4 * Derived from SoftFloat.
7 /*============================================================================
9 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
10 Arithmetic Package, Release 2b.
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
36 =============================================================================*/
38 #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
39 #define SNAN_BIT_IS_ONE 1
41 #define SNAN_BIT_IS_ONE 0
44 #if defined(TARGET_XTENSA)
45 /* Define for architectures which deviate from IEEE in not supporting
46 * signaling NaNs (so all NaNs are treated as quiet).
48 #define NO_SIGNALING_NANS 1
51 /*----------------------------------------------------------------------------
52 | The pattern for a default generated half-precision NaN.
53 *----------------------------------------------------------------------------*/
54 #if defined(TARGET_ARM)
55 const float16 float16_default_nan
= const_float16(0x7E00);
57 const float16 float16_default_nan
= const_float16(0x7DFF);
59 const float16 float16_default_nan
= const_float16(0xFE00);
62 /*----------------------------------------------------------------------------
63 | The pattern for a default generated single-precision NaN.
64 *----------------------------------------------------------------------------*/
65 #if defined(TARGET_SPARC)
66 const float32 float32_default_nan
= const_float32(0x7FFFFFFF);
67 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
68 defined(TARGET_XTENSA)
69 const float32 float32_default_nan
= const_float32(0x7FC00000);
71 const float32 float32_default_nan
= const_float32(0x7FBFFFFF);
73 const float32 float32_default_nan
= const_float32(0xFFC00000);
76 /*----------------------------------------------------------------------------
77 | The pattern for a default generated double-precision NaN.
78 *----------------------------------------------------------------------------*/
79 #if defined(TARGET_SPARC)
80 const float64 float64_default_nan
= const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
81 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
82 const float64 float64_default_nan
= const_float64(LIT64( 0x7FF8000000000000 ));
84 const float64 float64_default_nan
= const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
86 const float64 float64_default_nan
= const_float64(LIT64( 0xFFF8000000000000 ));
89 /*----------------------------------------------------------------------------
90 | The pattern for a default generated extended double-precision NaN.
91 *----------------------------------------------------------------------------*/
93 #define floatx80_default_nan_high 0x7FFF
94 #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
96 #define floatx80_default_nan_high 0xFFFF
97 #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
100 const floatx80 floatx80_default_nan
101 = make_floatx80_init(floatx80_default_nan_high
, floatx80_default_nan_low
);
103 /*----------------------------------------------------------------------------
104 | The pattern for a default generated quadruple-precision NaN. The `high' and
105 | `low' values hold the most- and least-significant bits, respectively.
106 *----------------------------------------------------------------------------*/
108 #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
109 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
111 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
112 #define float128_default_nan_low LIT64( 0x0000000000000000 )
115 const float128 float128_default_nan
116 = make_float128_init(float128_default_nan_high
, float128_default_nan_low
);
118 /*----------------------------------------------------------------------------
119 | Raises the exceptions specified by `flags'. Floating-point traps can be
120 | defined here if desired. It is currently not possible for such a trap
121 | to substitute a result value. If traps are not implemented, this routine
122 | should be simply `float_exception_flags |= flags;'.
123 *----------------------------------------------------------------------------*/
125 void float_raise( int8 flags STATUS_PARAM
)
127 STATUS(float_exception_flags
) |= flags
;
130 /*----------------------------------------------------------------------------
131 | Internal canonical NaN format.
132 *----------------------------------------------------------------------------*/
138 #ifdef NO_SIGNALING_NANS
139 int float16_is_quiet_nan(float16 a_
)
141 return float16_is_any_nan(a_
);
144 int float16_is_signaling_nan(float16 a_
)
149 /*----------------------------------------------------------------------------
150 | Returns 1 if the half-precision floating-point value `a' is a quiet
151 | NaN; otherwise returns 0.
152 *----------------------------------------------------------------------------*/
154 int float16_is_quiet_nan(float16 a_
)
156 uint16_t a
= float16_val(a_
);
158 return (((a
>> 9) & 0x3F) == 0x3E) && (a
& 0x1FF);
160 return ((a
& ~0x8000) >= 0x7c80);
164 /*----------------------------------------------------------------------------
165 | Returns 1 if the half-precision floating-point value `a' is a signaling
166 | NaN; otherwise returns 0.
167 *----------------------------------------------------------------------------*/
169 int float16_is_signaling_nan(float16 a_
)
171 uint16_t a
= float16_val(a_
);
173 return ((a
& ~0x8000) >= 0x7c80);
175 return (((a
>> 9) & 0x3F) == 0x3E) && (a
& 0x1FF);
180 /*----------------------------------------------------------------------------
181 | Returns a quiet NaN if the half-precision floating point value `a' is a
182 | signaling NaN; otherwise returns `a'.
183 *----------------------------------------------------------------------------*/
184 float16
float16_maybe_silence_nan(float16 a_
)
186 if (float16_is_signaling_nan(a_
)) {
188 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
189 return float16_default_nan
;
191 # error Rules for silencing a signaling NaN are target-specific
194 uint16_t a
= float16_val(a_
);
196 return make_float16(a
);
202 /*----------------------------------------------------------------------------
203 | Returns the result of converting the half-precision floating-point NaN
204 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
205 | exception is raised.
206 *----------------------------------------------------------------------------*/
208 static commonNaNT
float16ToCommonNaN( float16 a STATUS_PARAM
)
212 if ( float16_is_signaling_nan( a
) ) float_raise( float_flag_invalid STATUS_VAR
);
213 z
.sign
= float16_val(a
) >> 15;
215 z
.high
= ((uint64_t) float16_val(a
))<<54;
219 /*----------------------------------------------------------------------------
220 | Returns the result of converting the canonical NaN `a' to the half-
221 | precision floating-point format.
222 *----------------------------------------------------------------------------*/
224 static float16
commonNaNToFloat16(commonNaNT a STATUS_PARAM
)
226 uint16_t mantissa
= a
.high
>>54;
228 if (STATUS(default_nan_mode
)) {
229 return float16_default_nan
;
233 return make_float16(((((uint16_t) a
.sign
) << 15)
234 | (0x1F << 10) | mantissa
));
236 return float16_default_nan
;
240 #ifdef NO_SIGNALING_NANS
241 int float32_is_quiet_nan(float32 a_
)
243 return float32_is_any_nan(a_
);
246 int float32_is_signaling_nan(float32 a_
)
251 /*----------------------------------------------------------------------------
252 | Returns 1 if the single-precision floating-point value `a' is a quiet
253 | NaN; otherwise returns 0.
254 *----------------------------------------------------------------------------*/
256 int float32_is_quiet_nan( float32 a_
)
258 uint32_t a
= float32_val(a_
);
260 return ( ( ( a
>>22 ) & 0x1FF ) == 0x1FE ) && ( a
& 0x003FFFFF );
262 return ( 0xFF800000 <= (uint32_t) ( a
<<1 ) );
266 /*----------------------------------------------------------------------------
267 | Returns 1 if the single-precision floating-point value `a' is a signaling
268 | NaN; otherwise returns 0.
269 *----------------------------------------------------------------------------*/
271 int float32_is_signaling_nan( float32 a_
)
273 uint32_t a
= float32_val(a_
);
275 return ( 0xFF800000 <= (uint32_t) ( a
<<1 ) );
277 return ( ( ( a
>>22 ) & 0x1FF ) == 0x1FE ) && ( a
& 0x003FFFFF );
282 /*----------------------------------------------------------------------------
283 | Returns a quiet NaN if the single-precision floating point value `a' is a
284 | signaling NaN; otherwise returns `a'.
285 *----------------------------------------------------------------------------*/
287 float32
float32_maybe_silence_nan( float32 a_
)
289 if (float32_is_signaling_nan(a_
)) {
291 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
292 return float32_default_nan
;
294 # error Rules for silencing a signaling NaN are target-specific
297 uint32_t a
= float32_val(a_
);
299 return make_float32(a
);
305 /*----------------------------------------------------------------------------
306 | Returns the result of converting the single-precision floating-point NaN
307 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
308 | exception is raised.
309 *----------------------------------------------------------------------------*/
311 static commonNaNT
float32ToCommonNaN( float32 a STATUS_PARAM
)
315 if ( float32_is_signaling_nan( a
) ) float_raise( float_flag_invalid STATUS_VAR
);
316 z
.sign
= float32_val(a
)>>31;
318 z
.high
= ( (uint64_t) float32_val(a
) )<<41;
322 /*----------------------------------------------------------------------------
323 | Returns the result of converting the canonical NaN `a' to the single-
324 | precision floating-point format.
325 *----------------------------------------------------------------------------*/
327 static float32
commonNaNToFloat32( commonNaNT a STATUS_PARAM
)
329 uint32_t mantissa
= a
.high
>>41;
331 if ( STATUS(default_nan_mode
) ) {
332 return float32_default_nan
;
337 ( ( (uint32_t) a
.sign
)<<31 ) | 0x7F800000 | ( a
.high
>>41 ) );
339 return float32_default_nan
;
342 /*----------------------------------------------------------------------------
343 | Select which NaN to propagate for a two-input operation.
344 | IEEE754 doesn't specify all the details of this, so the
345 | algorithm is target-specific.
346 | The routine is passed various bits of information about the
347 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
348 | Note that signalling NaNs are always squashed to quiet NaNs
349 | by the caller, by calling floatXX_maybe_silence_nan() before
352 | aIsLargerSignificand is only valid if both a and b are NaNs
353 | of some kind, and is true if a has the larger significand,
354 | or if both a and b have the same significand but a is
355 | positive but b is negative. It is only needed for the x87
357 *----------------------------------------------------------------------------*/
359 #if defined(TARGET_ARM)
360 static int pickNaN(flag aIsQNaN
, flag aIsSNaN
, flag bIsQNaN
, flag bIsSNaN
,
361 flag aIsLargerSignificand
)
363 /* ARM mandated NaN propagation rules: take the first of:
364 * 1. A if it is signaling
365 * 2. B if it is signaling
368 * A signaling NaN is always quietened before returning it.
372 } else if (bIsSNaN
) {
374 } else if (aIsQNaN
) {
380 #elif defined(TARGET_MIPS)
381 static int pickNaN(flag aIsQNaN
, flag aIsSNaN
, flag bIsQNaN
, flag bIsSNaN
,
382 flag aIsLargerSignificand
)
384 /* According to MIPS specifications, if one of the two operands is
385 * a sNaN, a new qNaN has to be generated. This is done in
386 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
387 * says: "When possible, this QNaN result is one of the operand QNaN
388 * values." In practice it seems that most implementations choose
389 * the first operand if both operands are qNaN. In short this gives
390 * the following rules:
391 * 1. A if it is signaling
392 * 2. B if it is signaling
395 * A signaling NaN is always silenced before returning it.
399 } else if (bIsSNaN
) {
401 } else if (aIsQNaN
) {
407 #elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
408 static int pickNaN(flag aIsQNaN
, flag aIsSNaN
, flag bIsQNaN
, flag bIsSNaN
,
409 flag aIsLargerSignificand
)
411 /* PowerPC propagation rules:
412 * 1. A if it sNaN or qNaN
413 * 2. B if it sNaN or qNaN
414 * A signaling NaN is always silenced before returning it.
416 if (aIsSNaN
|| aIsQNaN
) {
423 static int pickNaN(flag aIsQNaN
, flag aIsSNaN
, flag bIsQNaN
, flag bIsSNaN
,
424 flag aIsLargerSignificand
)
426 /* This implements x87 NaN propagation rules:
427 * SNaN + QNaN => return the QNaN
428 * two SNaNs => return the one with the larger significand, silenced
429 * two QNaNs => return the one with the larger significand
430 * SNaN and a non-NaN => return the SNaN, silenced
431 * QNaN and a non-NaN => return the QNaN
433 * If we get down to comparing significands and they are the same,
434 * return the NaN with the positive sign bit (if any).
438 return aIsLargerSignificand
? 0 : 1;
440 return bIsQNaN
? 1 : 0;
443 if (bIsSNaN
|| !bIsQNaN
)
446 return aIsLargerSignificand
? 0 : 1;
454 /*----------------------------------------------------------------------------
455 | Select which NaN to propagate for a three-input operation.
456 | For the moment we assume that no CPU needs the 'larger significand'
458 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
459 *----------------------------------------------------------------------------*/
460 #if defined(TARGET_ARM)
461 static int pickNaNMulAdd(flag aIsQNaN
, flag aIsSNaN
, flag bIsQNaN
, flag bIsSNaN
,
462 flag cIsQNaN
, flag cIsSNaN
, flag infzero STATUS_PARAM
)
464 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
467 if (infzero
&& cIsQNaN
) {
468 float_raise(float_flag_invalid STATUS_VAR
);
472 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
473 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
477 } else if (aIsSNaN
) {
479 } else if (bIsSNaN
) {
481 } else if (cIsQNaN
) {
483 } else if (aIsQNaN
) {
489 #elif defined(TARGET_MIPS)
490 static int pickNaNMulAdd(flag aIsQNaN
, flag aIsSNaN
, flag bIsQNaN
, flag bIsSNaN
,
491 flag cIsQNaN
, flag cIsSNaN
, flag infzero STATUS_PARAM
)
493 /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
497 float_raise(float_flag_invalid STATUS_VAR
);
501 /* Prefer sNaN over qNaN, in the a, b, c order. */
504 } else if (bIsSNaN
) {
506 } else if (cIsSNaN
) {
508 } else if (aIsQNaN
) {
510 } else if (bIsQNaN
) {
516 #elif defined(TARGET_PPC)
517 static int pickNaNMulAdd(flag aIsQNaN
, flag aIsSNaN
, flag bIsQNaN
, flag bIsSNaN
,
518 flag cIsQNaN
, flag cIsSNaN
, flag infzero STATUS_PARAM
)
520 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
521 * to return an input NaN if we have one (ie c) rather than generating
525 float_raise(float_flag_invalid STATUS_VAR
);
529 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
530 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
532 if (aIsSNaN
|| aIsQNaN
) {
534 } else if (cIsSNaN
|| cIsQNaN
) {
541 /* A default implementation: prefer a to b to c.
542 * This is unlikely to actually match any real implementation.
544 static int pickNaNMulAdd(flag aIsQNaN
, flag aIsSNaN
, flag bIsQNaN
, flag bIsSNaN
,
545 flag cIsQNaN
, flag cIsSNaN
, flag infzero STATUS_PARAM
)
547 if (aIsSNaN
|| aIsQNaN
) {
549 } else if (bIsSNaN
|| bIsQNaN
) {
557 /*----------------------------------------------------------------------------
558 | Takes two single-precision floating-point values `a' and `b', one of which
559 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
560 | signaling NaN, the invalid exception is raised.
561 *----------------------------------------------------------------------------*/
563 static float32
propagateFloat32NaN( float32 a
, float32 b STATUS_PARAM
)
565 flag aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
;
566 flag aIsLargerSignificand
;
569 aIsQuietNaN
= float32_is_quiet_nan( a
);
570 aIsSignalingNaN
= float32_is_signaling_nan( a
);
571 bIsQuietNaN
= float32_is_quiet_nan( b
);
572 bIsSignalingNaN
= float32_is_signaling_nan( b
);
576 if ( aIsSignalingNaN
| bIsSignalingNaN
) float_raise( float_flag_invalid STATUS_VAR
);
578 if ( STATUS(default_nan_mode
) )
579 return float32_default_nan
;
581 if ((uint32_t)(av
<<1) < (uint32_t)(bv
<<1)) {
582 aIsLargerSignificand
= 0;
583 } else if ((uint32_t)(bv
<<1) < (uint32_t)(av
<<1)) {
584 aIsLargerSignificand
= 1;
586 aIsLargerSignificand
= (av
< bv
) ? 1 : 0;
589 if (pickNaN(aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
,
590 aIsLargerSignificand
)) {
591 return float32_maybe_silence_nan(b
);
593 return float32_maybe_silence_nan(a
);
597 /*----------------------------------------------------------------------------
598 | Takes three single-precision floating-point values `a', `b' and `c', one of
599 | which is a NaN, and returns the appropriate NaN result. If any of `a',
600 | `b' or `c' is a signaling NaN, the invalid exception is raised.
601 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
602 | obviously c is a NaN, and whether to propagate c or some other NaN is
603 | implementation defined).
604 *----------------------------------------------------------------------------*/
606 static float32
propagateFloat32MulAddNaN(float32 a
, float32 b
,
607 float32 c
, flag infzero STATUS_PARAM
)
609 flag aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
,
610 cIsQuietNaN
, cIsSignalingNaN
;
613 aIsQuietNaN
= float32_is_quiet_nan(a
);
614 aIsSignalingNaN
= float32_is_signaling_nan(a
);
615 bIsQuietNaN
= float32_is_quiet_nan(b
);
616 bIsSignalingNaN
= float32_is_signaling_nan(b
);
617 cIsQuietNaN
= float32_is_quiet_nan(c
);
618 cIsSignalingNaN
= float32_is_signaling_nan(c
);
620 if (aIsSignalingNaN
| bIsSignalingNaN
| cIsSignalingNaN
) {
621 float_raise(float_flag_invalid STATUS_VAR
);
624 which
= pickNaNMulAdd(aIsQuietNaN
, aIsSignalingNaN
,
625 bIsQuietNaN
, bIsSignalingNaN
,
626 cIsQuietNaN
, cIsSignalingNaN
, infzero STATUS_VAR
);
628 if (STATUS(default_nan_mode
)) {
629 /* Note that this check is after pickNaNMulAdd so that function
630 * has an opportunity to set the Invalid flag.
632 return float32_default_nan
;
637 return float32_maybe_silence_nan(a
);
639 return float32_maybe_silence_nan(b
);
641 return float32_maybe_silence_nan(c
);
644 return float32_default_nan
;
648 #ifdef NO_SIGNALING_NANS
649 int float64_is_quiet_nan(float64 a_
)
651 return float64_is_any_nan(a_
);
654 int float64_is_signaling_nan(float64 a_
)
659 /*----------------------------------------------------------------------------
660 | Returns 1 if the double-precision floating-point value `a' is a quiet
661 | NaN; otherwise returns 0.
662 *----------------------------------------------------------------------------*/
664 int float64_is_quiet_nan( float64 a_
)
666 uint64_t a
= float64_val(a_
);
669 ( ( ( a
>>51 ) & 0xFFF ) == 0xFFE )
670 && ( a
& LIT64( 0x0007FFFFFFFFFFFF ) );
672 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a
<<1 ) );
676 /*----------------------------------------------------------------------------
677 | Returns 1 if the double-precision floating-point value `a' is a signaling
678 | NaN; otherwise returns 0.
679 *----------------------------------------------------------------------------*/
681 int float64_is_signaling_nan( float64 a_
)
683 uint64_t a
= float64_val(a_
);
685 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a
<<1 ) );
688 ( ( ( a
>>51 ) & 0xFFF ) == 0xFFE )
689 && ( a
& LIT64( 0x0007FFFFFFFFFFFF ) );
694 /*----------------------------------------------------------------------------
695 | Returns a quiet NaN if the double-precision floating point value `a' is a
696 | signaling NaN; otherwise returns `a'.
697 *----------------------------------------------------------------------------*/
699 float64
float64_maybe_silence_nan( float64 a_
)
701 if (float64_is_signaling_nan(a_
)) {
703 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
704 return float64_default_nan
;
706 # error Rules for silencing a signaling NaN are target-specific
709 uint64_t a
= float64_val(a_
);
710 a
|= LIT64( 0x0008000000000000 );
711 return make_float64(a
);
717 /*----------------------------------------------------------------------------
718 | Returns the result of converting the double-precision floating-point NaN
719 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
720 | exception is raised.
721 *----------------------------------------------------------------------------*/
723 static commonNaNT
float64ToCommonNaN( float64 a STATUS_PARAM
)
727 if ( float64_is_signaling_nan( a
) ) float_raise( float_flag_invalid STATUS_VAR
);
728 z
.sign
= float64_val(a
)>>63;
730 z
.high
= float64_val(a
)<<12;
734 /*----------------------------------------------------------------------------
735 | Returns the result of converting the canonical NaN `a' to the double-
736 | precision floating-point format.
737 *----------------------------------------------------------------------------*/
739 static float64
commonNaNToFloat64( commonNaNT a STATUS_PARAM
)
741 uint64_t mantissa
= a
.high
>>12;
743 if ( STATUS(default_nan_mode
) ) {
744 return float64_default_nan
;
749 ( ( (uint64_t) a
.sign
)<<63 )
750 | LIT64( 0x7FF0000000000000 )
753 return float64_default_nan
;
756 /*----------------------------------------------------------------------------
757 | Takes two double-precision floating-point values `a' and `b', one of which
758 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
759 | signaling NaN, the invalid exception is raised.
760 *----------------------------------------------------------------------------*/
762 static float64
propagateFloat64NaN( float64 a
, float64 b STATUS_PARAM
)
764 flag aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
;
765 flag aIsLargerSignificand
;
768 aIsQuietNaN
= float64_is_quiet_nan( a
);
769 aIsSignalingNaN
= float64_is_signaling_nan( a
);
770 bIsQuietNaN
= float64_is_quiet_nan( b
);
771 bIsSignalingNaN
= float64_is_signaling_nan( b
);
775 if ( aIsSignalingNaN
| bIsSignalingNaN
) float_raise( float_flag_invalid STATUS_VAR
);
777 if ( STATUS(default_nan_mode
) )
778 return float64_default_nan
;
780 if ((uint64_t)(av
<<1) < (uint64_t)(bv
<<1)) {
781 aIsLargerSignificand
= 0;
782 } else if ((uint64_t)(bv
<<1) < (uint64_t)(av
<<1)) {
783 aIsLargerSignificand
= 1;
785 aIsLargerSignificand
= (av
< bv
) ? 1 : 0;
788 if (pickNaN(aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
,
789 aIsLargerSignificand
)) {
790 return float64_maybe_silence_nan(b
);
792 return float64_maybe_silence_nan(a
);
796 /*----------------------------------------------------------------------------
797 | Takes three double-precision floating-point values `a', `b' and `c', one of
798 | which is a NaN, and returns the appropriate NaN result. If any of `a',
799 | `b' or `c' is a signaling NaN, the invalid exception is raised.
800 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
801 | obviously c is a NaN, and whether to propagate c or some other NaN is
802 | implementation defined).
803 *----------------------------------------------------------------------------*/
805 static float64
propagateFloat64MulAddNaN(float64 a
, float64 b
,
806 float64 c
, flag infzero STATUS_PARAM
)
808 flag aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
,
809 cIsQuietNaN
, cIsSignalingNaN
;
812 aIsQuietNaN
= float64_is_quiet_nan(a
);
813 aIsSignalingNaN
= float64_is_signaling_nan(a
);
814 bIsQuietNaN
= float64_is_quiet_nan(b
);
815 bIsSignalingNaN
= float64_is_signaling_nan(b
);
816 cIsQuietNaN
= float64_is_quiet_nan(c
);
817 cIsSignalingNaN
= float64_is_signaling_nan(c
);
819 if (aIsSignalingNaN
| bIsSignalingNaN
| cIsSignalingNaN
) {
820 float_raise(float_flag_invalid STATUS_VAR
);
823 which
= pickNaNMulAdd(aIsQuietNaN
, aIsSignalingNaN
,
824 bIsQuietNaN
, bIsSignalingNaN
,
825 cIsQuietNaN
, cIsSignalingNaN
, infzero STATUS_VAR
);
827 if (STATUS(default_nan_mode
)) {
828 /* Note that this check is after pickNaNMulAdd so that function
829 * has an opportunity to set the Invalid flag.
831 return float64_default_nan
;
836 return float64_maybe_silence_nan(a
);
838 return float64_maybe_silence_nan(b
);
840 return float64_maybe_silence_nan(c
);
843 return float64_default_nan
;
847 #ifdef NO_SIGNALING_NANS
848 int floatx80_is_quiet_nan(floatx80 a_
)
850 return floatx80_is_any_nan(a_
);
853 int floatx80_is_signaling_nan(floatx80 a_
)
858 /*----------------------------------------------------------------------------
859 | Returns 1 if the extended double-precision floating-point value `a' is a
860 | quiet NaN; otherwise returns 0. This slightly differs from the same
861 | function for other types as floatx80 has an explicit bit.
862 *----------------------------------------------------------------------------*/
864 int floatx80_is_quiet_nan( floatx80 a
)
869 aLow
= a
.low
& ~ LIT64( 0x4000000000000000 );
871 ( ( a
.high
& 0x7FFF ) == 0x7FFF )
872 && (uint64_t) ( aLow
<<1 )
873 && ( a
.low
== aLow
);
875 return ( ( a
.high
& 0x7FFF ) == 0x7FFF )
876 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a
.low
<<1 )));
880 /*----------------------------------------------------------------------------
881 | Returns 1 if the extended double-precision floating-point value `a' is a
882 | signaling NaN; otherwise returns 0. This slightly differs from the same
883 | function for other types as floatx80 has an explicit bit.
884 *----------------------------------------------------------------------------*/
886 int floatx80_is_signaling_nan( floatx80 a
)
889 return ( ( a
.high
& 0x7FFF ) == 0x7FFF )
890 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a
.low
<<1 )));
894 aLow
= a
.low
& ~ LIT64( 0x4000000000000000 );
896 ( ( a
.high
& 0x7FFF ) == 0x7FFF )
897 && (uint64_t) ( aLow
<<1 )
898 && ( a
.low
== aLow
);
903 /*----------------------------------------------------------------------------
904 | Returns a quiet NaN if the extended double-precision floating point value
905 | `a' is a signaling NaN; otherwise returns `a'.
906 *----------------------------------------------------------------------------*/
908 floatx80
floatx80_maybe_silence_nan( floatx80 a
)
910 if (floatx80_is_signaling_nan(a
)) {
912 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
913 a
.low
= floatx80_default_nan_low
;
914 a
.high
= floatx80_default_nan_high
;
916 # error Rules for silencing a signaling NaN are target-specific
919 a
.low
|= LIT64( 0xC000000000000000 );
926 /*----------------------------------------------------------------------------
927 | Returns the result of converting the extended double-precision floating-
928 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
929 | invalid exception is raised.
930 *----------------------------------------------------------------------------*/
932 static commonNaNT
floatx80ToCommonNaN( floatx80 a STATUS_PARAM
)
936 if ( floatx80_is_signaling_nan( a
) ) float_raise( float_flag_invalid STATUS_VAR
);
938 z
.sign
= a
.high
>> 15;
942 z
.sign
= floatx80_default_nan_high
>> 15;
944 z
.high
= floatx80_default_nan_low
<< 1;
949 /*----------------------------------------------------------------------------
950 | Returns the result of converting the canonical NaN `a' to the extended
951 | double-precision floating-point format.
952 *----------------------------------------------------------------------------*/
954 static floatx80
commonNaNToFloatx80( commonNaNT a STATUS_PARAM
)
958 if ( STATUS(default_nan_mode
) ) {
959 z
.low
= floatx80_default_nan_low
;
960 z
.high
= floatx80_default_nan_high
;
965 z
.low
= LIT64( 0x8000000000000000 ) | a
.high
>> 1;
966 z
.high
= ( ( (uint16_t) a
.sign
)<<15 ) | 0x7FFF;
968 z
.low
= floatx80_default_nan_low
;
969 z
.high
= floatx80_default_nan_high
;
975 /*----------------------------------------------------------------------------
976 | Takes two extended double-precision floating-point values `a' and `b', one
977 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
978 | `b' is a signaling NaN, the invalid exception is raised.
979 *----------------------------------------------------------------------------*/
981 static floatx80
propagateFloatx80NaN( floatx80 a
, floatx80 b STATUS_PARAM
)
983 flag aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
;
984 flag aIsLargerSignificand
;
986 aIsQuietNaN
= floatx80_is_quiet_nan( a
);
987 aIsSignalingNaN
= floatx80_is_signaling_nan( a
);
988 bIsQuietNaN
= floatx80_is_quiet_nan( b
);
989 bIsSignalingNaN
= floatx80_is_signaling_nan( b
);
991 if ( aIsSignalingNaN
| bIsSignalingNaN
) float_raise( float_flag_invalid STATUS_VAR
);
993 if ( STATUS(default_nan_mode
) ) {
994 a
.low
= floatx80_default_nan_low
;
995 a
.high
= floatx80_default_nan_high
;
1000 aIsLargerSignificand
= 0;
1001 } else if (b
.low
< a
.low
) {
1002 aIsLargerSignificand
= 1;
1004 aIsLargerSignificand
= (a
.high
< b
.high
) ? 1 : 0;
1007 if (pickNaN(aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
,
1008 aIsLargerSignificand
)) {
1009 return floatx80_maybe_silence_nan(b
);
1011 return floatx80_maybe_silence_nan(a
);
1015 #ifdef NO_SIGNALING_NANS
1016 int float128_is_quiet_nan(float128 a_
)
1018 return float128_is_any_nan(a_
);
1021 int float128_is_signaling_nan(float128 a_
)
1026 /*----------------------------------------------------------------------------
1027 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1028 | NaN; otherwise returns 0.
1029 *----------------------------------------------------------------------------*/
1031 int float128_is_quiet_nan( float128 a
)
1035 ( ( ( a
.high
>>47 ) & 0xFFFF ) == 0xFFFE )
1036 && ( a
.low
|| ( a
.high
& LIT64( 0x00007FFFFFFFFFFF ) ) );
1039 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a
.high
<<1 ) )
1040 && ( a
.low
|| ( a
.high
& LIT64( 0x0000FFFFFFFFFFFF ) ) );
1044 /*----------------------------------------------------------------------------
1045 | Returns 1 if the quadruple-precision floating-point value `a' is a
1046 | signaling NaN; otherwise returns 0.
1047 *----------------------------------------------------------------------------*/
1049 int float128_is_signaling_nan( float128 a
)
1053 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a
.high
<<1 ) )
1054 && ( a
.low
|| ( a
.high
& LIT64( 0x0000FFFFFFFFFFFF ) ) );
1057 ( ( ( a
.high
>>47 ) & 0xFFFF ) == 0xFFFE )
1058 && ( a
.low
|| ( a
.high
& LIT64( 0x00007FFFFFFFFFFF ) ) );
1063 /*----------------------------------------------------------------------------
1064 | Returns a quiet NaN if the quadruple-precision floating point value `a' is
1065 | a signaling NaN; otherwise returns `a'.
1066 *----------------------------------------------------------------------------*/
1068 float128
float128_maybe_silence_nan( float128 a
)
1070 if (float128_is_signaling_nan(a
)) {
1072 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
1073 a
.low
= float128_default_nan_low
;
1074 a
.high
= float128_default_nan_high
;
1076 # error Rules for silencing a signaling NaN are target-specific
1079 a
.high
|= LIT64( 0x0000800000000000 );
1086 /*----------------------------------------------------------------------------
1087 | Returns the result of converting the quadruple-precision floating-point NaN
1088 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1089 | exception is raised.
1090 *----------------------------------------------------------------------------*/
1092 static commonNaNT
float128ToCommonNaN( float128 a STATUS_PARAM
)
1096 if ( float128_is_signaling_nan( a
) ) float_raise( float_flag_invalid STATUS_VAR
);
1097 z
.sign
= a
.high
>>63;
1098 shortShift128Left( a
.high
, a
.low
, 16, &z
.high
, &z
.low
);
1102 /*----------------------------------------------------------------------------
1103 | Returns the result of converting the canonical NaN `a' to the quadruple-
1104 | precision floating-point format.
1105 *----------------------------------------------------------------------------*/
1107 static float128
commonNaNToFloat128( commonNaNT a STATUS_PARAM
)
1111 if ( STATUS(default_nan_mode
) ) {
1112 z
.low
= float128_default_nan_low
;
1113 z
.high
= float128_default_nan_high
;
1117 shift128Right( a
.high
, a
.low
, 16, &z
.high
, &z
.low
);
1118 z
.high
|= ( ( (uint64_t) a
.sign
)<<63 ) | LIT64( 0x7FFF000000000000 );
1122 /*----------------------------------------------------------------------------
1123 | Takes two quadruple-precision floating-point values `a' and `b', one of
1124 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1125 | `b' is a signaling NaN, the invalid exception is raised.
1126 *----------------------------------------------------------------------------*/
1128 static float128
propagateFloat128NaN( float128 a
, float128 b STATUS_PARAM
)
1130 flag aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
;
1131 flag aIsLargerSignificand
;
1133 aIsQuietNaN
= float128_is_quiet_nan( a
);
1134 aIsSignalingNaN
= float128_is_signaling_nan( a
);
1135 bIsQuietNaN
= float128_is_quiet_nan( b
);
1136 bIsSignalingNaN
= float128_is_signaling_nan( b
);
1138 if ( aIsSignalingNaN
| bIsSignalingNaN
) float_raise( float_flag_invalid STATUS_VAR
);
1140 if ( STATUS(default_nan_mode
) ) {
1141 a
.low
= float128_default_nan_low
;
1142 a
.high
= float128_default_nan_high
;
1146 if (lt128(a
.high
<<1, a
.low
, b
.high
<<1, b
.low
)) {
1147 aIsLargerSignificand
= 0;
1148 } else if (lt128(b
.high
<<1, b
.low
, a
.high
<<1, a
.low
)) {
1149 aIsLargerSignificand
= 1;
1151 aIsLargerSignificand
= (a
.high
< b
.high
) ? 1 : 0;
1154 if (pickNaN(aIsQuietNaN
, aIsSignalingNaN
, bIsQuietNaN
, bIsSignalingNaN
,
1155 aIsLargerSignificand
)) {
1156 return float128_maybe_silence_nan(b
);
1158 return float128_maybe_silence_nan(a
);