == NVME_SUCCESS) {
3448 trace_pci_nvme_zd_extension_set(zone_idx);
3449 return status;
3451 break;
3453 default:
3454 trace_pci_nvme_err_invalid_mgmt_action(action);
3455 status = NVME_INVALID_FIELD;
3458 if (status == NVME_ZONE_INVAL_TRANSITION) {
3459 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3460 zone->d.za);
3462 if (status) {
3463 status |= NVME_DNR;
3466 return status;
3469 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3471 NvmeZoneState zs = nvme_get_zone_state(zl);
3473 switch (zafs) {
3474 case NVME_ZONE_REPORT_ALL:
3475 return true;
3476 case NVME_ZONE_REPORT_EMPTY:
3477 return zs == NVME_ZONE_STATE_EMPTY;
3478 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3479 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3480 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3481 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3482 case NVME_ZONE_REPORT_CLOSED:
3483 return zs == NVME_ZONE_STATE_CLOSED;
3484 case NVME_ZONE_REPORT_FULL:
3485 return zs == NVME_ZONE_STATE_FULL;
3486 case NVME_ZONE_REPORT_READ_ONLY:
3487 return zs == NVME_ZONE_STATE_READ_ONLY;
3488 case NVME_ZONE_REPORT_OFFLINE:
3489 return zs == NVME_ZONE_STATE_OFFLINE;
3490 default:
3491 return false;
3495 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3497 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3498 NvmeNamespace *ns = req->ns;
3499 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3500 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
3501 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3502 uint32_t zone_idx, zra, zrasf, partial;
3503 uint64_t max_zones, nr_zones = 0;
3504 uint16_t status;
3505 uint64_t slba;
3506 NvmeZoneDescr *z;
3507 NvmeZone *zone;
3508 NvmeZoneReportHeader *header;
3509 void *buf, *buf_p;
3510 size_t zone_entry_sz;
3511 int i;
3513 req->status = NVME_SUCCESS;
3515 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3516 if (status) {
3517 return status;
3520 zra = dw13 & 0xff;
3521 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
3522 return NVME_INVALID_FIELD | NVME_DNR;
3524 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
3525 return NVME_INVALID_FIELD | NVME_DNR;
3528 zrasf = (dw13 >> 8) & 0xff;
3529 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
3530 return NVME_INVALID_FIELD | NVME_DNR;
3533 if (data_size < sizeof(NvmeZoneReportHeader)) {
3534 return NVME_INVALID_FIELD | NVME_DNR;
3537 status = nvme_check_mdts(n, data_size);
3538 if (status) {
3539 return status;
3542 partial = (dw13 >> 16) & 0x01;
3544 zone_entry_sz = sizeof(NvmeZoneDescr);
3545 if (zra == NVME_ZONE_REPORT_EXTENDED) {
3546 zone_entry_sz += ns->params.zd_extension_size;
3549 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
3550 buf = g_malloc0(data_size);
3552 zone = &ns->zone_array[zone_idx];
3553 for (i = zone_idx; i < ns->num_zones; i++) {
3554 if (partial && nr_zones >= max_zones) {
3555 break;
3557 if (nvme_zone_matches_filter(zrasf, zone++)) {
3558 nr_zones++;
3561 header = (NvmeZoneReportHeader *)buf;
3562 header->nr_zones = cpu_to_le64(nr_zones);
3564 buf_p = buf + sizeof(NvmeZoneReportHeader);
3565 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
3566 zone = &ns->zone_array[zone_idx];
3567 if (nvme_zone_matches_filter(zrasf, zone)) {
3568 z = (NvmeZoneDescr *)buf_p;
3569 buf_p += sizeof(NvmeZoneDescr);
3571 z->zt = zone->d.zt;
3572 z->zs = zone->d.zs;
3573 z->zcap = cpu_to_le64(zone->d.zcap);
3574 z->zslba = cpu_to_le64(zone->d.zslba);
3575 z->za = zone->d.za;
3577 if (nvme_wp_is_valid(zone)) {
3578 z->wp = cpu_to_le64(zone->d.wp);
3579 } else {
3580 z->wp = cpu_to_le64(~0ULL);
3583 if (zra == NVME_ZONE_REPORT_EXTENDED) {
3584 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
3585 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
3586 ns->params.zd_extension_size);
3588 buf_p += ns->params.zd_extension_size;
3591 max_zones--;
3595 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
3597 g_free(buf);
3599 return status;
3602 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
3604 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3605 uint16_t status;
3607 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
3608 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
3610 if (!nvme_nsid_valid(n, nsid)) {
3611 return NVME_INVALID_NSID | NVME_DNR;
3615 * In the base NVM command set, Flush may apply to all namespaces
3616 * (indicated by NSID being set to 0xFFFFFFFF). But if that feature is used
3617 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
3619 * If NSID is indeed set to 0xFFFFFFFF, we simply cannot associate the
3620 * opcode with a specific command since we cannot determine a unique I/O
3621 * command set. Opcode 0x0 could have any other meaning than something
3622 * equivalent to flushing and say it DOES have completely different
3623 * semantics in some other command set - does an NSID of 0xFFFFFFFF then
3624 * mean "for all namespaces, apply whatever command set specific command
3625 * that uses the 0x0 opcode?" Or does it mean "for all namespaces, apply
3626 * whatever command that uses the 0x0 opcode if, and only if, it allows
3627 * NSID to be 0xFFFFFFFF"?
3629 * Anyway (and luckily), for now, we do not care about this since the
3630 * device only supports namespace types that includes the NVM Flush command
3631 * (NVM and Zoned), so always do an NVM Flush.
3633 if (req->cmd.opcode == NVME_CMD_FLUSH) {
3634 return nvme_flush(n, req);
3637 req->ns = nvme_ns(n, nsid);
3638 if (unlikely(!req->ns)) {
3639 return NVME_INVALID_FIELD | NVME_DNR;
3642 if (!(req->ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
3643 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
3644 return NVME_INVALID_OPCODE | NVME_DNR;
3647 status = nvme_ns_status(req->ns);
3648 if (unlikely(status)) {
3649 return status;
3652 switch (req->cmd.opcode) {
3653 case NVME_CMD_WRITE_ZEROES:
3654 return nvme_write_zeroes(n, req);
3655 case NVME_CMD_ZONE_APPEND:
3656 return nvme_zone_append(n, req);
3657 case NVME_CMD_WRITE:
3658 return nvme_write(n, req);
3659 case NVME_CMD_READ:
3660 return nvme_read(n, req);
3661 case NVME_CMD_COMPARE:
3662 return nvme_compare(n, req);
3663 case NVME_CMD_DSM:
3664 return nvme_dsm(n, req);
3665 case NVME_CMD_VERIFY:
3666 return nvme_verify(n, req);
3667 case NVME_CMD_COPY:
3668 return nvme_copy(n, req);
3669 case NVME_CMD_ZONE_MGMT_SEND:
3670 return nvme_zone_mgmt_send(n, req);
3671 case NVME_CMD_ZONE_MGMT_RECV:
3672 return nvme_zone_mgmt_recv(n, req);
3673 default:
3674 assert(false);
3677 return NVME_INVALID_OPCODE | NVME_DNR;
3680 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
3682 n->sq[sq->sqid] = NULL;
3683 timer_free(sq->timer);
3684 g_free(sq->io_req);
3685 if (sq->sqid) {
3686 g_free(sq);
3690 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
3692 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
3693 NvmeRequest *r, *next;
3694 NvmeSQueue *sq;
3695 NvmeCQueue *cq;
3696 uint16_t qid = le16_to_cpu(c->qid);
3697 uint32_t nsid;
3699 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
3700 trace_pci_nvme_err_invalid_del_sq(qid);
3701 return NVME_INVALID_QID | NVME_DNR;
3704 trace_pci_nvme_del_sq(qid);
3706 sq = n->sq[qid];
3707 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
3708 r = QTAILQ_FIRST(&sq->out_req_list);
3709 if (r->aiocb) {
3710 blk_aio_cancel(r->aiocb);
3715 * Drain all namespaces if there are still outstanding requests that we
3716 * could not cancel explicitly.
3718 if (!QTAILQ_EMPTY(&sq->out_req_list)) {
3719 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
3720 NvmeNamespace *ns = nvme_ns(n, nsid);
3721 if (ns) {
3722 nvme_ns_drain(ns);
3727 assert(QTAILQ_EMPTY(&sq->out_req_list));
3729 if (!nvme_check_cqid(n, sq->cqid)) {
3730 cq = n->cq[sq->cqid];
3731 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
3733 nvme_post_cqes(cq);
3734 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
3735 if (r->sq == sq) {
3736 QTAILQ_REMOVE(&cq->req_list, r, entry);
3737 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
3742 nvme_free_sq(sq, n);
3743 return NVME_SUCCESS;
3746 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
3747 uint16_t sqid, uint16_t cqid, uint16_t size)
3749 int i;
3750 NvmeCQueue *cq;
3752 sq->ctrl = n;
3753 sq->dma_addr = dma_addr;
3754 sq->sqid = sqid;
3755 sq->size = size;
3756 sq->cqid = cqid;
3757 sq->head = sq->tail = 0;
3758 sq->io_req = g_new0(NvmeRequest, sq->size);
3760 QTAILQ_INIT(&sq->req_list);
3761 QTAILQ_INIT(&sq->out_req_list);
3762 for (i = 0; i < sq->size; i++) {
3763 sq->io_req[i].sq = sq;
3764 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
3766 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
3768 assert(n->cq[cqid]);
3769 cq = n->cq[cqid];
3770 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
3771 n->sq[sqid] = sq;
3774 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
3776 NvmeSQueue *sq;
3777 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
3779 uint16_t cqid = le16_to_cpu(c->cqid);
3780 uint16_t sqid = le16_to_cpu(c->sqid);
3781 uint16_t qsize = le16_to_cpu(c->qsize);
3782 uint16_t qflags = le16_to_cpu(c->sq_flags);
3783 uint64_t prp1 = le64_to_cpu(c->prp1);
3785 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
3787 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
3788 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
3789 return NVME_INVALID_CQID | NVME_DNR;
3791 if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
3792 n->sq[sqid] != NULL)) {
3793 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
3794 return NVME_INVALID_QID | NVME_DNR;
3796 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
3797 trace_pci_nvme_err_invalid_create_sq_size(qsize);
3798 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
3800 if (unlikely(prp1 & (n->page_size - 1))) {
3801 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
3802 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
3804 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
3805 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
3806 return NVME_INVALID_FIELD | NVME_DNR;
3808 sq = g_malloc0(sizeof(*sq));
3809 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
3810 return NVME_SUCCESS;
3813 struct nvme_stats {
3814 uint64_t units_read;
3815 uint64_t units_written;
3816 uint64_t read_commands;
3817 uint64_t write_commands;
3820 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
3822 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
3824 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
3825 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
3826 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
3827 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
3830 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
3831 uint64_t off, NvmeRequest *req)
3833 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3834 struct nvme_stats stats = { 0 };
3835 NvmeSmartLog smart = { 0 };
3836 uint32_t trans_len;
3837 NvmeNamespace *ns;
3838 time_t current_ms;
3840 if (off >= sizeof(smart)) {
3841 return NVME_INVALID_FIELD | NVME_DNR;
3844 if (nsid != 0xffffffff) {
3845 ns = nvme_ns(n, nsid);
3846 if (!ns) {
3847 return NVME_INVALID_NSID | NVME_DNR;
3849 nvme_set_blk_stats(ns, &stats);
3850 } else {
3851 int i;
3853 for (i = 1; i <= n->num_namespaces; i++) {
3854 ns = nvme_ns(n, i);
3855 if (!ns) {
3856 continue;
3858 nvme_set_blk_stats(ns, &stats);
3862 trans_len = MIN(sizeof(smart) - off, buf_len);
3863 smart.critical_warning = n->smart_critical_warning;
3865 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
3866 1000));
3867 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
3868 1000));
3869 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
3870 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
3872 smart.temperature = cpu_to_le16(n->temperature);
3874 if ((n->temperature >= n->features.temp_thresh_hi) ||
3875 (n->temperature <= n->features.temp_thresh_low)) {
3876 smart.critical_warning |= NVME_SMART_TEMPERATURE;
3879 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
3880 smart.power_on_hours[0] =
3881 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
3883 if (!rae) {
3884 nvme_clear_events(n, NVME_AER_TYPE_SMART);
3887 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
3890 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
3891 NvmeRequest *req)
3893 uint32_t trans_len;
3894 NvmeFwSlotInfoLog fw_log = {
3895 .afi = 0x1,
3898 if (off >= sizeof(fw_log)) {
3899 return NVME_INVALID_FIELD | NVME_DNR;
3902 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
3903 trans_len = MIN(sizeof(fw_log) - off, buf_len);
3905 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
3908 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
3909 uint64_t off, NvmeRequest *req)
3911 uint32_t trans_len;
3912 NvmeErrorLog errlog;
3914 if (off >= sizeof(errlog)) {
3915 return NVME_INVALID_FIELD | NVME_DNR;
3918 if (!rae) {
3919 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
3922 memset(&errlog, 0x0, sizeof(errlog));
3923 trans_len = MIN(sizeof(errlog) - off, buf_len);
3925 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
3928 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
3929 uint64_t off, NvmeRequest *req)
3931 uint32_t nslist[1024];
3932 uint32_t trans_len;
3933 int i = 0;
3934 uint32_t nsid;
3936 memset(nslist, 0x0, sizeof(nslist));
3937 trans_len = MIN(sizeof(nslist) - off, buf_len);
3939 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
3940 NVME_CHANGED_NSID_SIZE) {
3942 * If more than 1024 namespaces, the first entry in the log page should
3943 * be set to 0xffffffff and the others to 0 as spec.
3945 if (i == ARRAY_SIZE(nslist)) {
3946 memset(nslist, 0x0, sizeof(nslist));
3947 nslist[0] = 0xffffffff;
3948 break;
3951 nslist[i++] = nsid;
3952 clear_bit(nsid, n->changed_nsids);
3956 * Remove all the remaining list entries in case returns directly due to
3957 * more than 1024 namespaces.
3959 if (nslist[0] == 0xffffffff) {
3960 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
3963 if (!rae) {
3964 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
3967 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
3970 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
3971 uint64_t off, NvmeRequest *req)
3973 NvmeEffectsLog log = {};
3974 const uint32_t *src_iocs = NULL;
3975 uint32_t trans_len;
3977 if (off >= sizeof(log)) {
3978 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
3979 return NVME_INVALID_FIELD | NVME_DNR;
3982 switch (NVME_CC_CSS(n->bar.cc)) {
3983 case NVME_CC_CSS_NVM:
3984 src_iocs = nvme_cse_iocs_nvm;
3985 /* fall through */
3986 case NVME_CC_CSS_ADMIN_ONLY:
3987 break;
3988 case NVME_CC_CSS_CSI:
3989 switch (csi) {
3990 case NVME_CSI_NVM:
3991 src_iocs = nvme_cse_iocs_nvm;
3992 break;
3993 case NVME_CSI_ZONED:
3994 src_iocs = nvme_cse_iocs_zoned;
3995 break;
3999 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4001 if (src_iocs) {
4002 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4005 trans_len = MIN(sizeof(log) - off, buf_len);
4007 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4010 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4012 NvmeCmd *cmd = &req->cmd;
4014 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4015 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4016 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4017 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4018 uint8_t lid = dw10 & 0xff;
4019 uint8_t lsp = (dw10 >> 8) & 0xf;
4020 uint8_t rae = (dw10 >> 15) & 0x1;
4021 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
4022 uint32_t numdl, numdu;
4023 uint64_t off, lpol, lpou;
4024 size_t len;
4025 uint16_t status;
4027 numdl = (dw10 >> 16);
4028 numdu = (dw11 & 0xffff);
4029 lpol = dw12;
4030 lpou = dw13;
4032 len = (((numdu << 16) | numdl) + 1) << 2;
4033 off = (lpou << 32ULL) | lpol;
4035 if (off & 0x3) {
4036 return NVME_INVALID_FIELD | NVME_DNR;
4039 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4041 status = nvme_check_mdts(n, len);
4042 if (status) {
4043 return status;
4046 switch (lid) {
4047 case NVME_LOG_ERROR_INFO:
4048 return nvme_error_info(n, rae, len, off, req);
4049 case NVME_LOG_SMART_INFO:
4050 return nvme_smart_info(n, rae, len, off, req);
4051 case NVME_LOG_FW_SLOT_INFO:
4052 return nvme_fw_log_info(n, len, off, req);
4053 case NVME_LOG_CHANGED_NSLIST:
4054 return nvme_changed_nslist(n, rae, len, off, req);
4055 case NVME_LOG_CMD_EFFECTS:
4056 return nvme_cmd_effects(n, csi, len, off, req);
4057 default:
4058 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4059 return NVME_INVALID_FIELD | NVME_DNR;
4063 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4065 n->cq[cq->cqid] = NULL;
4066 timer_free(cq->timer);
4067 if (msix_enabled(&n->parent_obj)) {
4068 msix_vector_unuse(&n->parent_obj, cq->vector);
4070 if (cq->cqid) {
4071 g_free(cq);
4075 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4077 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4078 NvmeCQueue *cq;
4079 uint16_t qid = le16_to_cpu(c->qid);
4081 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4082 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4083 return NVME_INVALID_CQID | NVME_DNR;
4086 cq = n->cq[qid];
4087 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4088 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4089 return NVME_INVALID_QUEUE_DEL;
4091 nvme_irq_deassert(n, cq);
4092 trace_pci_nvme_del_cq(qid);
4093 nvme_free_cq(cq, n);
4094 return NVME_SUCCESS;
4097 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4098 uint16_t cqid, uint16_t vector, uint16_t size,
4099 uint16_t irq_enabled)
4101 int ret;
4103 if (msix_enabled(&n->parent_obj)) {
4104 ret = msix_vector_use(&n->parent_obj, vector);
4105 assert(ret == 0);
4107 cq->ctrl = n;
4108 cq->cqid = cqid;
4109 cq->size = size;
4110 cq->dma_addr = dma_addr;
4111 cq->phase = 1;
4112 cq->irq_enabled = irq_enabled;
4113 cq->vector = vector;
4114 cq->head = cq->tail = 0;
4115 QTAILQ_INIT(&cq->req_list);
4116 QTAILQ_INIT(&cq->sq_list);
4117 n->cq[cqid] = cq;
4118 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4121 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4123 NvmeCQueue *cq;
4124 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4125 uint16_t cqid = le16_to_cpu(c->cqid);
4126 uint16_t vector = le16_to_cpu(c->irq_vector);
4127 uint16_t qsize = le16_to_cpu(c->qsize);
4128 uint16_t qflags = le16_to_cpu(c->cq_flags);
4129 uint64_t prp1 = le64_to_cpu(c->prp1);
4131 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4132 NVME_CQ_FLAGS_IEN(qflags) != 0);
4134 if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
4135 n->cq[cqid] != NULL)) {
4136 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4137 return NVME_INVALID_QID | NVME_DNR;
4139 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
4140 trace_pci_nvme_err_invalid_create_cq_size(qsize);
4141 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4143 if (unlikely(prp1 & (n->page_size - 1))) {
4144 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4145 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4147 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4148 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4149 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4151 if (unlikely(vector >= n->params.msix_qsize)) {
4152 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4153 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4155 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4156 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4157 return NVME_INVALID_FIELD | NVME_DNR;
4160 cq = g_malloc0(sizeof(*cq));
4161 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4162 NVME_CQ_FLAGS_IEN(qflags));
4165 * It is only required to set qs_created when creating a completion queue;
4166 * creating a submission queue without a matching completion queue will
4167 * fail.
4169 n->qs_created = true;
4170 return NVME_SUCCESS;
4173 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4175 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4177 return nvme_c2h(n, id, sizeof(id), req);
4180 static inline bool nvme_csi_has_nvm_support(NvmeNamespace *ns)
4182 switch (ns->csi) {
4183 case NVME_CSI_NVM:
4184 case NVME_CSI_ZONED:
4185 return true;
4187 return false;
4190 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4192 trace_pci_nvme_identify_ctrl();
4194 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4197 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4199 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4200 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4201 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4203 trace_pci_nvme_identify_ctrl_csi(c->csi);
4205 switch (c->csi) {
4206 case NVME_CSI_NVM:
4207 id_nvm->vsl = n->params.vsl;
4208 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4209 break;
4211 case NVME_CSI_ZONED:
4212 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4213 break;
4215 default:
4216 return NVME_INVALID_FIELD | NVME_DNR;
4219 return nvme_c2h(n, id, sizeof(id), req);
4222 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4224 NvmeNamespace *ns;
4225 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4226 uint32_t nsid = le32_to_cpu(c->nsid);
4228 trace_pci_nvme_identify_ns(nsid);
4230 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4231 return NVME_INVALID_NSID | NVME_DNR;
4234 ns = nvme_ns(n, nsid);
4235 if (unlikely(!ns)) {
4236 if (!active) {
4237 ns = nvme_subsys_ns(n->subsys, nsid);
4238 if (!ns) {
4239 return nvme_rpt_empty_id_struct(n, req);
4241 } else {
4242 return nvme_rpt_empty_id_struct(n, req);
4246 if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
4247 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4250 return NVME_INVALID_CMD_SET | NVME_DNR;
4253 static uint16_t nvme_identify_ns_attached_list(NvmeCtrl *n, NvmeRequest *req)
4255 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4256 uint16_t min_id = le16_to_cpu(c->ctrlid);
4257 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4258 uint16_t *ids = &list[1];
4259 NvmeNamespace *ns;
4260 NvmeCtrl *ctrl;
4261 int cntlid, nr_ids = 0;
4263 trace_pci_nvme_identify_ns_attached_list(min_id);
4265 if (c->nsid == NVME_NSID_BROADCAST) {
4266 return NVME_INVALID_FIELD | NVME_DNR;
4269 ns = nvme_subsys_ns(n->subsys, c->nsid);
4270 if (!ns) {
4271 return NVME_INVALID_FIELD | NVME_DNR;
4274 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4275 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4276 if (!ctrl) {
4277 continue;
4280 if (!nvme_ns(ctrl, c->nsid)) {
4281 continue;
4284 ids[nr_ids++] = cntlid;
4287 list[0] = nr_ids;
4289 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4292 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4293 bool active)
4295 NvmeNamespace *ns;
4296 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4297 uint32_t nsid = le32_to_cpu(c->nsid);
4299 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4301 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4302 return NVME_INVALID_NSID | NVME_DNR;
4305 ns = nvme_ns(n, nsid);
4306 if (unlikely(!ns)) {
4307 if (!active) {
4308 ns = nvme_subsys_ns(n->subsys, nsid);
4309 if (!ns) {
4310 return nvme_rpt_empty_id_struct(n, req);
4312 } else {
4313 return nvme_rpt_empty_id_struct(n, req);
4317 if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
4318 return nvme_rpt_empty_id_struct(n, req);
4319 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4320 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4321 req);
4324 return NVME_INVALID_FIELD | NVME_DNR;
4327 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4328 bool active)
4330 NvmeNamespace *ns;
4331 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4332 uint32_t min_nsid = le32_to_cpu(c->nsid);
4333 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4334 static const int data_len = sizeof(list);
4335 uint32_t *list_ptr = (uint32_t *)list;
4336 int i, j = 0;
4338 trace_pci_nvme_identify_nslist(min_nsid);
4341 * Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
4342 * since the Active Namespace ID List should return namespaces with ids
4343 * *higher* than the NSID specified in the command. This is also specified
4344 * in the spec (NVM Express v1.3d, Section 5.15.4).
4346 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4347 return NVME_INVALID_NSID | NVME_DNR;
4350 for (i = 1; i <= n->num_namespaces; i++) {
4351 ns = nvme_ns(n, i);
4352 if (!ns) {
4353 if (!active) {
4354 ns = nvme_subsys_ns(n->subsys, i);
4355 if (!ns) {
4356 continue;
4358 } else {
4359 continue;
4362 if (ns->params.nsid <= min_nsid) {
4363 continue;
4365 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4366 if (j == data_len / sizeof(uint32_t)) {
4367 break;
4371 return nvme_c2h(n, list, data_len, req);
4374 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4375 bool active)
4377 NvmeNamespace *ns;
4378 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4379 uint32_t min_nsid = le32_to_cpu(c->nsid);
4380 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4381 static const int data_len = sizeof(list);
4382 uint32_t *list_ptr = (uint32_t *)list;
4383 int i, j = 0;
4385 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
4388 * Same as in nvme_identify_nslist(), 0xffffffff/0xfffffffe are invalid.
4390 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4391 return NVME_INVALID_NSID | NVME_DNR;
4394 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
4395 return NVME_INVALID_FIELD | NVME_DNR;
4398 for (i = 1; i <= n->num_namespaces; i++) {
4399 ns = nvme_ns(n, i);
4400 if (!ns) {
4401 if (!active) {
4402 ns = nvme_subsys_ns(n->subsys, i);
4403 if (!ns) {
4404 continue;
4406 } else {
4407 continue;
4410 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
4411 continue;
4413 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4414 if (j == data_len / sizeof(uint32_t)) {
4415 break;
4419 return nvme_c2h(n, list, data_len, req);
4422 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
4424 NvmeNamespace *ns;
4425 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4426 uint32_t nsid = le32_to_cpu(c->nsid);
4427 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4429 struct data {
4430 struct {
4431 NvmeIdNsDescr hdr;
4432 uint8_t v[NVME_NIDL_UUID];
4433 } uuid;
4434 struct {
4435 NvmeIdNsDescr hdr;
4436 uint8_t v;
4437 } csi;
4440 struct data *ns_descrs = (struct data *)list;
4442 trace_pci_nvme_identify_ns_descr_list(nsid);
4444 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4445 return NVME_INVALID_NSID | NVME_DNR;
4448 ns = nvme_ns(n, nsid);
4449 if (unlikely(!ns)) {
4450 return NVME_INVALID_FIELD | NVME_DNR;
4454 * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
4455 * structure, a Namespace UUID (nidt = 0x3) must be reported in the
4456 * Namespace Identification Descriptor. Add the namespace UUID here.
4458 ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
4459 ns_descrs->uuid.hdr.nidl = NVME_NIDL_UUID;
4460 memcpy(&ns_descrs->uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
4462 ns_descrs->csi.hdr.nidt = NVME_NIDT_CSI;
4463 ns_descrs->csi.hdr.nidl = NVME_NIDL_CSI;
4464 ns_descrs->csi.v = ns->csi;
4466 return nvme_c2h(n, list, sizeof(list), req);
4469 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
4471 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4472 static const int data_len = sizeof(list);
4474 trace_pci_nvme_identify_cmd_set();
4476 NVME_SET_CSI(*list, NVME_CSI_NVM);
4477 NVME_SET_CSI(*list, NVME_CSI_ZONED);
4479 return nvme_c2h(n, list, data_len, req);
4482 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
4484 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4486 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
4487 c->csi);
4489 switch (c->cns) {
4490 case NVME_ID_CNS_NS:
4491 return nvme_identify_ns(n, req, true);
4492 case NVME_ID_CNS_NS_PRESENT:
4493 return nvme_identify_ns(n, req, false);
4494 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
4495 return nvme_identify_ns_attached_list(n, req);
4496 case NVME_ID_CNS_CS_NS:
4497 return nvme_identify_ns_csi(n, req, true);
4498 case NVME_ID_CNS_CS_NS_PRESENT:
4499 return nvme_identify_ns_csi(n, req, false);
4500 case NVME_ID_CNS_CTRL:
4501 return nvme_identify_ctrl(n, req);
4502 case NVME_ID_CNS_CS_CTRL:
4503 return nvme_identify_ctrl_csi(n, req);
4504 case NVME_ID_CNS_NS_ACTIVE_LIST:
4505 return nvme_identify_nslist(n, req, true);
4506 case NVME_ID_CNS_NS_PRESENT_LIST:
4507 return nvme_identify_nslist(n, req, false);
4508 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
4509 return nvme_identify_nslist_csi(n, req, true);
4510 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
4511 return nvme_identify_nslist_csi(n, req, false);
4512 case NVME_ID_CNS_NS_DESCR_LIST:
4513 return nvme_identify_ns_descr_list(n, req);
4514 case NVME_ID_CNS_IO_COMMAND_SET:
4515 return nvme_identify_cmd_set(n, req);
4516 default:
4517 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
4518 return NVME_INVALID_FIELD | NVME_DNR;
4522 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
4524 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
4526 req->cqe.result = 1;
4527 if (nvme_check_sqid(n, sqid)) {
4528 return NVME_INVALID_FIELD | NVME_DNR;
4531 return NVME_SUCCESS;
4534 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
4536 trace_pci_nvme_setfeat_timestamp(ts);
4538 n->host_timestamp = le64_to_cpu(ts);
4539 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4542 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
4544 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4545 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
4547 union nvme_timestamp {
4548 struct {
4549 uint64_t timestamp:48;
4550 uint64_t sync:1;
4551 uint64_t origin:3;
4552 uint64_t rsvd1:12;
4554 uint64_t all;
4557 union nvme_timestamp ts;
4558 ts.all = 0;
4559 ts.timestamp = n->host_timestamp + elapsed_time;
4561 /* If the host timestamp is non-zero, set the timestamp origin */
4562 ts.origin = n->host_timestamp ? 0x01 : 0x00;
4564 trace_pci_nvme_getfeat_timestamp(ts.all);
4566 return cpu_to_le64(ts.all);
4569 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
4571 uint64_t timestamp = nvme_get_timestamp(n);
4573 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
4576 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
4578 NvmeCmd *cmd = &req->cmd;
4579 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4580 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4581 uint32_t nsid = le32_to_cpu(cmd->nsid);
4582 uint32_t result;
4583 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
4584 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
4585 uint16_t iv;
4586 NvmeNamespace *ns;
4587 int i;
4589 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
4590 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
4593 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
4595 if (!nvme_feature_support[fid]) {
4596 return NVME_INVALID_FIELD | NVME_DNR;
4599 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
4600 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4602 * The Reservation Notification Mask and Reservation Persistence
4603 * features require a status code of Invalid Field in Command when
4604 * NSID is 0xFFFFFFFF. Since the device does not support those
4605 * features we can always return Invalid Namespace or Format as we
4606 * should do for all other features.
4608 return NVME_INVALID_NSID | NVME_DNR;
4611 if (!nvme_ns(n, nsid)) {
4612 return NVME_INVALID_FIELD | NVME_DNR;
4616 switch (sel) {
4617 case NVME_GETFEAT_SELECT_CURRENT:
4618 break;
4619 case NVME_GETFEAT_SELECT_SAVED:
4620 /* no features are saveable by the controller; fallthrough */
4621 case NVME_GETFEAT_SELECT_DEFAULT:
4622 goto defaults;
4623 case NVME_GETFEAT_SELECT_CAP:
4624 result = nvme_feature_cap[fid];
4625 goto out;
4628 switch (fid) {
4629 case NVME_TEMPERATURE_THRESHOLD:
4630 result = 0;
4633 * The controller only implements the Composite Temperature sensor, so
4634 * return 0 for all other sensors.
4636 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4637 goto out;
4640 switch (NVME_TEMP_THSEL(dw11)) {
4641 case NVME_TEMP_THSEL_OVER:
4642 result = n->features.temp_thresh_hi;
4643 goto out;
4644 case NVME_TEMP_THSEL_UNDER:
4645 result = n->features.temp_thresh_low;
4646 goto out;
4649 return NVME_INVALID_FIELD | NVME_DNR;
4650 case NVME_ERROR_RECOVERY:
4651 if (!nvme_nsid_valid(n, nsid)) {
4652 return NVME_INVALID_NSID | NVME_DNR;
4655 ns = nvme_ns(n, nsid);
4656 if (unlikely(!ns)) {
4657 return NVME_INVALID_FIELD | NVME_DNR;
4660 result = ns->features.err_rec;
4661 goto out;
4662 case NVME_VOLATILE_WRITE_CACHE:
4663 result = 0;
4664 for (i = 1; i <= n->num_namespaces; i++) {
4665 ns = nvme_ns(n, i);
4666 if (!ns) {
4667 continue;
4670 result = blk_enable_write_cache(ns->blkconf.blk);
4671 if (result) {
4672 break;
4675 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
4676 goto out;
4677 case NVME_ASYNCHRONOUS_EVENT_CONF:
4678 result = n->features.async_config;
4679 goto out;
4680 case NVME_TIMESTAMP:
4681 return nvme_get_feature_timestamp(n, req);
4682 default:
4683 break;
4686 defaults:
4687 switch (fid) {
4688 case NVME_TEMPERATURE_THRESHOLD:
4689 result = 0;
4691 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4692 break;
4695 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
4696 result = NVME_TEMPERATURE_WARNING;
4699 break;
4700 case NVME_NUMBER_OF_QUEUES:
4701 result = (n->params.max_ioqpairs - 1) |
4702 ((n->params.max_ioqpairs - 1) << 16);
4703 trace_pci_nvme_getfeat_numq(result);
4704 break;
4705 case NVME_INTERRUPT_VECTOR_CONF:
4706 iv = dw11 & 0xffff;
4707 if (iv >= n->params.max_ioqpairs + 1) {
4708 return NVME_INVALID_FIELD | NVME_DNR;
4711 result = iv;
4712 if (iv == n->admin_cq.vector) {
4713 result |= NVME_INTVC_NOCOALESCING;
4715 break;
4716 default:
4717 result = nvme_feature_default[fid];
4718 break;
4721 out:
4722 req->cqe.result = cpu_to_le32(result);
4723 return NVME_SUCCESS;
4726 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
4728 uint16_t ret;
4729 uint64_t timestamp;
4731 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
4732 if (ret) {
4733 return ret;
4736 nvme_set_timestamp(n, timestamp);
4738 return NVME_SUCCESS;
4741 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
4743 NvmeNamespace *ns = NULL;
4745 NvmeCmd *cmd = &req->cmd;
4746 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4747 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4748 uint32_t nsid = le32_to_cpu(cmd->nsid);
4749 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
4750 uint8_t save = NVME_SETFEAT_SAVE(dw10);
4751 int i;
4753 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
4755 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
4756 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
4759 if (!nvme_feature_support[fid]) {
4760 return NVME_INVALID_FIELD | NVME_DNR;
4763 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
4764 if (nsid != NVME_NSID_BROADCAST) {
4765 if (!nvme_nsid_valid(n, nsid)) {
4766 return NVME_INVALID_NSID | NVME_DNR;
4769 ns = nvme_ns(n, nsid);
4770 if (unlikely(!ns)) {
4771 return NVME_INVALID_FIELD | NVME_DNR;
4774 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
4775 if (!nvme_nsid_valid(n, nsid)) {
4776 return NVME_INVALID_NSID | NVME_DNR;
4779 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
4782 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
4783 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
4786 switch (fid) {
4787 case NVME_TEMPERATURE_THRESHOLD:
4788 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4789 break;
4792 switch (NVME_TEMP_THSEL(dw11)) {
4793 case NVME_TEMP_THSEL_OVER:
4794 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
4795 break;
4796 case NVME_TEMP_THSEL_UNDER:
4797 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
4798 break;
4799 default:
4800 return NVME_INVALID_FIELD | NVME_DNR;
4803 if ((n->temperature >= n->features.temp_thresh_hi) ||
4804 (n->temperature <= n->features.temp_thresh_low)) {
4805 nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
4808 break;
4809 case NVME_ERROR_RECOVERY:
4810 if (nsid == NVME_NSID_BROADCAST) {
4811 for (i = 1; i <= n->num_namespaces; i++) {
4812 ns = nvme_ns(n, i);
4814 if (!ns) {
4815 continue;
4818 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
4819 ns->features.err_rec = dw11;
4823 break;
4826 assert(ns);
4827 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
4828 ns->features.err_rec = dw11;
4830 break;
4831 case NVME_VOLATILE_WRITE_CACHE:
4832 for (i = 1; i <= n->num_namespaces; i++) {
4833 ns = nvme_ns(n, i);
4834 if (!ns) {
4835 continue;
4838 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
4839 blk_flush(ns->blkconf.blk);
4842 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
4845 break;
4847 case NVME_NUMBER_OF_QUEUES:
4848 if (n->qs_created) {
4849 return NVME_CMD_SEQ_ERROR | NVME_DNR;
4853 * NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
4854 * and NSQR.
4856 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
4857 return NVME_INVALID_FIELD | NVME_DNR;
4860 trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
4861 ((dw11 >> 16) & 0xFFFF) + 1,
4862 n->params.max_ioqpairs,
4863 n->params.max_ioqpairs);
4864 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
4865 ((n->params.max_ioqpairs - 1) << 16));
4866 break;
4867 case NVME_ASYNCHRONOUS_EVENT_CONF:
4868 n->features.async_config = dw11;
4869 break;
4870 case NVME_TIMESTAMP:
4871 return nvme_set_feature_timestamp(n, req);
4872 case NVME_COMMAND_SET_PROFILE:
4873 if (dw11 & 0x1ff) {
4874 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
4875 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
4877 break;
4878 default:
4879 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
4881 return NVME_SUCCESS;
4884 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
4886 trace_pci_nvme_aer(nvme_cid(req));
4888 if (n->outstanding_aers > n->params.aerl) {
4889 trace_pci_nvme_aer_aerl_exceeded();
4890 return NVME_AER_LIMIT_EXCEEDED;
4893 n->aer_reqs[n->outstanding_aers] = req;
4894 n->outstanding_aers++;
4896 if (!QTAILQ_EMPTY(&n->aer_queue)) {
4897 nvme_process_aers(n);
4900 return NVME_NO_COMPLETE;
4903 static void nvme_update_dmrsl(NvmeCtrl *n)
4905 int nsid;
4907 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
4908 NvmeNamespace *ns = nvme_ns(n, nsid);
4909 if (!ns) {
4910 continue;
4913 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
4914 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
4918 static void __nvme_select_ns_iocs(NvmeCtrl *n, NvmeNamespace *ns);
4919 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
4921 NvmeNamespace *ns;
4922 NvmeCtrl *ctrl;
4923 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4924 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4925 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
4926 bool attach = !(dw10 & 0xf);
4927 uint16_t *nr_ids = &list[0];
4928 uint16_t *ids = &list[1];
4929 uint16_t ret;
4930 int i;
4932 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
4934 if (!nvme_nsid_valid(n, nsid)) {
4935 return NVME_INVALID_NSID | NVME_DNR;
4938 ns = nvme_subsys_ns(n->subsys, nsid);
4939 if (!ns) {
4940 return NVME_INVALID_FIELD | NVME_DNR;
4943 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
4944 if (ret) {
4945 return ret;
4948 if (!*nr_ids) {
4949 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
4952 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
4953 for (i = 0; i < *nr_ids; i++) {
4954 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
4955 if (!ctrl) {
4956 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
4959 if (attach) {
4960 if (nvme_ns(ctrl, nsid)) {
4961 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
4964 if (ns->attached && !ns->params.shared) {
4965 return NVME_NS_PRIVATE | NVME_DNR;
4968 nvme_attach_ns(ctrl, ns);
4969 __nvme_select_ns_iocs(ctrl, ns);
4970 } else {
4971 if (!nvme_ns(ctrl, nsid)) {
4972 return NVME_NS_NOT_ATTACHED | NVME_DNR;
4975 ctrl->namespaces[nsid - 1] = NULL;
4976 ns->attached--;
4978 nvme_update_dmrsl(ctrl);
4982 * Add namespace id to the changed namespace id list for event clearing
4983 * via Get Log Page command.
4985 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
4986 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
4987 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
4988 NVME_LOG_CHANGED_NSLIST);
4992 return NVME_SUCCESS;
4995 static uint16_t nvme_format_ns(NvmeCtrl *n, NvmeNamespace *ns, uint8_t lbaf,
4996 uint8_t mset, uint8_t pi, uint8_t pil,
4997 NvmeRequest *req)
4999 int64_t len, offset;
5000 struct nvme_aio_format_ctx *ctx;
5001 BlockBackend *blk = ns->blkconf.blk;
5002 uint16_t ms;
5003 uintptr_t *num_formats = (uintptr_t *)&req->opaque;
5004 int *count;
5006 if (ns->params.zoned) {
5007 return NVME_INVALID_FORMAT | NVME_DNR;
5010 trace_pci_nvme_format_ns(nvme_cid(req), nvme_nsid(ns), lbaf, mset, pi, pil);
5012 if (lbaf > ns->id_ns.nlbaf) {
5013 return NVME_INVALID_FORMAT | NVME_DNR;
5016 ms = ns->id_ns.lbaf[lbaf].ms;
5018 if (pi && (ms < sizeof(NvmeDifTuple))) {
5019 return NVME_INVALID_FORMAT | NVME_DNR;
5022 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5023 return NVME_INVALID_FIELD | NVME_DNR;
5026 nvme_ns_drain(ns);
5027 nvme_ns_shutdown(ns);
5028 nvme_ns_cleanup(ns);
5030 ns->id_ns.dps = (pil << 3) | pi;
5031 ns->id_ns.flbas = lbaf | (mset << 4);
5033 nvme_ns_init_format(ns);
5035 ns->status = NVME_FORMAT_IN_PROGRESS;
5037 len = ns->size;
5038 offset = 0;
5040 count = g_new(int, 1);
5041 *count = 1;
5043 (*num_formats)++;
5045 while (len) {
5046 ctx = g_new(struct nvme_aio_format_ctx, 1);
5047 ctx->req = req;
5048 ctx->ns = ns;
5049 ctx->count = count;
5051 size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
5053 (*count)++;
5055 blk_aio_pwrite_zeroes(blk, offset, bytes, BDRV_REQ_MAY_UNMAP,
5056 nvme_aio_format_cb, ctx);
5058 offset += bytes;
5059 len -= bytes;
5063 if (--(*count)) {
5064 return NVME_NO_COMPLETE;
5067 g_free(count);
5068 ns->status = 0x0;
5069 (*num_formats)--;
5071 return NVME_SUCCESS;
5074 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5076 NvmeNamespace *ns;
5077 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5078 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5079 uint8_t lbaf = dw10 & 0xf;
5080 uint8_t mset = (dw10 >> 4) & 0x1;
5081 uint8_t pi = (dw10 >> 5) & 0x7;
5082 uint8_t pil = (dw10 >> 8) & 0x1;
5083 uintptr_t *num_formats = (uintptr_t *)&req->opaque;
5084 uint16_t status;
5085 int i;
5087 trace_pci_nvme_format(nvme_cid(req), nsid, lbaf, mset, pi, pil);
5089 /* 1-initialize; see the comment in nvme_dsm */
5090 *num_formats = 1;
5092 if (nsid != NVME_NSID_BROADCAST) {
5093 if (!nvme_nsid_valid(n, nsid)) {
5094 return NVME_INVALID_NSID | NVME_DNR;
5097 ns = nvme_ns(n, nsid);
5098 if (!ns) {
5099 return NVME_INVALID_FIELD | NVME_DNR;
5102 status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
5103 if (status && status != NVME_NO_COMPLETE) {
5104 req->status = status;
5106 } else {
5107 for (i = 1; i <= n->num_namespaces; i++) {
5108 ns = nvme_ns(n, i);
5109 if (!ns) {
5110 continue;
5113 status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
5114 if (status && status != NVME_NO_COMPLETE) {
5115 req->status = status;
5116 break;
5121 /* account for the 1-initialization */
5122 if (--(*num_formats)) {
5123 return NVME_NO_COMPLETE;
5126 return req->status;
5129 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
5131 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
5132 nvme_adm_opc_str(req->cmd.opcode));
5134 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
5135 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
5136 return NVME_INVALID_OPCODE | NVME_DNR;
5139 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
5140 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
5141 return NVME_INVALID_FIELD | NVME_DNR;
5144 switch (req->cmd.opcode) {
5145 case NVME_ADM_CMD_DELETE_SQ:
5146 return nvme_del_sq(n, req);
5147 case NVME_ADM_CMD_CREATE_SQ:
5148 return nvme_create_sq(n, req);
5149 case NVME_ADM_CMD_GET_LOG_PAGE:
5150 return nvme_get_log(n, req);
5151 case NVME_ADM_CMD_DELETE_CQ:
5152 return nvme_del_cq(n, req);
5153 case NVME_ADM_CMD_CREATE_CQ:
5154 return nvme_create_cq(n, req);
5155 case NVME_ADM_CMD_IDENTIFY:
5156 return nvme_identify(n, req);
5157 case NVME_ADM_CMD_ABORT:
5158 return nvme_abort(n, req);
5159 case NVME_ADM_CMD_SET_FEATURES:
5160 return nvme_set_feature(n, req);
5161 case NVME_ADM_CMD_GET_FEATURES:
5162 return nvme_get_feature(n, req);
5163 case NVME_ADM_CMD_ASYNC_EV_REQ:
5164 return nvme_aer(n, req);
5165 case NVME_ADM_CMD_NS_ATTACHMENT:
5166 return nvme_ns_attachment(n, req);
5167 case NVME_ADM_CMD_FORMAT_NVM:
5168 return nvme_format(n, req);
5169 default:
5170 assert(false);
5173 return NVME_INVALID_OPCODE | NVME_DNR;
5176 static void nvme_process_sq(void *opaque)
5178 NvmeSQueue *sq = opaque;
5179 NvmeCtrl *n = sq->ctrl;
5180 NvmeCQueue *cq = n->cq[sq->cqid];
5182 uint16_t status;
5183 hwaddr addr;
5184 NvmeCmd cmd;
5185 NvmeRequest *req;
5187 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
5188 addr = sq->dma_addr + sq->head * n->sqe_size;
5189 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
5190 trace_pci_nvme_err_addr_read(addr);
5191 trace_pci_nvme_err_cfs();
5192 n->bar.csts = NVME_CSTS_FAILED;
5193 break;
5195 nvme_inc_sq_head(sq);
5197 req = QTAILQ_FIRST(&sq->req_list);
5198 QTAILQ_REMOVE(&sq->req_list, req, entry);
5199 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
5200 nvme_req_clear(req);
5201 req->cqe.cid = cmd.cid;
5202 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
5204 status = sq->sqid ? nvme_io_cmd(n, req) :
5205 nvme_admin_cmd(n, req);
5206 if (status != NVME_NO_COMPLETE) {
5207 req->status = status;
5208 nvme_enqueue_req_completion(cq, req);
5213 static void nvme_ctrl_reset(NvmeCtrl *n)
5215 NvmeNamespace *ns;
5216 int i;
5218 for (i = 1; i <= n->num_namespaces; i++) {
5219 ns = nvme_ns(n, i);
5220 if (!ns) {
5221 continue;
5224 nvme_ns_drain(ns);
5227 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5228 if (n->sq[i] != NULL) {
5229 nvme_free_sq(n->sq[i], n);
5232 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5233 if (n->cq[i] != NULL) {
5234 nvme_free_cq(n->cq[i], n);
5238 while (!QTAILQ_EMPTY(&n->aer_queue)) {
5239 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
5240 QTAILQ_REMOVE(&n->aer_queue, event, entry);
5241 g_free(event);
5244 n->aer_queued = 0;
5245 n->outstanding_aers = 0;
5246 n->qs_created = false;
5248 n->bar.cc = 0;
5251 static void nvme_ctrl_shutdown(NvmeCtrl *n)
5253 NvmeNamespace *ns;
5254 int i;
5256 if (n->pmr.dev) {
5257 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
5260 for (i = 1; i <= n->num_namespaces; i++) {
5261 ns = nvme_ns(n, i);
5262 if (!ns) {
5263 continue;
5266 nvme_ns_shutdown(ns);
5270 static void __nvme_select_ns_iocs(NvmeCtrl *n, NvmeNamespace *ns)
5272 ns->iocs = nvme_cse_iocs_none;
5273 switch (ns->csi) {
5274 case NVME_CSI_NVM:
5275 if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) {
5276 ns->iocs = nvme_cse_iocs_nvm;
5278 break;
5279 case NVME_CSI_ZONED:
5280 if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_CSI) {
5281 ns->iocs = nvme_cse_iocs_zoned;
5282 } else if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_NVM) {
5283 ns->iocs = nvme_cse_iocs_nvm;
5285 break;
5289 static void nvme_select_ns_iocs(NvmeCtrl *n)
5291 NvmeNamespace *ns;
5292 int i;
5294 for (i = 1; i <= n->num_namespaces; i++) {
5295 ns = nvme_ns(n, i);
5296 if (!ns) {
5297 continue;
5300 __nvme_select_ns_iocs(n, ns);
5304 static int nvme_start_ctrl(NvmeCtrl *n)
5306 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
5307 uint32_t page_size = 1 << page_bits;
5309 if (unlikely(n->cq[0])) {
5310 trace_pci_nvme_err_startfail_cq();
5311 return -1;
5313 if (unlikely(n->sq[0])) {
5314 trace_pci_nvme_err_startfail_sq();
5315 return -1;
5317 if (unlikely(!n->bar.asq)) {
5318 trace_pci_nvme_err_startfail_nbarasq();
5319 return -1;
5321 if (unlikely(!n->bar.acq)) {
5322 trace_pci_nvme_err_startfail_nbaracq();
5323 return -1;
5325 if (unlikely(n->bar.asq & (page_size - 1))) {
5326 trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
5327 return -1;
5329 if (unlikely(n->bar.acq & (page_size - 1))) {
5330 trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
5331 return -1;
5333 if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
5334 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
5335 return -1;
5337 if (unlikely(NVME_CC_MPS(n->bar.cc) <
5338 NVME_CAP_MPSMIN(n->bar.cap))) {
5339 trace_pci_nvme_err_startfail_page_too_small(
5340 NVME_CC_MPS(n->bar.cc),
5341 NVME_CAP_MPSMIN(n->bar.cap));
5342 return -1;
5344 if (unlikely(NVME_CC_MPS(n->bar.cc) >
5345 NVME_CAP_MPSMAX(n->bar.cap))) {
5346 trace_pci_nvme_err_startfail_page_too_large(
5347 NVME_CC_MPS(n->bar.cc),
5348 NVME_CAP_MPSMAX(n->bar.cap));
5349 return -1;
5351 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
5352 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
5353 trace_pci_nvme_err_startfail_cqent_too_small(
5354 NVME_CC_IOCQES(n->bar.cc),
5355 NVME_CTRL_CQES_MIN(n->bar.cap));
5356 return -1;
5358 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
5359 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
5360 trace_pci_nvme_err_startfail_cqent_too_large(
5361 NVME_CC_IOCQES(n->bar.cc),
5362 NVME_CTRL_CQES_MAX(n->bar.cap));
5363 return -1;
5365 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
5366 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
5367 trace_pci_nvme_err_startfail_sqent_too_small(
5368 NVME_CC_IOSQES(n->bar.cc),
5369 NVME_CTRL_SQES_MIN(n->bar.cap));
5370 return -1;
5372 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
5373 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
5374 trace_pci_nvme_err_startfail_sqent_too_large(
5375 NVME_CC_IOSQES(n->bar.cc),
5376 NVME_CTRL_SQES_MAX(n->bar.cap));
5377 return -1;
5379 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
5380 trace_pci_nvme_err_startfail_asqent_sz_zero();
5381 return -1;
5383 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
5384 trace_pci_nvme_err_startfail_acqent_sz_zero();
5385 return -1;
5388 n->page_bits = page_bits;
5389 n->page_size = page_size;
5390 n->max_prp_ents = n->page_size / sizeof(uint64_t);
5391 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
5392 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
5393 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
5394 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
5395 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
5396 NVME_AQA_ASQS(n->bar.aqa) + 1);
5398 nvme_set_timestamp(n, 0ULL);
5400 QTAILQ_INIT(&n->aer_queue);
5402 nvme_select_ns_iocs(n);
5404 return 0;
5407 static void nvme_cmb_enable_regs(NvmeCtrl *n)
5409 NVME_CMBLOC_SET_CDPCILS(n->bar.cmbloc, 1);
5410 NVME_CMBLOC_SET_CDPMLS(n->bar.cmbloc, 1);
5411 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
5413 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
5414 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
5415 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
5416 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
5417 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
5418 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
5419 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
5422 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
5423 unsigned size)
5425 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
5426 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
5427 "MMIO write not 32-bit aligned,"
5428 " offset=0x%"PRIx64"", offset);
5429 /* should be ignored, fall through for now */
5432 if (unlikely(size < sizeof(uint32_t))) {
5433 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
5434 "MMIO write smaller than 32-bits,"
5435 " offset=0x%"PRIx64", size=%u",
5436 offset, size);
5437 /* should be ignored, fall through for now */
5440 switch (offset) {
5441 case 0xc: /* INTMS */
5442 if (unlikely(msix_enabled(&(n->parent_obj)))) {
5443 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
5444 "undefined access to interrupt mask set"
5445 " when MSI-X is enabled");
5446 /* should be ignored, fall through for now */
5448 n->bar.intms |= data & 0xffffffff;
5449 n->bar.intmc = n->bar.intms;
5450 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
5451 nvme_irq_check(n);
5452 break;
5453 case 0x10: /* INTMC */
5454 if (unlikely(msix_enabled(&(n->parent_obj)))) {
5455 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
5456 "undefined access to interrupt mask clr"
5457 " when MSI-X is enabled");
5458 /* should be ignored, fall through for now */
5460 n->bar.intms &= ~(data & 0xffffffff);
5461 n->bar.intmc = n->bar.intms;
5462 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
5463 nvme_irq_check(n);
5464 break;
5465 case 0x14: /* CC */
5466 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
5467 /* Windows first sends data, then sends enable bit */
5468 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
5469 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
5471 n->bar.cc = data;
5474 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
5475 n->bar.cc = data;
5476 if (unlikely(nvme_start_ctrl(n))) {
5477 trace_pci_nvme_err_startfail();
5478 n->bar.csts = NVME_CSTS_FAILED;
5479 } else {
5480 trace_pci_nvme_mmio_start_success();
5481 n->bar.csts = NVME_CSTS_READY;
5483 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
5484 trace_pci_nvme_mmio_stopped();
5485 nvme_ctrl_reset(n);
5486 n->bar.csts &= ~NVME_CSTS_READY;
5488 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
5489 trace_pci_nvme_mmio_shutdown_set();
5490 nvme_ctrl_shutdown(n);
5491 n->bar.cc = data;
5492 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
5493 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
5494 trace_pci_nvme_mmio_shutdown_cleared();
5495 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
5496 n->bar.cc = data;
5498 break;
5499 case 0x1C: /* CSTS */
5500 if (data & (1 << 4)) {
5501 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
5502 "attempted to W1C CSTS.NSSRO"
5503 " but CAP.NSSRS is zero (not supported)");
5504 } else if (data != 0) {
5505 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
5506 "attempted to set a read only bit"
5507 " of controller status");
5509 break;
5510 case 0x20: /* NSSR */
5511 if (data == 0x4E564D65) {
5512 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
5513 } else {
5514 /* The spec says that writes of other values have no effect */
5515 return;
5517 break;
5518 case 0x24: /* AQA */
5519 n->bar.aqa = data & 0xffffffff;
5520 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
5521 break;
5522 case 0x28: /* ASQ */
5523 n->bar.asq = size == 8 ? data :
5524 (n->bar.asq & ~0xffffffffULL) | (data & 0xffffffff);
5525 trace_pci_nvme_mmio_asqaddr(data);
5526 break;
5527 case 0x2c: /* ASQ hi */
5528 n->bar.asq = (n->bar.asq & 0xffffffff) | (data << 32);
5529 trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
5530 break;
5531 case 0x30: /* ACQ */
5532 trace_pci_nvme_mmio_acqaddr(data);
5533 n->bar.acq = size == 8 ? data :
5534 (n->bar.acq & ~0xffffffffULL) | (data & 0xffffffff);
5535 break;
5536 case 0x34: /* ACQ hi */
5537 n->bar.acq = (n->bar.acq & 0xffffffff) | (data << 32);
5538 trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
5539 break;
5540 case 0x38: /* CMBLOC */
5541 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
5542 "invalid write to reserved CMBLOC"
5543 " when CMBSZ is zero, ignored");
5544 return;
5545 case 0x3C: /* CMBSZ */
5546 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
5547 "invalid write to read only CMBSZ, ignored");
5548 return;
5549 case 0x50: /* CMBMSC */
5550 if (!NVME_CAP_CMBS(n->bar.cap)) {
5551 return;
5554 n->bar.cmbmsc = size == 8 ? data :
5555 (n->bar.cmbmsc & ~0xffffffff) | (data & 0xffffffff);
5556 n->cmb.cmse = false;
5558 if (NVME_CMBMSC_CRE(data)) {
5559 nvme_cmb_enable_regs(n);
5561 if (NVME_CMBMSC_CMSE(data)) {
5562 hwaddr cba = NVME_CMBMSC_CBA(data) << CMBMSC_CBA_SHIFT;
5563 if (cba + int128_get64(n->cmb.mem.size) < cba) {
5564 NVME_CMBSTS_SET_CBAI(n->bar.cmbsts, 1);
5565 return;
5568 n->cmb.cba = cba;
5569 n->cmb.cmse = true;
5571 } else {
5572 n->bar.cmbsz = 0;
5573 n->bar.cmbloc = 0;
5576 return;
5577 case 0x54: /* CMBMSC hi */
5578 n->bar.cmbmsc = (n->bar.cmbmsc & 0xffffffff) | (data << 32);
5579 return;
5581 case 0xE00: /* PMRCAP */
5582 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
5583 "invalid write to PMRCAP register, ignored");
5584 return;
5585 case 0xE04: /* PMRCTL */
5586 n->bar.pmrctl = data;
5587 if (NVME_PMRCTL_EN(data)) {
5588 memory_region_set_enabled(&n->pmr.dev->mr, true);
5589 n->bar.pmrsts = 0;
5590 } else {
5591 memory_region_set_enabled(&n->pmr.dev->mr, false);
5592 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 1);
5593 n->pmr.cmse = false;
5595 return;
5596 case 0xE08: /* PMRSTS */
5597 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
5598 "invalid write to PMRSTS register, ignored");
5599 return;
5600 case 0xE0C: /* PMREBS */
5601 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
5602 "invalid write to PMREBS register, ignored");
5603 return;
5604 case 0xE10: /* PMRSWTP */
5605 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
5606 "invalid write to PMRSWTP register, ignored");
5607 return;
5608 case 0xE14: /* PMRMSCL */
5609 if (!NVME_CAP_PMRS(n->bar.cap)) {
5610 return;
5613 n->bar.pmrmsc = (n->bar.pmrmsc & ~0xffffffff) | (data & 0xffffffff);
5614 n->pmr.cmse = false;
5616 if (NVME_PMRMSC_CMSE(n->bar.pmrmsc)) {
5617 hwaddr cba = NVME_PMRMSC_CBA(n->bar.pmrmsc) << PMRMSC_CBA_SHIFT;
5618 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
5619 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 1);
5620 return;
5623 n->pmr.cmse = true;
5624 n->pmr.cba = cba;
5627 return;
5628 case 0xE18: /* PMRMSCU */
5629 if (!NVME_CAP_PMRS(n->bar.cap)) {
5630 return;
5633 n->bar.pmrmsc = (n->bar.pmrmsc & 0xffffffff) | (data << 32);
5634 return;
5635 default:
5636 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
5637 "invalid MMIO write,"
5638 " offset=0x%"PRIx64", data=%"PRIx64"",
5639 offset, data);
5640 break;
5644 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
5646 NvmeCtrl *n = (NvmeCtrl *)opaque;
5647 uint8_t *ptr = (uint8_t *)&n->bar;
5648 uint64_t val = 0;
5650 trace_pci_nvme_mmio_read(addr, size);
5652 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
5653 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
5654 "MMIO read not 32-bit aligned,"
5655 " offset=0x%"PRIx64"", addr);
5656 /* should RAZ, fall through for now */
5657 } else if (unlikely(size < sizeof(uint32_t))) {
5658 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
5659 "MMIO read smaller than 32-bits,"
5660 " offset=0x%"PRIx64"", addr);
5661 /* should RAZ, fall through for now */
5664 if (addr < sizeof(n->bar)) {
5666 * When PMRWBM bit 1 is set then read from
5667 * from PMRSTS should ensure prior writes
5668 * made it to persistent media
5670 if (addr == 0xE08 &&
5671 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
5672 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
5674 memcpy(&val, ptr + addr, size);
5675 } else {
5676 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
5677 "MMIO read beyond last register,"
5678 " offset=0x%"PRIx64", returning 0", addr);
5681 return val;
5684 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
5686 uint32_t qid;
5688 if (unlikely(addr & ((1 << 2) - 1))) {
5689 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
5690 "doorbell write not 32-bit aligned,"
5691 " offset=0x%"PRIx64", ignoring", addr);
5692 return;
5695 if (((addr - 0x1000) >> 2) & 1) {
5696 /* Completion queue doorbell write */
5698 uint16_t new_head = val & 0xffff;
5699 int start_sqs;
5700 NvmeCQueue *cq;
5702 qid = (addr - (0x1000 + (1 << 2))) >> 3;
5703 if (unlikely(nvme_check_cqid(n, qid))) {
5704 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
5705 "completion queue doorbell write"
5706 " for nonexistent queue,"
5707 " sqid=%"PRIu32", ignoring", qid);
5710 * NVM Express v1.3d, Section 4.1 state: "If host software writes
5711 * an invalid value to the Submission Queue Tail Doorbell or
5712 * Completion Queue Head Doorbell regiter and an Asynchronous Event
5713 * Request command is outstanding, then an asynchronous event is
5714 * posted to the Admin Completion Queue with a status code of
5715 * Invalid Doorbell Write Value."
5717 * Also note that the spec includes the "Invalid Doorbell Register"
5718 * status code, but nowhere does it specify when to use it.
5719 * However, it seems reasonable to use it here in a similar
5720 * fashion.
5722 if (n->outstanding_aers) {
5723 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
5724 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
5725 NVME_LOG_ERROR_INFO);
5728 return;
5731 cq = n->cq[qid];
5732 if (unlikely(new_head >= cq->size)) {
5733 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
5734 "completion queue doorbell write value"
5735 " beyond queue size, sqid=%"PRIu32","
5736 " new_head=%"PRIu16", ignoring",
5737 qid, new_head);
5739 if (n->outstanding_aers) {
5740 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
5741 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
5742 NVME_LOG_ERROR_INFO);
5745 return;
5748 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
5750 start_sqs = nvme_cq_full(cq) ? 1 : 0;
5751 cq->head = new_head;
5752 if (start_sqs) {
5753 NvmeSQueue *sq;
5754 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
5755 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
5757 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
5760 if (cq->tail == cq->head) {
5761 nvme_irq_deassert(n, cq);
5763 } else {
5764 /* Submission queue doorbell write */
5766 uint16_t new_tail = val & 0xffff;
5767 NvmeSQueue *sq;
5769 qid = (addr - 0x1000) >> 3;
5770 if (unlikely(nvme_check_sqid(n, qid))) {
5771 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
5772 "submission queue doorbell write"
5773 " for nonexistent queue,"
5774 " sqid=%"PRIu32", ignoring", qid);
5776 if (n->outstanding_aers) {
5777 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
5778 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
5779 NVME_LOG_ERROR_INFO);
5782 return;
5785 sq = n->sq[qid];
5786 if (unlikely(new_tail >= sq->size)) {
5787 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
5788 "submission queue doorbell write value"
5789 " beyond queue size, sqid=%"PRIu32","
5790 " new_tail=%"PRIu16", ignoring",
5791 qid, new_tail);
5793 if (n->outstanding_aers) {
5794 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
5795 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
5796 NVME_LOG_ERROR_INFO);
5799 return;
5802 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
5804 sq->tail = new_tail;
5805 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
5809 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
5810 unsigned size)
5812 NvmeCtrl *n = (NvmeCtrl *)opaque;
5814 trace_pci_nvme_mmio_write(addr, data, size);
5816 if (addr < sizeof(n->bar)) {
5817 nvme_write_bar(n, addr, data, size);
5818 } else {
5819 nvme_process_db(n, addr, data);
5823 static const MemoryRegionOps nvme_mmio_ops = {
5824 .read = nvme_mmio_read,
5825 .write = nvme_mmio_write,
5826 .endianness = DEVICE_LITTLE_ENDIAN,
5827 .impl = {
5828 .min_access_size = 2,
5829 .max_access_size = 8,
5833 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
5834 unsigned size)
5836 NvmeCtrl *n = (NvmeCtrl *)opaque;
5837 stn_le_p(&n->cmb.buf[addr], size, data);
5840 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
5842 NvmeCtrl *n = (NvmeCtrl *)opaque;
5843 return ldn_le_p(&n->cmb.buf[addr], size);
5846 static const MemoryRegionOps nvme_cmb_ops = {
5847 .read = nvme_cmb_read,
5848 .write = nvme_cmb_write,
5849 .endianness = DEVICE_LITTLE_ENDIAN,
5850 .impl = {
5851 .min_access_size = 1,
5852 .max_access_size = 8,
5856 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
5858 NvmeParams *params = &n->params;
5860 if (params->num_queues) {
5861 warn_report("num_queues is deprecated; please use max_ioqpairs "
5862 "instead");
5864 params->max_ioqpairs = params->num_queues - 1;
5867 if (n->namespace.blkconf.blk && n->subsys) {
5868 error_setg(errp, "subsystem support is unavailable with legacy "
5869 "namespace ('drive' property)");
5870 return;
5873 if (params->max_ioqpairs < 1 ||
5874 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
5875 error_setg(errp, "max_ioqpairs must be between 1 and %d",
5876 NVME_MAX_IOQPAIRS);
5877 return;
5880 if (params->msix_qsize < 1 ||
5881 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
5882 error_setg(errp, "msix_qsize must be between 1 and %d",
5883 PCI_MSIX_FLAGS_QSIZE + 1);
5884 return;
5887 if (!params->serial) {
5888 error_setg(errp, "serial property not set");
5889 return;
5892 if (n->pmr.dev) {
5893 if (host_memory_backend_is_mapped(n->pmr.dev)) {
5894 error_setg(errp, "can't use already busy memdev: %s",
5895 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
5896 return;
5899 if (!is_power_of_2(n->pmr.dev->size)) {
5900 error_setg(errp, "pmr backend size needs to be power of 2 in size");
5901 return;
5904 host_memory_backend_set_mapped(n->pmr.dev, true);
5907 if (n->params.zasl > n->params.mdts) {
5908 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
5909 "than or equal to mdts (Maximum Data Transfer Size)");
5910 return;
5913 if (!n->params.vsl) {
5914 error_setg(errp, "vsl must be non-zero");
5915 return;
5919 static void nvme_init_state(NvmeCtrl *n)
5921 n->num_namespaces = NVME_MAX_NAMESPACES;
5922 /* add one to max_ioqpairs to account for the admin queue pair */
5923 n->reg_size = pow2ceil(sizeof(NvmeBar) +
5924 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
5925 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
5926 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
5927 n->temperature = NVME_TEMPERATURE;
5928 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
5929 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5930 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
5933 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
5935 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
5937 n->cmb.buf = g_malloc0(cmb_size);
5938 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
5939 "nvme-cmb", cmb_size);
5940 pci_register_bar(pci_dev, NVME_CMB_BIR,
5941 PCI_BASE_ADDRESS_SPACE_MEMORY |
5942 PCI_BASE_ADDRESS_MEM_TYPE_64 |
5943 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
5945 NVME_CAP_SET_CMBS(n->bar.cap, 1);
5947 if (n->params.legacy_cmb) {
5948 nvme_cmb_enable_regs(n);
5949 n->cmb.cmse = true;
5953 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
5955 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 1);
5956 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 1);
5957 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
5958 /* Turn on bit 1 support */
5959 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
5960 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 1);
5962 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
5963 PCI_BASE_ADDRESS_SPACE_MEMORY |
5964 PCI_BASE_ADDRESS_MEM_TYPE_64 |
5965 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
5967 memory_region_set_enabled(&n->pmr.dev->mr, false);
5970 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
5972 uint8_t *pci_conf = pci_dev->config;
5973 uint64_t bar_size, msix_table_size, msix_pba_size;
5974 unsigned msix_table_offset, msix_pba_offset;
5975 int ret;
5977 Error *err = NULL;
5979 pci_conf[PCI_INTERRUPT_PIN] = 1;
5980 pci_config_set_prog_interface(pci_conf, 0x2);
5982 if (n->params.use_intel_id) {
5983 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
5984 pci_config_set_device_id(pci_conf, 0x5845);
5985 } else {
5986 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
5987 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
5990 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
5991 pcie_endpoint_cap_init(pci_dev, 0x80);
5993 bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
5994 msix_table_offset = bar_size;
5995 msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
5997 bar_size += msix_table_size;
5998 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
5999 msix_pba_offset = bar_size;
6000 msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
6002 bar_size += msix_pba_size;
6003 bar_size = pow2ceil(bar_size);
6005 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
6006 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
6007 n->reg_size);
6008 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
6010 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
6011 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
6012 ret = msix_init(pci_dev, n->params.msix_qsize,
6013 &n->bar0, 0, msix_table_offset,
6014 &n->bar0, 0, msix_pba_offset, 0, &err);
6015 if (ret < 0) {
6016 if (ret == -ENOTSUP) {
6017 warn_report_err(err);
6018 } else {
6019 error_propagate(errp, err);
6020 return ret;
6024 if (n->params.cmb_size_mb) {
6025 nvme_init_cmb(n, pci_dev);
6028 if (n->pmr.dev) {
6029 nvme_init_pmr(n, pci_dev);
6032 return 0;
6035 static void nvme_init_subnqn(NvmeCtrl *n)
6037 NvmeSubsystem *subsys = n->subsys;
6038 NvmeIdCtrl *id = &n->id_ctrl;
6040 if (!subsys) {
6041 snprintf((char *)id->subnqn, sizeof(id->subnqn),
6042 "nqn.2019-08.org.qemu:%s", n->params.serial);
6043 } else {
6044 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
6048 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
6050 NvmeIdCtrl *id = &n->id_ctrl;
6051 uint8_t *pci_conf = pci_dev->config;
6053 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
6054 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
6055 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
6056 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
6057 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
6059 id->cntlid = cpu_to_le16(n->cntlid);
6061 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
6063 id->rab = 6;
6065 if (n->params.use_intel_id) {
6066 id->ieee[0] = 0xb3;
6067 id->ieee[1] = 0x02;
6068 id->ieee[2] = 0x00;
6069 } else {
6070 id->ieee[0] = 0x00;
6071 id->ieee[1] = 0x54;
6072 id->ieee[2] = 0x52;
6075 id->mdts = n->params.mdts;
6076 id->ver = cpu_to_le32(NVME_SPEC_VER);
6077 id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT);
6078 id->cntrltype = 0x1;
6081 * Because the controller always completes the Abort command immediately,
6082 * there can never be more than one concurrently executing Abort command,
6083 * so this value is never used for anything. Note that there can easily be
6084 * many Abort commands in the queues, but they are not considered
6085 * "executing" until processed by nvme_abort.
6087 * The specification recommends a value of 3 for Abort Command Limit (four
6088 * concurrently outstanding Abort commands), so lets use that though it is
6089 * inconsequential.
6091 id->acl = 3;
6092 id->aerl = n->params.aerl;
6093 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
6094 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
6096 /* recommended default value (~70 C) */
6097 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
6098 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
6100 id->sqes = (0x6 << 4) | 0x6;
6101 id->cqes = (0x4 << 4) | 0x4;
6102 id->nn = cpu_to_le32(n->num_namespaces);
6103 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
6104 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
6105 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
6108 * NOTE: If this device ever supports a command set that does NOT use 0x0
6109 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
6110 * should probably be removed.
6112 * See comment in nvme_io_cmd.
6114 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
6116 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0);
6117 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
6118 NVME_CTRL_SGLS_BITBUCKET);
6120 nvme_init_subnqn(n);
6122 id->psd[0].mp = cpu_to_le16(0x9c4);
6123 id->psd[0].enlat = cpu_to_le32(0x10);
6124 id->psd[0].exlat = cpu_to_le32(0x4);
6126 if (n->subsys) {
6127 id->cmic |= NVME_CMIC_MULTI_CTRL;
6130 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
6131 NVME_CAP_SET_CQR(n->bar.cap, 1);
6132 NVME_CAP_SET_TO(n->bar.cap, 0xf);
6133 NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
6134 NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP);
6135 NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
6136 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
6137 NVME_CAP_SET_CMBS(n->bar.cap, n->params.cmb_size_mb ? 1 : 0);
6138 NVME_CAP_SET_PMRS(n->bar.cap, n->pmr.dev ? 1 : 0);
6140 n->bar.vs = NVME_SPEC_VER;
6141 n->bar.intmc = n->bar.intms = 0;
6144 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
6146 int cntlid;
6148 if (!n->subsys) {
6149 return 0;
6152 cntlid = nvme_subsys_register_ctrl(n, errp);
6153 if (cntlid < 0) {
6154 return -1;
6157 n->cntlid = cntlid;
6159 return 0;
6162 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
6164 uint32_t nsid = ns->params.nsid;
6165 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
6167 n->namespaces[nsid - 1] = ns;
6168 ns->attached++;
6170 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6171 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6174 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
6176 NvmeCtrl *n = NVME(pci_dev);
6177 NvmeNamespace *ns;
6178 Error *local_err = NULL;
6180 nvme_check_constraints(n, &local_err);
6181 if (local_err) {
6182 error_propagate(errp, local_err);
6183 return;
6186 qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
6187 &pci_dev->qdev, n->parent_obj.qdev.id);
6189 nvme_init_state(n);
6190 if (nvme_init_pci(n, pci_dev, errp)) {
6191 return;
6194 if (nvme_init_subsys(n, errp)) {
6195 error_propagate(errp, local_err);
6196 return;
6198 nvme_init_ctrl(n, pci_dev);
6200 /* setup a namespace if the controller drive property was given */
6201 if (n->namespace.blkconf.blk) {
6202 ns = &n->namespace;
6203 ns->params.nsid = 1;
6205 if (nvme_ns_setup(n, ns, errp)) {
6206 return;
6209 nvme_attach_ns(n, ns);
6213 static void nvme_exit(PCIDevice *pci_dev)
6215 NvmeCtrl *n = NVME(pci_dev);
6216 NvmeNamespace *ns;
6217 int i;
6219 nvme_ctrl_reset(n);
6221 for (i = 1; i <= n->num_namespaces; i++) {
6222 ns = nvme_ns(n, i);
6223 if (!ns) {
6224 continue;
6227 nvme_ns_cleanup(ns);
6230 g_free(n->cq);
6231 g_free(n->sq);
6232 g_free(n->aer_reqs);
6234 if (n->params.cmb_size_mb) {
6235 g_free(n->cmb.buf);
6238 if (n->pmr.dev) {
6239 host_memory_backend_set_mapped(n->pmr.dev, false);
6241 msix_uninit(pci_dev, &n->bar0, &n->bar0);
6242 memory_region_del_subregion(&n->bar0, &n->iomem);
6245 static Property nvme_props[] = {
6246 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
6247 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
6248 HostMemoryBackend *),
6249 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
6250 NvmeSubsystem *),
6251 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
6252 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
6253 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
6254 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
6255 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
6256 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
6257 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
6258 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
6259 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
6260 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
6261 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
6262 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
6263 DEFINE_PROP_END_OF_LIST(),
6266 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
6267 void *opaque, Error **errp)
6269 NvmeCtrl *n = NVME(obj);
6270 uint8_t value = n->smart_critical_warning;
6272 visit_type_uint8(v, name, &value, errp);
6275 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
6276 void *opaque, Error **errp)
6278 NvmeCtrl *n = NVME(obj);
6279 uint8_t value, old_value, cap = 0, index, event;
6281 if (!visit_type_uint8(v, name, &value, errp)) {
6282 return;
6285 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
6286 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
6287 if (NVME_CAP_PMRS(n->bar.cap)) {
6288 cap |= NVME_SMART_PMR_UNRELIABLE;
6291 if ((value & cap) != value) {
6292 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
6293 value & ~cap);
6294 return;
6297 old_value = n->smart_critical_warning;
6298 n->smart_critical_warning = value;
6300 /* only inject new bits of smart critical warning */
6301 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
6302 event = 1 << index;
6303 if (value & ~old_value & event)
6304 nvme_smart_event(n, event);
6308 static const VMStateDescription nvme_vmstate = {
6309 .name = "nvme",
6310 .unmigratable = 1,
6313 static void nvme_class_init(ObjectClass *oc, void *data)
6315 DeviceClass *dc = DEVICE_CLASS(oc);
6316 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
6318 pc->realize = nvme_realize;
6319 pc->exit = nvme_exit;
6320 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
6321 pc->revision = 2;
6323 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
6324 dc->desc = "Non-Volatile Memory Express";
6325 device_class_set_props(dc, nvme_props);
6326 dc->vmsd = &nvme_vmstate;
6329 static void nvme_instance_init(Object *obj)
6331 NvmeCtrl *n = NVME(obj);
6333 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
6334 "bootindex", "/namespace@1,0",
6335 DEVICE(obj));
6337 object_property_add(obj, "smart_critical_warning", "uint8",
6338 nvme_get_smart_warning,
6339 nvme_set_smart_warning, NULL, NULL);
6342 static const TypeInfo nvme_info = {
6343 .name = TYPE_NVME,
6344 .parent = TYPE_PCI_DEVICE,
6345 .instance_size = sizeof(NvmeCtrl),
6346 .instance_init = nvme_instance_init,
6347 .class_init = nvme_class_init,
6348 .interfaces = (InterfaceInfo[]) {
6349 { INTERFACE_PCIE_DEVICE },
6354 static const TypeInfo nvme_bus_info = {
6355 .name = TYPE_NVME_BUS,
6356 .parent = TYPE_BUS,
6357 .instance_size = sizeof(NvmeBus),
6360 static void nvme_register_types(void)
6362 type_register_static(&nvme_info);
6363 type_register_static(&nvme_bus_info);
6366 type_init(nvme_register_types)