tests: rename target_big_endian() as qvirtio_is_big_endian()
[qemu/rayw.git] / migration / ram.c
blobd032d389c4b19db0f03e65a82ffc29008c2a047b
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
28 #include "qemu/osdep.h"
29 #include "qemu-common.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qapi-event.h"
33 #include "qemu/cutils.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "qemu/timer.h"
37 #include "qemu/main-loop.h"
38 #include "migration/migration.h"
39 #include "migration/postcopy-ram.h"
40 #include "exec/address-spaces.h"
41 #include "migration/page_cache.h"
42 #include "qemu/error-report.h"
43 #include "trace.h"
44 #include "exec/ram_addr.h"
45 #include "qemu/rcu_queue.h"
47 #ifdef DEBUG_MIGRATION_RAM
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0)
50 #else
51 #define DPRINTF(fmt, ...) \
52 do { } while (0)
53 #endif
55 static int dirty_rate_high_cnt;
57 static uint64_t bitmap_sync_count;
59 /***********************************************************/
60 /* ram save/restore */
62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
63 #define RAM_SAVE_FLAG_COMPRESS 0x02
64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
65 #define RAM_SAVE_FLAG_PAGE 0x08
66 #define RAM_SAVE_FLAG_EOS 0x10
67 #define RAM_SAVE_FLAG_CONTINUE 0x20
68 #define RAM_SAVE_FLAG_XBZRLE 0x40
69 /* 0x80 is reserved in migration.h start with 0x100 next */
70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
72 static uint8_t *ZERO_TARGET_PAGE;
74 static inline bool is_zero_range(uint8_t *p, uint64_t size)
76 return buffer_is_zero(p, size);
79 /* struct contains XBZRLE cache and a static page
80 used by the compression */
81 static struct {
82 /* buffer used for XBZRLE encoding */
83 uint8_t *encoded_buf;
84 /* buffer for storing page content */
85 uint8_t *current_buf;
86 /* Cache for XBZRLE, Protected by lock. */
87 PageCache *cache;
88 QemuMutex lock;
89 } XBZRLE;
91 /* buffer used for XBZRLE decoding */
92 static uint8_t *xbzrle_decoded_buf;
94 static void XBZRLE_cache_lock(void)
96 if (migrate_use_xbzrle())
97 qemu_mutex_lock(&XBZRLE.lock);
100 static void XBZRLE_cache_unlock(void)
102 if (migrate_use_xbzrle())
103 qemu_mutex_unlock(&XBZRLE.lock);
107 * called from qmp_migrate_set_cache_size in main thread, possibly while
108 * a migration is in progress.
109 * A running migration maybe using the cache and might finish during this
110 * call, hence changes to the cache are protected by XBZRLE.lock().
112 int64_t xbzrle_cache_resize(int64_t new_size)
114 PageCache *new_cache;
115 int64_t ret;
117 if (new_size < TARGET_PAGE_SIZE) {
118 return -1;
121 XBZRLE_cache_lock();
123 if (XBZRLE.cache != NULL) {
124 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
125 goto out_new_size;
127 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
128 TARGET_PAGE_SIZE);
129 if (!new_cache) {
130 error_report("Error creating cache");
131 ret = -1;
132 goto out;
135 cache_fini(XBZRLE.cache);
136 XBZRLE.cache = new_cache;
139 out_new_size:
140 ret = pow2floor(new_size);
141 out:
142 XBZRLE_cache_unlock();
143 return ret;
146 /* accounting for migration statistics */
147 typedef struct AccountingInfo {
148 uint64_t dup_pages;
149 uint64_t skipped_pages;
150 uint64_t norm_pages;
151 uint64_t iterations;
152 uint64_t xbzrle_bytes;
153 uint64_t xbzrle_pages;
154 uint64_t xbzrle_cache_miss;
155 double xbzrle_cache_miss_rate;
156 uint64_t xbzrle_overflows;
157 } AccountingInfo;
159 static AccountingInfo acct_info;
161 static void acct_clear(void)
163 memset(&acct_info, 0, sizeof(acct_info));
166 uint64_t dup_mig_bytes_transferred(void)
168 return acct_info.dup_pages * TARGET_PAGE_SIZE;
171 uint64_t dup_mig_pages_transferred(void)
173 return acct_info.dup_pages;
176 uint64_t skipped_mig_bytes_transferred(void)
178 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
181 uint64_t skipped_mig_pages_transferred(void)
183 return acct_info.skipped_pages;
186 uint64_t norm_mig_bytes_transferred(void)
188 return acct_info.norm_pages * TARGET_PAGE_SIZE;
191 uint64_t norm_mig_pages_transferred(void)
193 return acct_info.norm_pages;
196 uint64_t xbzrle_mig_bytes_transferred(void)
198 return acct_info.xbzrle_bytes;
201 uint64_t xbzrle_mig_pages_transferred(void)
203 return acct_info.xbzrle_pages;
206 uint64_t xbzrle_mig_pages_cache_miss(void)
208 return acct_info.xbzrle_cache_miss;
211 double xbzrle_mig_cache_miss_rate(void)
213 return acct_info.xbzrle_cache_miss_rate;
216 uint64_t xbzrle_mig_pages_overflow(void)
218 return acct_info.xbzrle_overflows;
221 /* This is the last block that we have visited serching for dirty pages
223 static RAMBlock *last_seen_block;
224 /* This is the last block from where we have sent data */
225 static RAMBlock *last_sent_block;
226 static ram_addr_t last_offset;
227 static QemuMutex migration_bitmap_mutex;
228 static uint64_t migration_dirty_pages;
229 static uint32_t last_version;
230 static bool ram_bulk_stage;
232 /* used by the search for pages to send */
233 struct PageSearchStatus {
234 /* Current block being searched */
235 RAMBlock *block;
236 /* Current offset to search from */
237 ram_addr_t offset;
238 /* Set once we wrap around */
239 bool complete_round;
241 typedef struct PageSearchStatus PageSearchStatus;
243 static struct BitmapRcu {
244 struct rcu_head rcu;
245 /* Main migration bitmap */
246 unsigned long *bmap;
247 /* bitmap of pages that haven't been sent even once
248 * only maintained and used in postcopy at the moment
249 * where it's used to send the dirtymap at the start
250 * of the postcopy phase
252 unsigned long *unsentmap;
253 } *migration_bitmap_rcu;
255 struct CompressParam {
256 bool done;
257 bool quit;
258 QEMUFile *file;
259 QemuMutex mutex;
260 QemuCond cond;
261 RAMBlock *block;
262 ram_addr_t offset;
264 typedef struct CompressParam CompressParam;
266 struct DecompressParam {
267 bool done;
268 bool quit;
269 QemuMutex mutex;
270 QemuCond cond;
271 void *des;
272 uint8_t *compbuf;
273 int len;
275 typedef struct DecompressParam DecompressParam;
277 static CompressParam *comp_param;
278 static QemuThread *compress_threads;
279 /* comp_done_cond is used to wake up the migration thread when
280 * one of the compression threads has finished the compression.
281 * comp_done_lock is used to co-work with comp_done_cond.
283 static QemuMutex comp_done_lock;
284 static QemuCond comp_done_cond;
285 /* The empty QEMUFileOps will be used by file in CompressParam */
286 static const QEMUFileOps empty_ops = { };
288 static bool compression_switch;
289 static DecompressParam *decomp_param;
290 static QemuThread *decompress_threads;
291 static QemuMutex decomp_done_lock;
292 static QemuCond decomp_done_cond;
294 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
295 ram_addr_t offset);
297 static void *do_data_compress(void *opaque)
299 CompressParam *param = opaque;
300 RAMBlock *block;
301 ram_addr_t offset;
303 qemu_mutex_lock(&param->mutex);
304 while (!param->quit) {
305 if (param->block) {
306 block = param->block;
307 offset = param->offset;
308 param->block = NULL;
309 qemu_mutex_unlock(&param->mutex);
311 do_compress_ram_page(param->file, block, offset);
313 qemu_mutex_lock(&comp_done_lock);
314 param->done = true;
315 qemu_cond_signal(&comp_done_cond);
316 qemu_mutex_unlock(&comp_done_lock);
318 qemu_mutex_lock(&param->mutex);
319 } else {
320 qemu_cond_wait(&param->cond, &param->mutex);
323 qemu_mutex_unlock(&param->mutex);
325 return NULL;
328 static inline void terminate_compression_threads(void)
330 int idx, thread_count;
332 thread_count = migrate_compress_threads();
333 for (idx = 0; idx < thread_count; idx++) {
334 qemu_mutex_lock(&comp_param[idx].mutex);
335 comp_param[idx].quit = true;
336 qemu_cond_signal(&comp_param[idx].cond);
337 qemu_mutex_unlock(&comp_param[idx].mutex);
341 void migrate_compress_threads_join(void)
343 int i, thread_count;
345 if (!migrate_use_compression()) {
346 return;
348 terminate_compression_threads();
349 thread_count = migrate_compress_threads();
350 for (i = 0; i < thread_count; i++) {
351 qemu_thread_join(compress_threads + i);
352 qemu_fclose(comp_param[i].file);
353 qemu_mutex_destroy(&comp_param[i].mutex);
354 qemu_cond_destroy(&comp_param[i].cond);
356 qemu_mutex_destroy(&comp_done_lock);
357 qemu_cond_destroy(&comp_done_cond);
358 g_free(compress_threads);
359 g_free(comp_param);
360 compress_threads = NULL;
361 comp_param = NULL;
364 void migrate_compress_threads_create(void)
366 int i, thread_count;
368 if (!migrate_use_compression()) {
369 return;
371 compression_switch = true;
372 thread_count = migrate_compress_threads();
373 compress_threads = g_new0(QemuThread, thread_count);
374 comp_param = g_new0(CompressParam, thread_count);
375 qemu_cond_init(&comp_done_cond);
376 qemu_mutex_init(&comp_done_lock);
377 for (i = 0; i < thread_count; i++) {
378 /* comp_param[i].file is just used as a dummy buffer to save data,
379 * set its ops to empty.
381 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
382 comp_param[i].done = true;
383 comp_param[i].quit = false;
384 qemu_mutex_init(&comp_param[i].mutex);
385 qemu_cond_init(&comp_param[i].cond);
386 qemu_thread_create(compress_threads + i, "compress",
387 do_data_compress, comp_param + i,
388 QEMU_THREAD_JOINABLE);
393 * save_page_header: Write page header to wire
395 * If this is the 1st block, it also writes the block identification
397 * Returns: Number of bytes written
399 * @f: QEMUFile where to send the data
400 * @block: block that contains the page we want to send
401 * @offset: offset inside the block for the page
402 * in the lower bits, it contains flags
404 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
406 size_t size, len;
408 qemu_put_be64(f, offset);
409 size = 8;
411 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
412 len = strlen(block->idstr);
413 qemu_put_byte(f, len);
414 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
415 size += 1 + len;
417 return size;
420 /* Reduce amount of guest cpu execution to hopefully slow down memory writes.
421 * If guest dirty memory rate is reduced below the rate at which we can
422 * transfer pages to the destination then we should be able to complete
423 * migration. Some workloads dirty memory way too fast and will not effectively
424 * converge, even with auto-converge.
426 static void mig_throttle_guest_down(void)
428 MigrationState *s = migrate_get_current();
429 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
430 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
432 /* We have not started throttling yet. Let's start it. */
433 if (!cpu_throttle_active()) {
434 cpu_throttle_set(pct_initial);
435 } else {
436 /* Throttling already on, just increase the rate */
437 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
441 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
442 * The important thing is that a stale (not-yet-0'd) page be replaced
443 * by the new data.
444 * As a bonus, if the page wasn't in the cache it gets added so that
445 * when a small write is made into the 0'd page it gets XBZRLE sent
447 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
449 if (ram_bulk_stage || !migrate_use_xbzrle()) {
450 return;
453 /* We don't care if this fails to allocate a new cache page
454 * as long as it updated an old one */
455 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
456 bitmap_sync_count);
459 #define ENCODING_FLAG_XBZRLE 0x1
462 * save_xbzrle_page: compress and send current page
464 * Returns: 1 means that we wrote the page
465 * 0 means that page is identical to the one already sent
466 * -1 means that xbzrle would be longer than normal
468 * @f: QEMUFile where to send the data
469 * @current_data:
470 * @current_addr:
471 * @block: block that contains the page we want to send
472 * @offset: offset inside the block for the page
473 * @last_stage: if we are at the completion stage
474 * @bytes_transferred: increase it with the number of transferred bytes
476 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
477 ram_addr_t current_addr, RAMBlock *block,
478 ram_addr_t offset, bool last_stage,
479 uint64_t *bytes_transferred)
481 int encoded_len = 0, bytes_xbzrle;
482 uint8_t *prev_cached_page;
484 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
485 acct_info.xbzrle_cache_miss++;
486 if (!last_stage) {
487 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
488 bitmap_sync_count) == -1) {
489 return -1;
490 } else {
491 /* update *current_data when the page has been
492 inserted into cache */
493 *current_data = get_cached_data(XBZRLE.cache, current_addr);
496 return -1;
499 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
501 /* save current buffer into memory */
502 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
504 /* XBZRLE encoding (if there is no overflow) */
505 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
506 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
507 TARGET_PAGE_SIZE);
508 if (encoded_len == 0) {
509 DPRINTF("Skipping unmodified page\n");
510 return 0;
511 } else if (encoded_len == -1) {
512 DPRINTF("Overflow\n");
513 acct_info.xbzrle_overflows++;
514 /* update data in the cache */
515 if (!last_stage) {
516 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
517 *current_data = prev_cached_page;
519 return -1;
522 /* we need to update the data in the cache, in order to get the same data */
523 if (!last_stage) {
524 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
527 /* Send XBZRLE based compressed page */
528 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
529 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
530 qemu_put_be16(f, encoded_len);
531 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
532 bytes_xbzrle += encoded_len + 1 + 2;
533 acct_info.xbzrle_pages++;
534 acct_info.xbzrle_bytes += bytes_xbzrle;
535 *bytes_transferred += bytes_xbzrle;
537 return 1;
540 /* Called with rcu_read_lock() to protect migration_bitmap
541 * rb: The RAMBlock to search for dirty pages in
542 * start: Start address (typically so we can continue from previous page)
543 * ram_addr_abs: Pointer into which to store the address of the dirty page
544 * within the global ram_addr space
546 * Returns: byte offset within memory region of the start of a dirty page
548 static inline
549 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb,
550 ram_addr_t start,
551 ram_addr_t *ram_addr_abs)
553 unsigned long base = rb->offset >> TARGET_PAGE_BITS;
554 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
555 uint64_t rb_size = rb->used_length;
556 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
557 unsigned long *bitmap;
559 unsigned long next;
561 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
562 if (ram_bulk_stage && nr > base) {
563 next = nr + 1;
564 } else {
565 next = find_next_bit(bitmap, size, nr);
568 *ram_addr_abs = next << TARGET_PAGE_BITS;
569 return (next - base) << TARGET_PAGE_BITS;
572 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr)
574 bool ret;
575 int nr = addr >> TARGET_PAGE_BITS;
576 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
578 ret = test_and_clear_bit(nr, bitmap);
580 if (ret) {
581 migration_dirty_pages--;
583 return ret;
586 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
588 unsigned long *bitmap;
589 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
590 migration_dirty_pages +=
591 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length);
594 /* Fix me: there are too many global variables used in migration process. */
595 static int64_t start_time;
596 static int64_t bytes_xfer_prev;
597 static int64_t num_dirty_pages_period;
598 static uint64_t xbzrle_cache_miss_prev;
599 static uint64_t iterations_prev;
601 static void migration_bitmap_sync_init(void)
603 start_time = 0;
604 bytes_xfer_prev = 0;
605 num_dirty_pages_period = 0;
606 xbzrle_cache_miss_prev = 0;
607 iterations_prev = 0;
610 static void migration_bitmap_sync(void)
612 RAMBlock *block;
613 uint64_t num_dirty_pages_init = migration_dirty_pages;
614 MigrationState *s = migrate_get_current();
615 int64_t end_time;
616 int64_t bytes_xfer_now;
618 bitmap_sync_count++;
620 if (!bytes_xfer_prev) {
621 bytes_xfer_prev = ram_bytes_transferred();
624 if (!start_time) {
625 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
628 trace_migration_bitmap_sync_start();
629 memory_global_dirty_log_sync();
631 qemu_mutex_lock(&migration_bitmap_mutex);
632 rcu_read_lock();
633 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
634 migration_bitmap_sync_range(block->offset, block->used_length);
636 rcu_read_unlock();
637 qemu_mutex_unlock(&migration_bitmap_mutex);
639 trace_migration_bitmap_sync_end(migration_dirty_pages
640 - num_dirty_pages_init);
641 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
642 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
644 /* more than 1 second = 1000 millisecons */
645 if (end_time > start_time + 1000) {
646 if (migrate_auto_converge()) {
647 /* The following detection logic can be refined later. For now:
648 Check to see if the dirtied bytes is 50% more than the approx.
649 amount of bytes that just got transferred since the last time we
650 were in this routine. If that happens twice, start or increase
651 throttling */
652 bytes_xfer_now = ram_bytes_transferred();
654 if (s->dirty_pages_rate &&
655 (num_dirty_pages_period * TARGET_PAGE_SIZE >
656 (bytes_xfer_now - bytes_xfer_prev)/2) &&
657 (dirty_rate_high_cnt++ >= 2)) {
658 trace_migration_throttle();
659 dirty_rate_high_cnt = 0;
660 mig_throttle_guest_down();
662 bytes_xfer_prev = bytes_xfer_now;
665 if (migrate_use_xbzrle()) {
666 if (iterations_prev != acct_info.iterations) {
667 acct_info.xbzrle_cache_miss_rate =
668 (double)(acct_info.xbzrle_cache_miss -
669 xbzrle_cache_miss_prev) /
670 (acct_info.iterations - iterations_prev);
672 iterations_prev = acct_info.iterations;
673 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
675 s->dirty_pages_rate = num_dirty_pages_period * 1000
676 / (end_time - start_time);
677 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
678 start_time = end_time;
679 num_dirty_pages_period = 0;
681 s->dirty_sync_count = bitmap_sync_count;
682 if (migrate_use_events()) {
683 qapi_event_send_migration_pass(bitmap_sync_count, NULL);
688 * save_zero_page: Send the zero page to the stream
690 * Returns: Number of pages written.
692 * @f: QEMUFile where to send the data
693 * @block: block that contains the page we want to send
694 * @offset: offset inside the block for the page
695 * @p: pointer to the page
696 * @bytes_transferred: increase it with the number of transferred bytes
698 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
699 uint8_t *p, uint64_t *bytes_transferred)
701 int pages = -1;
703 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
704 acct_info.dup_pages++;
705 *bytes_transferred += save_page_header(f, block,
706 offset | RAM_SAVE_FLAG_COMPRESS);
707 qemu_put_byte(f, 0);
708 *bytes_transferred += 1;
709 pages = 1;
712 return pages;
716 * ram_save_page: Send the given page to the stream
718 * Returns: Number of pages written.
719 * < 0 - error
720 * >=0 - Number of pages written - this might legally be 0
721 * if xbzrle noticed the page was the same.
723 * @f: QEMUFile where to send the data
724 * @block: block that contains the page we want to send
725 * @offset: offset inside the block for the page
726 * @last_stage: if we are at the completion stage
727 * @bytes_transferred: increase it with the number of transferred bytes
729 static int ram_save_page(QEMUFile *f, PageSearchStatus *pss,
730 bool last_stage, uint64_t *bytes_transferred)
732 int pages = -1;
733 uint64_t bytes_xmit;
734 ram_addr_t current_addr;
735 uint8_t *p;
736 int ret;
737 bool send_async = true;
738 RAMBlock *block = pss->block;
739 ram_addr_t offset = pss->offset;
741 p = block->host + offset;
743 /* In doubt sent page as normal */
744 bytes_xmit = 0;
745 ret = ram_control_save_page(f, block->offset,
746 offset, TARGET_PAGE_SIZE, &bytes_xmit);
747 if (bytes_xmit) {
748 *bytes_transferred += bytes_xmit;
749 pages = 1;
752 XBZRLE_cache_lock();
754 current_addr = block->offset + offset;
756 if (block == last_sent_block) {
757 offset |= RAM_SAVE_FLAG_CONTINUE;
759 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
760 if (ret != RAM_SAVE_CONTROL_DELAYED) {
761 if (bytes_xmit > 0) {
762 acct_info.norm_pages++;
763 } else if (bytes_xmit == 0) {
764 acct_info.dup_pages++;
767 } else {
768 pages = save_zero_page(f, block, offset, p, bytes_transferred);
769 if (pages > 0) {
770 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
771 * page would be stale
773 xbzrle_cache_zero_page(current_addr);
774 } else if (!ram_bulk_stage &&
775 !migration_in_postcopy(migrate_get_current()) &&
776 migrate_use_xbzrle()) {
777 pages = save_xbzrle_page(f, &p, current_addr, block,
778 offset, last_stage, bytes_transferred);
779 if (!last_stage) {
780 /* Can't send this cached data async, since the cache page
781 * might get updated before it gets to the wire
783 send_async = false;
788 /* XBZRLE overflow or normal page */
789 if (pages == -1) {
790 *bytes_transferred += save_page_header(f, block,
791 offset | RAM_SAVE_FLAG_PAGE);
792 if (send_async) {
793 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
794 } else {
795 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
797 *bytes_transferred += TARGET_PAGE_SIZE;
798 pages = 1;
799 acct_info.norm_pages++;
802 XBZRLE_cache_unlock();
804 return pages;
807 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
808 ram_addr_t offset)
810 int bytes_sent, blen;
811 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
813 bytes_sent = save_page_header(f, block, offset |
814 RAM_SAVE_FLAG_COMPRESS_PAGE);
815 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
816 migrate_compress_level());
817 if (blen < 0) {
818 bytes_sent = 0;
819 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
820 error_report("compressed data failed!");
821 } else {
822 bytes_sent += blen;
825 return bytes_sent;
828 static uint64_t bytes_transferred;
830 static void flush_compressed_data(QEMUFile *f)
832 int idx, len, thread_count;
834 if (!migrate_use_compression()) {
835 return;
837 thread_count = migrate_compress_threads();
839 qemu_mutex_lock(&comp_done_lock);
840 for (idx = 0; idx < thread_count; idx++) {
841 while (!comp_param[idx].done) {
842 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
845 qemu_mutex_unlock(&comp_done_lock);
847 for (idx = 0; idx < thread_count; idx++) {
848 qemu_mutex_lock(&comp_param[idx].mutex);
849 if (!comp_param[idx].quit) {
850 len = qemu_put_qemu_file(f, comp_param[idx].file);
851 bytes_transferred += len;
853 qemu_mutex_unlock(&comp_param[idx].mutex);
857 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
858 ram_addr_t offset)
860 param->block = block;
861 param->offset = offset;
864 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
865 ram_addr_t offset,
866 uint64_t *bytes_transferred)
868 int idx, thread_count, bytes_xmit = -1, pages = -1;
870 thread_count = migrate_compress_threads();
871 qemu_mutex_lock(&comp_done_lock);
872 while (true) {
873 for (idx = 0; idx < thread_count; idx++) {
874 if (comp_param[idx].done) {
875 comp_param[idx].done = false;
876 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
877 qemu_mutex_lock(&comp_param[idx].mutex);
878 set_compress_params(&comp_param[idx], block, offset);
879 qemu_cond_signal(&comp_param[idx].cond);
880 qemu_mutex_unlock(&comp_param[idx].mutex);
881 pages = 1;
882 acct_info.norm_pages++;
883 *bytes_transferred += bytes_xmit;
884 break;
887 if (pages > 0) {
888 break;
889 } else {
890 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
893 qemu_mutex_unlock(&comp_done_lock);
895 return pages;
899 * ram_save_compressed_page: compress the given page and send it to the stream
901 * Returns: Number of pages written.
903 * @f: QEMUFile where to send the data
904 * @block: block that contains the page we want to send
905 * @offset: offset inside the block for the page
906 * @last_stage: if we are at the completion stage
907 * @bytes_transferred: increase it with the number of transferred bytes
909 static int ram_save_compressed_page(QEMUFile *f, PageSearchStatus *pss,
910 bool last_stage,
911 uint64_t *bytes_transferred)
913 int pages = -1;
914 uint64_t bytes_xmit = 0;
915 uint8_t *p;
916 int ret, blen;
917 RAMBlock *block = pss->block;
918 ram_addr_t offset = pss->offset;
920 p = block->host + offset;
922 ret = ram_control_save_page(f, block->offset,
923 offset, TARGET_PAGE_SIZE, &bytes_xmit);
924 if (bytes_xmit) {
925 *bytes_transferred += bytes_xmit;
926 pages = 1;
928 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
929 if (ret != RAM_SAVE_CONTROL_DELAYED) {
930 if (bytes_xmit > 0) {
931 acct_info.norm_pages++;
932 } else if (bytes_xmit == 0) {
933 acct_info.dup_pages++;
936 } else {
937 /* When starting the process of a new block, the first page of
938 * the block should be sent out before other pages in the same
939 * block, and all the pages in last block should have been sent
940 * out, keeping this order is important, because the 'cont' flag
941 * is used to avoid resending the block name.
943 if (block != last_sent_block) {
944 flush_compressed_data(f);
945 pages = save_zero_page(f, block, offset, p, bytes_transferred);
946 if (pages == -1) {
947 /* Make sure the first page is sent out before other pages */
948 bytes_xmit = save_page_header(f, block, offset |
949 RAM_SAVE_FLAG_COMPRESS_PAGE);
950 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
951 migrate_compress_level());
952 if (blen > 0) {
953 *bytes_transferred += bytes_xmit + blen;
954 acct_info.norm_pages++;
955 pages = 1;
956 } else {
957 qemu_file_set_error(f, blen);
958 error_report("compressed data failed!");
961 } else {
962 offset |= RAM_SAVE_FLAG_CONTINUE;
963 pages = save_zero_page(f, block, offset, p, bytes_transferred);
964 if (pages == -1) {
965 pages = compress_page_with_multi_thread(f, block, offset,
966 bytes_transferred);
971 return pages;
975 * Find the next dirty page and update any state associated with
976 * the search process.
978 * Returns: True if a page is found
980 * @f: Current migration stream.
981 * @pss: Data about the state of the current dirty page scan.
982 * @*again: Set to false if the search has scanned the whole of RAM
983 * *ram_addr_abs: Pointer into which to store the address of the dirty page
984 * within the global ram_addr space
986 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss,
987 bool *again, ram_addr_t *ram_addr_abs)
989 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset,
990 ram_addr_abs);
991 if (pss->complete_round && pss->block == last_seen_block &&
992 pss->offset >= last_offset) {
994 * We've been once around the RAM and haven't found anything.
995 * Give up.
997 *again = false;
998 return false;
1000 if (pss->offset >= pss->block->used_length) {
1001 /* Didn't find anything in this RAM Block */
1002 pss->offset = 0;
1003 pss->block = QLIST_NEXT_RCU(pss->block, next);
1004 if (!pss->block) {
1005 /* Hit the end of the list */
1006 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1007 /* Flag that we've looped */
1008 pss->complete_round = true;
1009 ram_bulk_stage = false;
1010 if (migrate_use_xbzrle()) {
1011 /* If xbzrle is on, stop using the data compression at this
1012 * point. In theory, xbzrle can do better than compression.
1014 flush_compressed_data(f);
1015 compression_switch = false;
1018 /* Didn't find anything this time, but try again on the new block */
1019 *again = true;
1020 return false;
1021 } else {
1022 /* Can go around again, but... */
1023 *again = true;
1024 /* We've found something so probably don't need to */
1025 return true;
1030 * Helper for 'get_queued_page' - gets a page off the queue
1031 * ms: MigrationState in
1032 * *offset: Used to return the offset within the RAMBlock
1033 * ram_addr_abs: global offset in the dirty/sent bitmaps
1035 * Returns: block (or NULL if none available)
1037 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset,
1038 ram_addr_t *ram_addr_abs)
1040 RAMBlock *block = NULL;
1042 qemu_mutex_lock(&ms->src_page_req_mutex);
1043 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) {
1044 struct MigrationSrcPageRequest *entry =
1045 QSIMPLEQ_FIRST(&ms->src_page_requests);
1046 block = entry->rb;
1047 *offset = entry->offset;
1048 *ram_addr_abs = (entry->offset + entry->rb->offset) &
1049 TARGET_PAGE_MASK;
1051 if (entry->len > TARGET_PAGE_SIZE) {
1052 entry->len -= TARGET_PAGE_SIZE;
1053 entry->offset += TARGET_PAGE_SIZE;
1054 } else {
1055 memory_region_unref(block->mr);
1056 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1057 g_free(entry);
1060 qemu_mutex_unlock(&ms->src_page_req_mutex);
1062 return block;
1066 * Unqueue a page from the queue fed by postcopy page requests; skips pages
1067 * that are already sent (!dirty)
1069 * ms: MigrationState in
1070 * pss: PageSearchStatus structure updated with found block/offset
1071 * ram_addr_abs: global offset in the dirty/sent bitmaps
1073 * Returns: true if a queued page is found
1075 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss,
1076 ram_addr_t *ram_addr_abs)
1078 RAMBlock *block;
1079 ram_addr_t offset;
1080 bool dirty;
1082 do {
1083 block = unqueue_page(ms, &offset, ram_addr_abs);
1085 * We're sending this page, and since it's postcopy nothing else
1086 * will dirty it, and we must make sure it doesn't get sent again
1087 * even if this queue request was received after the background
1088 * search already sent it.
1090 if (block) {
1091 unsigned long *bitmap;
1092 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1093 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap);
1094 if (!dirty) {
1095 trace_get_queued_page_not_dirty(
1096 block->idstr, (uint64_t)offset,
1097 (uint64_t)*ram_addr_abs,
1098 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS,
1099 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap));
1100 } else {
1101 trace_get_queued_page(block->idstr,
1102 (uint64_t)offset,
1103 (uint64_t)*ram_addr_abs);
1107 } while (block && !dirty);
1109 if (block) {
1111 * As soon as we start servicing pages out of order, then we have
1112 * to kill the bulk stage, since the bulk stage assumes
1113 * in (migration_bitmap_find_and_reset_dirty) that every page is
1114 * dirty, that's no longer true.
1116 ram_bulk_stage = false;
1119 * We want the background search to continue from the queued page
1120 * since the guest is likely to want other pages near to the page
1121 * it just requested.
1123 pss->block = block;
1124 pss->offset = offset;
1127 return !!block;
1131 * flush_page_queue: Flush any remaining pages in the ram request queue
1132 * it should be empty at the end anyway, but in error cases there may be
1133 * some left.
1135 * ms: MigrationState
1137 void flush_page_queue(MigrationState *ms)
1139 struct MigrationSrcPageRequest *mspr, *next_mspr;
1140 /* This queue generally should be empty - but in the case of a failed
1141 * migration might have some droppings in.
1143 rcu_read_lock();
1144 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) {
1145 memory_region_unref(mspr->rb->mr);
1146 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1147 g_free(mspr);
1149 rcu_read_unlock();
1153 * Queue the pages for transmission, e.g. a request from postcopy destination
1154 * ms: MigrationStatus in which the queue is held
1155 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last)
1156 * start: Offset from the start of the RAMBlock
1157 * len: Length (in bytes) to send
1158 * Return: 0 on success
1160 int ram_save_queue_pages(MigrationState *ms, const char *rbname,
1161 ram_addr_t start, ram_addr_t len)
1163 RAMBlock *ramblock;
1165 ms->postcopy_requests++;
1166 rcu_read_lock();
1167 if (!rbname) {
1168 /* Reuse last RAMBlock */
1169 ramblock = ms->last_req_rb;
1171 if (!ramblock) {
1173 * Shouldn't happen, we can't reuse the last RAMBlock if
1174 * it's the 1st request.
1176 error_report("ram_save_queue_pages no previous block");
1177 goto err;
1179 } else {
1180 ramblock = qemu_ram_block_by_name(rbname);
1182 if (!ramblock) {
1183 /* We shouldn't be asked for a non-existent RAMBlock */
1184 error_report("ram_save_queue_pages no block '%s'", rbname);
1185 goto err;
1187 ms->last_req_rb = ramblock;
1189 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1190 if (start+len > ramblock->used_length) {
1191 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1192 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1193 __func__, start, len, ramblock->used_length);
1194 goto err;
1197 struct MigrationSrcPageRequest *new_entry =
1198 g_malloc0(sizeof(struct MigrationSrcPageRequest));
1199 new_entry->rb = ramblock;
1200 new_entry->offset = start;
1201 new_entry->len = len;
1203 memory_region_ref(ramblock->mr);
1204 qemu_mutex_lock(&ms->src_page_req_mutex);
1205 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req);
1206 qemu_mutex_unlock(&ms->src_page_req_mutex);
1207 rcu_read_unlock();
1209 return 0;
1211 err:
1212 rcu_read_unlock();
1213 return -1;
1217 * ram_save_target_page: Save one target page
1220 * @f: QEMUFile where to send the data
1221 * @block: pointer to block that contains the page we want to send
1222 * @offset: offset inside the block for the page;
1223 * @last_stage: if we are at the completion stage
1224 * @bytes_transferred: increase it with the number of transferred bytes
1225 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1227 * Returns: Number of pages written.
1229 static int ram_save_target_page(MigrationState *ms, QEMUFile *f,
1230 PageSearchStatus *pss,
1231 bool last_stage,
1232 uint64_t *bytes_transferred,
1233 ram_addr_t dirty_ram_abs)
1235 int res = 0;
1237 /* Check the pages is dirty and if it is send it */
1238 if (migration_bitmap_clear_dirty(dirty_ram_abs)) {
1239 unsigned long *unsentmap;
1240 if (compression_switch && migrate_use_compression()) {
1241 res = ram_save_compressed_page(f, pss,
1242 last_stage,
1243 bytes_transferred);
1244 } else {
1245 res = ram_save_page(f, pss, last_stage,
1246 bytes_transferred);
1249 if (res < 0) {
1250 return res;
1252 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1253 if (unsentmap) {
1254 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap);
1256 /* Only update last_sent_block if a block was actually sent; xbzrle
1257 * might have decided the page was identical so didn't bother writing
1258 * to the stream.
1260 if (res > 0) {
1261 last_sent_block = pss->block;
1265 return res;
1269 * ram_save_host_page: Starting at *offset send pages up to the end
1270 * of the current host page. It's valid for the initial
1271 * offset to point into the middle of a host page
1272 * in which case the remainder of the hostpage is sent.
1273 * Only dirty target pages are sent.
1275 * Returns: Number of pages written.
1277 * @f: QEMUFile where to send the data
1278 * @block: pointer to block that contains the page we want to send
1279 * @offset: offset inside the block for the page; updated to last target page
1280 * sent
1281 * @last_stage: if we are at the completion stage
1282 * @bytes_transferred: increase it with the number of transferred bytes
1283 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1285 static int ram_save_host_page(MigrationState *ms, QEMUFile *f,
1286 PageSearchStatus *pss,
1287 bool last_stage,
1288 uint64_t *bytes_transferred,
1289 ram_addr_t dirty_ram_abs)
1291 int tmppages, pages = 0;
1292 do {
1293 tmppages = ram_save_target_page(ms, f, pss, last_stage,
1294 bytes_transferred, dirty_ram_abs);
1295 if (tmppages < 0) {
1296 return tmppages;
1299 pages += tmppages;
1300 pss->offset += TARGET_PAGE_SIZE;
1301 dirty_ram_abs += TARGET_PAGE_SIZE;
1302 } while (pss->offset & (qemu_host_page_size - 1));
1304 /* The offset we leave with is the last one we looked at */
1305 pss->offset -= TARGET_PAGE_SIZE;
1306 return pages;
1310 * ram_find_and_save_block: Finds a dirty page and sends it to f
1312 * Called within an RCU critical section.
1314 * Returns: The number of pages written
1315 * 0 means no dirty pages
1317 * @f: QEMUFile where to send the data
1318 * @last_stage: if we are at the completion stage
1319 * @bytes_transferred: increase it with the number of transferred bytes
1321 * On systems where host-page-size > target-page-size it will send all the
1322 * pages in a host page that are dirty.
1325 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1326 uint64_t *bytes_transferred)
1328 PageSearchStatus pss;
1329 MigrationState *ms = migrate_get_current();
1330 int pages = 0;
1331 bool again, found;
1332 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in
1333 ram_addr_t space */
1335 pss.block = last_seen_block;
1336 pss.offset = last_offset;
1337 pss.complete_round = false;
1339 if (!pss.block) {
1340 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1343 do {
1344 again = true;
1345 found = get_queued_page(ms, &pss, &dirty_ram_abs);
1347 if (!found) {
1348 /* priority queue empty, so just search for something dirty */
1349 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs);
1352 if (found) {
1353 pages = ram_save_host_page(ms, f, &pss,
1354 last_stage, bytes_transferred,
1355 dirty_ram_abs);
1357 } while (!pages && again);
1359 last_seen_block = pss.block;
1360 last_offset = pss.offset;
1362 return pages;
1365 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1367 uint64_t pages = size / TARGET_PAGE_SIZE;
1368 if (zero) {
1369 acct_info.dup_pages += pages;
1370 } else {
1371 acct_info.norm_pages += pages;
1372 bytes_transferred += size;
1373 qemu_update_position(f, size);
1377 static ram_addr_t ram_save_remaining(void)
1379 return migration_dirty_pages;
1382 uint64_t ram_bytes_remaining(void)
1384 return ram_save_remaining() * TARGET_PAGE_SIZE;
1387 uint64_t ram_bytes_transferred(void)
1389 return bytes_transferred;
1392 uint64_t ram_bytes_total(void)
1394 RAMBlock *block;
1395 uint64_t total = 0;
1397 rcu_read_lock();
1398 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1399 total += block->used_length;
1400 rcu_read_unlock();
1401 return total;
1404 void free_xbzrle_decoded_buf(void)
1406 g_free(xbzrle_decoded_buf);
1407 xbzrle_decoded_buf = NULL;
1410 static void migration_bitmap_free(struct BitmapRcu *bmap)
1412 g_free(bmap->bmap);
1413 g_free(bmap->unsentmap);
1414 g_free(bmap);
1417 static void ram_migration_cleanup(void *opaque)
1419 /* caller have hold iothread lock or is in a bh, so there is
1420 * no writing race against this migration_bitmap
1422 struct BitmapRcu *bitmap = migration_bitmap_rcu;
1423 atomic_rcu_set(&migration_bitmap_rcu, NULL);
1424 if (bitmap) {
1425 memory_global_dirty_log_stop();
1426 call_rcu(bitmap, migration_bitmap_free, rcu);
1429 XBZRLE_cache_lock();
1430 if (XBZRLE.cache) {
1431 cache_fini(XBZRLE.cache);
1432 g_free(XBZRLE.encoded_buf);
1433 g_free(XBZRLE.current_buf);
1434 g_free(ZERO_TARGET_PAGE);
1435 XBZRLE.cache = NULL;
1436 XBZRLE.encoded_buf = NULL;
1437 XBZRLE.current_buf = NULL;
1439 XBZRLE_cache_unlock();
1442 static void reset_ram_globals(void)
1444 last_seen_block = NULL;
1445 last_sent_block = NULL;
1446 last_offset = 0;
1447 last_version = ram_list.version;
1448 ram_bulk_stage = true;
1451 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1453 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1455 /* called in qemu main thread, so there is
1456 * no writing race against this migration_bitmap
1458 if (migration_bitmap_rcu) {
1459 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap;
1460 bitmap = g_new(struct BitmapRcu, 1);
1461 bitmap->bmap = bitmap_new(new);
1463 /* prevent migration_bitmap content from being set bit
1464 * by migration_bitmap_sync_range() at the same time.
1465 * it is safe to migration if migration_bitmap is cleared bit
1466 * at the same time.
1468 qemu_mutex_lock(&migration_bitmap_mutex);
1469 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old);
1470 bitmap_set(bitmap->bmap, old, new - old);
1472 /* We don't have a way to safely extend the sentmap
1473 * with RCU; so mark it as missing, entry to postcopy
1474 * will fail.
1476 bitmap->unsentmap = NULL;
1478 atomic_rcu_set(&migration_bitmap_rcu, bitmap);
1479 qemu_mutex_unlock(&migration_bitmap_mutex);
1480 migration_dirty_pages += new - old;
1481 call_rcu(old_bitmap, migration_bitmap_free, rcu);
1486 * 'expected' is the value you expect the bitmap mostly to be full
1487 * of; it won't bother printing lines that are all this value.
1488 * If 'todump' is null the migration bitmap is dumped.
1490 void ram_debug_dump_bitmap(unsigned long *todump, bool expected)
1492 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1494 int64_t cur;
1495 int64_t linelen = 128;
1496 char linebuf[129];
1498 if (!todump) {
1499 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1502 for (cur = 0; cur < ram_pages; cur += linelen) {
1503 int64_t curb;
1504 bool found = false;
1506 * Last line; catch the case where the line length
1507 * is longer than remaining ram
1509 if (cur + linelen > ram_pages) {
1510 linelen = ram_pages - cur;
1512 for (curb = 0; curb < linelen; curb++) {
1513 bool thisbit = test_bit(cur + curb, todump);
1514 linebuf[curb] = thisbit ? '1' : '.';
1515 found = found || (thisbit != expected);
1517 if (found) {
1518 linebuf[curb] = '\0';
1519 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1524 /* **** functions for postcopy ***** */
1527 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1528 * Note: At this point the 'unsentmap' is the processed bitmap combined
1529 * with the dirtymap; so a '1' means it's either dirty or unsent.
1530 * start,length: Indexes into the bitmap for the first bit
1531 * representing the named block and length in target-pages
1533 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1534 PostcopyDiscardState *pds,
1535 unsigned long start,
1536 unsigned long length)
1538 unsigned long end = start + length; /* one after the end */
1539 unsigned long current;
1540 unsigned long *unsentmap;
1542 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1543 for (current = start; current < end; ) {
1544 unsigned long one = find_next_bit(unsentmap, end, current);
1546 if (one <= end) {
1547 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1548 unsigned long discard_length;
1550 if (zero >= end) {
1551 discard_length = end - one;
1552 } else {
1553 discard_length = zero - one;
1555 if (discard_length) {
1556 postcopy_discard_send_range(ms, pds, one, discard_length);
1558 current = one + discard_length;
1559 } else {
1560 current = one;
1564 return 0;
1568 * Utility for the outgoing postcopy code.
1569 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1570 * passing it bitmap indexes and name.
1571 * Returns: 0 on success
1572 * (qemu_ram_foreach_block ends up passing unscaled lengths
1573 * which would mean postcopy code would have to deal with target page)
1575 static int postcopy_each_ram_send_discard(MigrationState *ms)
1577 struct RAMBlock *block;
1578 int ret;
1580 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1581 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1582 PostcopyDiscardState *pds = postcopy_discard_send_init(ms,
1583 first,
1584 block->idstr);
1587 * Postcopy sends chunks of bitmap over the wire, but it
1588 * just needs indexes at this point, avoids it having
1589 * target page specific code.
1591 ret = postcopy_send_discard_bm_ram(ms, pds, first,
1592 block->used_length >> TARGET_PAGE_BITS);
1593 postcopy_discard_send_finish(ms, pds);
1594 if (ret) {
1595 return ret;
1599 return 0;
1603 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup
1604 * the two bitmaps, that are similar, but one is inverted.
1606 * We search for runs of target-pages that don't start or end on a
1607 * host page boundary;
1608 * unsent_pass=true: Cleans up partially unsent host pages by searching
1609 * the unsentmap
1610 * unsent_pass=false: Cleans up partially dirty host pages by searching
1611 * the main migration bitmap
1614 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1615 RAMBlock *block,
1616 PostcopyDiscardState *pds)
1618 unsigned long *bitmap;
1619 unsigned long *unsentmap;
1620 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE;
1621 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1622 unsigned long len = block->used_length >> TARGET_PAGE_BITS;
1623 unsigned long last = first + (len - 1);
1624 unsigned long run_start;
1626 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1627 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1629 if (unsent_pass) {
1630 /* Find a sent page */
1631 run_start = find_next_zero_bit(unsentmap, last + 1, first);
1632 } else {
1633 /* Find a dirty page */
1634 run_start = find_next_bit(bitmap, last + 1, first);
1637 while (run_start <= last) {
1638 bool do_fixup = false;
1639 unsigned long fixup_start_addr;
1640 unsigned long host_offset;
1643 * If the start of this run of pages is in the middle of a host
1644 * page, then we need to fixup this host page.
1646 host_offset = run_start % host_ratio;
1647 if (host_offset) {
1648 do_fixup = true;
1649 run_start -= host_offset;
1650 fixup_start_addr = run_start;
1651 /* For the next pass */
1652 run_start = run_start + host_ratio;
1653 } else {
1654 /* Find the end of this run */
1655 unsigned long run_end;
1656 if (unsent_pass) {
1657 run_end = find_next_bit(unsentmap, last + 1, run_start + 1);
1658 } else {
1659 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1);
1662 * If the end isn't at the start of a host page, then the
1663 * run doesn't finish at the end of a host page
1664 * and we need to discard.
1666 host_offset = run_end % host_ratio;
1667 if (host_offset) {
1668 do_fixup = true;
1669 fixup_start_addr = run_end - host_offset;
1671 * This host page has gone, the next loop iteration starts
1672 * from after the fixup
1674 run_start = fixup_start_addr + host_ratio;
1675 } else {
1677 * No discards on this iteration, next loop starts from
1678 * next sent/dirty page
1680 run_start = run_end + 1;
1684 if (do_fixup) {
1685 unsigned long page;
1687 /* Tell the destination to discard this page */
1688 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1689 /* For the unsent_pass we:
1690 * discard partially sent pages
1691 * For the !unsent_pass (dirty) we:
1692 * discard partially dirty pages that were sent
1693 * (any partially sent pages were already discarded
1694 * by the previous unsent_pass)
1696 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1697 host_ratio);
1700 /* Clean up the bitmap */
1701 for (page = fixup_start_addr;
1702 page < fixup_start_addr + host_ratio; page++) {
1703 /* All pages in this host page are now not sent */
1704 set_bit(page, unsentmap);
1707 * Remark them as dirty, updating the count for any pages
1708 * that weren't previously dirty.
1710 migration_dirty_pages += !test_and_set_bit(page, bitmap);
1714 if (unsent_pass) {
1715 /* Find the next sent page for the next iteration */
1716 run_start = find_next_zero_bit(unsentmap, last + 1,
1717 run_start);
1718 } else {
1719 /* Find the next dirty page for the next iteration */
1720 run_start = find_next_bit(bitmap, last + 1, run_start);
1726 * Utility for the outgoing postcopy code.
1728 * Discard any partially sent host-page size chunks, mark any partially
1729 * dirty host-page size chunks as all dirty.
1731 * Returns: 0 on success
1733 static int postcopy_chunk_hostpages(MigrationState *ms)
1735 struct RAMBlock *block;
1737 if (qemu_host_page_size == TARGET_PAGE_SIZE) {
1738 /* Easy case - TPS==HPS - nothing to be done */
1739 return 0;
1742 /* Easiest way to make sure we don't resume in the middle of a host-page */
1743 last_seen_block = NULL;
1744 last_sent_block = NULL;
1745 last_offset = 0;
1747 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1748 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1750 PostcopyDiscardState *pds =
1751 postcopy_discard_send_init(ms, first, block->idstr);
1753 /* First pass: Discard all partially sent host pages */
1754 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1756 * Second pass: Ensure that all partially dirty host pages are made
1757 * fully dirty.
1759 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1761 postcopy_discard_send_finish(ms, pds);
1762 } /* ram_list loop */
1764 return 0;
1768 * Transmit the set of pages to be discarded after precopy to the target
1769 * these are pages that:
1770 * a) Have been previously transmitted but are now dirty again
1771 * b) Pages that have never been transmitted, this ensures that
1772 * any pages on the destination that have been mapped by background
1773 * tasks get discarded (transparent huge pages is the specific concern)
1774 * Hopefully this is pretty sparse
1776 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1778 int ret;
1779 unsigned long *bitmap, *unsentmap;
1781 rcu_read_lock();
1783 /* This should be our last sync, the src is now paused */
1784 migration_bitmap_sync();
1786 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1787 if (!unsentmap) {
1788 /* We don't have a safe way to resize the sentmap, so
1789 * if the bitmap was resized it will be NULL at this
1790 * point.
1792 error_report("migration ram resized during precopy phase");
1793 rcu_read_unlock();
1794 return -EINVAL;
1797 /* Deal with TPS != HPS */
1798 ret = postcopy_chunk_hostpages(ms);
1799 if (ret) {
1800 rcu_read_unlock();
1801 return ret;
1805 * Update the unsentmap to be unsentmap = unsentmap | dirty
1807 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1808 bitmap_or(unsentmap, unsentmap, bitmap,
1809 last_ram_offset() >> TARGET_PAGE_BITS);
1812 trace_ram_postcopy_send_discard_bitmap();
1813 #ifdef DEBUG_POSTCOPY
1814 ram_debug_dump_bitmap(unsentmap, true);
1815 #endif
1817 ret = postcopy_each_ram_send_discard(ms);
1818 rcu_read_unlock();
1820 return ret;
1824 * At the start of the postcopy phase of migration, any now-dirty
1825 * precopied pages are discarded.
1827 * start, length describe a byte address range within the RAMBlock
1829 * Returns 0 on success.
1831 int ram_discard_range(MigrationIncomingState *mis,
1832 const char *block_name,
1833 uint64_t start, size_t length)
1835 int ret = -1;
1837 rcu_read_lock();
1838 RAMBlock *rb = qemu_ram_block_by_name(block_name);
1840 if (!rb) {
1841 error_report("ram_discard_range: Failed to find block '%s'",
1842 block_name);
1843 goto err;
1846 uint8_t *host_startaddr = rb->host + start;
1848 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) {
1849 error_report("ram_discard_range: Unaligned start address: %p",
1850 host_startaddr);
1851 goto err;
1854 if ((start + length) <= rb->used_length) {
1855 uint8_t *host_endaddr = host_startaddr + length;
1856 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) {
1857 error_report("ram_discard_range: Unaligned end address: %p",
1858 host_endaddr);
1859 goto err;
1861 ret = postcopy_ram_discard_range(mis, host_startaddr, length);
1862 } else {
1863 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64
1864 "/%zx/" RAM_ADDR_FMT")",
1865 block_name, start, length, rb->used_length);
1868 err:
1869 rcu_read_unlock();
1871 return ret;
1875 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1876 * long-running RCU critical section. When rcu-reclaims in the code
1877 * start to become numerous it will be necessary to reduce the
1878 * granularity of these critical sections.
1881 static int ram_save_setup(QEMUFile *f, void *opaque)
1883 RAMBlock *block;
1884 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1886 dirty_rate_high_cnt = 0;
1887 bitmap_sync_count = 0;
1888 migration_bitmap_sync_init();
1889 qemu_mutex_init(&migration_bitmap_mutex);
1891 if (migrate_use_xbzrle()) {
1892 XBZRLE_cache_lock();
1893 ZERO_TARGET_PAGE = g_malloc0(TARGET_PAGE_SIZE);
1894 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1895 TARGET_PAGE_SIZE,
1896 TARGET_PAGE_SIZE);
1897 if (!XBZRLE.cache) {
1898 XBZRLE_cache_unlock();
1899 error_report("Error creating cache");
1900 return -1;
1902 XBZRLE_cache_unlock();
1904 /* We prefer not to abort if there is no memory */
1905 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1906 if (!XBZRLE.encoded_buf) {
1907 error_report("Error allocating encoded_buf");
1908 return -1;
1911 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1912 if (!XBZRLE.current_buf) {
1913 error_report("Error allocating current_buf");
1914 g_free(XBZRLE.encoded_buf);
1915 XBZRLE.encoded_buf = NULL;
1916 return -1;
1919 acct_clear();
1922 /* For memory_global_dirty_log_start below. */
1923 qemu_mutex_lock_iothread();
1925 qemu_mutex_lock_ramlist();
1926 rcu_read_lock();
1927 bytes_transferred = 0;
1928 reset_ram_globals();
1930 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1931 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1);
1932 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages);
1933 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages);
1935 if (migrate_postcopy_ram()) {
1936 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages);
1937 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages);
1941 * Count the total number of pages used by ram blocks not including any
1942 * gaps due to alignment or unplugs.
1944 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1946 memory_global_dirty_log_start();
1947 migration_bitmap_sync();
1948 qemu_mutex_unlock_ramlist();
1949 qemu_mutex_unlock_iothread();
1951 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1953 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1954 qemu_put_byte(f, strlen(block->idstr));
1955 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1956 qemu_put_be64(f, block->used_length);
1959 rcu_read_unlock();
1961 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1962 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1964 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1966 return 0;
1969 static int ram_save_iterate(QEMUFile *f, void *opaque)
1971 int ret;
1972 int i;
1973 int64_t t0;
1974 int pages_sent = 0;
1976 rcu_read_lock();
1977 if (ram_list.version != last_version) {
1978 reset_ram_globals();
1981 /* Read version before ram_list.blocks */
1982 smp_rmb();
1984 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1986 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1987 i = 0;
1988 while ((ret = qemu_file_rate_limit(f)) == 0) {
1989 int pages;
1991 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1992 /* no more pages to sent */
1993 if (pages == 0) {
1994 break;
1996 pages_sent += pages;
1997 acct_info.iterations++;
1999 /* we want to check in the 1st loop, just in case it was the 1st time
2000 and we had to sync the dirty bitmap.
2001 qemu_get_clock_ns() is a bit expensive, so we only check each some
2002 iterations
2004 if ((i & 63) == 0) {
2005 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2006 if (t1 > MAX_WAIT) {
2007 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
2008 t1, i);
2009 break;
2012 i++;
2014 flush_compressed_data(f);
2015 rcu_read_unlock();
2018 * Must occur before EOS (or any QEMUFile operation)
2019 * because of RDMA protocol.
2021 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2023 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2024 bytes_transferred += 8;
2026 ret = qemu_file_get_error(f);
2027 if (ret < 0) {
2028 return ret;
2031 return pages_sent;
2034 /* Called with iothread lock */
2035 static int ram_save_complete(QEMUFile *f, void *opaque)
2037 rcu_read_lock();
2039 if (!migration_in_postcopy(migrate_get_current())) {
2040 migration_bitmap_sync();
2043 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2045 /* try transferring iterative blocks of memory */
2047 /* flush all remaining blocks regardless of rate limiting */
2048 while (true) {
2049 int pages;
2051 pages = ram_find_and_save_block(f, true, &bytes_transferred);
2052 /* no more blocks to sent */
2053 if (pages == 0) {
2054 break;
2058 flush_compressed_data(f);
2059 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2061 rcu_read_unlock();
2063 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2065 return 0;
2068 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2069 uint64_t *non_postcopiable_pending,
2070 uint64_t *postcopiable_pending)
2072 uint64_t remaining_size;
2074 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2076 if (!migration_in_postcopy(migrate_get_current()) &&
2077 remaining_size < max_size) {
2078 qemu_mutex_lock_iothread();
2079 rcu_read_lock();
2080 migration_bitmap_sync();
2081 rcu_read_unlock();
2082 qemu_mutex_unlock_iothread();
2083 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2086 /* We can do postcopy, and all the data is postcopiable */
2087 *postcopiable_pending += remaining_size;
2090 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2092 unsigned int xh_len;
2093 int xh_flags;
2094 uint8_t *loaded_data;
2096 if (!xbzrle_decoded_buf) {
2097 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2099 loaded_data = xbzrle_decoded_buf;
2101 /* extract RLE header */
2102 xh_flags = qemu_get_byte(f);
2103 xh_len = qemu_get_be16(f);
2105 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2106 error_report("Failed to load XBZRLE page - wrong compression!");
2107 return -1;
2110 if (xh_len > TARGET_PAGE_SIZE) {
2111 error_report("Failed to load XBZRLE page - len overflow!");
2112 return -1;
2114 /* load data and decode */
2115 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2117 /* decode RLE */
2118 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2119 TARGET_PAGE_SIZE) == -1) {
2120 error_report("Failed to load XBZRLE page - decode error!");
2121 return -1;
2124 return 0;
2127 /* Must be called from within a rcu critical section.
2128 * Returns a pointer from within the RCU-protected ram_list.
2131 * Read a RAMBlock ID from the stream f.
2133 * f: Stream to read from
2134 * flags: Page flags (mostly to see if it's a continuation of previous block)
2136 static inline RAMBlock *ram_block_from_stream(QEMUFile *f,
2137 int flags)
2139 static RAMBlock *block = NULL;
2140 char id[256];
2141 uint8_t len;
2143 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2144 if (!block) {
2145 error_report("Ack, bad migration stream!");
2146 return NULL;
2148 return block;
2151 len = qemu_get_byte(f);
2152 qemu_get_buffer(f, (uint8_t *)id, len);
2153 id[len] = 0;
2155 block = qemu_ram_block_by_name(id);
2156 if (!block) {
2157 error_report("Can't find block %s", id);
2158 return NULL;
2161 return block;
2164 static inline void *host_from_ram_block_offset(RAMBlock *block,
2165 ram_addr_t offset)
2167 if (!offset_in_ramblock(block, offset)) {
2168 return NULL;
2171 return block->host + offset;
2175 * If a page (or a whole RDMA chunk) has been
2176 * determined to be zero, then zap it.
2178 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2180 if (ch != 0 || !is_zero_range(host, size)) {
2181 memset(host, ch, size);
2185 static void *do_data_decompress(void *opaque)
2187 DecompressParam *param = opaque;
2188 unsigned long pagesize;
2189 uint8_t *des;
2190 int len;
2192 qemu_mutex_lock(&param->mutex);
2193 while (!param->quit) {
2194 if (param->des) {
2195 des = param->des;
2196 len = param->len;
2197 param->des = 0;
2198 qemu_mutex_unlock(&param->mutex);
2200 pagesize = TARGET_PAGE_SIZE;
2201 /* uncompress() will return failed in some case, especially
2202 * when the page is dirted when doing the compression, it's
2203 * not a problem because the dirty page will be retransferred
2204 * and uncompress() won't break the data in other pages.
2206 uncompress((Bytef *)des, &pagesize,
2207 (const Bytef *)param->compbuf, len);
2209 qemu_mutex_lock(&decomp_done_lock);
2210 param->done = true;
2211 qemu_cond_signal(&decomp_done_cond);
2212 qemu_mutex_unlock(&decomp_done_lock);
2214 qemu_mutex_lock(&param->mutex);
2215 } else {
2216 qemu_cond_wait(&param->cond, &param->mutex);
2219 qemu_mutex_unlock(&param->mutex);
2221 return NULL;
2224 static void wait_for_decompress_done(void)
2226 int idx, thread_count;
2228 if (!migrate_use_compression()) {
2229 return;
2232 thread_count = migrate_decompress_threads();
2233 qemu_mutex_lock(&decomp_done_lock);
2234 for (idx = 0; idx < thread_count; idx++) {
2235 while (!decomp_param[idx].done) {
2236 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2239 qemu_mutex_unlock(&decomp_done_lock);
2242 void migrate_decompress_threads_create(void)
2244 int i, thread_count;
2246 thread_count = migrate_decompress_threads();
2247 decompress_threads = g_new0(QemuThread, thread_count);
2248 decomp_param = g_new0(DecompressParam, thread_count);
2249 qemu_mutex_init(&decomp_done_lock);
2250 qemu_cond_init(&decomp_done_cond);
2251 for (i = 0; i < thread_count; i++) {
2252 qemu_mutex_init(&decomp_param[i].mutex);
2253 qemu_cond_init(&decomp_param[i].cond);
2254 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2255 decomp_param[i].done = true;
2256 decomp_param[i].quit = false;
2257 qemu_thread_create(decompress_threads + i, "decompress",
2258 do_data_decompress, decomp_param + i,
2259 QEMU_THREAD_JOINABLE);
2263 void migrate_decompress_threads_join(void)
2265 int i, thread_count;
2267 thread_count = migrate_decompress_threads();
2268 for (i = 0; i < thread_count; i++) {
2269 qemu_mutex_lock(&decomp_param[i].mutex);
2270 decomp_param[i].quit = true;
2271 qemu_cond_signal(&decomp_param[i].cond);
2272 qemu_mutex_unlock(&decomp_param[i].mutex);
2274 for (i = 0; i < thread_count; i++) {
2275 qemu_thread_join(decompress_threads + i);
2276 qemu_mutex_destroy(&decomp_param[i].mutex);
2277 qemu_cond_destroy(&decomp_param[i].cond);
2278 g_free(decomp_param[i].compbuf);
2280 g_free(decompress_threads);
2281 g_free(decomp_param);
2282 decompress_threads = NULL;
2283 decomp_param = NULL;
2286 static void decompress_data_with_multi_threads(QEMUFile *f,
2287 void *host, int len)
2289 int idx, thread_count;
2291 thread_count = migrate_decompress_threads();
2292 qemu_mutex_lock(&decomp_done_lock);
2293 while (true) {
2294 for (idx = 0; idx < thread_count; idx++) {
2295 if (decomp_param[idx].done) {
2296 decomp_param[idx].done = false;
2297 qemu_mutex_lock(&decomp_param[idx].mutex);
2298 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2299 decomp_param[idx].des = host;
2300 decomp_param[idx].len = len;
2301 qemu_cond_signal(&decomp_param[idx].cond);
2302 qemu_mutex_unlock(&decomp_param[idx].mutex);
2303 break;
2306 if (idx < thread_count) {
2307 break;
2308 } else {
2309 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2312 qemu_mutex_unlock(&decomp_done_lock);
2316 * Allocate data structures etc needed by incoming migration with postcopy-ram
2317 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work
2319 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2321 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2323 return postcopy_ram_incoming_init(mis, ram_pages);
2327 * Called in postcopy mode by ram_load().
2328 * rcu_read_lock is taken prior to this being called.
2330 static int ram_load_postcopy(QEMUFile *f)
2332 int flags = 0, ret = 0;
2333 bool place_needed = false;
2334 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE;
2335 MigrationIncomingState *mis = migration_incoming_get_current();
2336 /* Temporary page that is later 'placed' */
2337 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2338 void *last_host = NULL;
2339 bool all_zero = false;
2341 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2342 ram_addr_t addr;
2343 void *host = NULL;
2344 void *page_buffer = NULL;
2345 void *place_source = NULL;
2346 uint8_t ch;
2348 addr = qemu_get_be64(f);
2349 flags = addr & ~TARGET_PAGE_MASK;
2350 addr &= TARGET_PAGE_MASK;
2352 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2353 place_needed = false;
2354 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
2355 RAMBlock *block = ram_block_from_stream(f, flags);
2357 host = host_from_ram_block_offset(block, addr);
2358 if (!host) {
2359 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2360 ret = -EINVAL;
2361 break;
2364 * Postcopy requires that we place whole host pages atomically.
2365 * To make it atomic, the data is read into a temporary page
2366 * that's moved into place later.
2367 * The migration protocol uses, possibly smaller, target-pages
2368 * however the source ensures it always sends all the components
2369 * of a host page in order.
2371 page_buffer = postcopy_host_page +
2372 ((uintptr_t)host & ~qemu_host_page_mask);
2373 /* If all TP are zero then we can optimise the place */
2374 if (!((uintptr_t)host & ~qemu_host_page_mask)) {
2375 all_zero = true;
2376 } else {
2377 /* not the 1st TP within the HP */
2378 if (host != (last_host + TARGET_PAGE_SIZE)) {
2379 error_report("Non-sequential target page %p/%p",
2380 host, last_host);
2381 ret = -EINVAL;
2382 break;
2388 * If it's the last part of a host page then we place the host
2389 * page
2391 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2392 ~qemu_host_page_mask) == 0;
2393 place_source = postcopy_host_page;
2395 last_host = host;
2397 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2398 case RAM_SAVE_FLAG_COMPRESS:
2399 ch = qemu_get_byte(f);
2400 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2401 if (ch) {
2402 all_zero = false;
2404 break;
2406 case RAM_SAVE_FLAG_PAGE:
2407 all_zero = false;
2408 if (!place_needed || !matching_page_sizes) {
2409 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2410 } else {
2411 /* Avoids the qemu_file copy during postcopy, which is
2412 * going to do a copy later; can only do it when we
2413 * do this read in one go (matching page sizes)
2415 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2416 TARGET_PAGE_SIZE);
2418 break;
2419 case RAM_SAVE_FLAG_EOS:
2420 /* normal exit */
2421 break;
2422 default:
2423 error_report("Unknown combination of migration flags: %#x"
2424 " (postcopy mode)", flags);
2425 ret = -EINVAL;
2428 if (place_needed) {
2429 /* This gets called at the last target page in the host page */
2430 if (all_zero) {
2431 ret = postcopy_place_page_zero(mis,
2432 host + TARGET_PAGE_SIZE -
2433 qemu_host_page_size);
2434 } else {
2435 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE -
2436 qemu_host_page_size,
2437 place_source);
2440 if (!ret) {
2441 ret = qemu_file_get_error(f);
2445 return ret;
2448 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2450 int flags = 0, ret = 0;
2451 static uint64_t seq_iter;
2452 int len = 0;
2454 * If system is running in postcopy mode, page inserts to host memory must
2455 * be atomic
2457 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2459 seq_iter++;
2461 if (version_id != 4) {
2462 ret = -EINVAL;
2465 /* This RCU critical section can be very long running.
2466 * When RCU reclaims in the code start to become numerous,
2467 * it will be necessary to reduce the granularity of this
2468 * critical section.
2470 rcu_read_lock();
2472 if (postcopy_running) {
2473 ret = ram_load_postcopy(f);
2476 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2477 ram_addr_t addr, total_ram_bytes;
2478 void *host = NULL;
2479 uint8_t ch;
2481 addr = qemu_get_be64(f);
2482 flags = addr & ~TARGET_PAGE_MASK;
2483 addr &= TARGET_PAGE_MASK;
2485 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2486 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2487 RAMBlock *block = ram_block_from_stream(f, flags);
2489 host = host_from_ram_block_offset(block, addr);
2490 if (!host) {
2491 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2492 ret = -EINVAL;
2493 break;
2497 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2498 case RAM_SAVE_FLAG_MEM_SIZE:
2499 /* Synchronize RAM block list */
2500 total_ram_bytes = addr;
2501 while (!ret && total_ram_bytes) {
2502 RAMBlock *block;
2503 char id[256];
2504 ram_addr_t length;
2506 len = qemu_get_byte(f);
2507 qemu_get_buffer(f, (uint8_t *)id, len);
2508 id[len] = 0;
2509 length = qemu_get_be64(f);
2511 block = qemu_ram_block_by_name(id);
2512 if (block) {
2513 if (length != block->used_length) {
2514 Error *local_err = NULL;
2516 ret = qemu_ram_resize(block, length,
2517 &local_err);
2518 if (local_err) {
2519 error_report_err(local_err);
2522 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2523 block->idstr);
2524 } else {
2525 error_report("Unknown ramblock \"%s\", cannot "
2526 "accept migration", id);
2527 ret = -EINVAL;
2530 total_ram_bytes -= length;
2532 break;
2534 case RAM_SAVE_FLAG_COMPRESS:
2535 ch = qemu_get_byte(f);
2536 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2537 break;
2539 case RAM_SAVE_FLAG_PAGE:
2540 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2541 break;
2543 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2544 len = qemu_get_be32(f);
2545 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2546 error_report("Invalid compressed data length: %d", len);
2547 ret = -EINVAL;
2548 break;
2550 decompress_data_with_multi_threads(f, host, len);
2551 break;
2553 case RAM_SAVE_FLAG_XBZRLE:
2554 if (load_xbzrle(f, addr, host) < 0) {
2555 error_report("Failed to decompress XBZRLE page at "
2556 RAM_ADDR_FMT, addr);
2557 ret = -EINVAL;
2558 break;
2560 break;
2561 case RAM_SAVE_FLAG_EOS:
2562 /* normal exit */
2563 break;
2564 default:
2565 if (flags & RAM_SAVE_FLAG_HOOK) {
2566 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2567 } else {
2568 error_report("Unknown combination of migration flags: %#x",
2569 flags);
2570 ret = -EINVAL;
2573 if (!ret) {
2574 ret = qemu_file_get_error(f);
2578 wait_for_decompress_done();
2579 rcu_read_unlock();
2580 DPRINTF("Completed load of VM with exit code %d seq iteration "
2581 "%" PRIu64 "\n", ret, seq_iter);
2582 return ret;
2585 static SaveVMHandlers savevm_ram_handlers = {
2586 .save_live_setup = ram_save_setup,
2587 .save_live_iterate = ram_save_iterate,
2588 .save_live_complete_postcopy = ram_save_complete,
2589 .save_live_complete_precopy = ram_save_complete,
2590 .save_live_pending = ram_save_pending,
2591 .load_state = ram_load,
2592 .cleanup = ram_migration_cleanup,
2595 void ram_mig_init(void)
2597 qemu_mutex_init(&XBZRLE.lock);
2598 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);