4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm_int.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
39 #include "exec/ioport.h"
40 #include "standard-headers/asm-x86/hyperv.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci/msi.h"
43 #include "migration/migration.h"
44 #include "exec/memattrs.h"
49 #define DPRINTF(fmt, ...) \
50 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
52 #define DPRINTF(fmt, ...) \
56 #define MSR_KVM_WALL_CLOCK 0x11
57 #define MSR_KVM_SYSTEM_TIME 0x12
60 #define BUS_MCEERR_AR 4
63 #define BUS_MCEERR_AO 5
66 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
67 KVM_CAP_INFO(SET_TSS_ADDR
),
68 KVM_CAP_INFO(EXT_CPUID
),
69 KVM_CAP_INFO(MP_STATE
),
73 static bool has_msr_star
;
74 static bool has_msr_hsave_pa
;
75 static bool has_msr_tsc_aux
;
76 static bool has_msr_tsc_adjust
;
77 static bool has_msr_tsc_deadline
;
78 static bool has_msr_feature_control
;
79 static bool has_msr_async_pf_en
;
80 static bool has_msr_pv_eoi_en
;
81 static bool has_msr_misc_enable
;
82 static bool has_msr_smbase
;
83 static bool has_msr_bndcfgs
;
84 static bool has_msr_kvm_steal_time
;
85 static int lm_capable_kernel
;
86 static bool has_msr_hv_hypercall
;
87 static bool has_msr_hv_vapic
;
88 static bool has_msr_hv_tsc
;
89 static bool has_msr_hv_crash
;
90 static bool has_msr_hv_reset
;
91 static bool has_msr_hv_vpindex
;
92 static bool has_msr_hv_runtime
;
93 static bool has_msr_hv_synic
;
94 static bool has_msr_hv_stimer
;
95 static bool has_msr_mtrr
;
96 static bool has_msr_xss
;
98 static bool has_msr_architectural_pmu
;
99 static uint32_t num_architectural_pmu_counters
;
101 static int has_xsave
;
103 static int has_pit_state2
;
105 int kvm_has_pit_state2(void)
107 return has_pit_state2
;
110 bool kvm_has_smm(void)
112 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
115 bool kvm_allows_irq0_override(void)
117 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
120 static int kvm_get_tsc(CPUState
*cs
)
122 X86CPU
*cpu
= X86_CPU(cs
);
123 CPUX86State
*env
= &cpu
->env
;
125 struct kvm_msrs info
;
126 struct kvm_msr_entry entries
[1];
130 if (env
->tsc_valid
) {
134 msr_data
.info
.nmsrs
= 1;
135 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
136 env
->tsc_valid
= !runstate_is_running();
138 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
143 env
->tsc
= msr_data
.entries
[0].data
;
147 static inline void do_kvm_synchronize_tsc(void *arg
)
154 void kvm_synchronize_all_tsc(void)
160 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, cpu
);
165 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
167 struct kvm_cpuid2
*cpuid
;
170 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
171 cpuid
= g_malloc0(size
);
173 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
174 if (r
== 0 && cpuid
->nent
>= max
) {
182 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
190 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
193 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
195 struct kvm_cpuid2
*cpuid
;
197 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
203 static const struct kvm_para_features
{
206 } para_features
[] = {
207 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
208 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
209 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
210 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
213 static int get_para_features(KVMState
*s
)
217 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
218 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
219 features
|= (1 << para_features
[i
].feature
);
227 /* Returns the value for a specific register on the cpuid entry
229 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
249 /* Find matching entry for function/index on kvm_cpuid2 struct
251 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
256 for (i
= 0; i
< cpuid
->nent
; ++i
) {
257 if (cpuid
->entries
[i
].function
== function
&&
258 cpuid
->entries
[i
].index
== index
) {
259 return &cpuid
->entries
[i
];
266 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
267 uint32_t index
, int reg
)
269 struct kvm_cpuid2
*cpuid
;
271 uint32_t cpuid_1_edx
;
274 cpuid
= get_supported_cpuid(s
);
276 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
279 ret
= cpuid_entry_get_reg(entry
, reg
);
282 /* Fixups for the data returned by KVM, below */
284 if (function
== 1 && reg
== R_EDX
) {
285 /* KVM before 2.6.30 misreports the following features */
286 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
287 } else if (function
== 1 && reg
== R_ECX
) {
288 /* We can set the hypervisor flag, even if KVM does not return it on
289 * GET_SUPPORTED_CPUID
291 ret
|= CPUID_EXT_HYPERVISOR
;
292 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
293 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
294 * and the irqchip is in the kernel.
296 if (kvm_irqchip_in_kernel() &&
297 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
298 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
301 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
302 * without the in-kernel irqchip
304 if (!kvm_irqchip_in_kernel()) {
305 ret
&= ~CPUID_EXT_X2APIC
;
307 } else if (function
== 6 && reg
== R_EAX
) {
308 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
309 } else if (function
== 0x80000001 && reg
== R_EDX
) {
310 /* On Intel, kvm returns cpuid according to the Intel spec,
311 * so add missing bits according to the AMD spec:
313 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
314 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
319 /* fallback for older kernels */
320 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
321 ret
= get_para_features(s
);
327 typedef struct HWPoisonPage
{
329 QLIST_ENTRY(HWPoisonPage
) list
;
332 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
333 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
335 static void kvm_unpoison_all(void *param
)
337 HWPoisonPage
*page
, *next_page
;
339 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
340 QLIST_REMOVE(page
, list
);
341 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
346 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
350 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
351 if (page
->ram_addr
== ram_addr
) {
355 page
= g_new(HWPoisonPage
, 1);
356 page
->ram_addr
= ram_addr
;
357 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
360 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
365 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
368 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
373 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
375 CPUX86State
*env
= &cpu
->env
;
376 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
377 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
378 uint64_t mcg_status
= MCG_STATUS_MCIP
;
380 if (code
== BUS_MCEERR_AR
) {
381 status
|= MCI_STATUS_AR
| 0x134;
382 mcg_status
|= MCG_STATUS_EIPV
;
385 mcg_status
|= MCG_STATUS_RIPV
;
387 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
388 (MCM_ADDR_PHYS
<< 6) | 0xc,
389 cpu_x86_support_mca_broadcast(env
) ?
390 MCE_INJECT_BROADCAST
: 0);
393 static void hardware_memory_error(void)
395 fprintf(stderr
, "Hardware memory error!\n");
399 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
401 X86CPU
*cpu
= X86_CPU(c
);
402 CPUX86State
*env
= &cpu
->env
;
406 if ((env
->mcg_cap
& MCG_SER_P
) && addr
407 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
408 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
409 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
410 fprintf(stderr
, "Hardware memory error for memory used by "
411 "QEMU itself instead of guest system!\n");
412 /* Hope we are lucky for AO MCE */
413 if (code
== BUS_MCEERR_AO
) {
416 hardware_memory_error();
419 kvm_hwpoison_page_add(ram_addr
);
420 kvm_mce_inject(cpu
, paddr
, code
);
422 if (code
== BUS_MCEERR_AO
) {
424 } else if (code
== BUS_MCEERR_AR
) {
425 hardware_memory_error();
433 int kvm_arch_on_sigbus(int code
, void *addr
)
435 X86CPU
*cpu
= X86_CPU(first_cpu
);
437 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
441 /* Hope we are lucky for AO MCE */
442 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
443 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
445 fprintf(stderr
, "Hardware memory error for memory used by "
446 "QEMU itself instead of guest system!: %p\n", addr
);
449 kvm_hwpoison_page_add(ram_addr
);
450 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
452 if (code
== BUS_MCEERR_AO
) {
454 } else if (code
== BUS_MCEERR_AR
) {
455 hardware_memory_error();
463 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
465 CPUX86State
*env
= &cpu
->env
;
467 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
468 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
469 struct kvm_x86_mce mce
;
471 env
->exception_injected
= -1;
474 * There must be at least one bank in use if an MCE is pending.
475 * Find it and use its values for the event injection.
477 for (bank
= 0; bank
< bank_num
; bank
++) {
478 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
482 assert(bank
< bank_num
);
485 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
486 mce
.mcg_status
= env
->mcg_status
;
487 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
488 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
490 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
495 static void cpu_update_state(void *opaque
, int running
, RunState state
)
497 CPUX86State
*env
= opaque
;
500 env
->tsc_valid
= false;
504 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
506 X86CPU
*cpu
= X86_CPU(cs
);
510 #ifndef KVM_CPUID_SIGNATURE_NEXT
511 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
514 static bool hyperv_hypercall_available(X86CPU
*cpu
)
516 return cpu
->hyperv_vapic
||
517 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
520 static bool hyperv_enabled(X86CPU
*cpu
)
522 CPUState
*cs
= CPU(cpu
);
523 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
524 (hyperv_hypercall_available(cpu
) ||
526 cpu
->hyperv_relaxed_timing
||
529 cpu
->hyperv_vpindex
||
530 cpu
->hyperv_runtime
||
535 static Error
*invtsc_mig_blocker
;
537 #define KVM_MAX_CPUID_ENTRIES 100
539 int kvm_arch_init_vcpu(CPUState
*cs
)
542 struct kvm_cpuid2 cpuid
;
543 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
544 } QEMU_PACKED cpuid_data
;
545 X86CPU
*cpu
= X86_CPU(cs
);
546 CPUX86State
*env
= &cpu
->env
;
547 uint32_t limit
, i
, j
, cpuid_i
;
549 struct kvm_cpuid_entry2
*c
;
550 uint32_t signature
[3];
551 int kvm_base
= KVM_CPUID_SIGNATURE
;
554 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
558 /* Paravirtualization CPUIDs */
559 if (hyperv_enabled(cpu
)) {
560 c
= &cpuid_data
.entries
[cpuid_i
++];
561 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
562 if (!cpu
->hyperv_vendor_id
) {
563 memcpy(signature
, "Microsoft Hv", 12);
565 size_t len
= strlen(cpu
->hyperv_vendor_id
);
568 error_report("hv-vendor-id truncated to 12 characters");
571 memset(signature
, 0, 12);
572 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
574 c
->eax
= HYPERV_CPUID_MIN
;
575 c
->ebx
= signature
[0];
576 c
->ecx
= signature
[1];
577 c
->edx
= signature
[2];
579 c
= &cpuid_data
.entries
[cpuid_i
++];
580 c
->function
= HYPERV_CPUID_INTERFACE
;
581 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
582 c
->eax
= signature
[0];
587 c
= &cpuid_data
.entries
[cpuid_i
++];
588 c
->function
= HYPERV_CPUID_VERSION
;
592 c
= &cpuid_data
.entries
[cpuid_i
++];
593 c
->function
= HYPERV_CPUID_FEATURES
;
594 if (cpu
->hyperv_relaxed_timing
) {
595 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
597 if (cpu
->hyperv_vapic
) {
598 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
599 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
600 has_msr_hv_vapic
= true;
602 if (cpu
->hyperv_time
&&
603 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
604 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
605 c
->eax
|= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
607 has_msr_hv_tsc
= true;
609 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
610 c
->edx
|= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
612 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
613 c
->eax
|= HV_X64_MSR_RESET_AVAILABLE
;
615 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
616 c
->eax
|= HV_X64_MSR_VP_INDEX_AVAILABLE
;
618 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
619 c
->eax
|= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
621 if (cpu
->hyperv_synic
) {
624 if (!has_msr_hv_synic
||
625 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
626 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
630 c
->eax
|= HV_X64_MSR_SYNIC_AVAILABLE
;
631 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
632 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
633 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
636 if (cpu
->hyperv_stimer
) {
637 if (!has_msr_hv_stimer
) {
638 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
641 c
->eax
|= HV_X64_MSR_SYNTIMER_AVAILABLE
;
643 c
= &cpuid_data
.entries
[cpuid_i
++];
644 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
645 if (cpu
->hyperv_relaxed_timing
) {
646 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
648 if (has_msr_hv_vapic
) {
649 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
651 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
653 c
= &cpuid_data
.entries
[cpuid_i
++];
654 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
658 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
659 has_msr_hv_hypercall
= true;
662 if (cpu
->expose_kvm
) {
663 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
664 c
= &cpuid_data
.entries
[cpuid_i
++];
665 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
666 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
667 c
->ebx
= signature
[0];
668 c
->ecx
= signature
[1];
669 c
->edx
= signature
[2];
671 c
= &cpuid_data
.entries
[cpuid_i
++];
672 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
673 c
->eax
= env
->features
[FEAT_KVM
];
675 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
677 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
679 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
682 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
684 for (i
= 0; i
<= limit
; i
++) {
685 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
686 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
689 c
= &cpuid_data
.entries
[cpuid_i
++];
693 /* Keep reading function 2 till all the input is received */
697 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
698 KVM_CPUID_FLAG_STATE_READ_NEXT
;
699 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
700 times
= c
->eax
& 0xff;
702 for (j
= 1; j
< times
; ++j
) {
703 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
704 fprintf(stderr
, "cpuid_data is full, no space for "
705 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
708 c
= &cpuid_data
.entries
[cpuid_i
++];
710 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
711 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
719 if (i
== 0xd && j
== 64) {
723 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
725 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
727 if (i
== 4 && c
->eax
== 0) {
730 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
733 if (i
== 0xd && c
->eax
== 0) {
736 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
737 fprintf(stderr
, "cpuid_data is full, no space for "
738 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
741 c
= &cpuid_data
.entries
[cpuid_i
++];
747 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
755 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
756 if ((ver
& 0xff) > 0) {
757 has_msr_architectural_pmu
= true;
758 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
760 /* Shouldn't be more than 32, since that's the number of bits
761 * available in EBX to tell us _which_ counters are available.
764 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
765 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
770 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
772 for (i
= 0x80000000; i
<= limit
; i
++) {
773 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
774 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
777 c
= &cpuid_data
.entries
[cpuid_i
++];
781 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
784 /* Call Centaur's CPUID instructions they are supported. */
785 if (env
->cpuid_xlevel2
> 0) {
786 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
788 for (i
= 0xC0000000; i
<= limit
; i
++) {
789 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
790 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
793 c
= &cpuid_data
.entries
[cpuid_i
++];
797 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
801 cpuid_data
.cpuid
.nent
= cpuid_i
;
803 if (((env
->cpuid_version
>> 8)&0xF) >= 6
804 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
805 (CPUID_MCE
| CPUID_MCA
)
806 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
807 uint64_t mcg_cap
, unsupported_caps
;
811 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
813 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
817 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
818 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
819 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
823 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
824 if (unsupported_caps
) {
825 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
829 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
830 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
832 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
837 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
839 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
841 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
842 !!(c
->ecx
& CPUID_EXT_SMX
);
845 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
846 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
848 error_setg(&invtsc_mig_blocker
,
849 "State blocked by non-migratable CPU device"
851 migrate_add_blocker(invtsc_mig_blocker
);
853 vmstate_x86_cpu
.unmigratable
= 1;
856 cpuid_data
.cpuid
.padding
= 0;
857 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
862 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
);
863 if (r
&& env
->tsc_khz
) {
864 r
= kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
);
866 fprintf(stderr
, "KVM_SET_TSC_KHZ failed\n");
872 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
875 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
882 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
884 CPUX86State
*env
= &cpu
->env
;
886 env
->exception_injected
= -1;
887 env
->interrupt_injected
= -1;
889 if (kvm_irqchip_in_kernel()) {
890 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
891 KVM_MP_STATE_UNINITIALIZED
;
893 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
897 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
899 CPUX86State
*env
= &cpu
->env
;
901 /* APs get directly into wait-for-SIPI state. */
902 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
903 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
907 static int kvm_get_supported_msrs(KVMState
*s
)
909 static int kvm_supported_msrs
;
913 if (kvm_supported_msrs
== 0) {
914 struct kvm_msr_list msr_list
, *kvm_msr_list
;
916 kvm_supported_msrs
= -1;
918 /* Obtain MSR list from KVM. These are the MSRs that we must
921 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
922 if (ret
< 0 && ret
!= -E2BIG
) {
925 /* Old kernel modules had a bug and could write beyond the provided
926 memory. Allocate at least a safe amount of 1K. */
927 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
929 sizeof(msr_list
.indices
[0])));
931 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
932 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
936 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
937 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
941 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
942 has_msr_hsave_pa
= true;
945 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
946 has_msr_tsc_aux
= true;
949 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
950 has_msr_tsc_adjust
= true;
953 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
954 has_msr_tsc_deadline
= true;
957 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
958 has_msr_smbase
= true;
961 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
962 has_msr_misc_enable
= true;
965 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
966 has_msr_bndcfgs
= true;
969 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
973 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
974 has_msr_hv_crash
= true;
977 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
978 has_msr_hv_reset
= true;
981 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
982 has_msr_hv_vpindex
= true;
985 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
986 has_msr_hv_runtime
= true;
989 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
990 has_msr_hv_synic
= true;
993 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
994 has_msr_hv_stimer
= true;
1000 g_free(kvm_msr_list
);
1006 static Notifier smram_machine_done
;
1007 static KVMMemoryListener smram_listener
;
1008 static AddressSpace smram_address_space
;
1009 static MemoryRegion smram_as_root
;
1010 static MemoryRegion smram_as_mem
;
1012 static void register_smram_listener(Notifier
*n
, void *unused
)
1014 MemoryRegion
*smram
=
1015 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1017 /* Outer container... */
1018 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1019 memory_region_set_enabled(&smram_as_root
, true);
1021 /* ... with two regions inside: normal system memory with low
1024 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1025 get_system_memory(), 0, ~0ull);
1026 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1027 memory_region_set_enabled(&smram_as_mem
, true);
1030 /* ... SMRAM with higher priority */
1031 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1032 memory_region_set_enabled(smram
, true);
1035 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1036 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1037 &smram_address_space
, 1);
1040 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1042 uint64_t identity_base
= 0xfffbc000;
1043 uint64_t shadow_mem
;
1045 struct utsname utsname
;
1047 #ifdef KVM_CAP_XSAVE
1048 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1052 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1055 #ifdef KVM_CAP_PIT_STATE2
1056 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1059 ret
= kvm_get_supported_msrs(s
);
1065 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1068 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1069 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1070 * Since these must be part of guest physical memory, we need to allocate
1071 * them, both by setting their start addresses in the kernel and by
1072 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1074 * Older KVM versions may not support setting the identity map base. In
1075 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1078 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1079 /* Allows up to 16M BIOSes. */
1080 identity_base
= 0xfeffc000;
1082 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1088 /* Set TSS base one page after EPT identity map. */
1089 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1094 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1095 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1097 fprintf(stderr
, "e820_add_entry() table is full\n");
1100 qemu_register_reset(kvm_unpoison_all
, NULL
);
1102 shadow_mem
= machine_kvm_shadow_mem(ms
);
1103 if (shadow_mem
!= -1) {
1105 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1111 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1112 smram_machine_done
.notify
= register_smram_listener
;
1113 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1118 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1120 lhs
->selector
= rhs
->selector
;
1121 lhs
->base
= rhs
->base
;
1122 lhs
->limit
= rhs
->limit
;
1134 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1136 unsigned flags
= rhs
->flags
;
1137 lhs
->selector
= rhs
->selector
;
1138 lhs
->base
= rhs
->base
;
1139 lhs
->limit
= rhs
->limit
;
1140 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1141 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1142 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1143 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1144 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1145 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1146 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1147 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1148 lhs
->unusable
= !lhs
->present
;
1152 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1154 lhs
->selector
= rhs
->selector
;
1155 lhs
->base
= rhs
->base
;
1156 lhs
->limit
= rhs
->limit
;
1157 if (rhs
->unusable
) {
1160 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1161 (rhs
->present
* DESC_P_MASK
) |
1162 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1163 (rhs
->db
<< DESC_B_SHIFT
) |
1164 (rhs
->s
* DESC_S_MASK
) |
1165 (rhs
->l
<< DESC_L_SHIFT
) |
1166 (rhs
->g
* DESC_G_MASK
) |
1167 (rhs
->avl
* DESC_AVL_MASK
);
1171 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1174 *kvm_reg
= *qemu_reg
;
1176 *qemu_reg
= *kvm_reg
;
1180 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1182 CPUX86State
*env
= &cpu
->env
;
1183 struct kvm_regs regs
;
1187 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1193 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1194 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1195 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1196 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1197 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1198 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1199 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1200 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1201 #ifdef TARGET_X86_64
1202 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1203 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1204 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1205 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1206 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1207 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1208 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1209 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1212 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1213 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1216 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1222 static int kvm_put_fpu(X86CPU
*cpu
)
1224 CPUX86State
*env
= &cpu
->env
;
1228 memset(&fpu
, 0, sizeof fpu
);
1229 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1230 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1231 fpu
.fcw
= env
->fpuc
;
1232 fpu
.last_opcode
= env
->fpop
;
1233 fpu
.last_ip
= env
->fpip
;
1234 fpu
.last_dp
= env
->fpdp
;
1235 for (i
= 0; i
< 8; ++i
) {
1236 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1238 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1239 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1240 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].XMM_Q(0));
1241 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].XMM_Q(1));
1243 fpu
.mxcsr
= env
->mxcsr
;
1245 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1248 #define XSAVE_FCW_FSW 0
1249 #define XSAVE_FTW_FOP 1
1250 #define XSAVE_CWD_RIP 2
1251 #define XSAVE_CWD_RDP 4
1252 #define XSAVE_MXCSR 6
1253 #define XSAVE_ST_SPACE 8
1254 #define XSAVE_XMM_SPACE 40
1255 #define XSAVE_XSTATE_BV 128
1256 #define XSAVE_YMMH_SPACE 144
1257 #define XSAVE_BNDREGS 240
1258 #define XSAVE_BNDCSR 256
1259 #define XSAVE_OPMASK 272
1260 #define XSAVE_ZMM_Hi256 288
1261 #define XSAVE_Hi16_ZMM 416
1263 static int kvm_put_xsave(X86CPU
*cpu
)
1265 CPUX86State
*env
= &cpu
->env
;
1266 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1267 uint16_t cwd
, swd
, twd
;
1268 uint8_t *xmm
, *ymmh
, *zmmh
;
1272 return kvm_put_fpu(cpu
);
1275 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1277 swd
= env
->fpus
& ~(7 << 11);
1278 swd
|= (env
->fpstt
& 7) << 11;
1280 for (i
= 0; i
< 8; ++i
) {
1281 twd
|= (!env
->fptags
[i
]) << i
;
1283 xsave
->region
[XSAVE_FCW_FSW
] = (uint32_t)(swd
<< 16) + cwd
;
1284 xsave
->region
[XSAVE_FTW_FOP
] = (uint32_t)(env
->fpop
<< 16) + twd
;
1285 memcpy(&xsave
->region
[XSAVE_CWD_RIP
], &env
->fpip
, sizeof(env
->fpip
));
1286 memcpy(&xsave
->region
[XSAVE_CWD_RDP
], &env
->fpdp
, sizeof(env
->fpdp
));
1287 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
1288 sizeof env
->fpregs
);
1289 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
1290 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
1291 memcpy(&xsave
->region
[XSAVE_BNDREGS
], env
->bnd_regs
,
1292 sizeof env
->bnd_regs
);
1293 memcpy(&xsave
->region
[XSAVE_BNDCSR
], &env
->bndcs_regs
,
1294 sizeof(env
->bndcs_regs
));
1295 memcpy(&xsave
->region
[XSAVE_OPMASK
], env
->opmask_regs
,
1296 sizeof env
->opmask_regs
);
1298 xmm
= (uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1299 ymmh
= (uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1300 zmmh
= (uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1301 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1302 stq_p(xmm
, env
->xmm_regs
[i
].XMM_Q(0));
1303 stq_p(xmm
+8, env
->xmm_regs
[i
].XMM_Q(1));
1304 stq_p(ymmh
, env
->xmm_regs
[i
].XMM_Q(2));
1305 stq_p(ymmh
+8, env
->xmm_regs
[i
].XMM_Q(3));
1306 stq_p(zmmh
, env
->xmm_regs
[i
].XMM_Q(4));
1307 stq_p(zmmh
+8, env
->xmm_regs
[i
].XMM_Q(5));
1308 stq_p(zmmh
+16, env
->xmm_regs
[i
].XMM_Q(6));
1309 stq_p(zmmh
+24, env
->xmm_regs
[i
].XMM_Q(7));
1312 #ifdef TARGET_X86_64
1313 memcpy(&xsave
->region
[XSAVE_Hi16_ZMM
], &env
->xmm_regs
[16],
1314 16 * sizeof env
->xmm_regs
[16]);
1316 r
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1320 static int kvm_put_xcrs(X86CPU
*cpu
)
1322 CPUX86State
*env
= &cpu
->env
;
1323 struct kvm_xcrs xcrs
= {};
1331 xcrs
.xcrs
[0].xcr
= 0;
1332 xcrs
.xcrs
[0].value
= env
->xcr0
;
1333 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1336 static int kvm_put_sregs(X86CPU
*cpu
)
1338 CPUX86State
*env
= &cpu
->env
;
1339 struct kvm_sregs sregs
;
1341 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1342 if (env
->interrupt_injected
>= 0) {
1343 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1344 (uint64_t)1 << (env
->interrupt_injected
% 64);
1347 if ((env
->eflags
& VM_MASK
)) {
1348 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1349 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1350 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1351 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1352 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1353 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1355 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1356 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1357 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1358 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1359 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1360 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1363 set_seg(&sregs
.tr
, &env
->tr
);
1364 set_seg(&sregs
.ldt
, &env
->ldt
);
1366 sregs
.idt
.limit
= env
->idt
.limit
;
1367 sregs
.idt
.base
= env
->idt
.base
;
1368 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1369 sregs
.gdt
.limit
= env
->gdt
.limit
;
1370 sregs
.gdt
.base
= env
->gdt
.base
;
1371 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1373 sregs
.cr0
= env
->cr
[0];
1374 sregs
.cr2
= env
->cr
[2];
1375 sregs
.cr3
= env
->cr
[3];
1376 sregs
.cr4
= env
->cr
[4];
1378 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1379 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1381 sregs
.efer
= env
->efer
;
1383 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1386 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
1387 uint32_t index
, uint64_t value
)
1389 entry
->index
= index
;
1390 entry
->reserved
= 0;
1391 entry
->data
= value
;
1394 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1396 CPUX86State
*env
= &cpu
->env
;
1398 struct kvm_msrs info
;
1399 struct kvm_msr_entry entries
[1];
1401 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1403 if (!has_msr_tsc_deadline
) {
1407 kvm_msr_entry_set(&msrs
[0], MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1409 msr_data
.info
= (struct kvm_msrs
) {
1413 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1417 * Provide a separate write service for the feature control MSR in order to
1418 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1419 * before writing any other state because forcibly leaving nested mode
1420 * invalidates the VCPU state.
1422 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1425 struct kvm_msrs info
;
1426 struct kvm_msr_entry entry
;
1429 kvm_msr_entry_set(&msr_data
.entry
, MSR_IA32_FEATURE_CONTROL
,
1430 cpu
->env
.msr_ia32_feature_control
);
1432 msr_data
.info
= (struct kvm_msrs
) {
1436 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1439 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1441 CPUX86State
*env
= &cpu
->env
;
1443 struct kvm_msrs info
;
1444 struct kvm_msr_entry entries
[150];
1446 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1449 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1450 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1451 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1452 kvm_msr_entry_set(&msrs
[n
++], MSR_PAT
, env
->pat
);
1454 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
1456 if (has_msr_hsave_pa
) {
1457 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1459 if (has_msr_tsc_aux
) {
1460 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_AUX
, env
->tsc_aux
);
1462 if (has_msr_tsc_adjust
) {
1463 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_ADJUST
, env
->tsc_adjust
);
1465 if (has_msr_misc_enable
) {
1466 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_MISC_ENABLE
,
1467 env
->msr_ia32_misc_enable
);
1469 if (has_msr_smbase
) {
1470 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SMBASE
, env
->smbase
);
1472 if (has_msr_bndcfgs
) {
1473 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1476 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_XSS
, env
->xss
);
1478 #ifdef TARGET_X86_64
1479 if (lm_capable_kernel
) {
1480 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
1481 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
1482 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
1483 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
1487 * The following MSRs have side effects on the guest or are too heavy
1488 * for normal writeback. Limit them to reset or full state updates.
1490 if (level
>= KVM_PUT_RESET_STATE
) {
1491 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
1492 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
1493 env
->system_time_msr
);
1494 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1495 if (has_msr_async_pf_en
) {
1496 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
1497 env
->async_pf_en_msr
);
1499 if (has_msr_pv_eoi_en
) {
1500 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_PV_EOI_EN
,
1501 env
->pv_eoi_en_msr
);
1503 if (has_msr_kvm_steal_time
) {
1504 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_STEAL_TIME
,
1505 env
->steal_time_msr
);
1507 if (has_msr_architectural_pmu
) {
1508 /* Stop the counter. */
1509 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1510 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1512 /* Set the counter values. */
1513 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1514 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR0
+ i
,
1515 env
->msr_fixed_counters
[i
]);
1517 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1518 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_PERFCTR0
+ i
,
1519 env
->msr_gp_counters
[i
]);
1520 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_EVNTSEL0
+ i
,
1521 env
->msr_gp_evtsel
[i
]);
1523 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_STATUS
,
1524 env
->msr_global_status
);
1525 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1526 env
->msr_global_ovf_ctrl
);
1528 /* Now start the PMU. */
1529 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
,
1530 env
->msr_fixed_ctr_ctrl
);
1531 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
,
1532 env
->msr_global_ctrl
);
1534 if (has_msr_hv_hypercall
) {
1535 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_GUEST_OS_ID
,
1536 env
->msr_hv_guest_os_id
);
1537 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_HYPERCALL
,
1538 env
->msr_hv_hypercall
);
1540 if (has_msr_hv_vapic
) {
1541 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_APIC_ASSIST_PAGE
,
1544 if (has_msr_hv_tsc
) {
1545 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_REFERENCE_TSC
,
1548 if (has_msr_hv_crash
) {
1551 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1552 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_P0
+ j
,
1553 env
->msr_hv_crash_params
[j
]);
1555 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_CTL
,
1556 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1558 if (has_msr_hv_runtime
) {
1559 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_VP_RUNTIME
,
1560 env
->msr_hv_runtime
);
1562 if (cpu
->hyperv_synic
) {
1565 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SCONTROL
,
1566 env
->msr_hv_synic_control
);
1567 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SVERSION
,
1568 env
->msr_hv_synic_version
);
1569 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SIEFP
,
1570 env
->msr_hv_synic_evt_page
);
1571 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SIMP
,
1572 env
->msr_hv_synic_msg_page
);
1574 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1575 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SINT0
+ j
,
1576 env
->msr_hv_synic_sint
[j
]);
1579 if (has_msr_hv_stimer
) {
1582 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1583 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_STIMER0_CONFIG
+ j
*2,
1584 env
->msr_hv_stimer_config
[j
]);
1587 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1588 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_STIMER0_COUNT
+ j
*2,
1589 env
->msr_hv_stimer_count
[j
]);
1593 kvm_msr_entry_set(&msrs
[n
++], MSR_MTRRdefType
, env
->mtrr_deftype
);
1594 kvm_msr_entry_set(&msrs
[n
++],
1595 MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1596 kvm_msr_entry_set(&msrs
[n
++],
1597 MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1598 kvm_msr_entry_set(&msrs
[n
++],
1599 MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1600 kvm_msr_entry_set(&msrs
[n
++],
1601 MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1602 kvm_msr_entry_set(&msrs
[n
++],
1603 MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1604 kvm_msr_entry_set(&msrs
[n
++],
1605 MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1606 kvm_msr_entry_set(&msrs
[n
++],
1607 MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1608 kvm_msr_entry_set(&msrs
[n
++],
1609 MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1610 kvm_msr_entry_set(&msrs
[n
++],
1611 MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1612 kvm_msr_entry_set(&msrs
[n
++],
1613 MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1614 kvm_msr_entry_set(&msrs
[n
++],
1615 MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1616 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1617 kvm_msr_entry_set(&msrs
[n
++],
1618 MSR_MTRRphysBase(i
), env
->mtrr_var
[i
].base
);
1619 kvm_msr_entry_set(&msrs
[n
++],
1620 MSR_MTRRphysMask(i
), env
->mtrr_var
[i
].mask
);
1624 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1625 * kvm_put_msr_feature_control. */
1630 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
1631 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
1632 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1633 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1637 msr_data
.info
= (struct kvm_msrs
) {
1641 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1646 static int kvm_get_fpu(X86CPU
*cpu
)
1648 CPUX86State
*env
= &cpu
->env
;
1652 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1657 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1658 env
->fpus
= fpu
.fsw
;
1659 env
->fpuc
= fpu
.fcw
;
1660 env
->fpop
= fpu
.last_opcode
;
1661 env
->fpip
= fpu
.last_ip
;
1662 env
->fpdp
= fpu
.last_dp
;
1663 for (i
= 0; i
< 8; ++i
) {
1664 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1666 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1667 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1668 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1669 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1671 env
->mxcsr
= fpu
.mxcsr
;
1676 static int kvm_get_xsave(X86CPU
*cpu
)
1678 CPUX86State
*env
= &cpu
->env
;
1679 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1681 const uint8_t *xmm
, *ymmh
, *zmmh
;
1682 uint16_t cwd
, swd
, twd
;
1685 return kvm_get_fpu(cpu
);
1688 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1693 cwd
= (uint16_t)xsave
->region
[XSAVE_FCW_FSW
];
1694 swd
= (uint16_t)(xsave
->region
[XSAVE_FCW_FSW
] >> 16);
1695 twd
= (uint16_t)xsave
->region
[XSAVE_FTW_FOP
];
1696 env
->fpop
= (uint16_t)(xsave
->region
[XSAVE_FTW_FOP
] >> 16);
1697 env
->fpstt
= (swd
>> 11) & 7;
1700 for (i
= 0; i
< 8; ++i
) {
1701 env
->fptags
[i
] = !((twd
>> i
) & 1);
1703 memcpy(&env
->fpip
, &xsave
->region
[XSAVE_CWD_RIP
], sizeof(env
->fpip
));
1704 memcpy(&env
->fpdp
, &xsave
->region
[XSAVE_CWD_RDP
], sizeof(env
->fpdp
));
1705 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
1706 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
1707 sizeof env
->fpregs
);
1708 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
1709 memcpy(env
->bnd_regs
, &xsave
->region
[XSAVE_BNDREGS
],
1710 sizeof env
->bnd_regs
);
1711 memcpy(&env
->bndcs_regs
, &xsave
->region
[XSAVE_BNDCSR
],
1712 sizeof(env
->bndcs_regs
));
1713 memcpy(env
->opmask_regs
, &xsave
->region
[XSAVE_OPMASK
],
1714 sizeof env
->opmask_regs
);
1716 xmm
= (const uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1717 ymmh
= (const uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1718 zmmh
= (const uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1719 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1720 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(xmm
);
1721 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(xmm
+8);
1722 env
->xmm_regs
[i
].XMM_Q(2) = ldq_p(ymmh
);
1723 env
->xmm_regs
[i
].XMM_Q(3) = ldq_p(ymmh
+8);
1724 env
->xmm_regs
[i
].XMM_Q(4) = ldq_p(zmmh
);
1725 env
->xmm_regs
[i
].XMM_Q(5) = ldq_p(zmmh
+8);
1726 env
->xmm_regs
[i
].XMM_Q(6) = ldq_p(zmmh
+16);
1727 env
->xmm_regs
[i
].XMM_Q(7) = ldq_p(zmmh
+24);
1730 #ifdef TARGET_X86_64
1731 memcpy(&env
->xmm_regs
[16], &xsave
->region
[XSAVE_Hi16_ZMM
],
1732 16 * sizeof env
->xmm_regs
[16]);
1737 static int kvm_get_xcrs(X86CPU
*cpu
)
1739 CPUX86State
*env
= &cpu
->env
;
1741 struct kvm_xcrs xcrs
;
1747 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1752 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1753 /* Only support xcr0 now */
1754 if (xcrs
.xcrs
[i
].xcr
== 0) {
1755 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1762 static int kvm_get_sregs(X86CPU
*cpu
)
1764 CPUX86State
*env
= &cpu
->env
;
1765 struct kvm_sregs sregs
;
1769 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1774 /* There can only be one pending IRQ set in the bitmap at a time, so try
1775 to find it and save its number instead (-1 for none). */
1776 env
->interrupt_injected
= -1;
1777 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1778 if (sregs
.interrupt_bitmap
[i
]) {
1779 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1780 env
->interrupt_injected
= i
* 64 + bit
;
1785 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1786 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1787 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1788 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1789 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1790 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1792 get_seg(&env
->tr
, &sregs
.tr
);
1793 get_seg(&env
->ldt
, &sregs
.ldt
);
1795 env
->idt
.limit
= sregs
.idt
.limit
;
1796 env
->idt
.base
= sregs
.idt
.base
;
1797 env
->gdt
.limit
= sregs
.gdt
.limit
;
1798 env
->gdt
.base
= sregs
.gdt
.base
;
1800 env
->cr
[0] = sregs
.cr0
;
1801 env
->cr
[2] = sregs
.cr2
;
1802 env
->cr
[3] = sregs
.cr3
;
1803 env
->cr
[4] = sregs
.cr4
;
1805 env
->efer
= sregs
.efer
;
1807 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1809 #define HFLAG_COPY_MASK \
1810 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1811 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1812 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1813 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1815 hflags
= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1816 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1817 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1818 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1819 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1820 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
1821 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
1823 if (env
->efer
& MSR_EFER_LMA
) {
1824 hflags
|= HF_LMA_MASK
;
1827 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1828 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1830 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1831 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1832 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1833 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1834 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1835 !(hflags
& HF_CS32_MASK
)) {
1836 hflags
|= HF_ADDSEG_MASK
;
1838 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1839 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1842 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
1847 static int kvm_get_msrs(X86CPU
*cpu
)
1849 CPUX86State
*env
= &cpu
->env
;
1851 struct kvm_msrs info
;
1852 struct kvm_msr_entry entries
[150];
1854 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1858 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1859 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1860 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1861 msrs
[n
++].index
= MSR_PAT
;
1863 msrs
[n
++].index
= MSR_STAR
;
1865 if (has_msr_hsave_pa
) {
1866 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1868 if (has_msr_tsc_aux
) {
1869 msrs
[n
++].index
= MSR_TSC_AUX
;
1871 if (has_msr_tsc_adjust
) {
1872 msrs
[n
++].index
= MSR_TSC_ADJUST
;
1874 if (has_msr_tsc_deadline
) {
1875 msrs
[n
++].index
= MSR_IA32_TSCDEADLINE
;
1877 if (has_msr_misc_enable
) {
1878 msrs
[n
++].index
= MSR_IA32_MISC_ENABLE
;
1880 if (has_msr_smbase
) {
1881 msrs
[n
++].index
= MSR_IA32_SMBASE
;
1883 if (has_msr_feature_control
) {
1884 msrs
[n
++].index
= MSR_IA32_FEATURE_CONTROL
;
1886 if (has_msr_bndcfgs
) {
1887 msrs
[n
++].index
= MSR_IA32_BNDCFGS
;
1890 msrs
[n
++].index
= MSR_IA32_XSS
;
1894 if (!env
->tsc_valid
) {
1895 msrs
[n
++].index
= MSR_IA32_TSC
;
1896 env
->tsc_valid
= !runstate_is_running();
1899 #ifdef TARGET_X86_64
1900 if (lm_capable_kernel
) {
1901 msrs
[n
++].index
= MSR_CSTAR
;
1902 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1903 msrs
[n
++].index
= MSR_FMASK
;
1904 msrs
[n
++].index
= MSR_LSTAR
;
1907 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1908 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1909 if (has_msr_async_pf_en
) {
1910 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1912 if (has_msr_pv_eoi_en
) {
1913 msrs
[n
++].index
= MSR_KVM_PV_EOI_EN
;
1915 if (has_msr_kvm_steal_time
) {
1916 msrs
[n
++].index
= MSR_KVM_STEAL_TIME
;
1918 if (has_msr_architectural_pmu
) {
1919 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR_CTRL
;
1920 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_CTRL
;
1921 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_STATUS
;
1922 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_OVF_CTRL
;
1923 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1924 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR0
+ i
;
1926 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1927 msrs
[n
++].index
= MSR_P6_PERFCTR0
+ i
;
1928 msrs
[n
++].index
= MSR_P6_EVNTSEL0
+ i
;
1933 msrs
[n
++].index
= MSR_MCG_STATUS
;
1934 msrs
[n
++].index
= MSR_MCG_CTL
;
1935 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1936 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1940 if (has_msr_hv_hypercall
) {
1941 msrs
[n
++].index
= HV_X64_MSR_HYPERCALL
;
1942 msrs
[n
++].index
= HV_X64_MSR_GUEST_OS_ID
;
1944 if (has_msr_hv_vapic
) {
1945 msrs
[n
++].index
= HV_X64_MSR_APIC_ASSIST_PAGE
;
1947 if (has_msr_hv_tsc
) {
1948 msrs
[n
++].index
= HV_X64_MSR_REFERENCE_TSC
;
1950 if (has_msr_hv_crash
) {
1953 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
1954 msrs
[n
++].index
= HV_X64_MSR_CRASH_P0
+ j
;
1957 if (has_msr_hv_runtime
) {
1958 msrs
[n
++].index
= HV_X64_MSR_VP_RUNTIME
;
1960 if (cpu
->hyperv_synic
) {
1963 msrs
[n
++].index
= HV_X64_MSR_SCONTROL
;
1964 msrs
[n
++].index
= HV_X64_MSR_SVERSION
;
1965 msrs
[n
++].index
= HV_X64_MSR_SIEFP
;
1966 msrs
[n
++].index
= HV_X64_MSR_SIMP
;
1967 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
1968 msrs
[n
++].index
= msr
;
1971 if (has_msr_hv_stimer
) {
1974 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
1976 msrs
[n
++].index
= msr
;
1980 msrs
[n
++].index
= MSR_MTRRdefType
;
1981 msrs
[n
++].index
= MSR_MTRRfix64K_00000
;
1982 msrs
[n
++].index
= MSR_MTRRfix16K_80000
;
1983 msrs
[n
++].index
= MSR_MTRRfix16K_A0000
;
1984 msrs
[n
++].index
= MSR_MTRRfix4K_C0000
;
1985 msrs
[n
++].index
= MSR_MTRRfix4K_C8000
;
1986 msrs
[n
++].index
= MSR_MTRRfix4K_D0000
;
1987 msrs
[n
++].index
= MSR_MTRRfix4K_D8000
;
1988 msrs
[n
++].index
= MSR_MTRRfix4K_E0000
;
1989 msrs
[n
++].index
= MSR_MTRRfix4K_E8000
;
1990 msrs
[n
++].index
= MSR_MTRRfix4K_F0000
;
1991 msrs
[n
++].index
= MSR_MTRRfix4K_F8000
;
1992 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1993 msrs
[n
++].index
= MSR_MTRRphysBase(i
);
1994 msrs
[n
++].index
= MSR_MTRRphysMask(i
);
1998 msr_data
.info
= (struct kvm_msrs
) {
2002 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
2007 for (i
= 0; i
< ret
; i
++) {
2008 uint32_t index
= msrs
[i
].index
;
2010 case MSR_IA32_SYSENTER_CS
:
2011 env
->sysenter_cs
= msrs
[i
].data
;
2013 case MSR_IA32_SYSENTER_ESP
:
2014 env
->sysenter_esp
= msrs
[i
].data
;
2016 case MSR_IA32_SYSENTER_EIP
:
2017 env
->sysenter_eip
= msrs
[i
].data
;
2020 env
->pat
= msrs
[i
].data
;
2023 env
->star
= msrs
[i
].data
;
2025 #ifdef TARGET_X86_64
2027 env
->cstar
= msrs
[i
].data
;
2029 case MSR_KERNELGSBASE
:
2030 env
->kernelgsbase
= msrs
[i
].data
;
2033 env
->fmask
= msrs
[i
].data
;
2036 env
->lstar
= msrs
[i
].data
;
2040 env
->tsc
= msrs
[i
].data
;
2043 env
->tsc_aux
= msrs
[i
].data
;
2045 case MSR_TSC_ADJUST
:
2046 env
->tsc_adjust
= msrs
[i
].data
;
2048 case MSR_IA32_TSCDEADLINE
:
2049 env
->tsc_deadline
= msrs
[i
].data
;
2051 case MSR_VM_HSAVE_PA
:
2052 env
->vm_hsave
= msrs
[i
].data
;
2054 case MSR_KVM_SYSTEM_TIME
:
2055 env
->system_time_msr
= msrs
[i
].data
;
2057 case MSR_KVM_WALL_CLOCK
:
2058 env
->wall_clock_msr
= msrs
[i
].data
;
2060 case MSR_MCG_STATUS
:
2061 env
->mcg_status
= msrs
[i
].data
;
2064 env
->mcg_ctl
= msrs
[i
].data
;
2066 case MSR_IA32_MISC_ENABLE
:
2067 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2069 case MSR_IA32_SMBASE
:
2070 env
->smbase
= msrs
[i
].data
;
2072 case MSR_IA32_FEATURE_CONTROL
:
2073 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2075 case MSR_IA32_BNDCFGS
:
2076 env
->msr_bndcfgs
= msrs
[i
].data
;
2079 env
->xss
= msrs
[i
].data
;
2082 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2083 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2084 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2087 case MSR_KVM_ASYNC_PF_EN
:
2088 env
->async_pf_en_msr
= msrs
[i
].data
;
2090 case MSR_KVM_PV_EOI_EN
:
2091 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2093 case MSR_KVM_STEAL_TIME
:
2094 env
->steal_time_msr
= msrs
[i
].data
;
2096 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2097 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2099 case MSR_CORE_PERF_GLOBAL_CTRL
:
2100 env
->msr_global_ctrl
= msrs
[i
].data
;
2102 case MSR_CORE_PERF_GLOBAL_STATUS
:
2103 env
->msr_global_status
= msrs
[i
].data
;
2105 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2106 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2108 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2109 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2111 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2112 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2114 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2115 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2117 case HV_X64_MSR_HYPERCALL
:
2118 env
->msr_hv_hypercall
= msrs
[i
].data
;
2120 case HV_X64_MSR_GUEST_OS_ID
:
2121 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2123 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2124 env
->msr_hv_vapic
= msrs
[i
].data
;
2126 case HV_X64_MSR_REFERENCE_TSC
:
2127 env
->msr_hv_tsc
= msrs
[i
].data
;
2129 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2130 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2132 case HV_X64_MSR_VP_RUNTIME
:
2133 env
->msr_hv_runtime
= msrs
[i
].data
;
2135 case HV_X64_MSR_SCONTROL
:
2136 env
->msr_hv_synic_control
= msrs
[i
].data
;
2138 case HV_X64_MSR_SVERSION
:
2139 env
->msr_hv_synic_version
= msrs
[i
].data
;
2141 case HV_X64_MSR_SIEFP
:
2142 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2144 case HV_X64_MSR_SIMP
:
2145 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2147 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2148 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2150 case HV_X64_MSR_STIMER0_CONFIG
:
2151 case HV_X64_MSR_STIMER1_CONFIG
:
2152 case HV_X64_MSR_STIMER2_CONFIG
:
2153 case HV_X64_MSR_STIMER3_CONFIG
:
2154 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2157 case HV_X64_MSR_STIMER0_COUNT
:
2158 case HV_X64_MSR_STIMER1_COUNT
:
2159 case HV_X64_MSR_STIMER2_COUNT
:
2160 case HV_X64_MSR_STIMER3_COUNT
:
2161 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2164 case MSR_MTRRdefType
:
2165 env
->mtrr_deftype
= msrs
[i
].data
;
2167 case MSR_MTRRfix64K_00000
:
2168 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2170 case MSR_MTRRfix16K_80000
:
2171 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2173 case MSR_MTRRfix16K_A0000
:
2174 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2176 case MSR_MTRRfix4K_C0000
:
2177 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2179 case MSR_MTRRfix4K_C8000
:
2180 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2182 case MSR_MTRRfix4K_D0000
:
2183 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2185 case MSR_MTRRfix4K_D8000
:
2186 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2188 case MSR_MTRRfix4K_E0000
:
2189 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2191 case MSR_MTRRfix4K_E8000
:
2192 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2194 case MSR_MTRRfix4K_F0000
:
2195 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2197 case MSR_MTRRfix4K_F8000
:
2198 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2200 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2202 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
2204 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2213 static int kvm_put_mp_state(X86CPU
*cpu
)
2215 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2217 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2220 static int kvm_get_mp_state(X86CPU
*cpu
)
2222 CPUState
*cs
= CPU(cpu
);
2223 CPUX86State
*env
= &cpu
->env
;
2224 struct kvm_mp_state mp_state
;
2227 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2231 env
->mp_state
= mp_state
.mp_state
;
2232 if (kvm_irqchip_in_kernel()) {
2233 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2238 static int kvm_get_apic(X86CPU
*cpu
)
2240 DeviceState
*apic
= cpu
->apic_state
;
2241 struct kvm_lapic_state kapic
;
2244 if (apic
&& kvm_irqchip_in_kernel()) {
2245 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2250 kvm_get_apic_state(apic
, &kapic
);
2255 static int kvm_put_apic(X86CPU
*cpu
)
2257 DeviceState
*apic
= cpu
->apic_state
;
2258 struct kvm_lapic_state kapic
;
2260 if (apic
&& kvm_irqchip_in_kernel()) {
2261 kvm_put_apic_state(apic
, &kapic
);
2263 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2268 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2270 CPUState
*cs
= CPU(cpu
);
2271 CPUX86State
*env
= &cpu
->env
;
2272 struct kvm_vcpu_events events
= {};
2274 if (!kvm_has_vcpu_events()) {
2278 events
.exception
.injected
= (env
->exception_injected
>= 0);
2279 events
.exception
.nr
= env
->exception_injected
;
2280 events
.exception
.has_error_code
= env
->has_error_code
;
2281 events
.exception
.error_code
= env
->error_code
;
2282 events
.exception
.pad
= 0;
2284 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2285 events
.interrupt
.nr
= env
->interrupt_injected
;
2286 events
.interrupt
.soft
= env
->soft_interrupt
;
2288 events
.nmi
.injected
= env
->nmi_injected
;
2289 events
.nmi
.pending
= env
->nmi_pending
;
2290 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2293 events
.sipi_vector
= env
->sipi_vector
;
2295 if (has_msr_smbase
) {
2296 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2297 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2298 if (kvm_irqchip_in_kernel()) {
2299 /* As soon as these are moved to the kernel, remove them
2300 * from cs->interrupt_request.
2302 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2303 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2304 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2306 /* Keep these in cs->interrupt_request. */
2307 events
.smi
.pending
= 0;
2308 events
.smi
.latched_init
= 0;
2310 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2314 if (level
>= KVM_PUT_RESET_STATE
) {
2316 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2319 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2322 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2324 CPUX86State
*env
= &cpu
->env
;
2325 struct kvm_vcpu_events events
;
2328 if (!kvm_has_vcpu_events()) {
2332 memset(&events
, 0, sizeof(events
));
2333 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2337 env
->exception_injected
=
2338 events
.exception
.injected
? events
.exception
.nr
: -1;
2339 env
->has_error_code
= events
.exception
.has_error_code
;
2340 env
->error_code
= events
.exception
.error_code
;
2342 env
->interrupt_injected
=
2343 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2344 env
->soft_interrupt
= events
.interrupt
.soft
;
2346 env
->nmi_injected
= events
.nmi
.injected
;
2347 env
->nmi_pending
= events
.nmi
.pending
;
2348 if (events
.nmi
.masked
) {
2349 env
->hflags2
|= HF2_NMI_MASK
;
2351 env
->hflags2
&= ~HF2_NMI_MASK
;
2354 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2355 if (events
.smi
.smm
) {
2356 env
->hflags
|= HF_SMM_MASK
;
2358 env
->hflags
&= ~HF_SMM_MASK
;
2360 if (events
.smi
.pending
) {
2361 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2363 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2365 if (events
.smi
.smm_inside_nmi
) {
2366 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2368 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2370 if (events
.smi
.latched_init
) {
2371 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2373 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2377 env
->sipi_vector
= events
.sipi_vector
;
2382 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2384 CPUState
*cs
= CPU(cpu
);
2385 CPUX86State
*env
= &cpu
->env
;
2387 unsigned long reinject_trap
= 0;
2389 if (!kvm_has_vcpu_events()) {
2390 if (env
->exception_injected
== 1) {
2391 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2392 } else if (env
->exception_injected
== 3) {
2393 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2395 env
->exception_injected
= -1;
2399 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2400 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2401 * by updating the debug state once again if single-stepping is on.
2402 * Another reason to call kvm_update_guest_debug here is a pending debug
2403 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2404 * reinject them via SET_GUEST_DEBUG.
2406 if (reinject_trap
||
2407 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2408 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2413 static int kvm_put_debugregs(X86CPU
*cpu
)
2415 CPUX86State
*env
= &cpu
->env
;
2416 struct kvm_debugregs dbgregs
;
2419 if (!kvm_has_debugregs()) {
2423 for (i
= 0; i
< 4; i
++) {
2424 dbgregs
.db
[i
] = env
->dr
[i
];
2426 dbgregs
.dr6
= env
->dr
[6];
2427 dbgregs
.dr7
= env
->dr
[7];
2430 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2433 static int kvm_get_debugregs(X86CPU
*cpu
)
2435 CPUX86State
*env
= &cpu
->env
;
2436 struct kvm_debugregs dbgregs
;
2439 if (!kvm_has_debugregs()) {
2443 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2447 for (i
= 0; i
< 4; i
++) {
2448 env
->dr
[i
] = dbgregs
.db
[i
];
2450 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2451 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2456 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2458 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2461 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2463 if (level
>= KVM_PUT_RESET_STATE
&& has_msr_feature_control
) {
2464 ret
= kvm_put_msr_feature_control(x86_cpu
);
2470 ret
= kvm_getput_regs(x86_cpu
, 1);
2474 ret
= kvm_put_xsave(x86_cpu
);
2478 ret
= kvm_put_xcrs(x86_cpu
);
2482 ret
= kvm_put_sregs(x86_cpu
);
2486 /* must be before kvm_put_msrs */
2487 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2491 ret
= kvm_put_msrs(x86_cpu
, level
);
2495 if (level
>= KVM_PUT_RESET_STATE
) {
2496 ret
= kvm_put_mp_state(x86_cpu
);
2500 ret
= kvm_put_apic(x86_cpu
);
2506 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2511 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2515 ret
= kvm_put_debugregs(x86_cpu
);
2520 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2527 int kvm_arch_get_registers(CPUState
*cs
)
2529 X86CPU
*cpu
= X86_CPU(cs
);
2532 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2534 ret
= kvm_getput_regs(cpu
, 0);
2538 ret
= kvm_get_xsave(cpu
);
2542 ret
= kvm_get_xcrs(cpu
);
2546 ret
= kvm_get_sregs(cpu
);
2550 ret
= kvm_get_msrs(cpu
);
2554 ret
= kvm_get_mp_state(cpu
);
2558 ret
= kvm_get_apic(cpu
);
2562 ret
= kvm_get_vcpu_events(cpu
);
2566 ret
= kvm_get_debugregs(cpu
);
2573 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2575 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2576 CPUX86State
*env
= &x86_cpu
->env
;
2580 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2581 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2582 qemu_mutex_lock_iothread();
2583 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2584 qemu_mutex_unlock_iothread();
2585 DPRINTF("injected NMI\n");
2586 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2588 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2592 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2593 qemu_mutex_lock_iothread();
2594 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2595 qemu_mutex_unlock_iothread();
2596 DPRINTF("injected SMI\n");
2597 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2599 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2605 if (!kvm_pic_in_kernel()) {
2606 qemu_mutex_lock_iothread();
2609 /* Force the VCPU out of its inner loop to process any INIT requests
2610 * or (for userspace APIC, but it is cheap to combine the checks here)
2611 * pending TPR access reports.
2613 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2614 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2615 !(env
->hflags
& HF_SMM_MASK
)) {
2616 cpu
->exit_request
= 1;
2618 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2619 cpu
->exit_request
= 1;
2623 if (!kvm_pic_in_kernel()) {
2624 /* Try to inject an interrupt if the guest can accept it */
2625 if (run
->ready_for_interrupt_injection
&&
2626 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2627 (env
->eflags
& IF_MASK
)) {
2630 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2631 irq
= cpu_get_pic_interrupt(env
);
2633 struct kvm_interrupt intr
;
2636 DPRINTF("injected interrupt %d\n", irq
);
2637 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2640 "KVM: injection failed, interrupt lost (%s)\n",
2646 /* If we have an interrupt but the guest is not ready to receive an
2647 * interrupt, request an interrupt window exit. This will
2648 * cause a return to userspace as soon as the guest is ready to
2649 * receive interrupts. */
2650 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2651 run
->request_interrupt_window
= 1;
2653 run
->request_interrupt_window
= 0;
2656 DPRINTF("setting tpr\n");
2657 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2659 qemu_mutex_unlock_iothread();
2663 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2665 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2666 CPUX86State
*env
= &x86_cpu
->env
;
2668 if (run
->flags
& KVM_RUN_X86_SMM
) {
2669 env
->hflags
|= HF_SMM_MASK
;
2671 env
->hflags
&= HF_SMM_MASK
;
2674 env
->eflags
|= IF_MASK
;
2676 env
->eflags
&= ~IF_MASK
;
2679 /* We need to protect the apic state against concurrent accesses from
2680 * different threads in case the userspace irqchip is used. */
2681 if (!kvm_irqchip_in_kernel()) {
2682 qemu_mutex_lock_iothread();
2684 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2685 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2686 if (!kvm_irqchip_in_kernel()) {
2687 qemu_mutex_unlock_iothread();
2689 return cpu_get_mem_attrs(env
);
2692 int kvm_arch_process_async_events(CPUState
*cs
)
2694 X86CPU
*cpu
= X86_CPU(cs
);
2695 CPUX86State
*env
= &cpu
->env
;
2697 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2698 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2699 assert(env
->mcg_cap
);
2701 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2703 kvm_cpu_synchronize_state(cs
);
2705 if (env
->exception_injected
== EXCP08_DBLE
) {
2706 /* this means triple fault */
2707 qemu_system_reset_request();
2708 cs
->exit_request
= 1;
2711 env
->exception_injected
= EXCP12_MCHK
;
2712 env
->has_error_code
= 0;
2715 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2716 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2720 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2721 !(env
->hflags
& HF_SMM_MASK
)) {
2722 kvm_cpu_synchronize_state(cs
);
2726 if (kvm_irqchip_in_kernel()) {
2730 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2731 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2732 apic_poll_irq(cpu
->apic_state
);
2734 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2735 (env
->eflags
& IF_MASK
)) ||
2736 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2739 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2740 kvm_cpu_synchronize_state(cs
);
2743 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2744 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2745 kvm_cpu_synchronize_state(cs
);
2746 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2747 env
->tpr_access_type
);
2753 static int kvm_handle_halt(X86CPU
*cpu
)
2755 CPUState
*cs
= CPU(cpu
);
2756 CPUX86State
*env
= &cpu
->env
;
2758 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2759 (env
->eflags
& IF_MASK
)) &&
2760 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2768 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2770 CPUState
*cs
= CPU(cpu
);
2771 struct kvm_run
*run
= cs
->kvm_run
;
2773 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2774 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2779 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2781 static const uint8_t int3
= 0xcc;
2783 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2784 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2790 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2794 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2795 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2807 static int nb_hw_breakpoint
;
2809 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2813 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2814 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2815 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2822 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2823 target_ulong len
, int type
)
2826 case GDB_BREAKPOINT_HW
:
2829 case GDB_WATCHPOINT_WRITE
:
2830 case GDB_WATCHPOINT_ACCESS
:
2837 if (addr
& (len
- 1)) {
2849 if (nb_hw_breakpoint
== 4) {
2852 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2855 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2856 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2857 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2863 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2864 target_ulong len
, int type
)
2868 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
2873 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
2878 void kvm_arch_remove_all_hw_breakpoints(void)
2880 nb_hw_breakpoint
= 0;
2883 static CPUWatchpoint hw_watchpoint
;
2885 static int kvm_handle_debug(X86CPU
*cpu
,
2886 struct kvm_debug_exit_arch
*arch_info
)
2888 CPUState
*cs
= CPU(cpu
);
2889 CPUX86State
*env
= &cpu
->env
;
2893 if (arch_info
->exception
== 1) {
2894 if (arch_info
->dr6
& (1 << 14)) {
2895 if (cs
->singlestep_enabled
) {
2899 for (n
= 0; n
< 4; n
++) {
2900 if (arch_info
->dr6
& (1 << n
)) {
2901 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
2907 cs
->watchpoint_hit
= &hw_watchpoint
;
2908 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2909 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2913 cs
->watchpoint_hit
= &hw_watchpoint
;
2914 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2915 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
2921 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
2925 cpu_synchronize_state(cs
);
2926 assert(env
->exception_injected
== -1);
2929 env
->exception_injected
= arch_info
->exception
;
2930 env
->has_error_code
= 0;
2936 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
2938 const uint8_t type_code
[] = {
2939 [GDB_BREAKPOINT_HW
] = 0x0,
2940 [GDB_WATCHPOINT_WRITE
] = 0x1,
2941 [GDB_WATCHPOINT_ACCESS
] = 0x3
2943 const uint8_t len_code
[] = {
2944 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2948 if (kvm_sw_breakpoints_active(cpu
)) {
2949 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
2951 if (nb_hw_breakpoint
> 0) {
2952 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
2953 dbg
->arch
.debugreg
[7] = 0x0600;
2954 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2955 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
2956 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
2957 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
2958 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
2963 static bool host_supports_vmx(void)
2965 uint32_t ecx
, unused
;
2967 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
2968 return ecx
& CPUID_EXT_VMX
;
2971 #define VMX_INVALID_GUEST_STATE 0x80000021
2973 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
2975 X86CPU
*cpu
= X86_CPU(cs
);
2979 switch (run
->exit_reason
) {
2981 DPRINTF("handle_hlt\n");
2982 qemu_mutex_lock_iothread();
2983 ret
= kvm_handle_halt(cpu
);
2984 qemu_mutex_unlock_iothread();
2986 case KVM_EXIT_SET_TPR
:
2989 case KVM_EXIT_TPR_ACCESS
:
2990 qemu_mutex_lock_iothread();
2991 ret
= kvm_handle_tpr_access(cpu
);
2992 qemu_mutex_unlock_iothread();
2994 case KVM_EXIT_FAIL_ENTRY
:
2995 code
= run
->fail_entry
.hardware_entry_failure_reason
;
2996 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
2998 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3000 "\nIf you're running a guest on an Intel machine without "
3001 "unrestricted mode\n"
3002 "support, the failure can be most likely due to the guest "
3003 "entering an invalid\n"
3004 "state for Intel VT. For example, the guest maybe running "
3005 "in big real mode\n"
3006 "which is not supported on less recent Intel processors."
3011 case KVM_EXIT_EXCEPTION
:
3012 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3013 run
->ex
.exception
, run
->ex
.error_code
);
3016 case KVM_EXIT_DEBUG
:
3017 DPRINTF("kvm_exit_debug\n");
3018 qemu_mutex_lock_iothread();
3019 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3020 qemu_mutex_unlock_iothread();
3022 case KVM_EXIT_HYPERV
:
3023 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3025 case KVM_EXIT_IOAPIC_EOI
:
3026 ioapic_eoi_broadcast(run
->eoi
.vector
);
3030 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3038 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3040 X86CPU
*cpu
= X86_CPU(cs
);
3041 CPUX86State
*env
= &cpu
->env
;
3043 kvm_cpu_synchronize_state(cs
);
3044 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3045 ((env
->segs
[R_CS
].selector
& 3) != 3);
3048 void kvm_arch_init_irq_routing(KVMState
*s
)
3050 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3051 /* If kernel can't do irq routing, interrupt source
3052 * override 0->2 cannot be set up as required by HPET.
3053 * So we have to disable it.
3057 /* We know at this point that we're using the in-kernel
3058 * irqchip, so we can use irqfds, and on x86 we know
3059 * we can use msi via irqfd and GSI routing.
3061 kvm_msi_via_irqfd_allowed
= true;
3062 kvm_gsi_routing_allowed
= true;
3064 if (kvm_irqchip_is_split()) {
3067 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3068 MSI routes for signaling interrupts to the local apics. */
3069 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3070 struct MSIMessage msg
= { 0x0, 0x0 };
3071 if (kvm_irqchip_add_msi_route(s
, msg
, NULL
) < 0) {
3072 error_report("Could not enable split IRQ mode.");
3079 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3082 if (machine_kernel_irqchip_split(ms
)) {
3083 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3085 error_report("Could not enable split irqchip mode: %s\n",
3089 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3090 kvm_split_irqchip
= true;
3098 /* Classic KVM device assignment interface. Will remain x86 only. */
3099 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3100 uint32_t flags
, uint32_t *dev_id
)
3102 struct kvm_assigned_pci_dev dev_data
= {
3103 .segnr
= dev_addr
->domain
,
3104 .busnr
= dev_addr
->bus
,
3105 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3110 dev_data
.assigned_dev_id
=
3111 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3113 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3118 *dev_id
= dev_data
.assigned_dev_id
;
3123 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3125 struct kvm_assigned_pci_dev dev_data
= {
3126 .assigned_dev_id
= dev_id
,
3129 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3132 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3133 uint32_t irq_type
, uint32_t guest_irq
)
3135 struct kvm_assigned_irq assigned_irq
= {
3136 .assigned_dev_id
= dev_id
,
3137 .guest_irq
= guest_irq
,
3141 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3142 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3144 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3148 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3151 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3152 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3154 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3157 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3159 struct kvm_assigned_pci_dev dev_data
= {
3160 .assigned_dev_id
= dev_id
,
3161 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3164 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3167 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3170 struct kvm_assigned_irq assigned_irq
= {
3171 .assigned_dev_id
= dev_id
,
3175 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3178 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3180 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3181 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3184 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3186 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3187 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3190 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3192 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3193 KVM_DEV_IRQ_HOST_MSI
);
3196 bool kvm_device_msix_supported(KVMState
*s
)
3198 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3199 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3200 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3203 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3204 uint32_t nr_vectors
)
3206 struct kvm_assigned_msix_nr msix_nr
= {
3207 .assigned_dev_id
= dev_id
,
3208 .entry_nr
= nr_vectors
,
3211 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3214 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3217 struct kvm_assigned_msix_entry msix_entry
= {
3218 .assigned_dev_id
= dev_id
,
3223 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3226 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3228 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3229 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3232 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3234 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3235 KVM_DEV_IRQ_HOST_MSIX
);
3238 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3239 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3244 int kvm_arch_msi_data_to_gsi(uint32_t data
)