4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include <sys/types.h>
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
37 #include "disas/disas.h"
39 #if defined(CONFIG_USER_ONLY)
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
48 #include <machine/profile.h>
57 #include "exec/address-spaces.h"
60 #include "exec/cputlb.h"
61 #include "translate-all.h"
62 #include "qemu/bitmap.h"
63 #include "qemu/timer.h"
65 //#define DEBUG_TB_INVALIDATE
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
70 #if !defined(CONFIG_USER_ONLY)
71 /* TB consistency checks only implemented for usermode emulation. */
75 #define SMC_BITMAP_USE_THRESHOLD 10
77 typedef struct PageDesc
{
78 /* list of TBs intersecting this ram page */
79 TranslationBlock
*first_tb
;
80 /* in order to optimize self modifying code, we count the number
81 of lookups we do to a given page to use a bitmap */
82 unsigned int code_write_count
;
83 unsigned long *code_bitmap
;
84 #if defined(CONFIG_USER_ONLY)
89 /* In system mode we want L1_MAP to be based on ram offsets,
90 while in user mode we want it to be based on virtual addresses. */
91 #if !defined(CONFIG_USER_ONLY)
92 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
93 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
98 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
101 /* Size of the L2 (and L3, etc) page tables. */
103 #define V_L2_SIZE (1 << V_L2_BITS)
105 /* The bits remaining after N lower levels of page tables. */
106 #define V_L1_BITS_REM \
107 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109 #if V_L1_BITS_REM < 4
110 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
112 #define V_L1_BITS V_L1_BITS_REM
115 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119 uintptr_t qemu_real_host_page_size
;
120 uintptr_t qemu_host_page_size
;
121 uintptr_t qemu_host_page_mask
;
123 /* This is a multi-level map on the virtual address space.
124 The bottom level has pointers to PageDesc. */
125 static void *l1_map
[V_L1_SIZE
];
127 /* code generation context */
130 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
131 tb_page_addr_t phys_page2
);
132 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
);
134 void cpu_gen_init(void)
136 tcg_context_init(&tcg_ctx
);
139 /* return non zero if the very first instruction is invalid so that
140 the virtual CPU can trigger an exception.
142 '*gen_code_size_ptr' contains the size of the generated code (host
145 int cpu_gen_code(CPUArchState
*env
, TranslationBlock
*tb
, int *gen_code_size_ptr
)
147 TCGContext
*s
= &tcg_ctx
;
148 tcg_insn_unit
*gen_code_buf
;
150 #ifdef CONFIG_PROFILER
154 #ifdef CONFIG_PROFILER
155 s
->tb_count1
++; /* includes aborted translations because of
157 ti
= profile_getclock();
161 gen_intermediate_code(env
, tb
);
163 trace_translate_block(tb
, tb
->pc
, tb
->tc_ptr
);
165 /* generate machine code */
166 gen_code_buf
= tb
->tc_ptr
;
167 tb
->tb_next_offset
[0] = 0xffff;
168 tb
->tb_next_offset
[1] = 0xffff;
169 s
->tb_next_offset
= tb
->tb_next_offset
;
170 #ifdef USE_DIRECT_JUMP
171 s
->tb_jmp_offset
= tb
->tb_jmp_offset
;
174 s
->tb_jmp_offset
= NULL
;
175 s
->tb_next
= tb
->tb_next
;
178 #ifdef CONFIG_PROFILER
180 s
->interm_time
+= profile_getclock() - ti
;
181 s
->code_time
-= profile_getclock();
183 gen_code_size
= tcg_gen_code(s
, gen_code_buf
);
184 *gen_code_size_ptr
= gen_code_size
;
185 #ifdef CONFIG_PROFILER
186 s
->code_time
+= profile_getclock();
187 s
->code_in_len
+= tb
->size
;
188 s
->code_out_len
+= gen_code_size
;
192 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM
)) {
193 qemu_log("OUT: [size=%d]\n", gen_code_size
);
194 log_disas(tb
->tc_ptr
, gen_code_size
);
202 /* The cpu state corresponding to 'searched_pc' is restored.
204 static int cpu_restore_state_from_tb(CPUState
*cpu
, TranslationBlock
*tb
,
205 uintptr_t searched_pc
)
207 CPUArchState
*env
= cpu
->env_ptr
;
208 TCGContext
*s
= &tcg_ctx
;
211 #ifdef CONFIG_PROFILER
215 #ifdef CONFIG_PROFILER
216 ti
= profile_getclock();
220 gen_intermediate_code_pc(env
, tb
);
222 if (tb
->cflags
& CF_USE_ICOUNT
) {
223 /* Reset the cycle counter to the start of the block. */
224 cpu
->icount_decr
.u16
.low
+= tb
->icount
;
225 /* Clear the IO flag. */
229 /* find opc index corresponding to search_pc */
230 tc_ptr
= (uintptr_t)tb
->tc_ptr
;
231 if (searched_pc
< tc_ptr
)
234 s
->tb_next_offset
= tb
->tb_next_offset
;
235 #ifdef USE_DIRECT_JUMP
236 s
->tb_jmp_offset
= tb
->tb_jmp_offset
;
239 s
->tb_jmp_offset
= NULL
;
240 s
->tb_next
= tb
->tb_next
;
242 j
= tcg_gen_code_search_pc(s
, (tcg_insn_unit
*)tc_ptr
,
243 searched_pc
- tc_ptr
);
246 /* now find start of instruction before */
247 while (s
->gen_opc_instr_start
[j
] == 0) {
250 cpu
->icount_decr
.u16
.low
-= s
->gen_opc_icount
[j
];
252 restore_state_to_opc(env
, tb
, j
);
254 #ifdef CONFIG_PROFILER
255 s
->restore_time
+= profile_getclock() - ti
;
261 bool cpu_restore_state(CPUState
*cpu
, uintptr_t retaddr
)
263 TranslationBlock
*tb
;
265 tb
= tb_find_pc(retaddr
);
267 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
268 if (tb
->cflags
& CF_NOCACHE
) {
269 /* one-shot translation, invalidate it immediately */
270 cpu
->current_tb
= NULL
;
271 tb_phys_invalidate(tb
, -1);
280 static __attribute__((unused
)) void map_exec(void *addr
, long size
)
283 VirtualProtect(addr
, size
,
284 PAGE_EXECUTE_READWRITE
, &old_protect
);
287 static __attribute__((unused
)) void map_exec(void *addr
, long size
)
289 unsigned long start
, end
, page_size
;
291 page_size
= getpagesize();
292 start
= (unsigned long)addr
;
293 start
&= ~(page_size
- 1);
295 end
= (unsigned long)addr
+ size
;
296 end
+= page_size
- 1;
297 end
&= ~(page_size
- 1);
299 mprotect((void *)start
, end
- start
,
300 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
304 void page_size_init(void)
306 /* NOTE: we can always suppose that qemu_host_page_size >=
308 qemu_real_host_page_size
= getpagesize();
309 if (qemu_host_page_size
== 0) {
310 qemu_host_page_size
= qemu_real_host_page_size
;
312 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
313 qemu_host_page_size
= TARGET_PAGE_SIZE
;
315 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
318 static void page_init(void)
321 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
323 #ifdef HAVE_KINFO_GETVMMAP
324 struct kinfo_vmentry
*freep
;
327 freep
= kinfo_getvmmap(getpid(), &cnt
);
330 for (i
= 0; i
< cnt
; i
++) {
331 unsigned long startaddr
, endaddr
;
333 startaddr
= freep
[i
].kve_start
;
334 endaddr
= freep
[i
].kve_end
;
335 if (h2g_valid(startaddr
)) {
336 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
338 if (h2g_valid(endaddr
)) {
339 endaddr
= h2g(endaddr
);
340 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
342 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
344 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
355 last_brk
= (unsigned long)sbrk(0);
357 f
= fopen("/compat/linux/proc/self/maps", "r");
362 unsigned long startaddr
, endaddr
;
365 n
= fscanf(f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
367 if (n
== 2 && h2g_valid(startaddr
)) {
368 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
370 if (h2g_valid(endaddr
)) {
371 endaddr
= h2g(endaddr
);
375 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
387 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
393 /* Level 1. Always allocated. */
394 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
397 for (i
= V_L1_SHIFT
/ V_L2_BITS
- 1; i
> 0; i
--) {
404 p
= g_new0(void *, V_L2_SIZE
);
408 lp
= p
+ ((index
>> (i
* V_L2_BITS
)) & (V_L2_SIZE
- 1));
416 pd
= g_new0(PageDesc
, V_L2_SIZE
);
420 return pd
+ (index
& (V_L2_SIZE
- 1));
423 static inline PageDesc
*page_find(tb_page_addr_t index
)
425 return page_find_alloc(index
, 0);
428 #if !defined(CONFIG_USER_ONLY)
429 #define mmap_lock() do { } while (0)
430 #define mmap_unlock() do { } while (0)
433 #if defined(CONFIG_USER_ONLY)
434 /* Currently it is not recommended to allocate big chunks of data in
435 user mode. It will change when a dedicated libc will be used. */
436 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
437 region in which the guest needs to run. Revisit this. */
438 #define USE_STATIC_CODE_GEN_BUFFER
441 /* ??? Should configure for this, not list operating systems here. */
442 #if (defined(__linux__) \
443 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
444 || defined(__DragonFly__) || defined(__OpenBSD__) \
445 || defined(__NetBSD__))
449 /* Minimum size of the code gen buffer. This number is randomly chosen,
450 but not so small that we can't have a fair number of TB's live. */
451 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
453 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
454 indicated, this is constrained by the range of direct branches on the
455 host cpu, as used by the TCG implementation of goto_tb. */
456 #if defined(__x86_64__)
457 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
458 #elif defined(__sparc__)
459 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
460 #elif defined(__aarch64__)
461 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
462 #elif defined(__arm__)
463 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
464 #elif defined(__s390x__)
465 /* We have a +- 4GB range on the branches; leave some slop. */
466 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
467 #elif defined(__mips__)
468 /* We have a 256MB branch region, but leave room to make sure the
469 main executable is also within that region. */
470 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
472 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
475 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
477 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
478 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
479 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
481 static inline size_t size_code_gen_buffer(size_t tb_size
)
483 /* Size the buffer. */
485 #ifdef USE_STATIC_CODE_GEN_BUFFER
486 tb_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
488 /* ??? Needs adjustments. */
489 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
490 static buffer, we could size this on RESERVED_VA, on the text
491 segment size of the executable, or continue to use the default. */
492 tb_size
= (unsigned long)(ram_size
/ 4);
495 if (tb_size
< MIN_CODE_GEN_BUFFER_SIZE
) {
496 tb_size
= MIN_CODE_GEN_BUFFER_SIZE
;
498 if (tb_size
> MAX_CODE_GEN_BUFFER_SIZE
) {
499 tb_size
= MAX_CODE_GEN_BUFFER_SIZE
;
501 tcg_ctx
.code_gen_buffer_size
= tb_size
;
506 /* In order to use J and JAL within the code_gen_buffer, we require
507 that the buffer not cross a 256MB boundary. */
508 static inline bool cross_256mb(void *addr
, size_t size
)
510 return ((uintptr_t)addr
^ ((uintptr_t)addr
+ size
)) & 0xf0000000;
513 /* We weren't able to allocate a buffer without crossing that boundary,
514 so make do with the larger portion of the buffer that doesn't cross.
515 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
516 static inline void *split_cross_256mb(void *buf1
, size_t size1
)
518 void *buf2
= (void *)(((uintptr_t)buf1
+ size1
) & 0xf0000000);
519 size_t size2
= buf1
+ size1
- buf2
;
527 tcg_ctx
.code_gen_buffer_size
= size1
;
532 #ifdef USE_STATIC_CODE_GEN_BUFFER
533 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
534 __attribute__((aligned(CODE_GEN_ALIGN
)));
536 static inline void *alloc_code_gen_buffer(void)
538 void *buf
= static_code_gen_buffer
;
540 if (cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
)) {
541 buf
= split_cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
);
544 map_exec(buf
, tcg_ctx
.code_gen_buffer_size
);
547 #elif defined(USE_MMAP)
548 static inline void *alloc_code_gen_buffer(void)
550 int flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
554 /* Constrain the position of the buffer based on the host cpu.
555 Note that these addresses are chosen in concert with the
556 addresses assigned in the relevant linker script file. */
557 # if defined(__PIE__) || defined(__PIC__)
558 /* Don't bother setting a preferred location if we're building
559 a position-independent executable. We're more likely to get
560 an address near the main executable if we let the kernel
561 choose the address. */
562 # elif defined(__x86_64__) && defined(MAP_32BIT)
563 /* Force the memory down into low memory with the executable.
564 Leave the choice of exact location with the kernel. */
566 /* Cannot expect to map more than 800MB in low memory. */
567 if (tcg_ctx
.code_gen_buffer_size
> 800u * 1024 * 1024) {
568 tcg_ctx
.code_gen_buffer_size
= 800u * 1024 * 1024;
570 # elif defined(__sparc__)
571 start
= 0x40000000ul
;
572 # elif defined(__s390x__)
573 start
= 0x90000000ul
;
574 # elif defined(__mips__)
575 /* ??? We ought to more explicitly manage layout for softmmu too. */
576 # ifdef CONFIG_USER_ONLY
577 start
= 0x68000000ul
;
578 # elif _MIPS_SIM == _ABI64
579 start
= 0x128000000ul
;
581 start
= 0x08000000ul
;
585 buf
= mmap((void *)start
, tcg_ctx
.code_gen_buffer_size
,
586 PROT_WRITE
| PROT_READ
| PROT_EXEC
, flags
, -1, 0);
587 if (buf
== MAP_FAILED
) {
592 if (cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
)) {
593 /* Try again, with the original still mapped, to avoid re-acquiring
594 that 256mb crossing. This time don't specify an address. */
595 size_t size2
, size1
= tcg_ctx
.code_gen_buffer_size
;
596 void *buf2
= mmap(NULL
, size1
, PROT_WRITE
| PROT_READ
| PROT_EXEC
,
598 if (buf2
!= MAP_FAILED
) {
599 if (!cross_256mb(buf2
, size1
)) {
600 /* Success! Use the new buffer. */
604 /* Failure. Work with what we had. */
608 /* Split the original buffer. Free the smaller half. */
609 buf2
= split_cross_256mb(buf
, size1
);
610 size2
= tcg_ctx
.code_gen_buffer_size
;
611 munmap(buf
+ (buf
== buf2
? size2
: 0), size1
- size2
);
619 static inline void *alloc_code_gen_buffer(void)
621 void *buf
= g_try_malloc(tcg_ctx
.code_gen_buffer_size
);
628 if (cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
)) {
629 void *buf2
= g_malloc(tcg_ctx
.code_gen_buffer_size
);
630 if (buf2
!= NULL
&& !cross_256mb(buf2
, size1
)) {
631 /* Success! Use the new buffer. */
635 /* Failure. Work with what we had. Since this is malloc
636 and not mmap, we can't free the other half. */
638 buf
= split_cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
);
643 map_exec(buf
, tcg_ctx
.code_gen_buffer_size
);
646 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
648 static inline void code_gen_alloc(size_t tb_size
)
650 tcg_ctx
.code_gen_buffer_size
= size_code_gen_buffer(tb_size
);
651 tcg_ctx
.code_gen_buffer
= alloc_code_gen_buffer();
652 if (tcg_ctx
.code_gen_buffer
== NULL
) {
653 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
657 qemu_madvise(tcg_ctx
.code_gen_buffer
, tcg_ctx
.code_gen_buffer_size
,
660 /* Steal room for the prologue at the end of the buffer. This ensures
661 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
662 from TB's to the prologue are going to be in range. It also means
663 that we don't need to mark (additional) portions of the data segment
665 tcg_ctx
.code_gen_prologue
= tcg_ctx
.code_gen_buffer
+
666 tcg_ctx
.code_gen_buffer_size
- 1024;
667 tcg_ctx
.code_gen_buffer_size
-= 1024;
669 tcg_ctx
.code_gen_buffer_max_size
= tcg_ctx
.code_gen_buffer_size
-
670 (TCG_MAX_OP_SIZE
* OPC_BUF_SIZE
);
671 tcg_ctx
.code_gen_max_blocks
= tcg_ctx
.code_gen_buffer_size
/
672 CODE_GEN_AVG_BLOCK_SIZE
;
674 g_malloc(tcg_ctx
.code_gen_max_blocks
* sizeof(TranslationBlock
));
677 /* Must be called before using the QEMU cpus. 'tb_size' is the size
678 (in bytes) allocated to the translation buffer. Zero means default
680 void tcg_exec_init(unsigned long tb_size
)
683 code_gen_alloc(tb_size
);
684 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
685 tcg_register_jit(tcg_ctx
.code_gen_buffer
, tcg_ctx
.code_gen_buffer_size
);
687 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
688 /* There's no guest base to take into account, so go ahead and
689 initialize the prologue now. */
690 tcg_prologue_init(&tcg_ctx
);
694 bool tcg_enabled(void)
696 return tcg_ctx
.code_gen_buffer
!= NULL
;
699 /* Allocate a new translation block. Flush the translation buffer if
700 too many translation blocks or too much generated code. */
701 static TranslationBlock
*tb_alloc(target_ulong pc
)
703 TranslationBlock
*tb
;
705 if (tcg_ctx
.tb_ctx
.nb_tbs
>= tcg_ctx
.code_gen_max_blocks
||
706 (tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
) >=
707 tcg_ctx
.code_gen_buffer_max_size
) {
710 tb
= &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
++];
716 void tb_free(TranslationBlock
*tb
)
718 /* In practice this is mostly used for single use temporary TB
719 Ignore the hard cases and just back up if this TB happens to
720 be the last one generated. */
721 if (tcg_ctx
.tb_ctx
.nb_tbs
> 0 &&
722 tb
== &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
- 1]) {
723 tcg_ctx
.code_gen_ptr
= tb
->tc_ptr
;
724 tcg_ctx
.tb_ctx
.nb_tbs
--;
728 static inline void invalidate_page_bitmap(PageDesc
*p
)
730 if (p
->code_bitmap
) {
731 g_free(p
->code_bitmap
);
732 p
->code_bitmap
= NULL
;
734 p
->code_write_count
= 0;
737 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
738 static void page_flush_tb_1(int level
, void **lp
)
748 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
749 pd
[i
].first_tb
= NULL
;
750 invalidate_page_bitmap(pd
+ i
);
755 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
756 page_flush_tb_1(level
- 1, pp
+ i
);
761 static void page_flush_tb(void)
765 for (i
= 0; i
< V_L1_SIZE
; i
++) {
766 page_flush_tb_1(V_L1_SHIFT
/ V_L2_BITS
- 1, l1_map
+ i
);
770 /* flush all the translation blocks */
771 /* XXX: tb_flush is currently not thread safe */
772 void tb_flush(CPUArchState
*env1
)
774 CPUState
*cpu
= ENV_GET_CPU(env1
);
776 #if defined(DEBUG_FLUSH)
777 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
778 (unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
),
779 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.tb_ctx
.nb_tbs
> 0 ?
780 ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)) /
781 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
783 if ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)
784 > tcg_ctx
.code_gen_buffer_size
) {
785 cpu_abort(cpu
, "Internal error: code buffer overflow\n");
787 tcg_ctx
.tb_ctx
.nb_tbs
= 0;
790 memset(cpu
->tb_jmp_cache
, 0, sizeof(cpu
->tb_jmp_cache
));
793 memset(tcg_ctx
.tb_ctx
.tb_phys_hash
, 0, sizeof(tcg_ctx
.tb_ctx
.tb_phys_hash
));
796 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
797 /* XXX: flush processor icache at this point if cache flush is
799 tcg_ctx
.tb_ctx
.tb_flush_count
++;
802 #ifdef DEBUG_TB_CHECK
804 static void tb_invalidate_check(target_ulong address
)
806 TranslationBlock
*tb
;
809 address
&= TARGET_PAGE_MASK
;
810 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
811 for (tb
= tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
812 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
813 address
>= tb
->pc
+ tb
->size
)) {
814 printf("ERROR invalidate: address=" TARGET_FMT_lx
815 " PC=%08lx size=%04x\n",
816 address
, (long)tb
->pc
, tb
->size
);
822 /* verify that all the pages have correct rights for code */
823 static void tb_page_check(void)
825 TranslationBlock
*tb
;
826 int i
, flags1
, flags2
;
828 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
829 for (tb
= tcg_ctx
.tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
;
830 tb
= tb
->phys_hash_next
) {
831 flags1
= page_get_flags(tb
->pc
);
832 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
833 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
834 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
835 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
843 static inline void tb_hash_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
845 TranslationBlock
*tb1
;
850 *ptb
= tb1
->phys_hash_next
;
853 ptb
= &tb1
->phys_hash_next
;
857 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
859 TranslationBlock
*tb1
;
864 n1
= (uintptr_t)tb1
& 3;
865 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
867 *ptb
= tb1
->page_next
[n1
];
870 ptb
= &tb1
->page_next
[n1
];
874 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
876 TranslationBlock
*tb1
, **ptb
;
879 ptb
= &tb
->jmp_next
[n
];
882 /* find tb(n) in circular list */
885 n1
= (uintptr_t)tb1
& 3;
886 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
887 if (n1
== n
&& tb1
== tb
) {
891 ptb
= &tb1
->jmp_first
;
893 ptb
= &tb1
->jmp_next
[n1
];
896 /* now we can suppress tb(n) from the list */
897 *ptb
= tb
->jmp_next
[n
];
899 tb
->jmp_next
[n
] = NULL
;
903 /* reset the jump entry 'n' of a TB so that it is not chained to
905 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
907 tb_set_jmp_target(tb
, n
, (uintptr_t)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
910 /* invalidate one TB */
911 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
916 tb_page_addr_t phys_pc
;
917 TranslationBlock
*tb1
, *tb2
;
919 /* remove the TB from the hash list */
920 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
921 h
= tb_phys_hash_func(phys_pc
);
922 tb_hash_remove(&tcg_ctx
.tb_ctx
.tb_phys_hash
[h
], tb
);
924 /* remove the TB from the page list */
925 if (tb
->page_addr
[0] != page_addr
) {
926 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
927 tb_page_remove(&p
->first_tb
, tb
);
928 invalidate_page_bitmap(p
);
930 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
931 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
932 tb_page_remove(&p
->first_tb
, tb
);
933 invalidate_page_bitmap(p
);
936 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 1;
938 /* remove the TB from the hash list */
939 h
= tb_jmp_cache_hash_func(tb
->pc
);
941 if (cpu
->tb_jmp_cache
[h
] == tb
) {
942 cpu
->tb_jmp_cache
[h
] = NULL
;
946 /* suppress this TB from the two jump lists */
947 tb_jmp_remove(tb
, 0);
948 tb_jmp_remove(tb
, 1);
950 /* suppress any remaining jumps to this TB */
953 n1
= (uintptr_t)tb1
& 3;
957 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
958 tb2
= tb1
->jmp_next
[n1
];
959 tb_reset_jump(tb1
, n1
);
960 tb1
->jmp_next
[n1
] = NULL
;
963 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2); /* fail safe */
965 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
++;
968 static void build_page_bitmap(PageDesc
*p
)
970 int n
, tb_start
, tb_end
;
971 TranslationBlock
*tb
;
973 p
->code_bitmap
= bitmap_new(TARGET_PAGE_SIZE
);
977 n
= (uintptr_t)tb
& 3;
978 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
979 /* NOTE: this is subtle as a TB may span two physical pages */
981 /* NOTE: tb_end may be after the end of the page, but
982 it is not a problem */
983 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
984 tb_end
= tb_start
+ tb
->size
;
985 if (tb_end
> TARGET_PAGE_SIZE
) {
986 tb_end
= TARGET_PAGE_SIZE
;
990 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
992 bitmap_set(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
993 tb
= tb
->page_next
[n
];
997 TranslationBlock
*tb_gen_code(CPUState
*cpu
,
998 target_ulong pc
, target_ulong cs_base
,
999 int flags
, int cflags
)
1001 CPUArchState
*env
= cpu
->env_ptr
;
1002 TranslationBlock
*tb
;
1003 tb_page_addr_t phys_pc
, phys_page2
;
1004 target_ulong virt_page2
;
1007 phys_pc
= get_page_addr_code(env
, pc
);
1009 cflags
|= CF_USE_ICOUNT
;
1013 /* flush must be done */
1015 /* cannot fail at this point */
1017 /* Don't forget to invalidate previous TB info. */
1018 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 1;
1020 tb
->tc_ptr
= tcg_ctx
.code_gen_ptr
;
1021 tb
->cs_base
= cs_base
;
1023 tb
->cflags
= cflags
;
1024 cpu_gen_code(env
, tb
, &code_gen_size
);
1025 tcg_ctx
.code_gen_ptr
= (void *)(((uintptr_t)tcg_ctx
.code_gen_ptr
+
1026 code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
1028 /* check next page if needed */
1029 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1031 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1032 phys_page2
= get_page_addr_code(env
, virt_page2
);
1034 tb_link_page(tb
, phys_pc
, phys_page2
);
1039 * Invalidate all TBs which intersect with the target physical address range
1040 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1041 * 'is_cpu_write_access' should be true if called from a real cpu write
1042 * access: the virtual CPU will exit the current TB if code is modified inside
1045 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
,
1046 int is_cpu_write_access
)
1048 while (start
< end
) {
1049 tb_invalidate_phys_page_range(start
, end
, is_cpu_write_access
);
1050 start
&= TARGET_PAGE_MASK
;
1051 start
+= TARGET_PAGE_SIZE
;
1056 * Invalidate all TBs which intersect with the target physical address range
1057 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1058 * 'is_cpu_write_access' should be true if called from a real cpu write
1059 * access: the virtual CPU will exit the current TB if code is modified inside
1062 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1063 int is_cpu_write_access
)
1065 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1066 CPUState
*cpu
= current_cpu
;
1067 #if defined(TARGET_HAS_PRECISE_SMC)
1068 CPUArchState
*env
= NULL
;
1070 tb_page_addr_t tb_start
, tb_end
;
1073 #ifdef TARGET_HAS_PRECISE_SMC
1074 int current_tb_not_found
= is_cpu_write_access
;
1075 TranslationBlock
*current_tb
= NULL
;
1076 int current_tb_modified
= 0;
1077 target_ulong current_pc
= 0;
1078 target_ulong current_cs_base
= 0;
1079 int current_flags
= 0;
1080 #endif /* TARGET_HAS_PRECISE_SMC */
1082 p
= page_find(start
>> TARGET_PAGE_BITS
);
1086 if (!p
->code_bitmap
&&
1087 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1088 is_cpu_write_access
) {
1089 /* build code bitmap */
1090 build_page_bitmap(p
);
1092 #if defined(TARGET_HAS_PRECISE_SMC)
1098 /* we remove all the TBs in the range [start, end[ */
1099 /* XXX: see if in some cases it could be faster to invalidate all
1102 while (tb
!= NULL
) {
1103 n
= (uintptr_t)tb
& 3;
1104 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1105 tb_next
= tb
->page_next
[n
];
1106 /* NOTE: this is subtle as a TB may span two physical pages */
1108 /* NOTE: tb_end may be after the end of the page, but
1109 it is not a problem */
1110 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1111 tb_end
= tb_start
+ tb
->size
;
1113 tb_start
= tb
->page_addr
[1];
1114 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1116 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1117 #ifdef TARGET_HAS_PRECISE_SMC
1118 if (current_tb_not_found
) {
1119 current_tb_not_found
= 0;
1121 if (cpu
->mem_io_pc
) {
1122 /* now we have a real cpu fault */
1123 current_tb
= tb_find_pc(cpu
->mem_io_pc
);
1126 if (current_tb
== tb
&&
1127 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1128 /* If we are modifying the current TB, we must stop
1129 its execution. We could be more precise by checking
1130 that the modification is after the current PC, but it
1131 would require a specialized function to partially
1132 restore the CPU state */
1134 current_tb_modified
= 1;
1135 cpu_restore_state_from_tb(cpu
, current_tb
, cpu
->mem_io_pc
);
1136 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1139 #endif /* TARGET_HAS_PRECISE_SMC */
1140 /* we need to do that to handle the case where a signal
1141 occurs while doing tb_phys_invalidate() */
1144 saved_tb
= cpu
->current_tb
;
1145 cpu
->current_tb
= NULL
;
1147 tb_phys_invalidate(tb
, -1);
1149 cpu
->current_tb
= saved_tb
;
1150 if (cpu
->interrupt_request
&& cpu
->current_tb
) {
1151 cpu_interrupt(cpu
, cpu
->interrupt_request
);
1157 #if !defined(CONFIG_USER_ONLY)
1158 /* if no code remaining, no need to continue to use slow writes */
1160 invalidate_page_bitmap(p
);
1161 if (is_cpu_write_access
) {
1162 tlb_unprotect_code_phys(cpu
, start
, cpu
->mem_io_vaddr
);
1166 #ifdef TARGET_HAS_PRECISE_SMC
1167 if (current_tb_modified
) {
1168 /* we generate a block containing just the instruction
1169 modifying the memory. It will ensure that it cannot modify
1171 cpu
->current_tb
= NULL
;
1172 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1173 cpu_resume_from_signal(cpu
, NULL
);
1178 /* len must be <= 8 and start must be a multiple of len */
1179 void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1185 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1186 cpu_single_env
->mem_io_vaddr
, len
,
1187 cpu_single_env
->eip
,
1188 cpu_single_env
->eip
+
1189 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1192 p
= page_find(start
>> TARGET_PAGE_BITS
);
1196 if (p
->code_bitmap
) {
1200 nr
= start
& ~TARGET_PAGE_MASK
;
1201 b
= p
->code_bitmap
[BIT_WORD(nr
)] >> (nr
& (BITS_PER_LONG
- 1));
1202 if (b
& ((1 << len
) - 1)) {
1207 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1211 #if !defined(CONFIG_SOFTMMU)
1212 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1213 uintptr_t pc
, void *puc
,
1216 TranslationBlock
*tb
;
1219 #ifdef TARGET_HAS_PRECISE_SMC
1220 TranslationBlock
*current_tb
= NULL
;
1221 CPUState
*cpu
= current_cpu
;
1222 CPUArchState
*env
= NULL
;
1223 int current_tb_modified
= 0;
1224 target_ulong current_pc
= 0;
1225 target_ulong current_cs_base
= 0;
1226 int current_flags
= 0;
1229 addr
&= TARGET_PAGE_MASK
;
1230 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1235 #ifdef TARGET_HAS_PRECISE_SMC
1236 if (tb
&& pc
!= 0) {
1237 current_tb
= tb_find_pc(pc
);
1243 while (tb
!= NULL
) {
1244 n
= (uintptr_t)tb
& 3;
1245 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (current_tb
== tb
&&
1248 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1249 /* If we are modifying the current TB, we must stop
1250 its execution. We could be more precise by checking
1251 that the modification is after the current PC, but it
1252 would require a specialized function to partially
1253 restore the CPU state */
1255 current_tb_modified
= 1;
1256 cpu_restore_state_from_tb(cpu
, current_tb
, pc
);
1257 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1260 #endif /* TARGET_HAS_PRECISE_SMC */
1261 tb_phys_invalidate(tb
, addr
);
1262 tb
= tb
->page_next
[n
];
1265 #ifdef TARGET_HAS_PRECISE_SMC
1266 if (current_tb_modified
) {
1267 /* we generate a block containing just the instruction
1268 modifying the memory. It will ensure that it cannot modify
1270 cpu
->current_tb
= NULL
;
1271 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1275 cpu_resume_from_signal(cpu
, puc
);
1281 /* add the tb in the target page and protect it if necessary */
1282 static inline void tb_alloc_page(TranslationBlock
*tb
,
1283 unsigned int n
, tb_page_addr_t page_addr
)
1286 #ifndef CONFIG_USER_ONLY
1287 bool page_already_protected
;
1290 tb
->page_addr
[n
] = page_addr
;
1291 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1292 tb
->page_next
[n
] = p
->first_tb
;
1293 #ifndef CONFIG_USER_ONLY
1294 page_already_protected
= p
->first_tb
!= NULL
;
1296 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1297 invalidate_page_bitmap(p
);
1299 #if defined(CONFIG_USER_ONLY)
1300 if (p
->flags
& PAGE_WRITE
) {
1305 /* force the host page as non writable (writes will have a
1306 page fault + mprotect overhead) */
1307 page_addr
&= qemu_host_page_mask
;
1309 for (addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1310 addr
+= TARGET_PAGE_SIZE
) {
1312 p2
= page_find(addr
>> TARGET_PAGE_BITS
);
1317 p2
->flags
&= ~PAGE_WRITE
;
1319 mprotect(g2h(page_addr
), qemu_host_page_size
,
1320 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1321 #ifdef DEBUG_TB_INVALIDATE
1322 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1327 /* if some code is already present, then the pages are already
1328 protected. So we handle the case where only the first TB is
1329 allocated in a physical page */
1330 if (!page_already_protected
) {
1331 tlb_protect_code(page_addr
);
1336 /* add a new TB and link it to the physical page tables. phys_page2 is
1337 (-1) to indicate that only one page contains the TB. */
1338 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
1339 tb_page_addr_t phys_page2
)
1342 TranslationBlock
**ptb
;
1344 /* Grab the mmap lock to stop another thread invalidating this TB
1345 before we are done. */
1347 /* add in the physical hash table */
1348 h
= tb_phys_hash_func(phys_pc
);
1349 ptb
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
1350 tb
->phys_hash_next
= *ptb
;
1353 /* add in the page list */
1354 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1355 if (phys_page2
!= -1) {
1356 tb_alloc_page(tb
, 1, phys_page2
);
1358 tb
->page_addr
[1] = -1;
1361 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2);
1362 tb
->jmp_next
[0] = NULL
;
1363 tb
->jmp_next
[1] = NULL
;
1365 /* init original jump addresses */
1366 if (tb
->tb_next_offset
[0] != 0xffff) {
1367 tb_reset_jump(tb
, 0);
1369 if (tb
->tb_next_offset
[1] != 0xffff) {
1370 tb_reset_jump(tb
, 1);
1373 #ifdef DEBUG_TB_CHECK
1379 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1380 tb[1].tc_ptr. Return NULL if not found */
1381 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1383 int m_min
, m_max
, m
;
1385 TranslationBlock
*tb
;
1387 if (tcg_ctx
.tb_ctx
.nb_tbs
<= 0) {
1390 if (tc_ptr
< (uintptr_t)tcg_ctx
.code_gen_buffer
||
1391 tc_ptr
>= (uintptr_t)tcg_ctx
.code_gen_ptr
) {
1394 /* binary search (cf Knuth) */
1396 m_max
= tcg_ctx
.tb_ctx
.nb_tbs
- 1;
1397 while (m_min
<= m_max
) {
1398 m
= (m_min
+ m_max
) >> 1;
1399 tb
= &tcg_ctx
.tb_ctx
.tbs
[m
];
1400 v
= (uintptr_t)tb
->tc_ptr
;
1403 } else if (tc_ptr
< v
) {
1409 return &tcg_ctx
.tb_ctx
.tbs
[m_max
];
1412 #if !defined(CONFIG_USER_ONLY)
1413 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
)
1415 ram_addr_t ram_addr
;
1420 mr
= address_space_translate(as
, addr
, &addr
, &l
, false);
1421 if (!(memory_region_is_ram(mr
)
1422 || memory_region_is_romd(mr
))) {
1426 ram_addr
= (memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
)
1428 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1431 #endif /* !defined(CONFIG_USER_ONLY) */
1433 void tb_check_watchpoint(CPUState
*cpu
)
1435 TranslationBlock
*tb
;
1437 tb
= tb_find_pc(cpu
->mem_io_pc
);
1439 cpu_abort(cpu
, "check_watchpoint: could not find TB for pc=%p",
1440 (void *)cpu
->mem_io_pc
);
1442 cpu_restore_state_from_tb(cpu
, tb
, cpu
->mem_io_pc
);
1443 tb_phys_invalidate(tb
, -1);
1446 #ifndef CONFIG_USER_ONLY
1447 /* mask must never be zero, except for A20 change call */
1448 static void tcg_handle_interrupt(CPUState
*cpu
, int mask
)
1452 old_mask
= cpu
->interrupt_request
;
1453 cpu
->interrupt_request
|= mask
;
1456 * If called from iothread context, wake the target cpu in
1459 if (!qemu_cpu_is_self(cpu
)) {
1465 cpu
->icount_decr
.u16
.high
= 0xffff;
1466 if (!cpu_can_do_io(cpu
)
1467 && (mask
& ~old_mask
) != 0) {
1468 cpu_abort(cpu
, "Raised interrupt while not in I/O function");
1471 cpu
->tcg_exit_req
= 1;
1475 CPUInterruptHandler cpu_interrupt_handler
= tcg_handle_interrupt
;
1477 /* in deterministic execution mode, instructions doing device I/Os
1478 must be at the end of the TB */
1479 void cpu_io_recompile(CPUState
*cpu
, uintptr_t retaddr
)
1481 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1482 CPUArchState
*env
= cpu
->env_ptr
;
1484 TranslationBlock
*tb
;
1486 target_ulong pc
, cs_base
;
1489 tb
= tb_find_pc(retaddr
);
1491 cpu_abort(cpu
, "cpu_io_recompile: could not find TB for pc=%p",
1494 n
= cpu
->icount_decr
.u16
.low
+ tb
->icount
;
1495 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
1496 /* Calculate how many instructions had been executed before the fault
1498 n
= n
- cpu
->icount_decr
.u16
.low
;
1499 /* Generate a new TB ending on the I/O insn. */
1501 /* On MIPS and SH, delay slot instructions can only be restarted if
1502 they were already the first instruction in the TB. If this is not
1503 the first instruction in a TB then re-execute the preceding
1505 #if defined(TARGET_MIPS)
1506 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
1507 env
->active_tc
.PC
-= (env
->hflags
& MIPS_HFLAG_B16
? 2 : 4);
1508 cpu
->icount_decr
.u16
.low
++;
1509 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
1511 #elif defined(TARGET_SH4)
1512 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
1515 cpu
->icount_decr
.u16
.low
++;
1516 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
1519 /* This should never happen. */
1520 if (n
> CF_COUNT_MASK
) {
1521 cpu_abort(cpu
, "TB too big during recompile");
1524 cflags
= n
| CF_LAST_IO
;
1526 cs_base
= tb
->cs_base
;
1528 tb_phys_invalidate(tb
, -1);
1529 /* FIXME: In theory this could raise an exception. In practice
1530 we have already translated the block once so it's probably ok. */
1531 tb_gen_code(cpu
, pc
, cs_base
, flags
, cflags
);
1532 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1533 the first in the TB) then we end up generating a whole new TB and
1534 repeating the fault, which is horribly inefficient.
1535 Better would be to execute just this insn uncached, or generate a
1537 cpu_resume_from_signal(cpu
, NULL
);
1540 void tb_flush_jmp_cache(CPUState
*cpu
, target_ulong addr
)
1544 /* Discard jump cache entries for any tb which might potentially
1545 overlap the flushed page. */
1546 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1547 memset(&cpu
->tb_jmp_cache
[i
], 0,
1548 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1550 i
= tb_jmp_cache_hash_page(addr
);
1551 memset(&cpu
->tb_jmp_cache
[i
], 0,
1552 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1555 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
1557 int i
, target_code_size
, max_target_code_size
;
1558 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
1559 TranslationBlock
*tb
;
1561 target_code_size
= 0;
1562 max_target_code_size
= 0;
1564 direct_jmp_count
= 0;
1565 direct_jmp2_count
= 0;
1566 for (i
= 0; i
< tcg_ctx
.tb_ctx
.nb_tbs
; i
++) {
1567 tb
= &tcg_ctx
.tb_ctx
.tbs
[i
];
1568 target_code_size
+= tb
->size
;
1569 if (tb
->size
> max_target_code_size
) {
1570 max_target_code_size
= tb
->size
;
1572 if (tb
->page_addr
[1] != -1) {
1575 if (tb
->tb_next_offset
[0] != 0xffff) {
1577 if (tb
->tb_next_offset
[1] != 0xffff) {
1578 direct_jmp2_count
++;
1582 /* XXX: avoid using doubles ? */
1583 cpu_fprintf(f
, "Translation buffer state:\n");
1584 cpu_fprintf(f
, "gen code size %td/%zd\n",
1585 tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
,
1586 tcg_ctx
.code_gen_buffer_max_size
);
1587 cpu_fprintf(f
, "TB count %d/%d\n",
1588 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.code_gen_max_blocks
);
1589 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
1590 tcg_ctx
.tb_ctx
.nb_tbs
? target_code_size
/
1591 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1592 max_target_code_size
);
1593 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1594 tcg_ctx
.tb_ctx
.nb_tbs
? (tcg_ctx
.code_gen_ptr
-
1595 tcg_ctx
.code_gen_buffer
) /
1596 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1597 target_code_size
? (double) (tcg_ctx
.code_gen_ptr
-
1598 tcg_ctx
.code_gen_buffer
) /
1599 target_code_size
: 0);
1600 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n", cross_page
,
1601 tcg_ctx
.tb_ctx
.nb_tbs
? (cross_page
* 100) /
1602 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1603 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1605 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp_count
* 100) /
1606 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1608 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp2_count
* 100) /
1609 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1610 cpu_fprintf(f
, "\nStatistics:\n");
1611 cpu_fprintf(f
, "TB flush count %d\n", tcg_ctx
.tb_ctx
.tb_flush_count
);
1612 cpu_fprintf(f
, "TB invalidate count %d\n",
1613 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
);
1614 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
1615 tcg_dump_info(f
, cpu_fprintf
);
1618 void dump_opcount_info(FILE *f
, fprintf_function cpu_fprintf
)
1620 tcg_dump_op_count(f
, cpu_fprintf
);
1623 #else /* CONFIG_USER_ONLY */
1625 void cpu_interrupt(CPUState
*cpu
, int mask
)
1627 cpu
->interrupt_request
|= mask
;
1628 cpu
->tcg_exit_req
= 1;
1632 * Walks guest process memory "regions" one by one
1633 * and calls callback function 'fn' for each region.
1635 struct walk_memory_regions_data
{
1636 walk_memory_regions_fn fn
;
1642 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1643 target_ulong end
, int new_prot
)
1645 if (data
->start
!= -1u) {
1646 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1652 data
->start
= (new_prot
? end
: -1u);
1653 data
->prot
= new_prot
;
1658 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1659 target_ulong base
, int level
, void **lp
)
1665 return walk_memory_regions_end(data
, base
, 0);
1671 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1672 int prot
= pd
[i
].flags
;
1674 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1675 if (prot
!= data
->prot
) {
1676 rc
= walk_memory_regions_end(data
, pa
, prot
);
1685 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1686 pa
= base
| ((target_ulong
)i
<<
1687 (TARGET_PAGE_BITS
+ V_L2_BITS
* level
));
1688 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1698 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1700 struct walk_memory_regions_data data
;
1708 for (i
= 0; i
< V_L1_SIZE
; i
++) {
1709 int rc
= walk_memory_regions_1(&data
, (target_ulong
)i
<< (V_L1_SHIFT
+ TARGET_PAGE_BITS
),
1710 V_L1_SHIFT
/ V_L2_BITS
- 1, l1_map
+ i
);
1716 return walk_memory_regions_end(&data
, 0, 0);
1719 static int dump_region(void *priv
, target_ulong start
,
1720 target_ulong end
, unsigned long prot
)
1722 FILE *f
= (FILE *)priv
;
1724 (void) fprintf(f
, TARGET_FMT_lx
"-"TARGET_FMT_lx
1725 " "TARGET_FMT_lx
" %c%c%c\n",
1726 start
, end
, end
- start
,
1727 ((prot
& PAGE_READ
) ? 'r' : '-'),
1728 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
1729 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
1734 /* dump memory mappings */
1735 void page_dump(FILE *f
)
1737 const int length
= sizeof(target_ulong
) * 2;
1738 (void) fprintf(f
, "%-*s %-*s %-*s %s\n",
1739 length
, "start", length
, "end", length
, "size", "prot");
1740 walk_memory_regions(f
, dump_region
);
1743 int page_get_flags(target_ulong address
)
1747 p
= page_find(address
>> TARGET_PAGE_BITS
);
1754 /* Modify the flags of a page and invalidate the code if necessary.
1755 The flag PAGE_WRITE_ORG is positioned automatically depending
1756 on PAGE_WRITE. The mmap_lock should already be held. */
1757 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
1759 target_ulong addr
, len
;
1761 /* This function should never be called with addresses outside the
1762 guest address space. If this assert fires, it probably indicates
1763 a missing call to h2g_valid. */
1764 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1765 assert(end
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1767 assert(start
< end
);
1769 start
= start
& TARGET_PAGE_MASK
;
1770 end
= TARGET_PAGE_ALIGN(end
);
1772 if (flags
& PAGE_WRITE
) {
1773 flags
|= PAGE_WRITE_ORG
;
1776 for (addr
= start
, len
= end
- start
;
1778 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1779 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
1781 /* If the write protection bit is set, then we invalidate
1783 if (!(p
->flags
& PAGE_WRITE
) &&
1784 (flags
& PAGE_WRITE
) &&
1786 tb_invalidate_phys_page(addr
, 0, NULL
, false);
1792 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
1798 /* This function should never be called with addresses outside the
1799 guest address space. If this assert fires, it probably indicates
1800 a missing call to h2g_valid. */
1801 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1802 assert(start
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1808 if (start
+ len
- 1 < start
) {
1809 /* We've wrapped around. */
1813 /* must do before we loose bits in the next step */
1814 end
= TARGET_PAGE_ALIGN(start
+ len
);
1815 start
= start
& TARGET_PAGE_MASK
;
1817 for (addr
= start
, len
= end
- start
;
1819 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1820 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1824 if (!(p
->flags
& PAGE_VALID
)) {
1828 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
)) {
1831 if (flags
& PAGE_WRITE
) {
1832 if (!(p
->flags
& PAGE_WRITE_ORG
)) {
1835 /* unprotect the page if it was put read-only because it
1836 contains translated code */
1837 if (!(p
->flags
& PAGE_WRITE
)) {
1838 if (!page_unprotect(addr
, 0, NULL
)) {
1847 /* called from signal handler: invalidate the code and unprotect the
1848 page. Return TRUE if the fault was successfully handled. */
1849 int page_unprotect(target_ulong address
, uintptr_t pc
, void *puc
)
1853 target_ulong host_start
, host_end
, addr
;
1855 /* Technically this isn't safe inside a signal handler. However we
1856 know this only ever happens in a synchronous SEGV handler, so in
1857 practice it seems to be ok. */
1860 p
= page_find(address
>> TARGET_PAGE_BITS
);
1866 /* if the page was really writable, then we change its
1867 protection back to writable */
1868 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
1869 host_start
= address
& qemu_host_page_mask
;
1870 host_end
= host_start
+ qemu_host_page_size
;
1873 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
1874 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1875 p
->flags
|= PAGE_WRITE
;
1878 /* and since the content will be modified, we must invalidate
1879 the corresponding translated code. */
1880 tb_invalidate_phys_page(addr
, pc
, puc
, true);
1881 #ifdef DEBUG_TB_CHECK
1882 tb_invalidate_check(addr
);
1885 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
1894 #endif /* CONFIG_USER_ONLY */