4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <sys/types.h>
25 #include "qemu-common.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
33 #include "qemu/osdep.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "hw/xen/xen.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "exec/memory.h"
41 #include "sysemu/dma.h"
42 #include "exec/address-spaces.h"
43 #if defined(CONFIG_USER_ONLY)
45 #else /* !CONFIG_USER_ONLY */
46 #include "sysemu/xen-mapcache.h"
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
58 #include "qemu/range.h"
60 #include "qemu/mmap-alloc.h"
63 //#define DEBUG_SUBPAGE
65 #if !defined(CONFIG_USER_ONLY)
66 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
67 * are protected by the ramlist lock.
69 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
71 static MemoryRegion
*system_memory
;
72 static MemoryRegion
*system_io
;
74 AddressSpace address_space_io
;
75 AddressSpace address_space_memory
;
77 MemoryRegion io_mem_rom
, io_mem_notdirty
;
78 static MemoryRegion io_mem_unassigned
;
80 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
81 #define RAM_PREALLOC (1 << 0)
83 /* RAM is mmap-ed with MAP_SHARED */
84 #define RAM_SHARED (1 << 1)
86 /* Only a portion of RAM (used_length) is actually used, and migrated.
87 * This used_length size can change across reboots.
89 #define RAM_RESIZEABLE (1 << 2)
91 /* RAM is backed by an mmapped file.
93 #define RAM_FILE (1 << 3)
96 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
97 /* current CPU in the current thread. It is only valid inside
99 __thread CPUState
*current_cpu
;
100 /* 0 = Do not count executed instructions.
101 1 = Precise instruction counting.
102 2 = Adaptive rate instruction counting. */
105 #if !defined(CONFIG_USER_ONLY)
107 typedef struct PhysPageEntry PhysPageEntry
;
109 struct PhysPageEntry
{
110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
118 /* Size of the L2 (and L3, etc) page tables. */
119 #define ADDR_SPACE_BITS 64
122 #define P_L2_SIZE (1 << P_L2_BITS)
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
126 typedef PhysPageEntry Node
[P_L2_SIZE
];
128 typedef struct PhysPageMap
{
131 unsigned sections_nb
;
132 unsigned sections_nb_alloc
;
134 unsigned nodes_nb_alloc
;
136 MemoryRegionSection
*sections
;
139 struct AddressSpaceDispatch
{
142 /* This is a multi-level map on the physical address space.
143 * The bottom level has pointers to MemoryRegionSections.
145 PhysPageEntry phys_map
;
150 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
151 typedef struct subpage_t
{
155 uint16_t sub_section
[TARGET_PAGE_SIZE
];
158 #define PHYS_SECTION_UNASSIGNED 0
159 #define PHYS_SECTION_NOTDIRTY 1
160 #define PHYS_SECTION_ROM 2
161 #define PHYS_SECTION_WATCH 3
163 static void io_mem_init(void);
164 static void memory_map_init(void);
165 static void tcg_commit(MemoryListener
*listener
);
167 static MemoryRegion io_mem_watch
;
170 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
171 * @cpu: the CPU whose AddressSpace this is
172 * @as: the AddressSpace itself
173 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
174 * @tcg_as_listener: listener for tracking changes to the AddressSpace
176 struct CPUAddressSpace
{
179 struct AddressSpaceDispatch
*memory_dispatch
;
180 MemoryListener tcg_as_listener
;
185 #if !defined(CONFIG_USER_ONLY)
187 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
189 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
190 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
191 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
192 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
196 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
203 ret
= map
->nodes_nb
++;
205 assert(ret
!= PHYS_MAP_NODE_NIL
);
206 assert(ret
!= map
->nodes_nb_alloc
);
208 e
.skip
= leaf
? 0 : 1;
209 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
210 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
211 memcpy(&p
[i
], &e
, sizeof(e
));
216 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
217 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
221 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
223 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
224 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
226 p
= map
->nodes
[lp
->ptr
];
227 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
229 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
230 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
236 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
242 static void phys_page_set(AddressSpaceDispatch
*d
,
243 hwaddr index
, hwaddr nb
,
246 /* Wildly overreserve - it doesn't matter much. */
247 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
249 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
252 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
253 * and update our entry so we can skip it and go directly to the destination.
255 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
257 unsigned valid_ptr
= P_L2_SIZE
;
262 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
267 for (i
= 0; i
< P_L2_SIZE
; i
++) {
268 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
275 phys_page_compact(&p
[i
], nodes
, compacted
);
279 /* We can only compress if there's only one child. */
284 assert(valid_ptr
< P_L2_SIZE
);
286 /* Don't compress if it won't fit in the # of bits we have. */
287 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
291 lp
->ptr
= p
[valid_ptr
].ptr
;
292 if (!p
[valid_ptr
].skip
) {
293 /* If our only child is a leaf, make this a leaf. */
294 /* By design, we should have made this node a leaf to begin with so we
295 * should never reach here.
296 * But since it's so simple to handle this, let's do it just in case we
301 lp
->skip
+= p
[valid_ptr
].skip
;
305 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
307 DECLARE_BITMAP(compacted
, nodes_nb
);
309 if (d
->phys_map
.skip
) {
310 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
314 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
315 Node
*nodes
, MemoryRegionSection
*sections
)
318 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
321 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
322 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
323 return §ions
[PHYS_SECTION_UNASSIGNED
];
326 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
329 if (sections
[lp
.ptr
].size
.hi
||
330 range_covers_byte(sections
[lp
.ptr
].offset_within_address_space
,
331 sections
[lp
.ptr
].size
.lo
, addr
)) {
332 return §ions
[lp
.ptr
];
334 return §ions
[PHYS_SECTION_UNASSIGNED
];
338 bool memory_region_is_unassigned(MemoryRegion
*mr
)
340 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
341 && mr
!= &io_mem_watch
;
344 /* Called from RCU critical section */
345 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
347 bool resolve_subpage
)
349 MemoryRegionSection
*section
;
352 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
, d
->map
.sections
);
353 if (resolve_subpage
&& section
->mr
->subpage
) {
354 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
355 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
360 /* Called from RCU critical section */
361 static MemoryRegionSection
*
362 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
363 hwaddr
*plen
, bool resolve_subpage
)
365 MemoryRegionSection
*section
;
369 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
370 /* Compute offset within MemoryRegionSection */
371 addr
-= section
->offset_within_address_space
;
373 /* Compute offset within MemoryRegion */
374 *xlat
= addr
+ section
->offset_within_region
;
378 /* MMIO registers can be expected to perform full-width accesses based only
379 * on their address, without considering adjacent registers that could
380 * decode to completely different MemoryRegions. When such registers
381 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
382 * regions overlap wildly. For this reason we cannot clamp the accesses
385 * If the length is small (as is the case for address_space_ldl/stl),
386 * everything works fine. If the incoming length is large, however,
387 * the caller really has to do the clamping through memory_access_size.
389 if (memory_region_is_ram(mr
)) {
390 diff
= int128_sub(section
->size
, int128_make64(addr
));
391 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
396 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
398 if (memory_region_is_ram(mr
)) {
399 return !(is_write
&& mr
->readonly
);
401 if (memory_region_is_romd(mr
)) {
408 /* Called from RCU critical section */
409 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
410 hwaddr
*xlat
, hwaddr
*plen
,
414 MemoryRegionSection
*section
;
418 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
419 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
422 if (!mr
->iommu_ops
) {
426 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
427 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
428 | (addr
& iotlb
.addr_mask
));
429 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
430 if (!(iotlb
.perm
& (1 << is_write
))) {
431 mr
= &io_mem_unassigned
;
435 as
= iotlb
.target_as
;
438 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
439 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
440 *plen
= MIN(page
, *plen
);
447 /* Called from RCU critical section */
448 MemoryRegionSection
*
449 address_space_translate_for_iotlb(CPUState
*cpu
, hwaddr addr
,
450 hwaddr
*xlat
, hwaddr
*plen
)
452 MemoryRegionSection
*section
;
453 section
= address_space_translate_internal(cpu
->cpu_ases
[0].memory_dispatch
,
454 addr
, xlat
, plen
, false);
456 assert(!section
->mr
->iommu_ops
);
461 #if !defined(CONFIG_USER_ONLY)
463 static int cpu_common_post_load(void *opaque
, int version_id
)
465 CPUState
*cpu
= opaque
;
467 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
468 version_id is increased. */
469 cpu
->interrupt_request
&= ~0x01;
475 static int cpu_common_pre_load(void *opaque
)
477 CPUState
*cpu
= opaque
;
479 cpu
->exception_index
= -1;
484 static bool cpu_common_exception_index_needed(void *opaque
)
486 CPUState
*cpu
= opaque
;
488 return tcg_enabled() && cpu
->exception_index
!= -1;
491 static const VMStateDescription vmstate_cpu_common_exception_index
= {
492 .name
= "cpu_common/exception_index",
494 .minimum_version_id
= 1,
495 .needed
= cpu_common_exception_index_needed
,
496 .fields
= (VMStateField
[]) {
497 VMSTATE_INT32(exception_index
, CPUState
),
498 VMSTATE_END_OF_LIST()
502 static bool cpu_common_crash_occurred_needed(void *opaque
)
504 CPUState
*cpu
= opaque
;
506 return cpu
->crash_occurred
;
509 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
510 .name
= "cpu_common/crash_occurred",
512 .minimum_version_id
= 1,
513 .needed
= cpu_common_crash_occurred_needed
,
514 .fields
= (VMStateField
[]) {
515 VMSTATE_BOOL(crash_occurred
, CPUState
),
516 VMSTATE_END_OF_LIST()
520 const VMStateDescription vmstate_cpu_common
= {
521 .name
= "cpu_common",
523 .minimum_version_id
= 1,
524 .pre_load
= cpu_common_pre_load
,
525 .post_load
= cpu_common_post_load
,
526 .fields
= (VMStateField
[]) {
527 VMSTATE_UINT32(halted
, CPUState
),
528 VMSTATE_UINT32(interrupt_request
, CPUState
),
529 VMSTATE_END_OF_LIST()
531 .subsections
= (const VMStateDescription
*[]) {
532 &vmstate_cpu_common_exception_index
,
533 &vmstate_cpu_common_crash_occurred
,
540 CPUState
*qemu_get_cpu(int index
)
545 if (cpu
->cpu_index
== index
) {
553 #if !defined(CONFIG_USER_ONLY)
554 void tcg_cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
)
556 /* We only support one address space per cpu at the moment. */
557 assert(cpu
->as
== as
);
560 /* We've already registered the listener for our only AS */
564 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, 1);
565 cpu
->cpu_ases
[0].cpu
= cpu
;
566 cpu
->cpu_ases
[0].as
= as
;
567 cpu
->cpu_ases
[0].tcg_as_listener
.commit
= tcg_commit
;
568 memory_listener_register(&cpu
->cpu_ases
[0].tcg_as_listener
, as
);
572 #ifndef CONFIG_USER_ONLY
573 static DECLARE_BITMAP(cpu_index_map
, MAX_CPUMASK_BITS
);
575 static int cpu_get_free_index(Error
**errp
)
577 int cpu
= find_first_zero_bit(cpu_index_map
, MAX_CPUMASK_BITS
);
579 if (cpu
>= MAX_CPUMASK_BITS
) {
580 error_setg(errp
, "Trying to use more CPUs than max of %d",
585 bitmap_set(cpu_index_map
, cpu
, 1);
589 void cpu_exec_exit(CPUState
*cpu
)
591 if (cpu
->cpu_index
== -1) {
592 /* cpu_index was never allocated by this @cpu or was already freed. */
596 bitmap_clear(cpu_index_map
, cpu
->cpu_index
, 1);
601 static int cpu_get_free_index(Error
**errp
)
606 CPU_FOREACH(some_cpu
) {
612 void cpu_exec_exit(CPUState
*cpu
)
617 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
619 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
621 Error
*local_err
= NULL
;
623 #ifndef CONFIG_USER_ONLY
624 cpu
->as
= &address_space_memory
;
625 cpu
->thread_id
= qemu_get_thread_id();
628 #if defined(CONFIG_USER_ONLY)
631 cpu_index
= cpu
->cpu_index
= cpu_get_free_index(&local_err
);
633 error_propagate(errp
, local_err
);
634 #if defined(CONFIG_USER_ONLY)
639 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
640 #if defined(CONFIG_USER_ONLY)
643 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
644 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
646 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
647 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
648 cpu_save
, cpu_load
, cpu
->env_ptr
);
649 assert(cc
->vmsd
== NULL
);
650 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
652 if (cc
->vmsd
!= NULL
) {
653 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
657 #if defined(CONFIG_USER_ONLY)
658 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
660 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
663 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
665 hwaddr phys
= cpu_get_phys_page_debug(cpu
, pc
);
667 tb_invalidate_phys_addr(cpu
->as
,
668 phys
| (pc
& ~TARGET_PAGE_MASK
));
673 #if defined(CONFIG_USER_ONLY)
674 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
679 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
685 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
689 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
690 int flags
, CPUWatchpoint
**watchpoint
)
695 /* Add a watchpoint. */
696 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
697 int flags
, CPUWatchpoint
**watchpoint
)
701 /* forbid ranges which are empty or run off the end of the address space */
702 if (len
== 0 || (addr
+ len
- 1) < addr
) {
703 error_report("tried to set invalid watchpoint at %"
704 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
707 wp
= g_malloc(sizeof(*wp
));
713 /* keep all GDB-injected watchpoints in front */
714 if (flags
& BP_GDB
) {
715 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
717 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
720 tlb_flush_page(cpu
, addr
);
727 /* Remove a specific watchpoint. */
728 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
733 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
734 if (addr
== wp
->vaddr
&& len
== wp
->len
735 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
736 cpu_watchpoint_remove_by_ref(cpu
, wp
);
743 /* Remove a specific watchpoint by reference. */
744 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
746 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
748 tlb_flush_page(cpu
, watchpoint
->vaddr
);
753 /* Remove all matching watchpoints. */
754 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
756 CPUWatchpoint
*wp
, *next
;
758 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
759 if (wp
->flags
& mask
) {
760 cpu_watchpoint_remove_by_ref(cpu
, wp
);
765 /* Return true if this watchpoint address matches the specified
766 * access (ie the address range covered by the watchpoint overlaps
767 * partially or completely with the address range covered by the
770 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
774 /* We know the lengths are non-zero, but a little caution is
775 * required to avoid errors in the case where the range ends
776 * exactly at the top of the address space and so addr + len
777 * wraps round to zero.
779 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
780 vaddr addrend
= addr
+ len
- 1;
782 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
787 /* Add a breakpoint. */
788 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
789 CPUBreakpoint
**breakpoint
)
793 bp
= g_malloc(sizeof(*bp
));
798 /* keep all GDB-injected breakpoints in front */
799 if (flags
& BP_GDB
) {
800 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
802 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
805 breakpoint_invalidate(cpu
, pc
);
813 /* Remove a specific breakpoint. */
814 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
818 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
819 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
820 cpu_breakpoint_remove_by_ref(cpu
, bp
);
827 /* Remove a specific breakpoint by reference. */
828 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
830 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
832 breakpoint_invalidate(cpu
, breakpoint
->pc
);
837 /* Remove all matching breakpoints. */
838 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
840 CPUBreakpoint
*bp
, *next
;
842 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
843 if (bp
->flags
& mask
) {
844 cpu_breakpoint_remove_by_ref(cpu
, bp
);
849 /* enable or disable single step mode. EXCP_DEBUG is returned by the
850 CPU loop after each instruction */
851 void cpu_single_step(CPUState
*cpu
, int enabled
)
853 if (cpu
->singlestep_enabled
!= enabled
) {
854 cpu
->singlestep_enabled
= enabled
;
856 kvm_update_guest_debug(cpu
, 0);
858 /* must flush all the translated code to avoid inconsistencies */
859 /* XXX: only flush what is necessary */
865 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
872 fprintf(stderr
, "qemu: fatal: ");
873 vfprintf(stderr
, fmt
, ap
);
874 fprintf(stderr
, "\n");
875 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
876 if (qemu_log_enabled()) {
877 qemu_log("qemu: fatal: ");
878 qemu_log_vprintf(fmt
, ap2
);
880 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
887 #if defined(CONFIG_USER_ONLY)
889 struct sigaction act
;
890 sigfillset(&act
.sa_mask
);
891 act
.sa_handler
= SIG_DFL
;
892 sigaction(SIGABRT
, &act
, NULL
);
898 #if !defined(CONFIG_USER_ONLY)
899 /* Called from RCU critical section */
900 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
904 block
= atomic_rcu_read(&ram_list
.mru_block
);
905 if (block
&& addr
- block
->offset
< block
->max_length
) {
908 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
909 if (addr
- block
->offset
< block
->max_length
) {
914 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
918 /* It is safe to write mru_block outside the iothread lock. This
923 * xxx removed from list
927 * call_rcu(reclaim_ramblock, xxx);
930 * atomic_rcu_set is not needed here. The block was already published
931 * when it was placed into the list. Here we're just making an extra
932 * copy of the pointer.
934 ram_list
.mru_block
= block
;
938 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
945 end
= TARGET_PAGE_ALIGN(start
+ length
);
946 start
&= TARGET_PAGE_MASK
;
949 block
= qemu_get_ram_block(start
);
950 assert(block
== qemu_get_ram_block(end
- 1));
951 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
953 tlb_reset_dirty(cpu
, start1
, length
);
958 /* Note: start and end must be within the same ram block. */
959 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
963 unsigned long end
, page
;
970 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
971 page
= start
>> TARGET_PAGE_BITS
;
972 dirty
= bitmap_test_and_clear_atomic(ram_list
.dirty_memory
[client
],
975 if (dirty
&& tcg_enabled()) {
976 tlb_reset_dirty_range_all(start
, length
);
982 /* Called from RCU critical section */
983 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
984 MemoryRegionSection
*section
,
986 hwaddr paddr
, hwaddr xlat
,
988 target_ulong
*address
)
993 if (memory_region_is_ram(section
->mr
)) {
995 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
997 if (!section
->readonly
) {
998 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1000 iotlb
|= PHYS_SECTION_ROM
;
1003 AddressSpaceDispatch
*d
;
1005 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1006 iotlb
= section
- d
->map
.sections
;
1010 /* Make accesses to pages with watchpoints go via the
1011 watchpoint trap routines. */
1012 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1013 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1014 /* Avoid trapping reads of pages with a write breakpoint. */
1015 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1016 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1017 *address
|= TLB_MMIO
;
1025 #endif /* defined(CONFIG_USER_ONLY) */
1027 #if !defined(CONFIG_USER_ONLY)
1029 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1031 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1033 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1034 qemu_anon_ram_alloc
;
1037 * Set a custom physical guest memory alloator.
1038 * Accelerators with unusual needs may need this. Hopefully, we can
1039 * get rid of it eventually.
1041 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1043 phys_mem_alloc
= alloc
;
1046 static uint16_t phys_section_add(PhysPageMap
*map
,
1047 MemoryRegionSection
*section
)
1049 /* The physical section number is ORed with a page-aligned
1050 * pointer to produce the iotlb entries. Thus it should
1051 * never overflow into the page-aligned value.
1053 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1055 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1056 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1057 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1058 map
->sections_nb_alloc
);
1060 map
->sections
[map
->sections_nb
] = *section
;
1061 memory_region_ref(section
->mr
);
1062 return map
->sections_nb
++;
1065 static void phys_section_destroy(MemoryRegion
*mr
)
1067 memory_region_unref(mr
);
1070 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1071 object_unref(OBJECT(&subpage
->iomem
));
1076 static void phys_sections_free(PhysPageMap
*map
)
1078 while (map
->sections_nb
> 0) {
1079 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1080 phys_section_destroy(section
->mr
);
1082 g_free(map
->sections
);
1086 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1089 hwaddr base
= section
->offset_within_address_space
1091 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1092 d
->map
.nodes
, d
->map
.sections
);
1093 MemoryRegionSection subsection
= {
1094 .offset_within_address_space
= base
,
1095 .size
= int128_make64(TARGET_PAGE_SIZE
),
1099 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1101 if (!(existing
->mr
->subpage
)) {
1102 subpage
= subpage_init(d
->as
, base
);
1103 subsection
.address_space
= d
->as
;
1104 subsection
.mr
= &subpage
->iomem
;
1105 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1106 phys_section_add(&d
->map
, &subsection
));
1108 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1110 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1111 end
= start
+ int128_get64(section
->size
) - 1;
1112 subpage_register(subpage
, start
, end
,
1113 phys_section_add(&d
->map
, section
));
1117 static void register_multipage(AddressSpaceDispatch
*d
,
1118 MemoryRegionSection
*section
)
1120 hwaddr start_addr
= section
->offset_within_address_space
;
1121 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1122 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1126 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1129 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1131 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1132 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1133 MemoryRegionSection now
= *section
, remain
= *section
;
1134 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1136 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1137 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1138 - now
.offset_within_address_space
;
1140 now
.size
= int128_min(int128_make64(left
), now
.size
);
1141 register_subpage(d
, &now
);
1143 now
.size
= int128_zero();
1145 while (int128_ne(remain
.size
, now
.size
)) {
1146 remain
.size
= int128_sub(remain
.size
, now
.size
);
1147 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1148 remain
.offset_within_region
+= int128_get64(now
.size
);
1150 if (int128_lt(remain
.size
, page_size
)) {
1151 register_subpage(d
, &now
);
1152 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1153 now
.size
= page_size
;
1154 register_subpage(d
, &now
);
1156 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1157 register_multipage(d
, &now
);
1162 void qemu_flush_coalesced_mmio_buffer(void)
1165 kvm_flush_coalesced_mmio_buffer();
1168 void qemu_mutex_lock_ramlist(void)
1170 qemu_mutex_lock(&ram_list
.mutex
);
1173 void qemu_mutex_unlock_ramlist(void)
1175 qemu_mutex_unlock(&ram_list
.mutex
);
1180 #include <sys/vfs.h>
1182 #define HUGETLBFS_MAGIC 0x958458f6
1184 static long gethugepagesize(const char *path
, Error
**errp
)
1190 ret
= statfs(path
, &fs
);
1191 } while (ret
!= 0 && errno
== EINTR
);
1194 error_setg_errno(errp
, errno
, "failed to get page size of file %s",
1199 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
1200 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
1205 static void *file_ram_alloc(RAMBlock
*block
,
1212 char *sanitized_name
;
1217 Error
*local_err
= NULL
;
1219 hpagesize
= gethugepagesize(path
, &local_err
);
1221 error_propagate(errp
, local_err
);
1224 block
->mr
->align
= hpagesize
;
1226 if (memory
< hpagesize
) {
1227 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1228 "or larger than huge page size 0x%" PRIx64
,
1233 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1235 "host lacks kvm mmu notifiers, -mem-path unsupported");
1239 if (!stat(path
, &st
) && S_ISDIR(st
.st_mode
)) {
1240 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1241 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1242 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1248 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1250 g_free(sanitized_name
);
1252 fd
= mkstemp(filename
);
1258 fd
= open(path
, O_RDWR
| O_CREAT
, 0644);
1262 error_setg_errno(errp
, errno
,
1263 "unable to create backing store for hugepages");
1267 memory
= ROUND_UP(memory
, hpagesize
);
1270 * ftruncate is not supported by hugetlbfs in older
1271 * hosts, so don't bother bailing out on errors.
1272 * If anything goes wrong with it under other filesystems,
1275 if (ftruncate(fd
, memory
)) {
1276 perror("ftruncate");
1279 area
= qemu_ram_mmap(fd
, memory
, hpagesize
, block
->flags
& RAM_SHARED
);
1280 if (area
== MAP_FAILED
) {
1281 error_setg_errno(errp
, errno
,
1282 "unable to map backing store for hugepages");
1288 os_mem_prealloc(fd
, area
, memory
);
1299 /* Called with the ramlist lock held. */
1300 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1302 RAMBlock
*block
, *next_block
;
1303 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1305 assert(size
!= 0); /* it would hand out same offset multiple times */
1307 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1311 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1312 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1314 end
= block
->offset
+ block
->max_length
;
1316 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1317 if (next_block
->offset
>= end
) {
1318 next
= MIN(next
, next_block
->offset
);
1321 if (next
- end
>= size
&& next
- end
< mingap
) {
1323 mingap
= next
- end
;
1327 if (offset
== RAM_ADDR_MAX
) {
1328 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1336 ram_addr_t
last_ram_offset(void)
1339 ram_addr_t last
= 0;
1342 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1343 last
= MAX(last
, block
->offset
+ block
->max_length
);
1349 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1353 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1354 if (!machine_dump_guest_core(current_machine
)) {
1355 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1357 perror("qemu_madvise");
1358 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1359 "but dump_guest_core=off specified\n");
1364 /* Called within an RCU critical section, or while the ramlist lock
1367 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1371 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1372 if (block
->offset
== addr
) {
1380 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1385 /* Called with iothread lock held. */
1386 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1388 RAMBlock
*new_block
, *block
;
1391 new_block
= find_ram_block(addr
);
1393 assert(!new_block
->idstr
[0]);
1396 char *id
= qdev_get_dev_path(dev
);
1398 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1402 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1404 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1405 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1406 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1414 /* Called with iothread lock held. */
1415 void qemu_ram_unset_idstr(ram_addr_t addr
)
1419 /* FIXME: arch_init.c assumes that this is not called throughout
1420 * migration. Ignore the problem since hot-unplug during migration
1421 * does not work anyway.
1425 block
= find_ram_block(addr
);
1427 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1432 static int memory_try_enable_merging(void *addr
, size_t len
)
1434 if (!machine_mem_merge(current_machine
)) {
1435 /* disabled by the user */
1439 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1442 /* Only legal before guest might have detected the memory size: e.g. on
1443 * incoming migration, or right after reset.
1445 * As memory core doesn't know how is memory accessed, it is up to
1446 * resize callback to update device state and/or add assertions to detect
1447 * misuse, if necessary.
1449 int qemu_ram_resize(ram_addr_t base
, ram_addr_t newsize
, Error
**errp
)
1451 RAMBlock
*block
= find_ram_block(base
);
1455 newsize
= HOST_PAGE_ALIGN(newsize
);
1457 if (block
->used_length
== newsize
) {
1461 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1462 error_setg_errno(errp
, EINVAL
,
1463 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1464 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1465 newsize
, block
->used_length
);
1469 if (block
->max_length
< newsize
) {
1470 error_setg_errno(errp
, EINVAL
,
1471 "Length too large: %s: 0x" RAM_ADDR_FMT
1472 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1473 newsize
, block
->max_length
);
1477 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1478 block
->used_length
= newsize
;
1479 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1481 memory_region_set_size(block
->mr
, newsize
);
1482 if (block
->resized
) {
1483 block
->resized(block
->idstr
, newsize
, block
->host
);
1488 static ram_addr_t
ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1491 RAMBlock
*last_block
= NULL
;
1492 ram_addr_t old_ram_size
, new_ram_size
;
1494 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1496 qemu_mutex_lock_ramlist();
1497 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1499 if (!new_block
->host
) {
1500 if (xen_enabled()) {
1501 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1504 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1505 &new_block
->mr
->align
);
1506 if (!new_block
->host
) {
1507 error_setg_errno(errp
, errno
,
1508 "cannot set up guest memory '%s'",
1509 memory_region_name(new_block
->mr
));
1510 qemu_mutex_unlock_ramlist();
1513 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1517 new_ram_size
= MAX(old_ram_size
,
1518 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1519 if (new_ram_size
> old_ram_size
) {
1520 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1522 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1523 * QLIST (which has an RCU-friendly variant) does not have insertion at
1524 * tail, so save the last element in last_block.
1526 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1528 if (block
->max_length
< new_block
->max_length
) {
1533 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1534 } else if (last_block
) {
1535 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1536 } else { /* list is empty */
1537 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1539 ram_list
.mru_block
= NULL
;
1541 /* Write list before version */
1544 qemu_mutex_unlock_ramlist();
1546 new_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1548 if (new_ram_size
> old_ram_size
) {
1551 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1552 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1553 ram_list
.dirty_memory
[i
] =
1554 bitmap_zero_extend(ram_list
.dirty_memory
[i
],
1555 old_ram_size
, new_ram_size
);
1558 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1559 new_block
->used_length
,
1562 if (new_block
->host
) {
1563 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1564 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1565 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1566 if (kvm_enabled()) {
1567 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1571 return new_block
->offset
;
1575 ram_addr_t
qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1576 bool share
, const char *mem_path
,
1579 RAMBlock
*new_block
;
1581 Error
*local_err
= NULL
;
1583 if (xen_enabled()) {
1584 error_setg(errp
, "-mem-path not supported with Xen");
1588 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1590 * file_ram_alloc() needs to allocate just like
1591 * phys_mem_alloc, but we haven't bothered to provide
1595 "-mem-path not supported with this accelerator");
1599 size
= HOST_PAGE_ALIGN(size
);
1600 new_block
= g_malloc0(sizeof(*new_block
));
1602 new_block
->used_length
= size
;
1603 new_block
->max_length
= size
;
1604 new_block
->flags
= share
? RAM_SHARED
: 0;
1605 new_block
->flags
|= RAM_FILE
;
1606 new_block
->host
= file_ram_alloc(new_block
, size
,
1608 if (!new_block
->host
) {
1613 addr
= ram_block_add(new_block
, &local_err
);
1616 error_propagate(errp
, local_err
);
1624 ram_addr_t
qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1625 void (*resized
)(const char*,
1628 void *host
, bool resizeable
,
1629 MemoryRegion
*mr
, Error
**errp
)
1631 RAMBlock
*new_block
;
1633 Error
*local_err
= NULL
;
1635 size
= HOST_PAGE_ALIGN(size
);
1636 max_size
= HOST_PAGE_ALIGN(max_size
);
1637 new_block
= g_malloc0(sizeof(*new_block
));
1639 new_block
->resized
= resized
;
1640 new_block
->used_length
= size
;
1641 new_block
->max_length
= max_size
;
1642 assert(max_size
>= size
);
1644 new_block
->host
= host
;
1646 new_block
->flags
|= RAM_PREALLOC
;
1649 new_block
->flags
|= RAM_RESIZEABLE
;
1651 addr
= ram_block_add(new_block
, &local_err
);
1654 error_propagate(errp
, local_err
);
1660 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1661 MemoryRegion
*mr
, Error
**errp
)
1663 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1666 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1668 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1671 ram_addr_t
qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1672 void (*resized
)(const char*,
1675 MemoryRegion
*mr
, Error
**errp
)
1677 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1680 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1684 qemu_mutex_lock_ramlist();
1685 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1686 if (addr
== block
->offset
) {
1687 QLIST_REMOVE_RCU(block
, next
);
1688 ram_list
.mru_block
= NULL
;
1689 /* Write list before version */
1692 g_free_rcu(block
, rcu
);
1696 qemu_mutex_unlock_ramlist();
1699 static void reclaim_ramblock(RAMBlock
*block
)
1701 if (block
->flags
& RAM_PREALLOC
) {
1703 } else if (xen_enabled()) {
1704 xen_invalidate_map_cache_entry(block
->host
);
1706 } else if (block
->fd
>= 0) {
1707 if (block
->flags
& RAM_FILE
) {
1708 qemu_ram_munmap(block
->host
, block
->max_length
);
1710 munmap(block
->host
, block
->max_length
);
1715 qemu_anon_ram_free(block
->host
, block
->max_length
);
1720 void qemu_ram_free(ram_addr_t addr
)
1724 qemu_mutex_lock_ramlist();
1725 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1726 if (addr
== block
->offset
) {
1727 QLIST_REMOVE_RCU(block
, next
);
1728 ram_list
.mru_block
= NULL
;
1729 /* Write list before version */
1732 call_rcu(block
, reclaim_ramblock
, rcu
);
1736 qemu_mutex_unlock_ramlist();
1740 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1747 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1748 offset
= addr
- block
->offset
;
1749 if (offset
< block
->max_length
) {
1750 vaddr
= ramblock_ptr(block
, offset
);
1751 if (block
->flags
& RAM_PREALLOC
) {
1753 } else if (xen_enabled()) {
1757 if (block
->fd
>= 0) {
1758 flags
|= (block
->flags
& RAM_SHARED
?
1759 MAP_SHARED
: MAP_PRIVATE
);
1760 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1761 flags
, block
->fd
, offset
);
1764 * Remap needs to match alloc. Accelerators that
1765 * set phys_mem_alloc never remap. If they did,
1766 * we'd need a remap hook here.
1768 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1770 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1771 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1774 if (area
!= vaddr
) {
1775 fprintf(stderr
, "Could not remap addr: "
1776 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1780 memory_try_enable_merging(vaddr
, length
);
1781 qemu_ram_setup_dump(vaddr
, length
);
1786 #endif /* !_WIN32 */
1788 int qemu_get_ram_fd(ram_addr_t addr
)
1794 block
= qemu_get_ram_block(addr
);
1800 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1806 block
= qemu_get_ram_block(addr
);
1807 ptr
= ramblock_ptr(block
, 0);
1812 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1813 * This should not be used for general purpose DMA. Use address_space_map
1814 * or address_space_rw instead. For local memory (e.g. video ram) that the
1815 * device owns, use memory_region_get_ram_ptr.
1817 * By the time this function returns, the returned pointer is not protected
1818 * by RCU anymore. If the caller is not within an RCU critical section and
1819 * does not hold the iothread lock, it must have other means of protecting the
1820 * pointer, such as a reference to the region that includes the incoming
1823 void *qemu_get_ram_ptr(ram_addr_t addr
)
1829 block
= qemu_get_ram_block(addr
);
1831 if (xen_enabled() && block
->host
== NULL
) {
1832 /* We need to check if the requested address is in the RAM
1833 * because we don't want to map the entire memory in QEMU.
1834 * In that case just map until the end of the page.
1836 if (block
->offset
== 0) {
1837 ptr
= xen_map_cache(addr
, 0, 0);
1841 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1843 ptr
= ramblock_ptr(block
, addr
- block
->offset
);
1850 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1851 * but takes a size argument.
1853 * By the time this function returns, the returned pointer is not protected
1854 * by RCU anymore. If the caller is not within an RCU critical section and
1855 * does not hold the iothread lock, it must have other means of protecting the
1856 * pointer, such as a reference to the region that includes the incoming
1859 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1865 if (xen_enabled()) {
1866 return xen_map_cache(addr
, *size
, 1);
1870 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1871 if (addr
- block
->offset
< block
->max_length
) {
1872 if (addr
- block
->offset
+ *size
> block
->max_length
)
1873 *size
= block
->max_length
- addr
+ block
->offset
;
1874 ptr
= ramblock_ptr(block
, addr
- block
->offset
);
1880 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1886 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1889 * ptr: Host pointer to look up
1890 * round_offset: If true round the result offset down to a page boundary
1891 * *ram_addr: set to result ram_addr
1892 * *offset: set to result offset within the RAMBlock
1894 * Returns: RAMBlock (or NULL if not found)
1896 * By the time this function returns, the returned pointer is not protected
1897 * by RCU anymore. If the caller is not within an RCU critical section and
1898 * does not hold the iothread lock, it must have other means of protecting the
1899 * pointer, such as a reference to the region that includes the incoming
1902 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1903 ram_addr_t
*ram_addr
,
1907 uint8_t *host
= ptr
;
1909 if (xen_enabled()) {
1911 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1912 block
= qemu_get_ram_block(*ram_addr
);
1914 *offset
= (host
- block
->host
);
1921 block
= atomic_rcu_read(&ram_list
.mru_block
);
1922 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1926 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1927 /* This case append when the block is not mapped. */
1928 if (block
->host
== NULL
) {
1931 if (host
- block
->host
< block
->max_length
) {
1940 *offset
= (host
- block
->host
);
1942 *offset
&= TARGET_PAGE_MASK
;
1944 *ram_addr
= block
->offset
+ *offset
;
1950 * Finds the named RAMBlock
1952 * name: The name of RAMBlock to find
1954 * Returns: RAMBlock (or NULL if not found)
1956 RAMBlock
*qemu_ram_block_by_name(const char *name
)
1960 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1961 if (!strcmp(name
, block
->idstr
)) {
1969 /* Some of the softmmu routines need to translate from a host pointer
1970 (typically a TLB entry) back to a ram offset. */
1971 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1974 ram_addr_t offset
; /* Not used */
1976 block
= qemu_ram_block_from_host(ptr
, false, ram_addr
, &offset
);
1985 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1986 uint64_t val
, unsigned size
)
1988 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1989 tb_invalidate_phys_page_fast(ram_addr
, size
);
1993 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1996 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1999 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2004 /* Set both VGA and migration bits for simplicity and to remove
2005 * the notdirty callback faster.
2007 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2008 DIRTY_CLIENTS_NOCODE
);
2009 /* we remove the notdirty callback only if the code has been
2011 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2012 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2016 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2017 unsigned size
, bool is_write
)
2022 static const MemoryRegionOps notdirty_mem_ops
= {
2023 .write
= notdirty_mem_write
,
2024 .valid
.accepts
= notdirty_mem_accepts
,
2025 .endianness
= DEVICE_NATIVE_ENDIAN
,
2028 /* Generate a debug exception if a watchpoint has been hit. */
2029 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2031 CPUState
*cpu
= current_cpu
;
2032 CPUArchState
*env
= cpu
->env_ptr
;
2033 target_ulong pc
, cs_base
;
2038 if (cpu
->watchpoint_hit
) {
2039 /* We re-entered the check after replacing the TB. Now raise
2040 * the debug interrupt so that is will trigger after the
2041 * current instruction. */
2042 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2045 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2046 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2047 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2048 && (wp
->flags
& flags
)) {
2049 if (flags
== BP_MEM_READ
) {
2050 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2052 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2054 wp
->hitaddr
= vaddr
;
2055 wp
->hitattrs
= attrs
;
2056 if (!cpu
->watchpoint_hit
) {
2057 cpu
->watchpoint_hit
= wp
;
2058 tb_check_watchpoint(cpu
);
2059 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2060 cpu
->exception_index
= EXCP_DEBUG
;
2063 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2064 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2065 cpu_resume_from_signal(cpu
, NULL
);
2069 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2074 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2075 so these check for a hit then pass through to the normal out-of-line
2077 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2078 unsigned size
, MemTxAttrs attrs
)
2083 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2086 data
= address_space_ldub(&address_space_memory
, addr
, attrs
, &res
);
2089 data
= address_space_lduw(&address_space_memory
, addr
, attrs
, &res
);
2092 data
= address_space_ldl(&address_space_memory
, addr
, attrs
, &res
);
2100 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2101 uint64_t val
, unsigned size
,
2106 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2109 address_space_stb(&address_space_memory
, addr
, val
, attrs
, &res
);
2112 address_space_stw(&address_space_memory
, addr
, val
, attrs
, &res
);
2115 address_space_stl(&address_space_memory
, addr
, val
, attrs
, &res
);
2122 static const MemoryRegionOps watch_mem_ops
= {
2123 .read_with_attrs
= watch_mem_read
,
2124 .write_with_attrs
= watch_mem_write
,
2125 .endianness
= DEVICE_NATIVE_ENDIAN
,
2128 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2129 unsigned len
, MemTxAttrs attrs
)
2131 subpage_t
*subpage
= opaque
;
2135 #if defined(DEBUG_SUBPAGE)
2136 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2137 subpage
, len
, addr
);
2139 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2146 *data
= ldub_p(buf
);
2149 *data
= lduw_p(buf
);
2162 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2163 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2165 subpage_t
*subpage
= opaque
;
2168 #if defined(DEBUG_SUBPAGE)
2169 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2170 " value %"PRIx64
"\n",
2171 __func__
, subpage
, len
, addr
, value
);
2189 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2193 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2194 unsigned len
, bool is_write
)
2196 subpage_t
*subpage
= opaque
;
2197 #if defined(DEBUG_SUBPAGE)
2198 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2199 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2202 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2206 static const MemoryRegionOps subpage_ops
= {
2207 .read_with_attrs
= subpage_read
,
2208 .write_with_attrs
= subpage_write
,
2209 .impl
.min_access_size
= 1,
2210 .impl
.max_access_size
= 8,
2211 .valid
.min_access_size
= 1,
2212 .valid
.max_access_size
= 8,
2213 .valid
.accepts
= subpage_accepts
,
2214 .endianness
= DEVICE_NATIVE_ENDIAN
,
2217 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2222 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2224 idx
= SUBPAGE_IDX(start
);
2225 eidx
= SUBPAGE_IDX(end
);
2226 #if defined(DEBUG_SUBPAGE)
2227 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2228 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2230 for (; idx
<= eidx
; idx
++) {
2231 mmio
->sub_section
[idx
] = section
;
2237 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2241 mmio
= g_malloc0(sizeof(subpage_t
));
2245 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2246 NULL
, TARGET_PAGE_SIZE
);
2247 mmio
->iomem
.subpage
= true;
2248 #if defined(DEBUG_SUBPAGE)
2249 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2250 mmio
, base
, TARGET_PAGE_SIZE
);
2252 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2257 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2261 MemoryRegionSection section
= {
2262 .address_space
= as
,
2264 .offset_within_address_space
= 0,
2265 .offset_within_region
= 0,
2266 .size
= int128_2_64(),
2269 return phys_section_add(map
, §ion
);
2272 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
)
2274 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[0];
2275 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2276 MemoryRegionSection
*sections
= d
->map
.sections
;
2278 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2281 static void io_mem_init(void)
2283 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2284 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2286 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2288 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2292 static void mem_begin(MemoryListener
*listener
)
2294 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2295 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2298 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2299 assert(n
== PHYS_SECTION_UNASSIGNED
);
2300 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2301 assert(n
== PHYS_SECTION_NOTDIRTY
);
2302 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2303 assert(n
== PHYS_SECTION_ROM
);
2304 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2305 assert(n
== PHYS_SECTION_WATCH
);
2307 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2309 as
->next_dispatch
= d
;
2312 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2314 phys_sections_free(&d
->map
);
2318 static void mem_commit(MemoryListener
*listener
)
2320 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2321 AddressSpaceDispatch
*cur
= as
->dispatch
;
2322 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2324 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2326 atomic_rcu_set(&as
->dispatch
, next
);
2328 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2332 static void tcg_commit(MemoryListener
*listener
)
2334 CPUAddressSpace
*cpuas
;
2335 AddressSpaceDispatch
*d
;
2337 /* since each CPU stores ram addresses in its TLB cache, we must
2338 reset the modified entries */
2339 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2340 cpu_reloading_memory_map();
2341 /* The CPU and TLB are protected by the iothread lock.
2342 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2343 * may have split the RCU critical section.
2345 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2346 cpuas
->memory_dispatch
= d
;
2347 tlb_flush(cpuas
->cpu
, 1);
2350 void address_space_init_dispatch(AddressSpace
*as
)
2352 as
->dispatch
= NULL
;
2353 as
->dispatch_listener
= (MemoryListener
) {
2355 .commit
= mem_commit
,
2356 .region_add
= mem_add
,
2357 .region_nop
= mem_add
,
2360 memory_listener_register(&as
->dispatch_listener
, as
);
2363 void address_space_unregister(AddressSpace
*as
)
2365 memory_listener_unregister(&as
->dispatch_listener
);
2368 void address_space_destroy_dispatch(AddressSpace
*as
)
2370 AddressSpaceDispatch
*d
= as
->dispatch
;
2372 atomic_rcu_set(&as
->dispatch
, NULL
);
2374 call_rcu(d
, address_space_dispatch_free
, rcu
);
2378 static void memory_map_init(void)
2380 system_memory
= g_malloc(sizeof(*system_memory
));
2382 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2383 address_space_init(&address_space_memory
, system_memory
, "memory");
2385 system_io
= g_malloc(sizeof(*system_io
));
2386 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2388 address_space_init(&address_space_io
, system_io
, "I/O");
2391 MemoryRegion
*get_system_memory(void)
2393 return system_memory
;
2396 MemoryRegion
*get_system_io(void)
2401 #endif /* !defined(CONFIG_USER_ONLY) */
2403 /* physical memory access (slow version, mainly for debug) */
2404 #if defined(CONFIG_USER_ONLY)
2405 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2406 uint8_t *buf
, int len
, int is_write
)
2413 page
= addr
& TARGET_PAGE_MASK
;
2414 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2417 flags
= page_get_flags(page
);
2418 if (!(flags
& PAGE_VALID
))
2421 if (!(flags
& PAGE_WRITE
))
2423 /* XXX: this code should not depend on lock_user */
2424 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2427 unlock_user(p
, addr
, l
);
2429 if (!(flags
& PAGE_READ
))
2431 /* XXX: this code should not depend on lock_user */
2432 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2435 unlock_user(p
, addr
, 0);
2446 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2449 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2450 /* No early return if dirty_log_mask is or becomes 0, because
2451 * cpu_physical_memory_set_dirty_range will still call
2452 * xen_modified_memory.
2454 if (dirty_log_mask
) {
2456 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2458 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2459 tb_invalidate_phys_range(addr
, addr
+ length
);
2460 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2462 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2465 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2467 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2469 /* Regions are assumed to support 1-4 byte accesses unless
2470 otherwise specified. */
2471 if (access_size_max
== 0) {
2472 access_size_max
= 4;
2475 /* Bound the maximum access by the alignment of the address. */
2476 if (!mr
->ops
->impl
.unaligned
) {
2477 unsigned align_size_max
= addr
& -addr
;
2478 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2479 access_size_max
= align_size_max
;
2483 /* Don't attempt accesses larger than the maximum. */
2484 if (l
> access_size_max
) {
2485 l
= access_size_max
;
2492 static bool prepare_mmio_access(MemoryRegion
*mr
)
2494 bool unlocked
= !qemu_mutex_iothread_locked();
2495 bool release_lock
= false;
2497 if (unlocked
&& mr
->global_locking
) {
2498 qemu_mutex_lock_iothread();
2500 release_lock
= true;
2502 if (mr
->flush_coalesced_mmio
) {
2504 qemu_mutex_lock_iothread();
2506 qemu_flush_coalesced_mmio_buffer();
2508 qemu_mutex_unlock_iothread();
2512 return release_lock
;
2515 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2516 uint8_t *buf
, int len
, bool is_write
)
2523 MemTxResult result
= MEMTX_OK
;
2524 bool release_lock
= false;
2529 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
2532 if (!memory_access_is_direct(mr
, is_write
)) {
2533 release_lock
|= prepare_mmio_access(mr
);
2534 l
= memory_access_size(mr
, l
, addr1
);
2535 /* XXX: could force current_cpu to NULL to avoid
2539 /* 64 bit write access */
2541 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2545 /* 32 bit write access */
2547 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2551 /* 16 bit write access */
2553 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2557 /* 8 bit write access */
2559 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2566 addr1
+= memory_region_get_ram_addr(mr
);
2568 ptr
= qemu_get_ram_ptr(addr1
);
2569 memcpy(ptr
, buf
, l
);
2570 invalidate_and_set_dirty(mr
, addr1
, l
);
2573 if (!memory_access_is_direct(mr
, is_write
)) {
2575 release_lock
|= prepare_mmio_access(mr
);
2576 l
= memory_access_size(mr
, l
, addr1
);
2579 /* 64 bit read access */
2580 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2585 /* 32 bit read access */
2586 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2591 /* 16 bit read access */
2592 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2597 /* 8 bit read access */
2598 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2607 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2608 memcpy(buf
, ptr
, l
);
2613 qemu_mutex_unlock_iothread();
2614 release_lock
= false;
2626 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2627 const uint8_t *buf
, int len
)
2629 return address_space_rw(as
, addr
, attrs
, (uint8_t *)buf
, len
, true);
2632 MemTxResult
address_space_read(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2633 uint8_t *buf
, int len
)
2635 return address_space_rw(as
, addr
, attrs
, buf
, len
, false);
2639 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2640 int len
, int is_write
)
2642 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2643 buf
, len
, is_write
);
2646 enum write_rom_type
{
2651 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2652 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2662 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2664 if (!(memory_region_is_ram(mr
) ||
2665 memory_region_is_romd(mr
))) {
2666 l
= memory_access_size(mr
, l
, addr1
);
2668 addr1
+= memory_region_get_ram_addr(mr
);
2670 ptr
= qemu_get_ram_ptr(addr1
);
2673 memcpy(ptr
, buf
, l
);
2674 invalidate_and_set_dirty(mr
, addr1
, l
);
2677 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2688 /* used for ROM loading : can write in RAM and ROM */
2689 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2690 const uint8_t *buf
, int len
)
2692 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2695 void cpu_flush_icache_range(hwaddr start
, int len
)
2698 * This function should do the same thing as an icache flush that was
2699 * triggered from within the guest. For TCG we are always cache coherent,
2700 * so there is no need to flush anything. For KVM / Xen we need to flush
2701 * the host's instruction cache at least.
2703 if (tcg_enabled()) {
2707 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2708 start
, NULL
, len
, FLUSH_CACHE
);
2719 static BounceBuffer bounce
;
2721 typedef struct MapClient
{
2723 QLIST_ENTRY(MapClient
) link
;
2726 QemuMutex map_client_list_lock
;
2727 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2728 = QLIST_HEAD_INITIALIZER(map_client_list
);
2730 static void cpu_unregister_map_client_do(MapClient
*client
)
2732 QLIST_REMOVE(client
, link
);
2736 static void cpu_notify_map_clients_locked(void)
2740 while (!QLIST_EMPTY(&map_client_list
)) {
2741 client
= QLIST_FIRST(&map_client_list
);
2742 qemu_bh_schedule(client
->bh
);
2743 cpu_unregister_map_client_do(client
);
2747 void cpu_register_map_client(QEMUBH
*bh
)
2749 MapClient
*client
= g_malloc(sizeof(*client
));
2751 qemu_mutex_lock(&map_client_list_lock
);
2753 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2754 if (!atomic_read(&bounce
.in_use
)) {
2755 cpu_notify_map_clients_locked();
2757 qemu_mutex_unlock(&map_client_list_lock
);
2760 void cpu_exec_init_all(void)
2762 qemu_mutex_init(&ram_list
.mutex
);
2765 qemu_mutex_init(&map_client_list_lock
);
2768 void cpu_unregister_map_client(QEMUBH
*bh
)
2772 qemu_mutex_lock(&map_client_list_lock
);
2773 QLIST_FOREACH(client
, &map_client_list
, link
) {
2774 if (client
->bh
== bh
) {
2775 cpu_unregister_map_client_do(client
);
2779 qemu_mutex_unlock(&map_client_list_lock
);
2782 static void cpu_notify_map_clients(void)
2784 qemu_mutex_lock(&map_client_list_lock
);
2785 cpu_notify_map_clients_locked();
2786 qemu_mutex_unlock(&map_client_list_lock
);
2789 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2797 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2798 if (!memory_access_is_direct(mr
, is_write
)) {
2799 l
= memory_access_size(mr
, l
, addr
);
2800 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2812 /* Map a physical memory region into a host virtual address.
2813 * May map a subset of the requested range, given by and returned in *plen.
2814 * May return NULL if resources needed to perform the mapping are exhausted.
2815 * Use only for reads OR writes - not for read-modify-write operations.
2816 * Use cpu_register_map_client() to know when retrying the map operation is
2817 * likely to succeed.
2819 void *address_space_map(AddressSpace
*as
,
2826 hwaddr l
, xlat
, base
;
2827 MemoryRegion
*mr
, *this_mr
;
2836 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2838 if (!memory_access_is_direct(mr
, is_write
)) {
2839 if (atomic_xchg(&bounce
.in_use
, true)) {
2843 /* Avoid unbounded allocations */
2844 l
= MIN(l
, TARGET_PAGE_SIZE
);
2845 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2849 memory_region_ref(mr
);
2852 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2858 return bounce
.buffer
;
2862 raddr
= memory_region_get_ram_addr(mr
);
2873 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2874 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2879 memory_region_ref(mr
);
2882 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2885 /* Unmaps a memory region previously mapped by address_space_map().
2886 * Will also mark the memory as dirty if is_write == 1. access_len gives
2887 * the amount of memory that was actually read or written by the caller.
2889 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2890 int is_write
, hwaddr access_len
)
2892 if (buffer
!= bounce
.buffer
) {
2896 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2899 invalidate_and_set_dirty(mr
, addr1
, access_len
);
2901 if (xen_enabled()) {
2902 xen_invalidate_map_cache_entry(buffer
);
2904 memory_region_unref(mr
);
2908 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
2909 bounce
.buffer
, access_len
);
2911 qemu_vfree(bounce
.buffer
);
2912 bounce
.buffer
= NULL
;
2913 memory_region_unref(bounce
.mr
);
2914 atomic_mb_set(&bounce
.in_use
, false);
2915 cpu_notify_map_clients();
2918 void *cpu_physical_memory_map(hwaddr addr
,
2922 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2925 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2926 int is_write
, hwaddr access_len
)
2928 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2931 /* warning: addr must be aligned */
2932 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
2934 MemTxResult
*result
,
2935 enum device_endian endian
)
2943 bool release_lock
= false;
2946 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2947 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2948 release_lock
|= prepare_mmio_access(mr
);
2951 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
2952 #if defined(TARGET_WORDS_BIGENDIAN)
2953 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2957 if (endian
== DEVICE_BIG_ENDIAN
) {
2963 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2967 case DEVICE_LITTLE_ENDIAN
:
2968 val
= ldl_le_p(ptr
);
2970 case DEVICE_BIG_ENDIAN
:
2971 val
= ldl_be_p(ptr
);
2983 qemu_mutex_unlock_iothread();
2989 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
2990 MemTxAttrs attrs
, MemTxResult
*result
)
2992 return address_space_ldl_internal(as
, addr
, attrs
, result
,
2993 DEVICE_NATIVE_ENDIAN
);
2996 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
2997 MemTxAttrs attrs
, MemTxResult
*result
)
2999 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3000 DEVICE_LITTLE_ENDIAN
);
3003 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3004 MemTxAttrs attrs
, MemTxResult
*result
)
3006 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3010 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3012 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3015 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3017 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3020 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3022 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3025 /* warning: addr must be aligned */
3026 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3028 MemTxResult
*result
,
3029 enum device_endian endian
)
3037 bool release_lock
= false;
3040 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3042 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3043 release_lock
|= prepare_mmio_access(mr
);
3046 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3047 #if defined(TARGET_WORDS_BIGENDIAN)
3048 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3052 if (endian
== DEVICE_BIG_ENDIAN
) {
3058 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
3062 case DEVICE_LITTLE_ENDIAN
:
3063 val
= ldq_le_p(ptr
);
3065 case DEVICE_BIG_ENDIAN
:
3066 val
= ldq_be_p(ptr
);
3078 qemu_mutex_unlock_iothread();
3084 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3085 MemTxAttrs attrs
, MemTxResult
*result
)
3087 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3088 DEVICE_NATIVE_ENDIAN
);
3091 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3092 MemTxAttrs attrs
, MemTxResult
*result
)
3094 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3095 DEVICE_LITTLE_ENDIAN
);
3098 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3099 MemTxAttrs attrs
, MemTxResult
*result
)
3101 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3105 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3107 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3110 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3112 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3115 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3117 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3121 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3122 MemTxAttrs attrs
, MemTxResult
*result
)
3127 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3134 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3136 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3139 /* warning: addr must be aligned */
3140 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3143 MemTxResult
*result
,
3144 enum device_endian endian
)
3152 bool release_lock
= false;
3155 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3157 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3158 release_lock
|= prepare_mmio_access(mr
);
3161 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3162 #if defined(TARGET_WORDS_BIGENDIAN)
3163 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3167 if (endian
== DEVICE_BIG_ENDIAN
) {
3173 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
3177 case DEVICE_LITTLE_ENDIAN
:
3178 val
= lduw_le_p(ptr
);
3180 case DEVICE_BIG_ENDIAN
:
3181 val
= lduw_be_p(ptr
);
3193 qemu_mutex_unlock_iothread();
3199 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3200 MemTxAttrs attrs
, MemTxResult
*result
)
3202 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3203 DEVICE_NATIVE_ENDIAN
);
3206 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3207 MemTxAttrs attrs
, MemTxResult
*result
)
3209 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3210 DEVICE_LITTLE_ENDIAN
);
3213 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3214 MemTxAttrs attrs
, MemTxResult
*result
)
3216 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3220 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3222 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3225 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3227 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3230 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3232 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3235 /* warning: addr must be aligned. The ram page is not masked as dirty
3236 and the code inside is not invalidated. It is useful if the dirty
3237 bits are used to track modified PTEs */
3238 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3239 MemTxAttrs attrs
, MemTxResult
*result
)
3246 uint8_t dirty_log_mask
;
3247 bool release_lock
= false;
3250 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3252 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3253 release_lock
|= prepare_mmio_access(mr
);
3255 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3257 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3258 ptr
= qemu_get_ram_ptr(addr1
);
3261 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3262 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3263 cpu_physical_memory_set_dirty_range(addr1
, 4, dirty_log_mask
);
3270 qemu_mutex_unlock_iothread();
3275 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3277 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3280 /* warning: addr must be aligned */
3281 static inline void address_space_stl_internal(AddressSpace
*as
,
3282 hwaddr addr
, uint32_t val
,
3284 MemTxResult
*result
,
3285 enum device_endian endian
)
3292 bool release_lock
= false;
3295 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3297 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3298 release_lock
|= prepare_mmio_access(mr
);
3300 #if defined(TARGET_WORDS_BIGENDIAN)
3301 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3305 if (endian
== DEVICE_BIG_ENDIAN
) {
3309 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3312 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3313 ptr
= qemu_get_ram_ptr(addr1
);
3315 case DEVICE_LITTLE_ENDIAN
:
3318 case DEVICE_BIG_ENDIAN
:
3325 invalidate_and_set_dirty(mr
, addr1
, 4);
3332 qemu_mutex_unlock_iothread();
3337 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3338 MemTxAttrs attrs
, MemTxResult
*result
)
3340 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3341 DEVICE_NATIVE_ENDIAN
);
3344 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3345 MemTxAttrs attrs
, MemTxResult
*result
)
3347 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3348 DEVICE_LITTLE_ENDIAN
);
3351 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3352 MemTxAttrs attrs
, MemTxResult
*result
)
3354 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3358 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3360 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3363 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3365 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3368 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3370 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3374 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3375 MemTxAttrs attrs
, MemTxResult
*result
)
3380 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3386 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3388 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3391 /* warning: addr must be aligned */
3392 static inline void address_space_stw_internal(AddressSpace
*as
,
3393 hwaddr addr
, uint32_t val
,
3395 MemTxResult
*result
,
3396 enum device_endian endian
)
3403 bool release_lock
= false;
3406 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3407 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3408 release_lock
|= prepare_mmio_access(mr
);
3410 #if defined(TARGET_WORDS_BIGENDIAN)
3411 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3415 if (endian
== DEVICE_BIG_ENDIAN
) {
3419 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3422 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3423 ptr
= qemu_get_ram_ptr(addr1
);
3425 case DEVICE_LITTLE_ENDIAN
:
3428 case DEVICE_BIG_ENDIAN
:
3435 invalidate_and_set_dirty(mr
, addr1
, 2);
3442 qemu_mutex_unlock_iothread();
3447 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3448 MemTxAttrs attrs
, MemTxResult
*result
)
3450 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3451 DEVICE_NATIVE_ENDIAN
);
3454 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3455 MemTxAttrs attrs
, MemTxResult
*result
)
3457 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3458 DEVICE_LITTLE_ENDIAN
);
3461 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3462 MemTxAttrs attrs
, MemTxResult
*result
)
3464 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3468 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3470 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3473 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3475 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3478 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3480 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3484 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3485 MemTxAttrs attrs
, MemTxResult
*result
)
3489 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3495 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3496 MemTxAttrs attrs
, MemTxResult
*result
)
3499 val
= cpu_to_le64(val
);
3500 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3505 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3506 MemTxAttrs attrs
, MemTxResult
*result
)
3509 val
= cpu_to_be64(val
);
3510 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3516 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3518 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3521 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3523 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3526 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3528 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3531 /* virtual memory access for debug (includes writing to ROM) */
3532 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3533 uint8_t *buf
, int len
, int is_write
)
3540 page
= addr
& TARGET_PAGE_MASK
;
3541 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
3542 /* if no physical page mapped, return an error */
3543 if (phys_addr
== -1)
3545 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3548 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3550 cpu_physical_memory_write_rom(cpu
->as
, phys_addr
, buf
, l
);
3552 address_space_rw(cpu
->as
, phys_addr
, MEMTXATTRS_UNSPECIFIED
,
3563 * Allows code that needs to deal with migration bitmaps etc to still be built
3564 * target independent.
3566 size_t qemu_target_page_bits(void)
3568 return TARGET_PAGE_BITS
;
3574 * A helper function for the _utterly broken_ virtio device model to find out if
3575 * it's running on a big endian machine. Don't do this at home kids!
3577 bool target_words_bigendian(void);
3578 bool target_words_bigendian(void)
3580 #if defined(TARGET_WORDS_BIGENDIAN)
3587 #ifndef CONFIG_USER_ONLY
3588 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3595 mr
= address_space_translate(&address_space_memory
,
3596 phys_addr
, &phys_addr
, &l
, false);
3598 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3603 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3609 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3610 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3611 block
->used_length
, opaque
);