2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "disas/disas.h"
24 #include "qemu/atomic.h"
25 #include "sysemu/qtest.h"
26 #include "qemu/timer.h"
27 #include "exec/address-spaces.h"
29 #include "exec/tb-hash.h"
30 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
31 #include "hw/i386/apic.h"
34 /* -icount align implementation. */
36 typedef struct SyncClocks
{
38 int64_t last_cpu_icount
;
39 int64_t realtime_clock
;
42 #if !defined(CONFIG_USER_ONLY)
43 /* Allow the guest to have a max 3ms advance.
44 * The difference between the 2 clocks could therefore
47 #define VM_CLOCK_ADVANCE 3000000
48 #define THRESHOLD_REDUCE 1.5
49 #define MAX_DELAY_PRINT_RATE 2000000000LL
50 #define MAX_NB_PRINTS 100
52 static void align_clocks(SyncClocks
*sc
, const CPUState
*cpu
)
56 if (!icount_align_option
) {
60 cpu_icount
= cpu
->icount_extra
+ cpu
->icount_decr
.u16
.low
;
61 sc
->diff_clk
+= cpu_icount_to_ns(sc
->last_cpu_icount
- cpu_icount
);
62 sc
->last_cpu_icount
= cpu_icount
;
64 if (sc
->diff_clk
> VM_CLOCK_ADVANCE
) {
66 struct timespec sleep_delay
, rem_delay
;
67 sleep_delay
.tv_sec
= sc
->diff_clk
/ 1000000000LL;
68 sleep_delay
.tv_nsec
= sc
->diff_clk
% 1000000000LL;
69 if (nanosleep(&sleep_delay
, &rem_delay
) < 0) {
70 sc
->diff_clk
= rem_delay
.tv_sec
* 1000000000LL + rem_delay
.tv_nsec
;
75 Sleep(sc
->diff_clk
/ SCALE_MS
);
81 static void print_delay(const SyncClocks
*sc
)
83 static float threshold_delay
;
84 static int64_t last_realtime_clock
;
87 if (icount_align_option
&&
88 sc
->realtime_clock
- last_realtime_clock
>= MAX_DELAY_PRINT_RATE
&&
89 nb_prints
< MAX_NB_PRINTS
) {
90 if ((-sc
->diff_clk
/ (float)1000000000LL > threshold_delay
) ||
91 (-sc
->diff_clk
/ (float)1000000000LL <
92 (threshold_delay
- THRESHOLD_REDUCE
))) {
93 threshold_delay
= (-sc
->diff_clk
/ 1000000000LL) + 1;
94 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
98 last_realtime_clock
= sc
->realtime_clock
;
103 static void init_delay_params(SyncClocks
*sc
,
106 if (!icount_align_option
) {
109 sc
->realtime_clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT
);
110 sc
->diff_clk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) - sc
->realtime_clock
;
111 sc
->last_cpu_icount
= cpu
->icount_extra
+ cpu
->icount_decr
.u16
.low
;
112 if (sc
->diff_clk
< max_delay
) {
113 max_delay
= sc
->diff_clk
;
115 if (sc
->diff_clk
> max_advance
) {
116 max_advance
= sc
->diff_clk
;
119 /* Print every 2s max if the guest is late. We limit the number
120 of printed messages to NB_PRINT_MAX(currently 100) */
124 static void align_clocks(SyncClocks
*sc
, const CPUState
*cpu
)
128 static void init_delay_params(SyncClocks
*sc
, const CPUState
*cpu
)
131 #endif /* CONFIG USER ONLY */
133 /* Execute a TB, and fix up the CPU state afterwards if necessary */
134 static inline tcg_target_ulong
cpu_tb_exec(CPUState
*cpu
, uint8_t *tb_ptr
)
136 CPUArchState
*env
= cpu
->env_ptr
;
139 #if defined(DEBUG_DISAS)
140 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
141 #if defined(TARGET_I386)
142 log_cpu_state(cpu
, CPU_DUMP_CCOP
);
143 #elif defined(TARGET_M68K)
144 /* ??? Should not modify env state for dumping. */
145 cpu_m68k_flush_flags(env
, env
->cc_op
);
146 env
->cc_op
= CC_OP_FLAGS
;
147 env
->sr
= (env
->sr
& 0xffe0) | env
->cc_dest
| (env
->cc_x
<< 4);
148 log_cpu_state(cpu
, 0);
150 log_cpu_state(cpu
, 0);
153 #endif /* DEBUG_DISAS */
155 cpu
->can_do_io
= !use_icount
;
156 next_tb
= tcg_qemu_tb_exec(env
, tb_ptr
);
158 trace_exec_tb_exit((void *) (next_tb
& ~TB_EXIT_MASK
),
159 next_tb
& TB_EXIT_MASK
);
161 if ((next_tb
& TB_EXIT_MASK
) > TB_EXIT_IDX1
) {
162 /* We didn't start executing this TB (eg because the instruction
163 * counter hit zero); we must restore the guest PC to the address
164 * of the start of the TB.
166 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
167 TranslationBlock
*tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
168 if (cc
->synchronize_from_tb
) {
169 cc
->synchronize_from_tb(cpu
, tb
);
172 cc
->set_pc(cpu
, tb
->pc
);
175 if ((next_tb
& TB_EXIT_MASK
) == TB_EXIT_REQUESTED
) {
176 /* We were asked to stop executing TBs (probably a pending
177 * interrupt. We've now stopped, so clear the flag.
179 cpu
->tcg_exit_req
= 0;
184 /* Execute the code without caching the generated code. An interpreter
185 could be used if available. */
186 static void cpu_exec_nocache(CPUState
*cpu
, int max_cycles
,
187 TranslationBlock
*orig_tb
)
189 TranslationBlock
*tb
;
191 /* Should never happen.
192 We only end up here when an existing TB is too long. */
193 if (max_cycles
> CF_COUNT_MASK
)
194 max_cycles
= CF_COUNT_MASK
;
196 tb
= tb_gen_code(cpu
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
197 max_cycles
| CF_NOCACHE
);
198 tb
->orig_tb
= tcg_ctx
.tb_ctx
.tb_invalidated_flag
? NULL
: orig_tb
;
199 cpu
->current_tb
= tb
;
200 /* execute the generated code */
201 trace_exec_tb_nocache(tb
, tb
->pc
);
202 cpu_tb_exec(cpu
, tb
->tc_ptr
);
203 cpu
->current_tb
= NULL
;
204 tb_phys_invalidate(tb
, -1);
208 static TranslationBlock
*tb_find_physical(CPUState
*cpu
,
210 target_ulong cs_base
,
213 CPUArchState
*env
= (CPUArchState
*)cpu
->env_ptr
;
214 TranslationBlock
*tb
, **ptb1
;
216 tb_page_addr_t phys_pc
, phys_page1
;
217 target_ulong virt_page2
;
219 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
221 /* find translated block using physical mappings */
222 phys_pc
= get_page_addr_code(env
, pc
);
223 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
224 h
= tb_phys_hash_func(phys_pc
);
225 ptb1
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
232 tb
->page_addr
[0] == phys_page1
&&
233 tb
->cs_base
== cs_base
&&
234 tb
->flags
== flags
) {
235 /* check next page if needed */
236 if (tb
->page_addr
[1] != -1) {
237 tb_page_addr_t phys_page2
;
239 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
241 phys_page2
= get_page_addr_code(env
, virt_page2
);
242 if (tb
->page_addr
[1] == phys_page2
) {
249 ptb1
= &tb
->phys_hash_next
;
252 /* Move the TB to the head of the list */
253 *ptb1
= tb
->phys_hash_next
;
254 tb
->phys_hash_next
= tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
255 tcg_ctx
.tb_ctx
.tb_phys_hash
[h
] = tb
;
259 static TranslationBlock
*tb_find_slow(CPUState
*cpu
,
261 target_ulong cs_base
,
264 TranslationBlock
*tb
;
266 tb
= tb_find_physical(cpu
, pc
, cs_base
, flags
);
271 #ifdef CONFIG_USER_ONLY
272 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
273 * taken outside tb_lock. Since we're momentarily dropping
274 * tb_lock, there's a chance that our desired tb has been
280 tb
= tb_find_physical(cpu
, pc
, cs_base
, flags
);
287 /* if no translated code available, then translate it now */
288 tb
= tb_gen_code(cpu
, pc
, cs_base
, flags
, 0);
290 #ifdef CONFIG_USER_ONLY
295 /* we add the TB in the virtual pc hash table */
296 cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
300 static inline TranslationBlock
*tb_find_fast(CPUState
*cpu
)
302 CPUArchState
*env
= (CPUArchState
*)cpu
->env_ptr
;
303 TranslationBlock
*tb
;
304 target_ulong cs_base
, pc
;
307 /* we record a subset of the CPU state. It will
308 always be the same before a given translated block
310 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
311 tb
= cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
312 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
313 tb
->flags
!= flags
)) {
314 tb
= tb_find_slow(cpu
, pc
, cs_base
, flags
);
319 static void cpu_handle_debug_exception(CPUState
*cpu
)
321 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
324 if (!cpu
->watchpoint_hit
) {
325 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
326 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
330 cc
->debug_excp_handler(cpu
);
333 /* main execution loop */
335 int cpu_exec(CPUState
*cpu
)
337 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
339 X86CPU
*x86_cpu
= X86_CPU(cpu
);
340 CPUArchState
*env
= &x86_cpu
->env
;
342 int ret
, interrupt_request
;
343 TranslationBlock
*tb
;
349 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
350 if (cpu
->interrupt_request
& CPU_INTERRUPT_POLL
) {
351 apic_poll_irq(x86_cpu
->apic_state
);
352 cpu_reset_interrupt(cpu
, CPU_INTERRUPT_POLL
);
355 if (!cpu_has_work(cpu
)) {
363 atomic_mb_set(&tcg_current_cpu
, cpu
);
366 if (unlikely(atomic_mb_read(&exit_request
))) {
367 cpu
->exit_request
= 1;
370 cc
->cpu_exec_enter(cpu
);
372 /* Calculate difference between guest clock and host clock.
373 * This delay includes the delay of the last cycle, so
374 * what we have to do is sleep until it is 0. As for the
375 * advance/delay we gain here, we try to fix it next time.
377 init_delay_params(&sc
, cpu
);
379 /* prepare setjmp context for exception handling */
381 if (sigsetjmp(cpu
->jmp_env
, 0) == 0) {
382 /* if an exception is pending, we execute it here */
383 if (cpu
->exception_index
>= 0) {
384 if (cpu
->exception_index
>= EXCP_INTERRUPT
) {
385 /* exit request from the cpu execution loop */
386 ret
= cpu
->exception_index
;
387 if (ret
== EXCP_DEBUG
) {
388 cpu_handle_debug_exception(cpu
);
390 cpu
->exception_index
= -1;
393 #if defined(CONFIG_USER_ONLY)
394 /* if user mode only, we simulate a fake exception
395 which will be handled outside the cpu execution
397 #if defined(TARGET_I386)
398 cc
->do_interrupt(cpu
);
400 ret
= cpu
->exception_index
;
401 cpu
->exception_index
= -1;
404 cc
->do_interrupt(cpu
);
405 cpu
->exception_index
= -1;
410 next_tb
= 0; /* force lookup of first TB */
412 interrupt_request
= cpu
->interrupt_request
;
413 if (unlikely(interrupt_request
)) {
414 if (unlikely(cpu
->singlestep_enabled
& SSTEP_NOIRQ
)) {
415 /* Mask out external interrupts for this step. */
416 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
418 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
419 cpu
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
420 cpu
->exception_index
= EXCP_DEBUG
;
423 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
424 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
426 cpu
->exception_index
= EXCP_HLT
;
429 #if defined(TARGET_I386)
430 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
431 cpu_svm_check_intercept_param(env
, SVM_EXIT_INIT
, 0);
432 do_cpu_init(x86_cpu
);
433 cpu
->exception_index
= EXCP_HALTED
;
437 if (interrupt_request
& CPU_INTERRUPT_RESET
) {
441 /* The target hook has 3 exit conditions:
442 False when the interrupt isn't processed,
443 True when it is, and we should restart on a new TB,
444 and via longjmp via cpu_loop_exit. */
445 if (cc
->cpu_exec_interrupt(cpu
, interrupt_request
)) {
448 /* Don't use the cached interrupt_request value,
449 do_interrupt may have updated the EXITTB flag. */
450 if (cpu
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
451 cpu
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
452 /* ensure that no TB jump will be modified as
453 the program flow was changed */
457 if (unlikely(cpu
->exit_request
)) {
458 cpu
->exit_request
= 0;
459 cpu
->exception_index
= EXCP_INTERRUPT
;
463 tb
= tb_find_fast(cpu
);
464 /* Note: we do it here to avoid a gcc bug on Mac OS X when
465 doing it in tb_find_slow */
466 if (tcg_ctx
.tb_ctx
.tb_invalidated_flag
) {
467 /* as some TB could have been invalidated because
468 of memory exceptions while generating the code, we
469 must recompute the hash index here */
471 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
473 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
474 qemu_log("Trace %p [" TARGET_FMT_lx
"] %s\n",
475 tb
->tc_ptr
, tb
->pc
, lookup_symbol(tb
->pc
));
477 /* see if we can patch the calling TB. When the TB
478 spans two pages, we cannot safely do a direct
480 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
481 tb_add_jump((TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
),
482 next_tb
& TB_EXIT_MASK
, tb
);
485 if (likely(!cpu
->exit_request
)) {
486 trace_exec_tb(tb
, tb
->pc
);
488 /* execute the generated code */
489 cpu
->current_tb
= tb
;
490 next_tb
= cpu_tb_exec(cpu
, tc_ptr
);
491 cpu
->current_tb
= NULL
;
492 switch (next_tb
& TB_EXIT_MASK
) {
493 case TB_EXIT_REQUESTED
:
494 /* Something asked us to stop executing
495 * chained TBs; just continue round the main
496 * loop. Whatever requested the exit will also
497 * have set something else (eg exit_request or
498 * interrupt_request) which we will handle
499 * next time around the loop. But we need to
500 * ensure the tcg_exit_req read in generated code
501 * comes before the next read of cpu->exit_request
502 * or cpu->interrupt_request.
507 case TB_EXIT_ICOUNT_EXPIRED
:
509 /* Instruction counter expired. */
510 int insns_left
= cpu
->icount_decr
.u32
;
511 if (cpu
->icount_extra
&& insns_left
>= 0) {
512 /* Refill decrementer and continue execution. */
513 cpu
->icount_extra
+= insns_left
;
514 insns_left
= MIN(0xffff, cpu
->icount_extra
);
515 cpu
->icount_extra
-= insns_left
;
516 cpu
->icount_decr
.u16
.low
= insns_left
;
518 if (insns_left
> 0) {
519 /* Execute remaining instructions. */
520 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
521 cpu_exec_nocache(cpu
, insns_left
, tb
);
522 align_clocks(&sc
, cpu
);
524 cpu
->exception_index
= EXCP_INTERRUPT
;
534 /* Try to align the host and virtual clocks
535 if the guest is in advance */
536 align_clocks(&sc
, cpu
);
537 /* reset soft MMU for next block (it can currently
538 only be set by a memory fault) */
541 /* Reload env after longjmp - the compiler may have smashed all
542 * local variables as longjmp is marked 'noreturn'. */
544 cc
= CPU_GET_CLASS(cpu
);
547 x86_cpu
= X86_CPU(cpu
);
554 cc
->cpu_exec_exit(cpu
);
557 /* fail safe : never use current_cpu outside cpu_exec() */
560 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
561 atomic_set(&tcg_current_cpu
, NULL
);