memory: fix usage of find_next_bit and find_next_zero_bit
[qemu/rayw.git] / docs / specs / ppc-spapr-hcalls.txt
blob5bd8eab78f182a99ff6a14f2da27887c10119687
1 When used with the "pseries" machine type, QEMU-system-ppc64 implements
2 a set of hypervisor calls using a subset of the server "PAPR" specification
3 (IBM internal at this point), which is also what IBM's proprietary hypervisor
4 adheres too.
6 The subset is selected based on the requirements of Linux as a guest.
8 In addition to those calls, we have added our own private hypervisor
9 calls which are mostly used as a private interface between the firmware
10 running in the guest and QEMU.
12 All those hypercalls start at hcall number 0xf000 which correspond
13 to a implementation specific range in PAPR.
15 - H_RTAS (0xf000)
17 RTAS is a set of runtime services generally provided by the firmware
18 inside the guest to the operating system. It predates the existence
19 of hypervisors (it was originally an extension to Open Firmware) and
20 is still used by PAPR to provide various services that aren't performance
21 sensitive.
23 We currently implement the RTAS services in QEMU itself. The actual RTAS
24 "firmware" blob in the guest is a small stub of a few instructions which
25 calls our private H_RTAS hypervisor call to pass the RTAS calls to QEMU.
27 Arguments:
29   r3 : H_RTAS (0xf000)
30   r4 : Guest physical address of RTAS parameter block
32 Returns:
34   H_SUCCESS   : Successfully called the RTAS function (RTAS result
35                 will have been stored in the parameter block)
36   H_PARAMETER : Unknown token
38 - H_LOGICAL_MEMOP (0xf001)
40 When the guest runs in "real mode" (in powerpc lingua this means
41 with MMU disabled, ie guest effective == guest physical), it only
42 has access to a subset of memory and no IOs.
44 PAPR provides a set of hypervisor calls to perform cacheable or
45 non-cacheable accesses to any guest physical addresses that the
46 guest can use in order to access IO devices while in real mode.
48 This is typically used by the firmware running in the guest.
50 However, doing a hypercall for each access is extremely inefficient
51 (even more so when running KVM) when accessing the frame buffer. In
52 that case, things like scrolling become unusably slow.
54 This hypercall allows the guest to request a "memory op" to be applied
55 to memory. The supported memory ops at this point are to copy a range
56 of memory (supports overlap of source and destination) and XOR which
57 is used by our SLOF firmware to invert the screen.
59 Arguments:
61   r3: H_LOGICAL_MEMOP (0xf001)
62   r4: Guest physical address of destination
63   r5: Guest physical address of source
64   r6: Individual element size
65         0 = 1 byte
66         1 = 2 bytes
67         2 = 4 bytes
68         3 = 8 bytes
69   r7: Number of elements
70   r8: Operation
71         0 = copy
72         1 = xor
74 Returns:
76   H_SUCCESS   : Success
77   H_PARAMETER : Invalid argument