4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
44 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
45 static inline int target_memory_rw_debug(CPUState
*env
, target_ulong addr
,
46 uint8_t *buf
, int len
, int is_write
)
48 return cpu_memory_rw_debug(env
, addr
, buf
, len
, is_write
);
51 /* target_memory_rw_debug() defined in cpu.h */
63 GDB_SIGNAL_UNKNOWN
= 143
66 #ifdef CONFIG_USER_ONLY
68 /* Map target signal numbers to GDB protocol signal numbers and vice
69 * versa. For user emulation's currently supported systems, we can
70 * assume most signals are defined.
73 static int gdb_signal_table
[] = {
233 /* In system mode we only need SIGINT and SIGTRAP; other signals
234 are not yet supported. */
241 static int gdb_signal_table
[] = {
251 #ifdef CONFIG_USER_ONLY
252 static int target_signal_to_gdb (int sig
)
255 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
256 if (gdb_signal_table
[i
] == sig
)
258 return GDB_SIGNAL_UNKNOWN
;
262 static int gdb_signal_to_target (int sig
)
264 if (sig
< ARRAY_SIZE (gdb_signal_table
))
265 return gdb_signal_table
[sig
];
272 typedef struct GDBRegisterState
{
278 struct GDBRegisterState
*next
;
289 typedef struct GDBState
{
290 CPUState
*c_cpu
; /* current CPU for step/continue ops */
291 CPUState
*g_cpu
; /* current CPU for other ops */
292 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
293 enum RSState state
; /* parsing state */
294 char line_buf
[MAX_PACKET_LENGTH
];
297 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
300 #ifdef CONFIG_USER_ONLY
304 CharDriverState
*chr
;
305 CharDriverState
*mon_chr
;
309 /* By default use no IRQs and no timers while single stepping so as to
310 * make single stepping like an ICE HW step.
312 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
314 static GDBState
*gdbserver_state
;
316 /* This is an ugly hack to cope with both new and old gdb.
317 If gdb sends qXfer:features:read then assume we're talking to a newish
318 gdb that understands target descriptions. */
319 static int gdb_has_xml
;
321 #ifdef CONFIG_USER_ONLY
322 /* XXX: This is not thread safe. Do we care? */
323 static int gdbserver_fd
= -1;
325 static int get_char(GDBState
*s
)
331 ret
= qemu_recv(s
->fd
, &ch
, 1, 0);
333 if (errno
== ECONNRESET
)
335 if (errno
!= EINTR
&& errno
!= EAGAIN
)
337 } else if (ret
== 0) {
349 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
362 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
365 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState
*s
)
371 #ifdef CONFIG_USER_ONLY
372 s
->running_state
= 1;
378 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
380 #ifdef CONFIG_USER_ONLY
384 ret
= send(s
->fd
, buf
, len
, 0);
386 if (errno
!= EINTR
&& errno
!= EAGAIN
)
394 qemu_chr_fe_write(s
->chr
, buf
, len
);
398 static inline int fromhex(int v
)
400 if (v
>= '0' && v
<= '9')
402 else if (v
>= 'A' && v
<= 'F')
404 else if (v
>= 'a' && v
<= 'f')
410 static inline int tohex(int v
)
418 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
423 for(i
= 0; i
< len
; i
++) {
425 *q
++ = tohex(c
>> 4);
426 *q
++ = tohex(c
& 0xf);
431 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
435 for(i
= 0; i
< len
; i
++) {
436 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
441 /* return -1 if error, 0 if OK */
442 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
453 for(i
= 0; i
< len
; i
++) {
457 *(p
++) = tohex((csum
>> 4) & 0xf);
458 *(p
++) = tohex((csum
) & 0xf);
460 s
->last_packet_len
= p
- s
->last_packet
;
461 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
463 #ifdef CONFIG_USER_ONLY
476 /* return -1 if error, 0 if OK */
477 static int put_packet(GDBState
*s
, const char *buf
)
480 printf("reply='%s'\n", buf
);
483 return put_packet_binary(s
, buf
, strlen(buf
));
486 /* The GDB remote protocol transfers values in target byte order. This means
487 we can use the raw memory access routines to access the value buffer.
488 Conveniently, these also handle the case where the buffer is mis-aligned.
490 #define GET_REG8(val) do { \
491 stb_p(mem_buf, val); \
494 #define GET_REG16(val) do { \
495 stw_p(mem_buf, val); \
498 #define GET_REG32(val) do { \
499 stl_p(mem_buf, val); \
502 #define GET_REG64(val) do { \
503 stq_p(mem_buf, val); \
507 #if TARGET_LONG_BITS == 64
508 #define GET_REGL(val) GET_REG64(val)
509 #define ldtul_p(addr) ldq_p(addr)
511 #define GET_REGL(val) GET_REG32(val)
512 #define ldtul_p(addr) ldl_p(addr)
515 #if defined(TARGET_I386)
518 static const int gpr_map
[16] = {
519 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
520 8, 9, 10, 11, 12, 13, 14, 15
523 #define gpr_map gpr_map32
525 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
527 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
529 #define IDX_IP_REG CPU_NB_REGS
530 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
531 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
532 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
533 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
534 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
536 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
538 if (n
< CPU_NB_REGS
) {
539 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
540 GET_REG64(env
->regs
[gpr_map
[n
]]);
541 } else if (n
< CPU_NB_REGS32
) {
542 GET_REG32(env
->regs
[gpr_map32
[n
]]);
544 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
545 #ifdef USE_X86LDOUBLE
546 /* FIXME: byteswap float values - after fixing fpregs layout. */
547 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
549 memset(mem_buf
, 0, 10);
552 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
554 if (n
< CPU_NB_REGS32
||
555 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
556 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
557 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
563 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
568 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
570 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
571 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
572 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
573 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
574 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
575 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
577 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
578 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
579 (env
->fpstt
& 0x7) << 11);
580 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
581 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
582 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
583 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
584 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
585 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
587 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
593 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
595 uint16_t selector
= ldl_p(mem_buf
);
597 if (selector
!= env
->segs
[sreg
].selector
) {
598 #if defined(CONFIG_USER_ONLY)
599 cpu_x86_load_seg(env
, sreg
, selector
);
601 unsigned int limit
, flags
;
604 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
605 base
= selector
<< 4;
609 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
612 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
618 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
622 if (n
< CPU_NB_REGS
) {
623 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
624 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
625 return sizeof(target_ulong
);
626 } else if (n
< CPU_NB_REGS32
) {
628 env
->regs
[n
] &= ~0xffffffffUL
;
629 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
632 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
633 #ifdef USE_X86LDOUBLE
634 /* FIXME: byteswap float values - after fixing fpregs layout. */
635 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
638 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
640 if (n
< CPU_NB_REGS32
||
641 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
642 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
643 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
649 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
650 env
->eip
= ldq_p(mem_buf
);
653 env
->eip
&= ~0xffffffffUL
;
654 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
658 env
->eflags
= ldl_p(mem_buf
);
661 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
662 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
663 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
664 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
665 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
666 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
668 case IDX_FP_REGS
+ 8:
669 env
->fpuc
= ldl_p(mem_buf
);
671 case IDX_FP_REGS
+ 9:
672 tmp
= ldl_p(mem_buf
);
673 env
->fpstt
= (tmp
>> 11) & 7;
674 env
->fpus
= tmp
& ~0x3800;
676 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
677 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
678 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
679 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
680 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
681 case IDX_FP_REGS
+ 15: /* fop */ return 4;
684 env
->mxcsr
= ldl_p(mem_buf
);
688 /* Unrecognised register. */
692 #elif defined (TARGET_PPC)
694 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
695 expects whatever the target description contains. Due to a
696 historical mishap the FP registers appear in between core integer
697 regs and PC, MSR, CR, and so forth. We hack round this by giving the
698 FP regs zero size when talking to a newer gdb. */
699 #define NUM_CORE_REGS 71
700 #if defined (TARGET_PPC64)
701 #define GDB_CORE_XML "power64-core.xml"
703 #define GDB_CORE_XML "power-core.xml"
706 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
710 GET_REGL(env
->gpr
[n
]);
715 stfq_p(mem_buf
, env
->fpr
[n
-32]);
719 case 64: GET_REGL(env
->nip
);
720 case 65: GET_REGL(env
->msr
);
725 for (i
= 0; i
< 8; i
++)
726 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
729 case 67: GET_REGL(env
->lr
);
730 case 68: GET_REGL(env
->ctr
);
731 case 69: GET_REGL(env
->xer
);
736 GET_REG32(env
->fpscr
);
743 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
747 env
->gpr
[n
] = ldtul_p(mem_buf
);
748 return sizeof(target_ulong
);
753 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
758 env
->nip
= ldtul_p(mem_buf
);
759 return sizeof(target_ulong
);
761 ppc_store_msr(env
, ldtul_p(mem_buf
));
762 return sizeof(target_ulong
);
765 uint32_t cr
= ldl_p(mem_buf
);
767 for (i
= 0; i
< 8; i
++)
768 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
772 env
->lr
= ldtul_p(mem_buf
);
773 return sizeof(target_ulong
);
775 env
->ctr
= ldtul_p(mem_buf
);
776 return sizeof(target_ulong
);
778 env
->xer
= ldtul_p(mem_buf
);
779 return sizeof(target_ulong
);
790 #elif defined (TARGET_SPARC)
792 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
793 #define NUM_CORE_REGS 86
795 #define NUM_CORE_REGS 72
799 #define GET_REGA(val) GET_REG32(val)
801 #define GET_REGA(val) GET_REGL(val)
804 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
808 GET_REGA(env
->gregs
[n
]);
811 /* register window */
812 GET_REGA(env
->regwptr
[n
- 8]);
814 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
818 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
820 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
823 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
825 case 64: GET_REGA(env
->y
);
826 case 65: GET_REGA(cpu_get_psr(env
));
827 case 66: GET_REGA(env
->wim
);
828 case 67: GET_REGA(env
->tbr
);
829 case 68: GET_REGA(env
->pc
);
830 case 69: GET_REGA(env
->npc
);
831 case 70: GET_REGA(env
->fsr
);
832 case 71: GET_REGA(0); /* csr */
833 default: GET_REGA(0);
839 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
841 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
845 /* f32-f62 (double width, even numbers only) */
846 GET_REG64(env
->fpr
[(n
- 32) / 2].ll
);
849 case 80: GET_REGL(env
->pc
);
850 case 81: GET_REGL(env
->npc
);
851 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
852 ((env
->asi
& 0xff) << 24) |
853 ((env
->pstate
& 0xfff) << 8) |
855 case 83: GET_REGL(env
->fsr
);
856 case 84: GET_REGL(env
->fprs
);
857 case 85: GET_REGL(env
->y
);
863 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
865 #if defined(TARGET_ABI32)
868 tmp
= ldl_p(mem_buf
);
872 tmp
= ldtul_p(mem_buf
);
879 /* register window */
880 env
->regwptr
[n
- 8] = tmp
;
882 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
887 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
889 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
892 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
894 case 64: env
->y
= tmp
; break;
895 case 65: cpu_put_psr(env
, tmp
); break;
896 case 66: env
->wim
= tmp
; break;
897 case 67: env
->tbr
= tmp
; break;
898 case 68: env
->pc
= tmp
; break;
899 case 69: env
->npc
= tmp
; break;
900 case 70: env
->fsr
= tmp
; break;
908 tmp
= ldl_p(mem_buf
);
910 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
912 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
916 /* f32-f62 (double width, even numbers only) */
917 env
->fpr
[(n
- 32) / 2].ll
= tmp
;
920 case 80: env
->pc
= tmp
; break;
921 case 81: env
->npc
= tmp
; break;
923 cpu_put_ccr(env
, tmp
>> 32);
924 env
->asi
= (tmp
>> 24) & 0xff;
925 env
->pstate
= (tmp
>> 8) & 0xfff;
926 cpu_put_cwp64(env
, tmp
& 0xff);
928 case 83: env
->fsr
= tmp
; break;
929 case 84: env
->fprs
= tmp
; break;
930 case 85: env
->y
= tmp
; break;
937 #elif defined (TARGET_ARM)
939 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
940 whatever the target description contains. Due to a historical mishap
941 the FPA registers appear in between core integer regs and the CPSR.
942 We hack round this by giving the FPA regs zero size when talking to a
944 #define NUM_CORE_REGS 26
945 #define GDB_CORE_XML "arm-core.xml"
947 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
950 /* Core integer register. */
951 GET_REG32(env
->regs
[n
]);
957 memset(mem_buf
, 0, 12);
962 /* FPA status register. */
968 GET_REG32(cpsr_read(env
));
970 /* Unknown register. */
974 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
978 tmp
= ldl_p(mem_buf
);
980 /* Mask out low bit of PC to workaround gdb bugs. This will probably
981 cause problems if we ever implement the Jazelle DBX extensions. */
986 /* Core integer register. */
990 if (n
< 24) { /* 16-23 */
991 /* FPA registers (ignored). */
998 /* FPA status register (ignored). */
1004 cpsr_write (env
, tmp
, 0xffffffff);
1007 /* Unknown register. */
1011 #elif defined (TARGET_M68K)
1013 #define NUM_CORE_REGS 18
1015 #define GDB_CORE_XML "cf-core.xml"
1017 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1021 GET_REG32(env
->dregs
[n
]);
1022 } else if (n
< 16) {
1024 GET_REG32(env
->aregs
[n
- 8]);
1027 case 16: GET_REG32(env
->sr
);
1028 case 17: GET_REG32(env
->pc
);
1031 /* FP registers not included here because they vary between
1032 ColdFire and m68k. Use XML bits for these. */
1036 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1040 tmp
= ldl_p(mem_buf
);
1044 env
->dregs
[n
] = tmp
;
1045 } else if (n
< 16) {
1047 env
->aregs
[n
- 8] = tmp
;
1050 case 16: env
->sr
= tmp
; break;
1051 case 17: env
->pc
= tmp
; break;
1057 #elif defined (TARGET_MIPS)
1059 #define NUM_CORE_REGS 73
1061 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1064 GET_REGL(env
->active_tc
.gpr
[n
]);
1066 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1067 if (n
>= 38 && n
< 70) {
1068 if (env
->CP0_Status
& (1 << CP0St_FR
))
1069 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1071 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1074 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1075 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1079 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1080 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1081 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1082 case 35: GET_REGL(env
->CP0_BadVAddr
);
1083 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1084 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1085 case 72: GET_REGL(0); /* fp */
1086 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1088 if (n
>= 73 && n
<= 88) {
1089 /* 16 embedded regs. */
1096 /* convert MIPS rounding mode in FCR31 to IEEE library */
1097 static unsigned int ieee_rm
[] =
1099 float_round_nearest_even
,
1100 float_round_to_zero
,
1104 #define RESTORE_ROUNDING_MODE \
1105 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1107 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1111 tmp
= ldtul_p(mem_buf
);
1114 env
->active_tc
.gpr
[n
] = tmp
;
1115 return sizeof(target_ulong
);
1117 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1118 && n
>= 38 && n
< 73) {
1120 if (env
->CP0_Status
& (1 << CP0St_FR
))
1121 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1123 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1127 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1128 /* set rounding mode */
1129 RESTORE_ROUNDING_MODE
;
1131 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1133 return sizeof(target_ulong
);
1136 case 32: env
->CP0_Status
= tmp
; break;
1137 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1138 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1139 case 35: env
->CP0_BadVAddr
= tmp
; break;
1140 case 36: env
->CP0_Cause
= tmp
; break;
1142 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1144 env
->hflags
|= MIPS_HFLAG_M16
;
1146 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1149 case 72: /* fp, ignored */ break;
1153 /* Other registers are readonly. Ignore writes. */
1157 return sizeof(target_ulong
);
1159 #elif defined (TARGET_SH4)
1161 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1162 /* FIXME: We should use XML for this. */
1164 #define NUM_CORE_REGS 59
1166 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1169 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1170 GET_REGL(env
->gregs
[n
+ 16]);
1172 GET_REGL(env
->gregs
[n
]);
1174 } else if (n
< 16) {
1175 GET_REGL(env
->gregs
[n
]);
1176 } else if (n
>= 25 && n
< 41) {
1177 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1178 } else if (n
>= 43 && n
< 51) {
1179 GET_REGL(env
->gregs
[n
- 43]);
1180 } else if (n
>= 51 && n
< 59) {
1181 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1184 case 16: GET_REGL(env
->pc
);
1185 case 17: GET_REGL(env
->pr
);
1186 case 18: GET_REGL(env
->gbr
);
1187 case 19: GET_REGL(env
->vbr
);
1188 case 20: GET_REGL(env
->mach
);
1189 case 21: GET_REGL(env
->macl
);
1190 case 22: GET_REGL(env
->sr
);
1191 case 23: GET_REGL(env
->fpul
);
1192 case 24: GET_REGL(env
->fpscr
);
1193 case 41: GET_REGL(env
->ssr
);
1194 case 42: GET_REGL(env
->spc
);
1200 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1204 tmp
= ldl_p(mem_buf
);
1207 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1208 env
->gregs
[n
+ 16] = tmp
;
1210 env
->gregs
[n
] = tmp
;
1213 } else if (n
< 16) {
1214 env
->gregs
[n
] = tmp
;
1216 } else if (n
>= 25 && n
< 41) {
1217 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1219 } else if (n
>= 43 && n
< 51) {
1220 env
->gregs
[n
- 43] = tmp
;
1222 } else if (n
>= 51 && n
< 59) {
1223 env
->gregs
[n
- (51 - 16)] = tmp
;
1227 case 16: env
->pc
= tmp
; break;
1228 case 17: env
->pr
= tmp
; break;
1229 case 18: env
->gbr
= tmp
; break;
1230 case 19: env
->vbr
= tmp
; break;
1231 case 20: env
->mach
= tmp
; break;
1232 case 21: env
->macl
= tmp
; break;
1233 case 22: env
->sr
= tmp
; break;
1234 case 23: env
->fpul
= tmp
; break;
1235 case 24: env
->fpscr
= tmp
; break;
1236 case 41: env
->ssr
= tmp
; break;
1237 case 42: env
->spc
= tmp
; break;
1243 #elif defined (TARGET_MICROBLAZE)
1245 #define NUM_CORE_REGS (32 + 5)
1247 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1250 GET_REG32(env
->regs
[n
]);
1252 GET_REG32(env
->sregs
[n
- 32]);
1257 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1261 if (n
> NUM_CORE_REGS
)
1264 tmp
= ldl_p(mem_buf
);
1269 env
->sregs
[n
- 32] = tmp
;
1273 #elif defined (TARGET_CRIS)
1275 #define NUM_CORE_REGS 49
1278 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1281 GET_REG32(env
->regs
[n
]);
1291 GET_REG8(env
->pregs
[n
- 16]);
1294 GET_REG8(env
->pregs
[n
- 16]);
1298 GET_REG16(env
->pregs
[n
- 16]);
1302 GET_REG32(env
->pregs
[n
- 16]);
1310 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1314 if (env
->pregs
[PR_VR
] < 32)
1315 return read_register_crisv10(env
, mem_buf
, n
);
1317 srs
= env
->pregs
[PR_SRS
];
1319 GET_REG32(env
->regs
[n
]);
1322 if (n
>= 21 && n
< 32) {
1323 GET_REG32(env
->pregs
[n
- 16]);
1325 if (n
>= 33 && n
< 49) {
1326 GET_REG32(env
->sregs
[srs
][n
- 33]);
1329 case 16: GET_REG8(env
->pregs
[0]);
1330 case 17: GET_REG8(env
->pregs
[1]);
1331 case 18: GET_REG32(env
->pregs
[2]);
1332 case 19: GET_REG8(srs
);
1333 case 20: GET_REG16(env
->pregs
[4]);
1334 case 32: GET_REG32(env
->pc
);
1340 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1347 tmp
= ldl_p(mem_buf
);
1353 if (n
>= 21 && n
< 32) {
1354 env
->pregs
[n
- 16] = tmp
;
1357 /* FIXME: Should support function regs be writable? */
1361 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1364 case 32: env
->pc
= tmp
; break;
1369 #elif defined (TARGET_ALPHA)
1371 #define NUM_CORE_REGS 67
1373 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1383 d
.d
= env
->fir
[n
- 32];
1387 val
= cpu_alpha_load_fpcr(env
);
1397 /* 31 really is the zero register; 65 is unassigned in the
1398 gdb protocol, but is still required to occupy 8 bytes. */
1407 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1409 target_ulong tmp
= ldtul_p(mem_buf
);
1418 env
->fir
[n
- 32] = d
.d
;
1421 cpu_alpha_store_fpcr(env
, tmp
);
1431 /* 31 really is the zero register; 65 is unassigned in the
1432 gdb protocol, but is still required to occupy 8 bytes. */
1439 #elif defined (TARGET_S390X)
1441 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1443 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1446 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1447 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1448 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1449 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1450 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1451 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1452 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1453 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1456 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1457 case S390_CC_REGNUM
:
1458 env
->cc_op
= calc_cc(env
, env
->cc_op
, env
->cc_src
, env
->cc_dst
,
1460 GET_REG32(env
->cc_op
);
1467 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1472 tmpl
= ldtul_p(mem_buf
);
1473 tmp32
= ldl_p(mem_buf
);
1476 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1477 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1478 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1479 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1480 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1481 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1482 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1483 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1486 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1487 case S390_CC_REGNUM
: env
->cc_op
= tmp32
; r
=4; break;
1492 #elif defined (TARGET_LM32)
1494 #include "hw/lm32_pic.h"
1495 #define NUM_CORE_REGS (32 + 7)
1497 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1500 GET_REG32(env
->regs
[n
]);
1506 /* FIXME: put in right exception ID */
1511 GET_REG32(env
->eba
);
1514 GET_REG32(env
->deba
);
1520 GET_REG32(lm32_pic_get_im(env
->pic_state
));
1523 GET_REG32(lm32_pic_get_ip(env
->pic_state
));
1530 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1534 if (n
> NUM_CORE_REGS
) {
1538 tmp
= ldl_p(mem_buf
);
1557 lm32_pic_set_im(env
->pic_state
, tmp
);
1560 lm32_pic_set_ip(env
->pic_state
, tmp
);
1566 #elif defined(TARGET_XTENSA)
1568 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1569 * Use num_regs to see all registers. gdb modification is required for that:
1570 * reset bit 0 in the 'flags' field of the registers definitions in the
1571 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1573 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1574 #define num_g_regs NUM_CORE_REGS
1576 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1578 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1580 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1584 switch (reg
->type
) {
1590 xtensa_sync_phys_from_window(env
);
1591 GET_REG32(env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
]);
1595 GET_REG32(env
->sregs
[reg
->targno
& 0xff]);
1599 GET_REG32(env
->uregs
[reg
->targno
& 0xff]);
1603 GET_REG32(env
->regs
[reg
->targno
& 0x0f]);
1607 qemu_log("%s from reg %d of unsupported type %d\n",
1608 __func__
, n
, reg
->type
);
1613 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1616 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1618 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1622 tmp
= ldl_p(mem_buf
);
1624 switch (reg
->type
) {
1630 env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
] = tmp
;
1631 xtensa_sync_window_from_phys(env
);
1635 env
->sregs
[reg
->targno
& 0xff] = tmp
;
1639 env
->uregs
[reg
->targno
& 0xff] = tmp
;
1643 env
->regs
[reg
->targno
& 0x0f] = tmp
;
1647 qemu_log("%s to reg %d of unsupported type %d\n",
1648 __func__
, n
, reg
->type
);
1656 #define NUM_CORE_REGS 0
1658 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1663 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1670 #if !defined(TARGET_XTENSA)
1671 static int num_g_regs
= NUM_CORE_REGS
;
1675 /* Encode data using the encoding for 'x' packets. */
1676 static int memtox(char *buf
, const char *mem
, int len
)
1684 case '#': case '$': case '*': case '}':
1696 static const char *get_feature_xml(const char *p
, const char **newp
)
1701 static char target_xml
[1024];
1704 while (p
[len
] && p
[len
] != ':')
1709 if (strncmp(p
, "target.xml", len
) == 0) {
1710 /* Generate the XML description for this CPU. */
1711 if (!target_xml
[0]) {
1712 GDBRegisterState
*r
;
1714 snprintf(target_xml
, sizeof(target_xml
),
1715 "<?xml version=\"1.0\"?>"
1716 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1718 "<xi:include href=\"%s\"/>",
1721 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1722 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1723 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1724 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1726 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1730 for (i
= 0; ; i
++) {
1731 name
= xml_builtin
[i
][0];
1732 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1735 return name
? xml_builtin
[i
][1] : NULL
;
1739 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1741 GDBRegisterState
*r
;
1743 if (reg
< NUM_CORE_REGS
)
1744 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1746 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1747 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1748 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1754 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1756 GDBRegisterState
*r
;
1758 if (reg
< NUM_CORE_REGS
)
1759 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1761 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1762 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1763 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1769 #if !defined(TARGET_XTENSA)
1770 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1771 specifies the first register number and these registers are included in
1772 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1773 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1776 void gdb_register_coprocessor(CPUState
* env
,
1777 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1778 int num_regs
, const char *xml
, int g_pos
)
1780 GDBRegisterState
*s
;
1781 GDBRegisterState
**p
;
1782 static int last_reg
= NUM_CORE_REGS
;
1786 /* Check for duplicates. */
1787 if (strcmp((*p
)->xml
, xml
) == 0)
1792 s
= g_new0(GDBRegisterState
, 1);
1793 s
->base_reg
= last_reg
;
1794 s
->num_regs
= num_regs
;
1795 s
->get_reg
= get_reg
;
1796 s
->set_reg
= set_reg
;
1799 /* Add to end of list. */
1800 last_reg
+= num_regs
;
1803 if (g_pos
!= s
->base_reg
) {
1804 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1805 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1807 num_g_regs
= last_reg
;
1813 #ifndef CONFIG_USER_ONLY
1814 static const int xlat_gdb_type
[] = {
1815 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1816 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1817 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1821 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1827 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1830 case GDB_BREAKPOINT_SW
:
1831 case GDB_BREAKPOINT_HW
:
1832 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1833 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1838 #ifndef CONFIG_USER_ONLY
1839 case GDB_WATCHPOINT_WRITE
:
1840 case GDB_WATCHPOINT_READ
:
1841 case GDB_WATCHPOINT_ACCESS
:
1842 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1843 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1855 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1861 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1864 case GDB_BREAKPOINT_SW
:
1865 case GDB_BREAKPOINT_HW
:
1866 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1867 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1872 #ifndef CONFIG_USER_ONLY
1873 case GDB_WATCHPOINT_WRITE
:
1874 case GDB_WATCHPOINT_READ
:
1875 case GDB_WATCHPOINT_ACCESS
:
1876 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1877 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1888 static void gdb_breakpoint_remove_all(void)
1892 if (kvm_enabled()) {
1893 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1897 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1898 cpu_breakpoint_remove_all(env
, BP_GDB
);
1899 #ifndef CONFIG_USER_ONLY
1900 cpu_watchpoint_remove_all(env
, BP_GDB
);
1905 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1907 #if defined(TARGET_I386)
1908 cpu_synchronize_state(s
->c_cpu
);
1910 #elif defined (TARGET_PPC)
1912 #elif defined (TARGET_SPARC)
1914 s
->c_cpu
->npc
= pc
+ 4;
1915 #elif defined (TARGET_ARM)
1916 s
->c_cpu
->regs
[15] = pc
;
1917 #elif defined (TARGET_SH4)
1919 #elif defined (TARGET_MIPS)
1920 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1922 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1924 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1926 #elif defined (TARGET_MICROBLAZE)
1927 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1928 #elif defined (TARGET_CRIS)
1930 #elif defined (TARGET_ALPHA)
1932 #elif defined (TARGET_S390X)
1933 cpu_synchronize_state(s
->c_cpu
);
1934 s
->c_cpu
->psw
.addr
= pc
;
1935 #elif defined (TARGET_LM32)
1937 #elif defined(TARGET_XTENSA)
1942 static inline int gdb_id(CPUState
*env
)
1944 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1945 return env
->host_tid
;
1947 return env
->cpu_index
+ 1;
1951 static CPUState
*find_cpu(uint32_t thread_id
)
1955 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1956 if (gdb_id(env
) == thread_id
) {
1964 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1969 int ch
, reg_size
, type
, res
;
1970 char buf
[MAX_PACKET_LENGTH
];
1971 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1973 target_ulong addr
, len
;
1976 printf("command='%s'\n", line_buf
);
1982 /* TODO: Make this return the correct value for user-mode. */
1983 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1986 /* Remove all the breakpoints when this query is issued,
1987 * because gdb is doing and initial connect and the state
1988 * should be cleaned up.
1990 gdb_breakpoint_remove_all();
1994 addr
= strtoull(p
, (char **)&p
, 16);
1995 gdb_set_cpu_pc(s
, addr
);
2001 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
2002 if (s
->signal
== -1)
2007 if (strncmp(p
, "Cont", 4) == 0) {
2008 int res_signal
, res_thread
;
2012 put_packet(s
, "vCont;c;C;s;S");
2027 if (action
== 'C' || action
== 'S') {
2028 signal
= strtoul(p
, (char **)&p
, 16);
2029 } else if (action
!= 'c' && action
!= 's') {
2035 thread
= strtoull(p
+1, (char **)&p
, 16);
2037 action
= tolower(action
);
2038 if (res
== 0 || (res
== 'c' && action
== 's')) {
2040 res_signal
= signal
;
2041 res_thread
= thread
;
2045 if (res_thread
!= -1 && res_thread
!= 0) {
2046 env
= find_cpu(res_thread
);
2048 put_packet(s
, "E22");
2054 cpu_single_step(s
->c_cpu
, sstep_flags
);
2056 s
->signal
= res_signal
;
2062 goto unknown_command
;
2065 /* Kill the target */
2066 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
2070 gdb_breakpoint_remove_all();
2071 gdb_syscall_mode
= GDB_SYS_DISABLED
;
2073 put_packet(s
, "OK");
2077 addr
= strtoull(p
, (char **)&p
, 16);
2078 gdb_set_cpu_pc(s
, addr
);
2080 cpu_single_step(s
->c_cpu
, sstep_flags
);
2088 ret
= strtoull(p
, (char **)&p
, 16);
2091 err
= strtoull(p
, (char **)&p
, 16);
2098 if (gdb_current_syscall_cb
)
2099 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
2101 put_packet(s
, "T02");
2108 cpu_synchronize_state(s
->g_cpu
);
2111 for (addr
= 0; addr
< num_g_regs
; addr
++) {
2112 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
2115 memtohex(buf
, mem_buf
, len
);
2119 cpu_synchronize_state(s
->g_cpu
);
2121 registers
= mem_buf
;
2122 len
= strlen(p
) / 2;
2123 hextomem((uint8_t *)registers
, p
, len
);
2124 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
2125 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
2127 registers
+= reg_size
;
2129 put_packet(s
, "OK");
2132 addr
= strtoull(p
, (char **)&p
, 16);
2135 len
= strtoull(p
, NULL
, 16);
2136 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
2137 put_packet (s
, "E14");
2139 memtohex(buf
, mem_buf
, len
);
2144 addr
= strtoull(p
, (char **)&p
, 16);
2147 len
= strtoull(p
, (char **)&p
, 16);
2150 hextomem(mem_buf
, p
, len
);
2151 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0) {
2152 put_packet(s
, "E14");
2154 put_packet(s
, "OK");
2158 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2159 This works, but can be very slow. Anything new enough to
2160 understand XML also knows how to use this properly. */
2162 goto unknown_command
;
2163 addr
= strtoull(p
, (char **)&p
, 16);
2164 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
2166 memtohex(buf
, mem_buf
, reg_size
);
2169 put_packet(s
, "E14");
2174 goto unknown_command
;
2175 addr
= strtoull(p
, (char **)&p
, 16);
2178 reg_size
= strlen(p
) / 2;
2179 hextomem(mem_buf
, p
, reg_size
);
2180 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
2181 put_packet(s
, "OK");
2185 type
= strtoul(p
, (char **)&p
, 16);
2188 addr
= strtoull(p
, (char **)&p
, 16);
2191 len
= strtoull(p
, (char **)&p
, 16);
2193 res
= gdb_breakpoint_insert(addr
, len
, type
);
2195 res
= gdb_breakpoint_remove(addr
, len
, type
);
2197 put_packet(s
, "OK");
2198 else if (res
== -ENOSYS
)
2201 put_packet(s
, "E22");
2205 thread
= strtoull(p
, (char **)&p
, 16);
2206 if (thread
== -1 || thread
== 0) {
2207 put_packet(s
, "OK");
2210 env
= find_cpu(thread
);
2212 put_packet(s
, "E22");
2218 put_packet(s
, "OK");
2222 put_packet(s
, "OK");
2225 put_packet(s
, "E22");
2230 thread
= strtoull(p
, (char **)&p
, 16);
2231 env
= find_cpu(thread
);
2234 put_packet(s
, "OK");
2236 put_packet(s
, "E22");
2241 /* parse any 'q' packets here */
2242 if (!strcmp(p
,"qemu.sstepbits")) {
2243 /* Query Breakpoint bit definitions */
2244 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2250 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2251 /* Display or change the sstep_flags */
2254 /* Display current setting */
2255 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2260 type
= strtoul(p
, (char **)&p
, 16);
2262 put_packet(s
, "OK");
2264 } else if (strcmp(p
,"C") == 0) {
2265 /* "Current thread" remains vague in the spec, so always return
2266 * the first CPU (gdb returns the first thread). */
2267 put_packet(s
, "QC1");
2269 } else if (strcmp(p
,"fThreadInfo") == 0) {
2270 s
->query_cpu
= first_cpu
;
2271 goto report_cpuinfo
;
2272 } else if (strcmp(p
,"sThreadInfo") == 0) {
2275 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2277 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2281 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2282 thread
= strtoull(p
+16, (char **)&p
, 16);
2283 env
= find_cpu(thread
);
2285 cpu_synchronize_state(env
);
2286 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2287 "CPU#%d [%s]", env
->cpu_index
,
2288 env
->halted
? "halted " : "running");
2289 memtohex(buf
, mem_buf
, len
);
2294 #ifdef CONFIG_USER_ONLY
2295 else if (strncmp(p
, "Offsets", 7) == 0) {
2296 TaskState
*ts
= s
->c_cpu
->opaque
;
2298 snprintf(buf
, sizeof(buf
),
2299 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2300 ";Bss=" TARGET_ABI_FMT_lx
,
2301 ts
->info
->code_offset
,
2302 ts
->info
->data_offset
,
2303 ts
->info
->data_offset
);
2307 #else /* !CONFIG_USER_ONLY */
2308 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2309 int len
= strlen(p
+ 5);
2311 if ((len
% 2) != 0) {
2312 put_packet(s
, "E01");
2315 hextomem(mem_buf
, p
+ 5, len
);
2318 qemu_chr_be_write(s
->mon_chr
, mem_buf
, len
);
2319 put_packet(s
, "OK");
2322 #endif /* !CONFIG_USER_ONLY */
2323 if (strncmp(p
, "Supported", 9) == 0) {
2324 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2326 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2332 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2334 target_ulong total_len
;
2338 xml
= get_feature_xml(p
, &p
);
2340 snprintf(buf
, sizeof(buf
), "E00");
2347 addr
= strtoul(p
, (char **)&p
, 16);
2350 len
= strtoul(p
, (char **)&p
, 16);
2352 total_len
= strlen(xml
);
2353 if (addr
> total_len
) {
2354 snprintf(buf
, sizeof(buf
), "E00");
2358 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2359 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2360 if (len
< total_len
- addr
) {
2362 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2365 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2367 put_packet_binary(s
, buf
, len
+ 1);
2371 /* Unrecognised 'q' command. */
2372 goto unknown_command
;
2376 /* put empty packet */
2384 void gdb_set_stop_cpu(CPUState
*env
)
2386 gdbserver_state
->c_cpu
= env
;
2387 gdbserver_state
->g_cpu
= env
;
2390 #ifndef CONFIG_USER_ONLY
2391 static void gdb_vm_state_change(void *opaque
, int running
, RunState state
)
2393 GDBState
*s
= gdbserver_state
;
2394 CPUState
*env
= s
->c_cpu
;
2399 if (running
|| s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
) {
2403 case RUN_STATE_DEBUG
:
2404 if (env
->watchpoint_hit
) {
2405 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2416 snprintf(buf
, sizeof(buf
),
2417 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2418 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2419 env
->watchpoint_hit
->vaddr
);
2420 env
->watchpoint_hit
= NULL
;
2424 ret
= GDB_SIGNAL_TRAP
;
2426 case RUN_STATE_PAUSED
:
2427 ret
= GDB_SIGNAL_INT
;
2429 case RUN_STATE_SHUTDOWN
:
2430 ret
= GDB_SIGNAL_QUIT
;
2432 case RUN_STATE_IO_ERROR
:
2433 ret
= GDB_SIGNAL_IO
;
2435 case RUN_STATE_WATCHDOG
:
2436 ret
= GDB_SIGNAL_ALRM
;
2438 case RUN_STATE_INTERNAL_ERROR
:
2439 ret
= GDB_SIGNAL_ABRT
;
2441 case RUN_STATE_SAVE_VM
:
2442 case RUN_STATE_RESTORE_VM
:
2444 case RUN_STATE_FINISH_MIGRATE
:
2445 ret
= GDB_SIGNAL_XCPU
;
2448 ret
= GDB_SIGNAL_UNKNOWN
;
2451 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2456 /* disable single step if it was enabled */
2457 cpu_single_step(env
, 0);
2461 /* Send a gdb syscall request.
2462 This accepts limited printf-style format specifiers, specifically:
2463 %x - target_ulong argument printed in hex.
2464 %lx - 64-bit argument printed in hex.
2465 %s - string pointer (target_ulong) and length (int) pair. */
2466 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2475 s
= gdbserver_state
;
2478 gdb_current_syscall_cb
= cb
;
2479 s
->state
= RS_SYSCALL
;
2480 #ifndef CONFIG_USER_ONLY
2481 vm_stop(RUN_STATE_DEBUG
);
2492 addr
= va_arg(va
, target_ulong
);
2493 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2496 if (*(fmt
++) != 'x')
2498 i64
= va_arg(va
, uint64_t);
2499 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2502 addr
= va_arg(va
, target_ulong
);
2503 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2504 addr
, va_arg(va
, int));
2508 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2519 #ifdef CONFIG_USER_ONLY
2520 gdb_handlesig(s
->c_cpu
, 0);
2526 static void gdb_read_byte(GDBState
*s
, int ch
)
2531 #ifndef CONFIG_USER_ONLY
2532 if (s
->last_packet_len
) {
2533 /* Waiting for a response to the last packet. If we see the start
2534 of a new command then abandon the previous response. */
2537 printf("Got NACK, retransmitting\n");
2539 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2543 printf("Got ACK\n");
2545 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2547 if (ch
== '+' || ch
== '$')
2548 s
->last_packet_len
= 0;
2552 if (runstate_is_running()) {
2553 /* when the CPU is running, we cannot do anything except stop
2554 it when receiving a char */
2555 vm_stop(RUN_STATE_PAUSED
);
2562 s
->line_buf_index
= 0;
2563 s
->state
= RS_GETLINE
;
2568 s
->state
= RS_CHKSUM1
;
2569 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2572 s
->line_buf
[s
->line_buf_index
++] = ch
;
2576 s
->line_buf
[s
->line_buf_index
] = '\0';
2577 s
->line_csum
= fromhex(ch
) << 4;
2578 s
->state
= RS_CHKSUM2
;
2581 s
->line_csum
|= fromhex(ch
);
2583 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2584 csum
+= s
->line_buf
[i
];
2586 if (s
->line_csum
!= (csum
& 0xff)) {
2588 put_buffer(s
, &reply
, 1);
2592 put_buffer(s
, &reply
, 1);
2593 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2602 /* Tell the remote gdb that the process has exited. */
2603 void gdb_exit(CPUState
*env
, int code
)
2608 s
= gdbserver_state
;
2612 #ifdef CONFIG_USER_ONLY
2613 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2618 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2621 #ifndef CONFIG_USER_ONLY
2623 qemu_chr_delete(s
->chr
);
2628 #ifdef CONFIG_USER_ONLY
2634 s
= gdbserver_state
;
2636 if (gdbserver_fd
< 0 || s
->fd
< 0)
2643 gdb_handlesig (CPUState
*env
, int sig
)
2649 s
= gdbserver_state
;
2650 if (gdbserver_fd
< 0 || s
->fd
< 0)
2653 /* disable single step if it was enabled */
2654 cpu_single_step(env
, 0);
2659 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2662 /* put_packet() might have detected that the peer terminated the
2669 s
->running_state
= 0;
2670 while (s
->running_state
== 0) {
2671 n
= read (s
->fd
, buf
, 256);
2676 for (i
= 0; i
< n
; i
++)
2677 gdb_read_byte (s
, buf
[i
]);
2679 else if (n
== 0 || errno
!= EAGAIN
)
2681 /* XXX: Connection closed. Should probably wait for another
2682 connection before continuing. */
2691 /* Tell the remote gdb that the process has exited due to SIG. */
2692 void gdb_signalled(CPUState
*env
, int sig
)
2697 s
= gdbserver_state
;
2698 if (gdbserver_fd
< 0 || s
->fd
< 0)
2701 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2705 static void gdb_accept(void)
2708 struct sockaddr_in sockaddr
;
2713 len
= sizeof(sockaddr
);
2714 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2715 if (fd
< 0 && errno
!= EINTR
) {
2718 } else if (fd
>= 0) {
2720 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2726 /* set short latency */
2728 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2730 s
= g_malloc0(sizeof(GDBState
));
2731 s
->c_cpu
= first_cpu
;
2732 s
->g_cpu
= first_cpu
;
2736 gdbserver_state
= s
;
2738 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2741 static int gdbserver_open(int port
)
2743 struct sockaddr_in sockaddr
;
2746 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2752 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2755 /* allow fast reuse */
2757 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2759 sockaddr
.sin_family
= AF_INET
;
2760 sockaddr
.sin_port
= htons(port
);
2761 sockaddr
.sin_addr
.s_addr
= 0;
2762 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2767 ret
= listen(fd
, 0);
2775 int gdbserver_start(int port
)
2777 gdbserver_fd
= gdbserver_open(port
);
2778 if (gdbserver_fd
< 0)
2780 /* accept connections */
2785 /* Disable gdb stub for child processes. */
2786 void gdbserver_fork(CPUState
*env
)
2788 GDBState
*s
= gdbserver_state
;
2789 if (gdbserver_fd
< 0 || s
->fd
< 0)
2793 cpu_breakpoint_remove_all(env
, BP_GDB
);
2794 cpu_watchpoint_remove_all(env
, BP_GDB
);
2797 static int gdb_chr_can_receive(void *opaque
)
2799 /* We can handle an arbitrarily large amount of data.
2800 Pick the maximum packet size, which is as good as anything. */
2801 return MAX_PACKET_LENGTH
;
2804 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2808 for (i
= 0; i
< size
; i
++) {
2809 gdb_read_byte(gdbserver_state
, buf
[i
]);
2813 static void gdb_chr_event(void *opaque
, int event
)
2816 case CHR_EVENT_OPENED
:
2817 vm_stop(RUN_STATE_PAUSED
);
2825 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2827 char buf
[MAX_PACKET_LENGTH
];
2830 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2831 len
= (MAX_PACKET_LENGTH
/2) - 1;
2832 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2836 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2838 const char *p
= (const char *)buf
;
2841 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2843 if (len
<= max_sz
) {
2844 gdb_monitor_output(gdbserver_state
, p
, len
);
2847 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2855 static void gdb_sigterm_handler(int signal
)
2857 if (runstate_is_running()) {
2858 vm_stop(RUN_STATE_PAUSED
);
2863 int gdbserver_start(const char *device
)
2866 char gdbstub_device_name
[128];
2867 CharDriverState
*chr
= NULL
;
2868 CharDriverState
*mon_chr
;
2872 if (strcmp(device
, "none") != 0) {
2873 if (strstart(device
, "tcp:", NULL
)) {
2874 /* enforce required TCP attributes */
2875 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2876 "%s,nowait,nodelay,server", device
);
2877 device
= gdbstub_device_name
;
2880 else if (strcmp(device
, "stdio") == 0) {
2881 struct sigaction act
;
2883 memset(&act
, 0, sizeof(act
));
2884 act
.sa_handler
= gdb_sigterm_handler
;
2885 sigaction(SIGINT
, &act
, NULL
);
2888 chr
= qemu_chr_new("gdb", device
, NULL
);
2892 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2893 gdb_chr_event
, NULL
);
2896 s
= gdbserver_state
;
2898 s
= g_malloc0(sizeof(GDBState
));
2899 gdbserver_state
= s
;
2901 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2903 /* Initialize a monitor terminal for gdb */
2904 mon_chr
= g_malloc0(sizeof(*mon_chr
));
2905 mon_chr
->chr_write
= gdb_monitor_write
;
2906 monitor_init(mon_chr
, 0);
2909 qemu_chr_delete(s
->chr
);
2910 mon_chr
= s
->mon_chr
;
2911 memset(s
, 0, sizeof(GDBState
));
2913 s
->c_cpu
= first_cpu
;
2914 s
->g_cpu
= first_cpu
;
2916 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2917 s
->mon_chr
= mon_chr
;