2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
30 #include "qemu/bswap.h"
33 int qcow2_shrink_l1_table(BlockDriverState
*bs
, uint64_t exact_size
)
35 BDRVQcow2State
*s
= bs
->opaque
;
36 int new_l1_size
, i
, ret
;
38 if (exact_size
>= s
->l1_size
) {
42 new_l1_size
= exact_size
;
45 fprintf(stderr
, "shrink l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
48 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_WRITE_TABLE
);
49 ret
= bdrv_pwrite_zeroes(bs
->file
, s
->l1_table_offset
+
50 new_l1_size
* L1E_SIZE
,
51 (s
->l1_size
- new_l1_size
) * L1E_SIZE
, 0);
56 ret
= bdrv_flush(bs
->file
->bs
);
61 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS
);
62 for (i
= s
->l1_size
- 1; i
> new_l1_size
- 1; i
--) {
63 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) == 0) {
66 qcow2_free_clusters(bs
, s
->l1_table
[i
] & L1E_OFFSET_MASK
,
67 s
->cluster_size
, QCOW2_DISCARD_ALWAYS
);
74 * If the write in the l1_table failed the image may contain a partially
75 * overwritten l1_table. In this case it would be better to clear the
76 * l1_table in memory to avoid possible image corruption.
78 memset(s
->l1_table
+ new_l1_size
, 0,
79 (s
->l1_size
- new_l1_size
) * L1E_SIZE
);
83 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
86 BDRVQcow2State
*s
= bs
->opaque
;
87 int new_l1_size2
, ret
, i
;
88 uint64_t *new_l1_table
;
89 int64_t old_l1_table_offset
, old_l1_size
;
90 int64_t new_l1_table_offset
, new_l1_size
;
93 if (min_size
<= s
->l1_size
)
96 /* Do a sanity check on min_size before trying to calculate new_l1_size
97 * (this prevents overflows during the while loop for the calculation of
99 if (min_size
> INT_MAX
/ L1E_SIZE
) {
104 new_l1_size
= min_size
;
106 /* Bump size up to reduce the number of times we have to grow */
107 new_l1_size
= s
->l1_size
;
108 if (new_l1_size
== 0) {
111 while (min_size
> new_l1_size
) {
112 new_l1_size
= DIV_ROUND_UP(new_l1_size
* 3, 2);
116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE
> INT_MAX
);
117 if (new_l1_size
> QCOW_MAX_L1_SIZE
/ L1E_SIZE
) {
122 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
123 s
->l1_size
, new_l1_size
);
126 new_l1_size2
= L1E_SIZE
* new_l1_size
;
127 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
, new_l1_size2
);
128 if (new_l1_table
== NULL
) {
131 memset(new_l1_table
, 0, new_l1_size2
);
134 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* L1E_SIZE
);
137 /* write new table (align to cluster) */
138 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
139 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
140 if (new_l1_table_offset
< 0) {
141 qemu_vfree(new_l1_table
);
142 return new_l1_table_offset
;
145 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
150 /* the L1 position has not yet been updated, so these clusters must
151 * indeed be completely free */
152 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
153 new_l1_size2
, false);
158 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
159 for(i
= 0; i
< s
->l1_size
; i
++)
160 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
161 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
,
162 new_l1_table
, new_l1_size2
);
165 for(i
= 0; i
< s
->l1_size
; i
++)
166 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
169 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
170 stl_be_p(data
, new_l1_size
);
171 stq_be_p(data
+ 4, new_l1_table_offset
);
172 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
),
177 qemu_vfree(s
->l1_table
);
178 old_l1_table_offset
= s
->l1_table_offset
;
179 s
->l1_table_offset
= new_l1_table_offset
;
180 s
->l1_table
= new_l1_table
;
181 old_l1_size
= s
->l1_size
;
182 s
->l1_size
= new_l1_size
;
183 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* L1E_SIZE
,
184 QCOW2_DISCARD_OTHER
);
187 qemu_vfree(new_l1_table
);
188 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
189 QCOW2_DISCARD_OTHER
);
196 * @bs: The BlockDriverState
197 * @offset: A guest offset, used to calculate what slice of the L2
199 * @l2_offset: Offset to the L2 table in the image file.
200 * @l2_slice: Location to store the pointer to the L2 slice.
202 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203 * that are loaded by the qcow2 cache). If the slice is in the cache,
204 * the cache is used; otherwise the L2 slice is loaded from the image
207 static int l2_load(BlockDriverState
*bs
, uint64_t offset
,
208 uint64_t l2_offset
, uint64_t **l2_slice
)
210 BDRVQcow2State
*s
= bs
->opaque
;
211 int start_of_slice
= l2_entry_size(s
) *
212 (offset_to_l2_index(s
, offset
) - offset_to_l2_slice_index(s
, offset
));
214 return qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
+ start_of_slice
,
219 * Writes an L1 entry to disk (note that depending on the alignment
220 * requirements this function may write more that just one entry in
221 * order to prevent bdrv_pwrite from performing a read-modify-write)
223 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
225 BDRVQcow2State
*s
= bs
->opaque
;
228 int bufsize
= MAX(L1E_SIZE
,
229 MIN(bs
->file
->bs
->bl
.request_alignment
, s
->cluster_size
));
230 int nentries
= bufsize
/ L1E_SIZE
;
231 g_autofree
uint64_t *buf
= g_try_new0(uint64_t, nentries
);
237 l1_start_index
= QEMU_ALIGN_DOWN(l1_index
, nentries
);
238 for (i
= 0; i
< MIN(nentries
, s
->l1_size
- l1_start_index
); i
++) {
239 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
242 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
243 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
, bufsize
, false);
248 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
249 ret
= bdrv_pwrite_sync(bs
->file
,
250 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
,
262 * Allocate a new l2 entry in the file. If l1_index points to an already
263 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264 * table) copy the contents of the old L2 table into the newly allocated one.
265 * Otherwise the new table is initialized with zeros.
269 static int l2_allocate(BlockDriverState
*bs
, int l1_index
)
271 BDRVQcow2State
*s
= bs
->opaque
;
272 uint64_t old_l2_offset
;
273 uint64_t *l2_slice
= NULL
;
274 unsigned slice
, slice_size2
, n_slices
;
278 old_l2_offset
= s
->l1_table
[l1_index
];
280 trace_qcow2_l2_allocate(bs
, l1_index
);
282 /* allocate a new l2 entry */
284 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* l2_entry_size(s
));
290 /* The offset must fit in the offset field of the L1 table entry */
291 assert((l2_offset
& L1E_OFFSET_MASK
) == l2_offset
);
293 /* If we're allocating the table at offset 0 then something is wrong */
294 if (l2_offset
== 0) {
295 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
296 "allocation of L2 table at offset 0");
301 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
306 /* allocate a new entry in the l2 cache */
308 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
309 n_slices
= s
->cluster_size
/ slice_size2
;
311 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
312 for (slice
= 0; slice
< n_slices
; slice
++) {
313 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
,
314 l2_offset
+ slice
* slice_size2
,
315 (void **) &l2_slice
);
320 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
321 /* if there was no old l2 table, clear the new slice */
322 memset(l2_slice
, 0, slice_size2
);
325 uint64_t old_l2_slice_offset
=
326 (old_l2_offset
& L1E_OFFSET_MASK
) + slice
* slice_size2
;
328 /* if there was an old l2 table, read a slice from the disk */
329 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
330 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, old_l2_slice_offset
,
331 (void **) &old_slice
);
336 memcpy(l2_slice
, old_slice
, slice_size2
);
338 qcow2_cache_put(s
->l2_table_cache
, (void **) &old_slice
);
341 /* write the l2 slice to the file */
342 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
344 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
345 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
346 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
349 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
354 /* update the L1 entry */
355 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
356 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
357 ret
= qcow2_write_l1_entry(bs
, l1_index
);
362 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
366 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
367 if (l2_slice
!= NULL
) {
368 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
370 s
->l1_table
[l1_index
] = old_l2_offset
;
372 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
373 QCOW2_DISCARD_ALWAYS
);
379 * For a given L2 entry, count the number of contiguous subclusters of
380 * the same type starting from @sc_from. Compressed clusters are
381 * treated as if they were divided into subclusters of size
382 * s->subcluster_size.
384 * Return the number of contiguous subclusters and set @type to the
387 * If the L2 entry is invalid return -errno and set @type to
388 * QCOW2_SUBCLUSTER_INVALID.
390 static int qcow2_get_subcluster_range_type(BlockDriverState
*bs
,
394 QCow2SubclusterType
*type
)
396 BDRVQcow2State
*s
= bs
->opaque
;
399 *type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_from
);
401 if (*type
== QCOW2_SUBCLUSTER_INVALID
) {
403 } else if (!has_subclusters(s
) || *type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
404 return s
->subclusters_per_cluster
- sc_from
;
408 case QCOW2_SUBCLUSTER_NORMAL
:
409 val
= l2_bitmap
| QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
410 return cto32(val
) - sc_from
;
412 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
413 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
414 val
= (l2_bitmap
| QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from
)) >> 32;
415 return cto32(val
) - sc_from
;
417 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
418 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
419 val
= ((l2_bitmap
>> 32) | l2_bitmap
)
420 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
421 return ctz32(val
) - sc_from
;
424 g_assert_not_reached();
429 * Return the number of contiguous subclusters of the exact same type
430 * in a given L2 slice, starting from cluster @l2_index, subcluster
431 * @sc_index. Allocated subclusters are required to be contiguous in
433 * At most @nb_clusters are checked (note that this means clusters,
435 * Compressed clusters are always processed one by one but for the
436 * purpose of this count they are treated as if they were divided into
437 * subclusters of size s->subcluster_size.
438 * On failure return -errno and update @l2_index to point to the
441 static int count_contiguous_subclusters(BlockDriverState
*bs
, int nb_clusters
,
442 unsigned sc_index
, uint64_t *l2_slice
,
445 BDRVQcow2State
*s
= bs
->opaque
;
447 bool check_offset
= false;
448 uint64_t expected_offset
= 0;
449 QCow2SubclusterType expected_type
= QCOW2_SUBCLUSTER_NORMAL
, type
;
451 assert(*l2_index
+ nb_clusters
<= s
->l2_slice_size
);
453 for (i
= 0; i
< nb_clusters
; i
++) {
454 unsigned first_sc
= (i
== 0) ? sc_index
: 0;
455 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, *l2_index
+ i
);
456 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, *l2_index
+ i
);
457 int ret
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
460 *l2_index
+= i
; /* Point to the invalid entry */
464 if (type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
465 /* Compressed clusters are always processed one by one */
468 expected_type
= type
;
469 expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
470 check_offset
= (type
== QCOW2_SUBCLUSTER_NORMAL
||
471 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
||
472 type
== QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
);
473 } else if (type
!= expected_type
) {
475 } else if (check_offset
) {
476 expected_offset
+= s
->cluster_size
;
477 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
482 /* Stop if there are type changes before the end of the cluster */
483 if (first_sc
+ ret
< s
->subclusters_per_cluster
) {
491 static int coroutine_fn
do_perform_cow_read(BlockDriverState
*bs
,
492 uint64_t src_cluster_offset
,
493 unsigned offset_in_cluster
,
498 if (qiov
->size
== 0) {
502 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
508 /* Call .bdrv_co_readv() directly instead of using the public block-layer
509 * interface. This avoids double I/O throttling and request tracking,
510 * which can lead to deadlock when block layer copy-on-read is enabled.
512 ret
= bs
->drv
->bdrv_co_preadv_part(bs
,
513 src_cluster_offset
+ offset_in_cluster
,
514 qiov
->size
, qiov
, 0, 0);
522 static int coroutine_fn
do_perform_cow_write(BlockDriverState
*bs
,
523 uint64_t cluster_offset
,
524 unsigned offset_in_cluster
,
527 BDRVQcow2State
*s
= bs
->opaque
;
530 if (qiov
->size
== 0) {
534 ret
= qcow2_pre_write_overlap_check(bs
, 0,
535 cluster_offset
+ offset_in_cluster
, qiov
->size
, true);
540 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
541 ret
= bdrv_co_pwritev(s
->data_file
, cluster_offset
+ offset_in_cluster
,
542 qiov
->size
, qiov
, 0);
554 * For a given offset of the virtual disk find the equivalent host
555 * offset in the qcow2 file and store it in *host_offset. Neither
556 * offset needs to be aligned to a cluster boundary.
558 * If the cluster is unallocated then *host_offset will be 0.
559 * If the cluster is compressed then *host_offset will contain the
560 * complete compressed cluster descriptor.
562 * On entry, *bytes is the maximum number of contiguous bytes starting at
563 * offset that we are interested in.
565 * On exit, *bytes is the number of bytes starting at offset that have the same
566 * subcluster type and (if applicable) are stored contiguously in the image
567 * file. The subcluster type is stored in *subcluster_type.
568 * Compressed clusters are always processed one by one.
570 * Returns 0 on success, -errno in error cases.
572 int qcow2_get_host_offset(BlockDriverState
*bs
, uint64_t offset
,
573 unsigned int *bytes
, uint64_t *host_offset
,
574 QCow2SubclusterType
*subcluster_type
)
576 BDRVQcow2State
*s
= bs
->opaque
;
577 unsigned int l2_index
, sc_index
;
578 uint64_t l1_index
, l2_offset
, *l2_slice
, l2_entry
, l2_bitmap
;
580 unsigned int offset_in_cluster
;
581 uint64_t bytes_available
, bytes_needed
, nb_clusters
;
582 QCow2SubclusterType type
;
585 offset_in_cluster
= offset_into_cluster(s
, offset
);
586 bytes_needed
= (uint64_t) *bytes
+ offset_in_cluster
;
588 /* compute how many bytes there are between the start of the cluster
589 * containing offset and the end of the l2 slice that contains
590 * the entry pointing to it */
592 ((uint64_t) (s
->l2_slice_size
- offset_to_l2_slice_index(s
, offset
)))
595 if (bytes_needed
> bytes_available
) {
596 bytes_needed
= bytes_available
;
601 /* seek to the l2 offset in the l1 table */
603 l1_index
= offset_to_l1_index(s
, offset
);
604 if (l1_index
>= s
->l1_size
) {
605 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
609 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
611 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
615 if (offset_into_cluster(s
, l2_offset
)) {
616 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
617 " unaligned (L1 index: %#" PRIx64
")",
618 l2_offset
, l1_index
);
622 /* load the l2 slice in memory */
624 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
629 /* find the cluster offset for the given disk offset */
631 l2_index
= offset_to_l2_slice_index(s
, offset
);
632 sc_index
= offset_to_sc_index(s
, offset
);
633 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
634 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
636 nb_clusters
= size_to_clusters(s
, bytes_needed
);
637 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
638 * integers; the minimum cluster size is 512, so this assertion is always
640 assert(nb_clusters
<= INT_MAX
);
642 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
643 if (s
->qcow_version
< 3 && (type
== QCOW2_SUBCLUSTER_ZERO_PLAIN
||
644 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
)) {
645 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
646 " in pre-v3 image (L2 offset: %#" PRIx64
647 ", L2 index: %#x)", l2_offset
, l2_index
);
652 case QCOW2_SUBCLUSTER_INVALID
:
653 break; /* This is handled by count_contiguous_subclusters() below */
654 case QCOW2_SUBCLUSTER_COMPRESSED
:
655 if (has_data_file(bs
)) {
656 qcow2_signal_corruption(bs
, true, -1, -1, "Compressed cluster "
657 "entry found in image with external data "
658 "file (L2 offset: %#" PRIx64
", L2 index: "
659 "%#x)", l2_offset
, l2_index
);
663 *host_offset
= l2_entry
& L2E_COMPRESSED_OFFSET_SIZE_MASK
;
665 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
666 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
668 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
669 case QCOW2_SUBCLUSTER_NORMAL
:
670 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
: {
671 uint64_t host_cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
672 *host_offset
= host_cluster_offset
+ offset_in_cluster
;
673 if (offset_into_cluster(s
, host_cluster_offset
)) {
674 qcow2_signal_corruption(bs
, true, -1, -1,
675 "Cluster allocation offset %#"
676 PRIx64
" unaligned (L2 offset: %#" PRIx64
677 ", L2 index: %#x)", host_cluster_offset
,
678 l2_offset
, l2_index
);
682 if (has_data_file(bs
) && *host_offset
!= offset
) {
683 qcow2_signal_corruption(bs
, true, -1, -1,
684 "External data file host cluster offset %#"
685 PRIx64
" does not match guest cluster "
687 ", L2 index: %#x)", host_cluster_offset
,
688 offset
- offset_in_cluster
, l2_index
);
698 sc
= count_contiguous_subclusters(bs
, nb_clusters
, sc_index
,
699 l2_slice
, &l2_index
);
701 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster entry found "
702 " (L2 offset: %#" PRIx64
", L2 index: %#x)",
703 l2_offset
, l2_index
);
707 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
709 bytes_available
= ((int64_t)sc
+ sc_index
) << s
->subcluster_bits
;
712 if (bytes_available
> bytes_needed
) {
713 bytes_available
= bytes_needed
;
716 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
717 * subtracting offset_in_cluster will therefore definitely yield something
718 * not exceeding UINT_MAX */
719 assert(bytes_available
- offset_in_cluster
<= UINT_MAX
);
720 *bytes
= bytes_available
- offset_in_cluster
;
722 *subcluster_type
= type
;
727 qcow2_cache_put(s
->l2_table_cache
, (void **)&l2_slice
);
734 * for a given disk offset, load (and allocate if needed)
735 * the appropriate slice of its l2 table.
737 * the cluster index in the l2 slice is given to the caller.
739 * Returns 0 on success, -errno in failure case
741 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
742 uint64_t **new_l2_slice
,
745 BDRVQcow2State
*s
= bs
->opaque
;
746 unsigned int l2_index
;
747 uint64_t l1_index
, l2_offset
;
748 uint64_t *l2_slice
= NULL
;
751 /* seek to the l2 offset in the l1 table */
753 l1_index
= offset_to_l1_index(s
, offset
);
754 if (l1_index
>= s
->l1_size
) {
755 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
761 assert(l1_index
< s
->l1_size
);
762 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
763 if (offset_into_cluster(s
, l2_offset
)) {
764 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
765 " unaligned (L1 index: %#" PRIx64
")",
766 l2_offset
, l1_index
);
770 if (!(s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
)) {
771 /* First allocate a new L2 table (and do COW if needed) */
772 ret
= l2_allocate(bs
, l1_index
);
777 /* Then decrease the refcount of the old table */
779 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
780 QCOW2_DISCARD_OTHER
);
783 /* Get the offset of the newly-allocated l2 table */
784 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
785 assert(offset_into_cluster(s
, l2_offset
) == 0);
788 /* load the l2 slice in memory */
789 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
794 /* find the cluster offset for the given disk offset */
796 l2_index
= offset_to_l2_slice_index(s
, offset
);
798 *new_l2_slice
= l2_slice
;
799 *new_l2_index
= l2_index
;
805 * alloc_compressed_cluster_offset
807 * For a given offset on the virtual disk, allocate a new compressed cluster
808 * and put the host offset of the cluster into *host_offset. If a cluster is
809 * already allocated at the offset, return an error.
811 * Return 0 on success and -errno in error cases
813 int qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
816 uint64_t *host_offset
)
818 BDRVQcow2State
*s
= bs
->opaque
;
821 int64_t cluster_offset
;
824 if (has_data_file(bs
)) {
828 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
833 /* Compression can't overwrite anything. Fail if the cluster was already
835 cluster_offset
= get_l2_entry(s
, l2_slice
, l2_index
);
836 if (cluster_offset
& L2E_OFFSET_MASK
) {
837 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
841 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
842 if (cluster_offset
< 0) {
843 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
844 return cluster_offset
;
848 (cluster_offset
+ compressed_size
- 1) / QCOW2_COMPRESSED_SECTOR_SIZE
-
849 (cluster_offset
/ QCOW2_COMPRESSED_SECTOR_SIZE
);
851 /* The offset and size must fit in their fields of the L2 table entry */
852 assert((cluster_offset
& s
->cluster_offset_mask
) == cluster_offset
);
853 assert((nb_csectors
& s
->csize_mask
) == nb_csectors
);
855 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
856 ((uint64_t)nb_csectors
<< s
->csize_shift
);
858 /* update L2 table */
860 /* compressed clusters never have the copied flag */
862 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
863 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
864 set_l2_entry(s
, l2_slice
, l2_index
, cluster_offset
);
865 if (has_subclusters(s
)) {
866 set_l2_bitmap(s
, l2_slice
, l2_index
, 0);
868 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
870 *host_offset
= cluster_offset
& s
->cluster_offset_mask
;
874 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
)
876 BDRVQcow2State
*s
= bs
->opaque
;
877 Qcow2COWRegion
*start
= &m
->cow_start
;
878 Qcow2COWRegion
*end
= &m
->cow_end
;
879 unsigned buffer_size
;
880 unsigned data_bytes
= end
->offset
- (start
->offset
+ start
->nb_bytes
);
882 uint8_t *start_buffer
, *end_buffer
;
886 assert(start
->nb_bytes
<= UINT_MAX
- end
->nb_bytes
);
887 assert(start
->nb_bytes
+ end
->nb_bytes
<= UINT_MAX
- data_bytes
);
888 assert(start
->offset
+ start
->nb_bytes
<= end
->offset
);
890 if ((start
->nb_bytes
== 0 && end
->nb_bytes
== 0) || m
->skip_cow
) {
894 /* If we have to read both the start and end COW regions and the
895 * middle region is not too large then perform just one read
897 merge_reads
= start
->nb_bytes
&& end
->nb_bytes
&& data_bytes
<= 16384;
899 buffer_size
= start
->nb_bytes
+ data_bytes
+ end
->nb_bytes
;
901 /* If we have to do two reads, add some padding in the middle
902 * if necessary to make sure that the end region is optimally
904 size_t align
= bdrv_opt_mem_align(bs
);
905 assert(align
> 0 && align
<= UINT_MAX
);
906 assert(QEMU_ALIGN_UP(start
->nb_bytes
, align
) <=
907 UINT_MAX
- end
->nb_bytes
);
908 buffer_size
= QEMU_ALIGN_UP(start
->nb_bytes
, align
) + end
->nb_bytes
;
911 /* Reserve a buffer large enough to store all the data that we're
913 start_buffer
= qemu_try_blockalign(bs
, buffer_size
);
914 if (start_buffer
== NULL
) {
917 /* The part of the buffer where the end region is located */
918 end_buffer
= start_buffer
+ buffer_size
- end
->nb_bytes
;
920 qemu_iovec_init(&qiov
, 2 + (m
->data_qiov
?
921 qemu_iovec_subvec_niov(m
->data_qiov
,
926 qemu_co_mutex_unlock(&s
->lock
);
927 /* First we read the existing data from both COW regions. We
928 * either read the whole region in one go, or the start and end
929 * regions separately. */
931 qemu_iovec_add(&qiov
, start_buffer
, buffer_size
);
932 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
934 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
935 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
940 qemu_iovec_reset(&qiov
);
941 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
942 ret
= do_perform_cow_read(bs
, m
->offset
, end
->offset
, &qiov
);
948 /* Encrypt the data if necessary before writing it */
950 ret
= qcow2_co_encrypt(bs
,
951 m
->alloc_offset
+ start
->offset
,
952 m
->offset
+ start
->offset
,
953 start_buffer
, start
->nb_bytes
);
958 ret
= qcow2_co_encrypt(bs
,
959 m
->alloc_offset
+ end
->offset
,
960 m
->offset
+ end
->offset
,
961 end_buffer
, end
->nb_bytes
);
967 /* And now we can write everything. If we have the guest data we
968 * can write everything in one single operation */
970 qemu_iovec_reset(&qiov
);
971 if (start
->nb_bytes
) {
972 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
974 qemu_iovec_concat(&qiov
, m
->data_qiov
, m
->data_qiov_offset
, data_bytes
);
976 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
978 /* NOTE: we have a write_aio blkdebug event here followed by
979 * a cow_write one in do_perform_cow_write(), but there's only
980 * one single I/O operation */
981 BLKDBG_EVENT(bs
->file
, BLKDBG_WRITE_AIO
);
982 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
984 /* If there's no guest data then write both COW regions separately */
985 qemu_iovec_reset(&qiov
);
986 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
987 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
992 qemu_iovec_reset(&qiov
);
993 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
994 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, end
->offset
, &qiov
);
998 qemu_co_mutex_lock(&s
->lock
);
1001 * Before we update the L2 table to actually point to the new cluster, we
1002 * need to be sure that the refcounts have been increased and COW was
1006 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1009 qemu_vfree(start_buffer
);
1010 qemu_iovec_destroy(&qiov
);
1014 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
1016 BDRVQcow2State
*s
= bs
->opaque
;
1017 int i
, j
= 0, l2_index
, ret
;
1018 uint64_t *old_cluster
, *l2_slice
;
1019 uint64_t cluster_offset
= m
->alloc_offset
;
1021 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
1022 assert(m
->nb_clusters
> 0);
1024 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
1025 if (old_cluster
== NULL
) {
1030 /* copy content of unmodified sectors */
1031 ret
= perform_cow(bs
, m
);
1036 /* Update L2 table. */
1037 if (s
->use_lazy_refcounts
) {
1038 qcow2_mark_dirty(bs
);
1040 if (qcow2_need_accurate_refcounts(s
)) {
1041 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1042 s
->refcount_block_cache
);
1045 ret
= get_cluster_table(bs
, m
->offset
, &l2_slice
, &l2_index
);
1049 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1051 assert(l2_index
+ m
->nb_clusters
<= s
->l2_slice_size
);
1052 assert(m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
<=
1053 m
->nb_clusters
<< s
->cluster_bits
);
1054 for (i
= 0; i
< m
->nb_clusters
; i
++) {
1055 uint64_t offset
= cluster_offset
+ ((uint64_t)i
<< s
->cluster_bits
);
1056 /* if two concurrent writes happen to the same unallocated cluster
1057 * each write allocates separate cluster and writes data concurrently.
1058 * The first one to complete updates l2 table with pointer to its
1059 * cluster the second one has to do RMW (which is done above by
1060 * perform_cow()), update l2 table with its cluster pointer and free
1061 * old cluster. This is what this loop does */
1062 if (get_l2_entry(s
, l2_slice
, l2_index
+ i
) != 0) {
1063 old_cluster
[j
++] = get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1066 /* The offset must fit in the offset field of the L2 table entry */
1067 assert((offset
& L2E_OFFSET_MASK
) == offset
);
1069 set_l2_entry(s
, l2_slice
, l2_index
+ i
, offset
| QCOW_OFLAG_COPIED
);
1071 /* Update bitmap with the subclusters that were just written */
1072 if (has_subclusters(s
) && !m
->prealloc
) {
1073 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1074 unsigned written_from
= m
->cow_start
.offset
;
1075 unsigned written_to
= m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
;
1076 int first_sc
, last_sc
;
1077 /* Narrow written_from and written_to down to the current cluster */
1078 written_from
= MAX(written_from
, i
<< s
->cluster_bits
);
1079 written_to
= MIN(written_to
, (i
+ 1) << s
->cluster_bits
);
1080 assert(written_from
< written_to
);
1081 first_sc
= offset_to_sc_index(s
, written_from
);
1082 last_sc
= offset_to_sc_index(s
, written_to
- 1);
1083 l2_bitmap
|= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc
, last_sc
+ 1);
1084 l2_bitmap
&= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc
, last_sc
+ 1);
1085 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, l2_bitmap
);
1090 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1093 * If this was a COW, we need to decrease the refcount of the old cluster.
1095 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1096 * clusters), the next write will reuse them anyway.
1098 if (!m
->keep_old_clusters
&& j
!= 0) {
1099 for (i
= 0; i
< j
; i
++) {
1100 qcow2_free_any_cluster(bs
, old_cluster
[i
], QCOW2_DISCARD_NEVER
);
1106 g_free(old_cluster
);
1111 * Frees the allocated clusters because the request failed and they won't
1112 * actually be linked.
1114 void qcow2_alloc_cluster_abort(BlockDriverState
*bs
, QCowL2Meta
*m
)
1116 BDRVQcow2State
*s
= bs
->opaque
;
1117 if (!has_data_file(bs
) && !m
->keep_old_clusters
) {
1118 qcow2_free_clusters(bs
, m
->alloc_offset
,
1119 m
->nb_clusters
<< s
->cluster_bits
,
1120 QCOW2_DISCARD_NEVER
);
1125 * For a given write request, create a new QCowL2Meta structure, add
1126 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1127 * request does not need copy-on-write or changes to the L2 metadata
1128 * then this function does nothing.
1130 * @host_cluster_offset points to the beginning of the first cluster.
1132 * @guest_offset and @bytes indicate the offset and length of the
1135 * @l2_slice contains the L2 entries of all clusters involved in this
1138 * If @keep_old is true it means that the clusters were already
1139 * allocated and will be overwritten. If false then the clusters are
1140 * new and we have to decrease the reference count of the old ones.
1142 * Returns 0 on success, -errno on failure.
1144 static int calculate_l2_meta(BlockDriverState
*bs
, uint64_t host_cluster_offset
,
1145 uint64_t guest_offset
, unsigned bytes
,
1146 uint64_t *l2_slice
, QCowL2Meta
**m
, bool keep_old
)
1148 BDRVQcow2State
*s
= bs
->opaque
;
1149 int sc_index
, l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1150 uint64_t l2_entry
, l2_bitmap
;
1151 unsigned cow_start_from
, cow_end_to
;
1152 unsigned cow_start_to
= offset_into_cluster(s
, guest_offset
);
1153 unsigned cow_end_from
= cow_start_to
+ bytes
;
1154 unsigned nb_clusters
= size_to_clusters(s
, cow_end_from
);
1155 QCowL2Meta
*old_m
= *m
;
1156 QCow2SubclusterType type
;
1158 bool skip_cow
= keep_old
;
1160 assert(nb_clusters
<= s
->l2_slice_size
- l2_index
);
1162 /* Check the type of all affected subclusters */
1163 for (i
= 0; i
< nb_clusters
; i
++) {
1164 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1165 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1167 unsigned write_from
= MAX(cow_start_to
, i
<< s
->cluster_bits
);
1168 unsigned write_to
= MIN(cow_end_from
, (i
+ 1) << s
->cluster_bits
);
1169 int first_sc
= offset_to_sc_index(s
, write_from
);
1170 int last_sc
= offset_to_sc_index(s
, write_to
- 1);
1171 int cnt
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
1173 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1174 if (type
!= QCOW2_SUBCLUSTER_NORMAL
|| first_sc
+ cnt
<= last_sc
) {
1178 /* If we can't skip the cow we can still look for invalid entries */
1179 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, 0);
1181 if (type
== QCOW2_SUBCLUSTER_INVALID
) {
1182 int l1_index
= offset_to_l1_index(s
, guest_offset
);
1183 uint64_t l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
1184 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster "
1185 "entry found (L2 offset: %#" PRIx64
1187 l2_offset
, l2_index
+ i
);
1196 /* Get the L2 entry of the first cluster */
1197 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1198 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1199 sc_index
= offset_to_sc_index(s
, guest_offset
);
1200 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1204 case QCOW2_SUBCLUSTER_COMPRESSED
:
1207 case QCOW2_SUBCLUSTER_NORMAL
:
1208 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1209 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1210 if (has_subclusters(s
)) {
1211 /* Skip all leading zero and unallocated subclusters */
1212 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1214 MIN(sc_index
, ctz32(alloc_bitmap
)) << s
->subcluster_bits
;
1219 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1220 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1221 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1224 g_assert_not_reached();
1228 case QCOW2_SUBCLUSTER_NORMAL
:
1229 cow_start_from
= cow_start_to
;
1231 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1232 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1233 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1236 g_assert_not_reached();
1240 /* Get the L2 entry of the last cluster */
1241 l2_index
+= nb_clusters
- 1;
1242 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1243 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1244 sc_index
= offset_to_sc_index(s
, guest_offset
+ bytes
- 1);
1245 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1249 case QCOW2_SUBCLUSTER_COMPRESSED
:
1250 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1252 case QCOW2_SUBCLUSTER_NORMAL
:
1253 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1254 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1255 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1256 if (has_subclusters(s
)) {
1257 /* Skip all trailing zero and unallocated subclusters */
1258 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1260 MIN(s
->subclusters_per_cluster
- sc_index
- 1,
1261 clz32(alloc_bitmap
)) << s
->subcluster_bits
;
1264 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1265 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1266 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1269 g_assert_not_reached();
1273 case QCOW2_SUBCLUSTER_NORMAL
:
1274 cow_end_to
= cow_end_from
;
1276 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1277 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1278 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1281 g_assert_not_reached();
1285 *m
= g_malloc0(sizeof(**m
));
1286 **m
= (QCowL2Meta
) {
1289 .alloc_offset
= host_cluster_offset
,
1290 .offset
= start_of_cluster(s
, guest_offset
),
1291 .nb_clusters
= nb_clusters
,
1293 .keep_old_clusters
= keep_old
,
1296 .offset
= cow_start_from
,
1297 .nb_bytes
= cow_start_to
- cow_start_from
,
1300 .offset
= cow_end_from
,
1301 .nb_bytes
= cow_end_to
- cow_end_from
,
1305 qemu_co_queue_init(&(*m
)->dependent_requests
);
1306 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1312 * Returns true if writing to the cluster pointed to by @l2_entry
1313 * requires a new allocation (that is, if the cluster is unallocated
1314 * or has refcount > 1 and therefore cannot be written in-place).
1316 static bool cluster_needs_new_alloc(BlockDriverState
*bs
, uint64_t l2_entry
)
1318 switch (qcow2_get_cluster_type(bs
, l2_entry
)) {
1319 case QCOW2_CLUSTER_NORMAL
:
1320 case QCOW2_CLUSTER_ZERO_ALLOC
:
1321 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1325 case QCOW2_CLUSTER_UNALLOCATED
:
1326 case QCOW2_CLUSTER_COMPRESSED
:
1327 case QCOW2_CLUSTER_ZERO_PLAIN
:
1335 * Returns the number of contiguous clusters that can be written to
1336 * using one single write request, starting from @l2_index.
1337 * At most @nb_clusters are checked.
1339 * If @new_alloc is true this counts clusters that are either
1340 * unallocated, or allocated but with refcount > 1 (so they need to be
1341 * newly allocated and COWed).
1343 * If @new_alloc is false this counts clusters that are already
1344 * allocated and can be overwritten in-place (this includes clusters
1345 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1347 static int count_single_write_clusters(BlockDriverState
*bs
, int nb_clusters
,
1348 uint64_t *l2_slice
, int l2_index
,
1351 BDRVQcow2State
*s
= bs
->opaque
;
1352 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1353 uint64_t expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
1356 for (i
= 0; i
< nb_clusters
; i
++) {
1357 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1358 if (cluster_needs_new_alloc(bs
, l2_entry
) != new_alloc
) {
1362 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
1365 expected_offset
+= s
->cluster_size
;
1369 assert(i
<= nb_clusters
);
1374 * Check if there already is an AIO write request in flight which allocates
1375 * the same cluster. In this case we need to wait until the previous
1376 * request has completed and updated the L2 table accordingly.
1379 * 0 if there was no dependency. *cur_bytes indicates the number of
1380 * bytes from guest_offset that can be read before the next
1381 * dependency must be processed (or the request is complete)
1383 * -EAGAIN if we had to wait for another request, previously gathered
1384 * information on cluster allocation may be invalid now. The caller
1385 * must start over anyway, so consider *cur_bytes undefined.
1387 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
1388 uint64_t *cur_bytes
, QCowL2Meta
**m
)
1390 BDRVQcow2State
*s
= bs
->opaque
;
1391 QCowL2Meta
*old_alloc
;
1392 uint64_t bytes
= *cur_bytes
;
1394 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
1396 uint64_t start
= guest_offset
;
1397 uint64_t end
= start
+ bytes
;
1398 uint64_t old_start
= start_of_cluster(s
, l2meta_cow_start(old_alloc
));
1399 uint64_t old_end
= ROUND_UP(l2meta_cow_end(old_alloc
), s
->cluster_size
);
1401 if (end
<= old_start
|| start
>= old_end
) {
1402 /* No intersection */
1404 if (start
< old_start
) {
1405 /* Stop at the start of a running allocation */
1406 bytes
= old_start
- start
;
1411 /* Stop if already an l2meta exists. After yielding, it wouldn't
1412 * be valid any more, so we'd have to clean up the old L2Metas
1413 * and deal with requests depending on them before starting to
1414 * gather new ones. Not worth the trouble. */
1415 if (bytes
== 0 && *m
) {
1421 /* Wait for the dependency to complete. We need to recheck
1422 * the free/allocated clusters when we continue. */
1423 qemu_co_queue_wait(&old_alloc
->dependent_requests
, &s
->lock
);
1429 /* Make sure that existing clusters and new allocations are only used up to
1430 * the next dependency if we shortened the request above */
1437 * Checks how many already allocated clusters that don't require a new
1438 * allocation there are at the given guest_offset (up to *bytes).
1439 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1440 * beginning at this host offset are counted.
1442 * Note that guest_offset may not be cluster aligned. In this case, the
1443 * returned *host_offset points to exact byte referenced by guest_offset and
1444 * therefore isn't cluster aligned as well.
1447 * 0: if no allocated clusters are available at the given offset.
1448 * *bytes is normally unchanged. It is set to 0 if the cluster
1449 * is allocated and can be overwritten in-place but doesn't have
1450 * the right physical offset.
1452 * 1: if allocated clusters that can be overwritten in place are
1453 * available at the requested offset. *bytes may have decreased
1454 * and describes the length of the area that can be written to.
1456 * -errno: in error cases
1458 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
1459 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1461 BDRVQcow2State
*s
= bs
->opaque
;
1463 uint64_t l2_entry
, cluster_offset
;
1465 uint64_t nb_clusters
;
1466 unsigned int keep_clusters
;
1469 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
1472 assert(*host_offset
== INV_OFFSET
|| offset_into_cluster(s
, guest_offset
)
1473 == offset_into_cluster(s
, *host_offset
));
1476 * Calculate the number of clusters to look for. We stop at L2 slice
1477 * boundaries to keep things simple.
1480 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1482 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1483 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1484 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1485 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1487 /* Find L2 entry for the first involved cluster */
1488 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1493 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1494 cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
1496 if (!cluster_needs_new_alloc(bs
, l2_entry
)) {
1497 if (offset_into_cluster(s
, cluster_offset
)) {
1498 qcow2_signal_corruption(bs
, true, -1, -1, "%s cluster offset "
1499 "%#" PRIx64
" unaligned (guest offset: %#"
1500 PRIx64
")", l2_entry
& QCOW_OFLAG_ZERO
?
1501 "Preallocated zero" : "Data",
1502 cluster_offset
, guest_offset
);
1507 /* If a specific host_offset is required, check it */
1508 if (*host_offset
!= INV_OFFSET
&& cluster_offset
!= *host_offset
) {
1514 /* We keep all QCOW_OFLAG_COPIED clusters */
1515 keep_clusters
= count_single_write_clusters(bs
, nb_clusters
, l2_slice
,
1517 assert(keep_clusters
<= nb_clusters
);
1519 *bytes
= MIN(*bytes
,
1520 keep_clusters
* s
->cluster_size
1521 - offset_into_cluster(s
, guest_offset
));
1522 assert(*bytes
!= 0);
1524 ret
= calculate_l2_meta(bs
, cluster_offset
, guest_offset
,
1525 *bytes
, l2_slice
, m
, true);
1537 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1539 /* Only return a host offset if we actually made progress. Otherwise we
1540 * would make requirements for handle_alloc() that it can't fulfill */
1542 *host_offset
= cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1549 * Allocates new clusters for the given guest_offset.
1551 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1552 * contain the number of clusters that have been allocated and are contiguous
1553 * in the image file.
1555 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1556 * at which the new clusters must start. *nb_clusters can be 0 on return in
1557 * this case if the cluster at host_offset is already in use. If *host_offset
1558 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1560 * *host_offset is updated to contain the offset into the image file at which
1561 * the first allocated cluster starts.
1563 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1564 * function has been waiting for another request and the allocation must be
1565 * restarted, but the whole request should not be failed.
1567 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1568 uint64_t *host_offset
, uint64_t *nb_clusters
)
1570 BDRVQcow2State
*s
= bs
->opaque
;
1572 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1573 *host_offset
, *nb_clusters
);
1575 if (has_data_file(bs
)) {
1576 assert(*host_offset
== INV_OFFSET
||
1577 *host_offset
== start_of_cluster(s
, guest_offset
));
1578 *host_offset
= start_of_cluster(s
, guest_offset
);
1582 /* Allocate new clusters */
1583 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1584 if (*host_offset
== INV_OFFSET
) {
1585 int64_t cluster_offset
=
1586 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1587 if (cluster_offset
< 0) {
1588 return cluster_offset
;
1590 *host_offset
= cluster_offset
;
1593 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1603 * Allocates new clusters for an area that is either still unallocated or
1604 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1605 * clusters are only allocated if the new allocation can match the specified
1608 * Note that guest_offset may not be cluster aligned. In this case, the
1609 * returned *host_offset points to exact byte referenced by guest_offset and
1610 * therefore isn't cluster aligned as well.
1613 * 0: if no clusters could be allocated. *bytes is set to 0,
1614 * *host_offset is left unchanged.
1616 * 1: if new clusters were allocated. *bytes may be decreased if the
1617 * new allocation doesn't cover all of the requested area.
1618 * *host_offset is updated to contain the host offset of the first
1619 * newly allocated cluster.
1621 * -errno: in error cases
1623 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1624 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1626 BDRVQcow2State
*s
= bs
->opaque
;
1629 uint64_t nb_clusters
;
1632 uint64_t alloc_cluster_offset
;
1634 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1639 * Calculate the number of clusters to look for. We stop at L2 slice
1640 * boundaries to keep things simple.
1643 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1645 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1646 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1647 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1648 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1650 /* Find L2 entry for the first involved cluster */
1651 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1656 nb_clusters
= count_single_write_clusters(bs
, nb_clusters
,
1657 l2_slice
, l2_index
, true);
1659 /* This function is only called when there were no non-COW clusters, so if
1660 * we can't find any unallocated or COW clusters either, something is
1661 * wrong with our code. */
1662 assert(nb_clusters
> 0);
1664 /* Allocate at a given offset in the image file */
1665 alloc_cluster_offset
= *host_offset
== INV_OFFSET
? INV_OFFSET
:
1666 start_of_cluster(s
, *host_offset
);
1667 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1673 /* Can't extend contiguous allocation */
1674 if (nb_clusters
== 0) {
1680 assert(alloc_cluster_offset
!= INV_OFFSET
);
1683 * Save info needed for meta data update.
1685 * requested_bytes: Number of bytes from the start of the first
1686 * newly allocated cluster to the end of the (possibly shortened
1687 * before) write request.
1689 * avail_bytes: Number of bytes from the start of the first
1690 * newly allocated to the end of the last newly allocated cluster.
1692 * nb_bytes: The number of bytes from the start of the first
1693 * newly allocated cluster to the end of the area that the write
1694 * request actually writes to (excluding COW at the end)
1696 uint64_t requested_bytes
= *bytes
+ offset_into_cluster(s
, guest_offset
);
1697 int avail_bytes
= nb_clusters
<< s
->cluster_bits
;
1698 int nb_bytes
= MIN(requested_bytes
, avail_bytes
);
1700 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1701 *bytes
= MIN(*bytes
, nb_bytes
- offset_into_cluster(s
, guest_offset
));
1702 assert(*bytes
!= 0);
1704 ret
= calculate_l2_meta(bs
, alloc_cluster_offset
, guest_offset
, *bytes
,
1705 l2_slice
, m
, false);
1713 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1718 * For a given area on the virtual disk defined by @offset and @bytes,
1719 * find the corresponding area on the qcow2 image, allocating new
1720 * clusters (or subclusters) if necessary. The result can span a
1721 * combination of allocated and previously unallocated clusters.
1723 * Note that offset may not be cluster aligned. In this case, the returned
1724 * *host_offset points to exact byte referenced by offset and therefore
1725 * isn't cluster aligned as well.
1727 * On return, @host_offset is set to the beginning of the requested
1728 * area. This area is guaranteed to be contiguous on the qcow2 file
1729 * but it can be smaller than initially requested. In this case @bytes
1730 * is updated with the actual size.
1732 * If any clusters or subclusters were allocated then @m contains a
1733 * list with the information of all the affected regions. Note that
1734 * this can happen regardless of whether this function succeeds or
1735 * not. The caller is responsible for updating the L2 metadata of the
1736 * allocated clusters (on success) or freeing them (on failure), and
1737 * for clearing the contents of @m afterwards in both cases.
1739 * If the request conflicts with another write request in flight, the coroutine
1740 * is queued and will be reentered when the dependency has completed.
1742 * Return 0 on success and -errno in error cases
1744 int qcow2_alloc_host_offset(BlockDriverState
*bs
, uint64_t offset
,
1745 unsigned int *bytes
, uint64_t *host_offset
,
1748 BDRVQcow2State
*s
= bs
->opaque
;
1749 uint64_t start
, remaining
;
1750 uint64_t cluster_offset
;
1754 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *bytes
);
1759 cluster_offset
= INV_OFFSET
;
1760 *host_offset
= INV_OFFSET
;
1766 if (*host_offset
== INV_OFFSET
&& cluster_offset
!= INV_OFFSET
) {
1767 *host_offset
= cluster_offset
;
1770 assert(remaining
>= cur_bytes
);
1773 remaining
-= cur_bytes
;
1775 if (cluster_offset
!= INV_OFFSET
) {
1776 cluster_offset
+= cur_bytes
;
1779 if (remaining
== 0) {
1783 cur_bytes
= remaining
;
1786 * Now start gathering as many contiguous clusters as possible:
1788 * 1. Check for overlaps with in-flight allocations
1790 * a) Overlap not in the first cluster -> shorten this request and
1791 * let the caller handle the rest in its next loop iteration.
1793 * b) Real overlaps of two requests. Yield and restart the search
1794 * for contiguous clusters (the situation could have changed
1795 * while we were sleeping)
1797 * c) TODO: Request starts in the same cluster as the in-flight
1798 * allocation ends. Shorten the COW of the in-fight allocation,
1799 * set cluster_offset to write to the same cluster and set up
1800 * the right synchronisation between the in-flight request and
1803 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1804 if (ret
== -EAGAIN
) {
1805 /* Currently handle_dependencies() doesn't yield if we already had
1806 * an allocation. If it did, we would have to clean up the L2Meta
1807 * structs before starting over. */
1810 } else if (ret
< 0) {
1812 } else if (cur_bytes
== 0) {
1815 /* handle_dependencies() may have decreased cur_bytes (shortened
1816 * the allocations below) so that the next dependency is processed
1817 * correctly during the next loop iteration. */
1821 * 2. Count contiguous COPIED clusters.
1823 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1828 } else if (cur_bytes
== 0) {
1833 * 3. If the request still hasn't completed, allocate new clusters,
1834 * considering any cluster_offset of steps 1c or 2.
1836 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1842 assert(cur_bytes
== 0);
1847 *bytes
-= remaining
;
1849 assert(*host_offset
!= INV_OFFSET
);
1850 assert(offset_into_cluster(s
, *host_offset
) ==
1851 offset_into_cluster(s
, offset
));
1857 * This discards as many clusters of nb_clusters as possible at once (i.e.
1858 * all clusters in the same L2 slice) and returns the number of discarded
1861 static int discard_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
1862 uint64_t nb_clusters
,
1863 enum qcow2_discard_type type
, bool full_discard
)
1865 BDRVQcow2State
*s
= bs
->opaque
;
1871 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
1876 /* Limit nb_clusters to one L2 slice */
1877 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1878 assert(nb_clusters
<= INT_MAX
);
1880 for (i
= 0; i
< nb_clusters
; i
++) {
1881 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1882 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1883 uint64_t new_l2_entry
= old_l2_entry
;
1884 uint64_t new_l2_bitmap
= old_l2_bitmap
;
1885 QCow2ClusterType cluster_type
=
1886 qcow2_get_cluster_type(bs
, old_l2_entry
);
1889 * If full_discard is true, the cluster should not read back as zeroes,
1890 * but rather fall through to the backing file.
1892 * If full_discard is false, make sure that a discarded area reads back
1893 * as zeroes for v3 images (we cannot do it for v2 without actually
1894 * writing a zero-filled buffer). We can skip the operation if the
1895 * cluster is already marked as zero, or if it's unallocated and we
1896 * don't have a backing file.
1898 * TODO We might want to use bdrv_block_status(bs) here, but we're
1899 * holding s->lock, so that doesn't work today.
1902 new_l2_entry
= new_l2_bitmap
= 0;
1903 } else if (bs
->backing
|| qcow2_cluster_is_allocated(cluster_type
)) {
1904 if (has_subclusters(s
)) {
1906 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
1908 new_l2_entry
= s
->qcow_version
>= 3 ? QCOW_OFLAG_ZERO
: 0;
1912 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
1916 /* First remove L2 entries */
1917 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1918 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
1919 if (has_subclusters(s
)) {
1920 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
1922 /* Then decrease the refcount */
1923 qcow2_free_any_cluster(bs
, old_l2_entry
, type
);
1926 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1931 int qcow2_cluster_discard(BlockDriverState
*bs
, uint64_t offset
,
1932 uint64_t bytes
, enum qcow2_discard_type type
,
1935 BDRVQcow2State
*s
= bs
->opaque
;
1936 uint64_t end_offset
= offset
+ bytes
;
1937 uint64_t nb_clusters
;
1941 /* Caller must pass aligned values, except at image end */
1942 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1943 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1944 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1946 nb_clusters
= size_to_clusters(s
, bytes
);
1948 s
->cache_discards
= true;
1950 /* Each L2 slice is handled by its own loop iteration */
1951 while (nb_clusters
> 0) {
1952 cleared
= discard_in_l2_slice(bs
, offset
, nb_clusters
, type
,
1959 nb_clusters
-= cleared
;
1960 offset
+= (cleared
* s
->cluster_size
);
1965 s
->cache_discards
= false;
1966 qcow2_process_discards(bs
, ret
);
1972 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1973 * all clusters in the same L2 slice) and returns the number of zeroed
1976 static int zero_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
1977 uint64_t nb_clusters
, int flags
)
1979 BDRVQcow2State
*s
= bs
->opaque
;
1985 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
1990 /* Limit nb_clusters to one L2 slice */
1991 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1992 assert(nb_clusters
<= INT_MAX
);
1994 for (i
= 0; i
< nb_clusters
; i
++) {
1995 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1996 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1997 QCow2ClusterType type
= qcow2_get_cluster_type(bs
, old_l2_entry
);
1998 bool unmap
= (type
== QCOW2_CLUSTER_COMPRESSED
) ||
1999 ((flags
& BDRV_REQ_MAY_UNMAP
) && qcow2_cluster_is_allocated(type
));
2000 uint64_t new_l2_entry
= unmap
? 0 : old_l2_entry
;
2001 uint64_t new_l2_bitmap
= old_l2_bitmap
;
2003 if (has_subclusters(s
)) {
2004 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
2006 new_l2_entry
|= QCOW_OFLAG_ZERO
;
2009 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
2013 /* First update L2 entries */
2014 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2015 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
2016 if (has_subclusters(s
)) {
2017 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
2020 /* Then decrease the refcount */
2022 qcow2_free_any_cluster(bs
, old_l2_entry
, QCOW2_DISCARD_REQUEST
);
2026 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2031 static int zero_l2_subclusters(BlockDriverState
*bs
, uint64_t offset
,
2032 unsigned nb_subclusters
)
2034 BDRVQcow2State
*s
= bs
->opaque
;
2036 uint64_t old_l2_bitmap
, l2_bitmap
;
2037 int l2_index
, ret
, sc
= offset_to_sc_index(s
, offset
);
2039 /* For full clusters use zero_in_l2_slice() instead */
2040 assert(nb_subclusters
> 0 && nb_subclusters
< s
->subclusters_per_cluster
);
2041 assert(sc
+ nb_subclusters
<= s
->subclusters_per_cluster
);
2042 assert(offset_into_subcluster(s
, offset
) == 0);
2044 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2049 switch (qcow2_get_cluster_type(bs
, get_l2_entry(s
, l2_slice
, l2_index
))) {
2050 case QCOW2_CLUSTER_COMPRESSED
:
2051 ret
= -ENOTSUP
; /* We cannot partially zeroize compressed clusters */
2053 case QCOW2_CLUSTER_NORMAL
:
2054 case QCOW2_CLUSTER_UNALLOCATED
:
2057 g_assert_not_reached();
2060 old_l2_bitmap
= l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
2062 l2_bitmap
|= QCOW_OFLAG_SUB_ZERO_RANGE(sc
, sc
+ nb_subclusters
);
2063 l2_bitmap
&= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc
, sc
+ nb_subclusters
);
2065 if (old_l2_bitmap
!= l2_bitmap
) {
2066 set_l2_bitmap(s
, l2_slice
, l2_index
, l2_bitmap
);
2067 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2072 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2077 int qcow2_subcluster_zeroize(BlockDriverState
*bs
, uint64_t offset
,
2078 uint64_t bytes
, int flags
)
2080 BDRVQcow2State
*s
= bs
->opaque
;
2081 uint64_t end_offset
= offset
+ bytes
;
2082 uint64_t nb_clusters
;
2083 unsigned head
, tail
;
2087 /* If we have to stay in sync with an external data file, zero out
2088 * s->data_file first. */
2089 if (data_file_is_raw(bs
)) {
2090 assert(has_data_file(bs
));
2091 ret
= bdrv_co_pwrite_zeroes(s
->data_file
, offset
, bytes
, flags
);
2097 /* Caller must pass aligned values, except at image end */
2098 assert(offset_into_subcluster(s
, offset
) == 0);
2099 assert(offset_into_subcluster(s
, end_offset
) == 0 ||
2100 end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
);
2103 * The zero flag is only supported by version 3 and newer. However, if we
2104 * have no backing file, we can resort to discard in version 2.
2106 if (s
->qcow_version
< 3) {
2108 return qcow2_cluster_discard(bs
, offset
, bytes
,
2109 QCOW2_DISCARD_REQUEST
, false);
2114 head
= MIN(end_offset
, ROUND_UP(offset
, s
->cluster_size
)) - offset
;
2117 tail
= (end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
) ? 0 :
2118 end_offset
- MAX(offset
, start_of_cluster(s
, end_offset
));
2121 s
->cache_discards
= true;
2124 ret
= zero_l2_subclusters(bs
, offset
- head
,
2125 size_to_subclusters(s
, head
));
2131 /* Each L2 slice is handled by its own loop iteration */
2132 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
2134 while (nb_clusters
> 0) {
2135 cleared
= zero_in_l2_slice(bs
, offset
, nb_clusters
, flags
);
2141 nb_clusters
-= cleared
;
2142 offset
+= (cleared
* s
->cluster_size
);
2146 ret
= zero_l2_subclusters(bs
, end_offset
, size_to_subclusters(s
, tail
));
2154 s
->cache_discards
= false;
2155 qcow2_process_discards(bs
, ret
);
2161 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2162 * non-backed non-pre-allocated zero clusters).
2164 * l1_entries and *visited_l1_entries are used to keep track of progress for
2165 * status_cb(). l1_entries contains the total number of L1 entries and
2166 * *visited_l1_entries counts all visited L1 entries.
2168 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
2169 int l1_size
, int64_t *visited_l1_entries
,
2171 BlockDriverAmendStatusCB
*status_cb
,
2174 BDRVQcow2State
*s
= bs
->opaque
;
2175 bool is_active_l1
= (l1_table
== s
->l1_table
);
2176 uint64_t *l2_slice
= NULL
;
2177 unsigned slice
, slice_size2
, n_slices
;
2181 /* qcow2_downgrade() is not allowed in images with subclusters */
2182 assert(!has_subclusters(s
));
2184 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
2185 n_slices
= s
->cluster_size
/ slice_size2
;
2187 if (!is_active_l1
) {
2188 /* inactive L2 tables require a buffer to be stored in when loading
2190 l2_slice
= qemu_try_blockalign(bs
->file
->bs
, slice_size2
);
2191 if (l2_slice
== NULL
) {
2196 for (i
= 0; i
< l1_size
; i
++) {
2197 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
2198 uint64_t l2_refcount
;
2202 (*visited_l1_entries
)++;
2204 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2209 if (offset_into_cluster(s
, l2_offset
)) {
2210 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
2211 PRIx64
" unaligned (L1 index: %#x)",
2217 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
2223 for (slice
= 0; slice
< n_slices
; slice
++) {
2224 uint64_t slice_offset
= l2_offset
+ slice
* slice_size2
;
2225 bool l2_dirty
= false;
2227 /* get active L2 tables from cache */
2228 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, slice_offset
,
2229 (void **)&l2_slice
);
2231 /* load inactive L2 tables from disk */
2232 ret
= bdrv_pread(bs
->file
, slice_offset
, l2_slice
, slice_size2
);
2238 for (j
= 0; j
< s
->l2_slice_size
; j
++) {
2239 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, j
);
2240 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
2241 QCow2ClusterType cluster_type
=
2242 qcow2_get_cluster_type(bs
, l2_entry
);
2244 if (cluster_type
!= QCOW2_CLUSTER_ZERO_PLAIN
&&
2245 cluster_type
!= QCOW2_CLUSTER_ZERO_ALLOC
) {
2249 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2252 * not backed; therefore we can simply deallocate the
2253 * cluster. No need to call set_l2_bitmap(), this
2254 * function doesn't support images with subclusters.
2256 set_l2_entry(s
, l2_slice
, j
, 0);
2261 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
2267 /* The offset must fit in the offset field */
2268 assert((offset
& L2E_OFFSET_MASK
) == offset
);
2270 if (l2_refcount
> 1) {
2271 /* For shared L2 tables, set the refcount accordingly
2272 * (it is already 1 and needs to be l2_refcount) */
2273 ret
= qcow2_update_cluster_refcount(
2274 bs
, offset
>> s
->cluster_bits
,
2275 refcount_diff(1, l2_refcount
), false,
2276 QCOW2_DISCARD_OTHER
);
2278 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2279 QCOW2_DISCARD_OTHER
);
2285 if (offset_into_cluster(s
, offset
)) {
2286 int l2_index
= slice
* s
->l2_slice_size
+ j
;
2287 qcow2_signal_corruption(
2289 "Cluster allocation offset "
2290 "%#" PRIx64
" unaligned (L2 offset: %#"
2291 PRIx64
", L2 index: %#x)", offset
,
2292 l2_offset
, l2_index
);
2293 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2294 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2295 QCOW2_DISCARD_ALWAYS
);
2301 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
,
2302 s
->cluster_size
, true);
2304 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2305 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2306 QCOW2_DISCARD_ALWAYS
);
2311 ret
= bdrv_pwrite_zeroes(s
->data_file
, offset
,
2312 s
->cluster_size
, 0);
2314 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2315 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2316 QCOW2_DISCARD_ALWAYS
);
2321 if (l2_refcount
== 1) {
2322 set_l2_entry(s
, l2_slice
, j
, offset
| QCOW_OFLAG_COPIED
);
2324 set_l2_entry(s
, l2_slice
, j
, offset
);
2327 * No need to call set_l2_bitmap() after set_l2_entry() because
2328 * this function doesn't support images with subclusters.
2335 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2336 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
2338 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2341 ret
= qcow2_pre_write_overlap_check(
2342 bs
, QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
,
2343 slice_offset
, slice_size2
, false);
2348 ret
= bdrv_pwrite(bs
->file
, slice_offset
,
2349 l2_slice
, slice_size2
);
2357 (*visited_l1_entries
)++;
2359 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2367 if (!is_active_l1
) {
2368 qemu_vfree(l2_slice
);
2370 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2377 * For backed images, expands all zero clusters on the image. For non-backed
2378 * images, deallocates all non-pre-allocated zero clusters (and claims the
2379 * allocation for pre-allocated ones). This is important for downgrading to a
2380 * qcow2 version which doesn't yet support metadata zero clusters.
2382 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
2383 BlockDriverAmendStatusCB
*status_cb
,
2386 BDRVQcow2State
*s
= bs
->opaque
;
2387 uint64_t *l1_table
= NULL
;
2388 int64_t l1_entries
= 0, visited_l1_entries
= 0;
2393 l1_entries
= s
->l1_size
;
2394 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2395 l1_entries
+= s
->snapshots
[i
].l1_size
;
2399 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
2400 &visited_l1_entries
, l1_entries
,
2401 status_cb
, cb_opaque
);
2406 /* Inactive L1 tables may point to active L2 tables - therefore it is
2407 * necessary to flush the L2 table cache before trying to access the L2
2408 * tables pointed to by inactive L1 entries (else we might try to expand
2409 * zero clusters that have already been expanded); furthermore, it is also
2410 * necessary to empty the L2 table cache, since it may contain tables which
2411 * are now going to be modified directly on disk, bypassing the cache.
2412 * qcow2_cache_empty() does both for us. */
2413 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
2418 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2420 uint64_t *new_l1_table
;
2421 Error
*local_err
= NULL
;
2423 ret
= qcow2_validate_table(bs
, s
->snapshots
[i
].l1_table_offset
,
2424 s
->snapshots
[i
].l1_size
, L1E_SIZE
,
2425 QCOW_MAX_L1_SIZE
, "Snapshot L1 table",
2428 error_report_err(local_err
);
2432 l1_size2
= s
->snapshots
[i
].l1_size
* L1E_SIZE
;
2433 new_l1_table
= g_try_realloc(l1_table
, l1_size2
);
2435 if (!new_l1_table
) {
2440 l1_table
= new_l1_table
;
2442 ret
= bdrv_pread(bs
->file
, s
->snapshots
[i
].l1_table_offset
,
2443 l1_table
, l1_size2
);
2448 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
2449 be64_to_cpus(&l1_table
[j
]);
2452 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
2453 &visited_l1_entries
, l1_entries
,
2454 status_cb
, cb_opaque
);