target/ppc: Filter mtmsr[d] input before setting MSR
[qemu/rayw.git] / hw / arm / virt.c
blob4160d49688c8970339ca63e68fb973292df18882
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
46 #include "net/net.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/tpm.h"
51 #include "sysemu/kvm.h"
52 #include "hw/loader.h"
53 #include "qapi/error.h"
54 #include "qemu/bitops.h"
55 #include "qemu/error-report.h"
56 #include "qemu/module.h"
57 #include "hw/pci-host/gpex.h"
58 #include "hw/virtio/virtio-pci.h"
59 #include "hw/arm/sysbus-fdt.h"
60 #include "hw/platform-bus.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/arm/fdt.h"
63 #include "hw/intc/arm_gic.h"
64 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/irq.h"
66 #include "kvm_arm.h"
67 #include "hw/firmware/smbios.h"
68 #include "qapi/visitor.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/pc-dimm.h"
75 #include "hw/mem/nvdimm.h"
76 #include "hw/acpi/generic_event_device.h"
77 #include "hw/virtio/virtio-iommu.h"
78 #include "hw/char/pl011.h"
79 #include "qemu/guest-random.h"
81 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
82 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
83 void *data) \
84 { \
85 MachineClass *mc = MACHINE_CLASS(oc); \
86 virt_machine_##major##_##minor##_options(mc); \
87 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
88 if (latest) { \
89 mc->alias = "virt"; \
90 } \
91 } \
92 static const TypeInfo machvirt_##major##_##minor##_info = { \
93 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
94 .parent = TYPE_VIRT_MACHINE, \
95 .class_init = virt_##major##_##minor##_class_init, \
96 }; \
97 static void machvirt_machine_##major##_##minor##_init(void) \
98 { \
99 type_register_static(&machvirt_##major##_##minor##_info); \
101 type_init(machvirt_machine_##major##_##minor##_init);
103 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
104 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
105 #define DEFINE_VIRT_MACHINE(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
109 /* Number of external interrupt lines to configure the GIC with */
110 #define NUM_IRQS 256
112 #define PLATFORM_BUS_NUM_IRQS 64
114 /* Legacy RAM limit in GB (< version 4.0) */
115 #define LEGACY_RAMLIMIT_GB 255
116 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
118 /* Addresses and sizes of our components.
119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
120 * 128MB..256MB is used for miscellaneous device I/O.
121 * 256MB..1GB is reserved for possible future PCI support (ie where the
122 * PCI memory window will go if we add a PCI host controller).
123 * 1GB and up is RAM (which may happily spill over into the
124 * high memory region beyond 4GB).
125 * This represents a compromise between how much RAM can be given to
126 * a 32 bit VM and leaving space for expansion and in particular for PCI.
127 * Note that devices should generally be placed at multiples of 0x10000,
128 * to accommodate guests using 64K pages.
130 static const MemMapEntry base_memmap[] = {
131 /* Space up to 0x8000000 is reserved for a boot ROM */
132 [VIRT_FLASH] = { 0, 0x08000000 },
133 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
135 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
136 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
137 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
138 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
139 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
140 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
141 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
142 /* This redistributor space allows up to 2*64kB*123 CPUs */
143 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
144 [VIRT_UART] = { 0x09000000, 0x00001000 },
145 [VIRT_RTC] = { 0x09010000, 0x00001000 },
146 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
147 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
148 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
149 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
150 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
151 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
152 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
153 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
154 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
155 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
156 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
157 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
158 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
159 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
160 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
161 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
162 /* Actual RAM size depends on initial RAM and device memory settings */
163 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
167 * Highmem IO Regions: This memory map is floating, located after the RAM.
168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
169 * top of the RAM, so that its base get the same alignment as the size,
170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
172 * Note the extended_memmap is sized so that it eventually also includes the
173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
174 * index of base_memmap).
176 static MemMapEntry extended_memmap[] = {
177 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
178 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
179 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
180 /* Second PCIe window */
181 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
184 static const int a15irqmap[] = {
185 [VIRT_UART] = 1,
186 [VIRT_RTC] = 2,
187 [VIRT_PCIE] = 3, /* ... to 6 */
188 [VIRT_GPIO] = 7,
189 [VIRT_SECURE_UART] = 8,
190 [VIRT_ACPI_GED] = 9,
191 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
192 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
193 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
194 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
197 static const char *valid_cpus[] = {
198 ARM_CPU_TYPE_NAME("cortex-a7"),
199 ARM_CPU_TYPE_NAME("cortex-a15"),
200 ARM_CPU_TYPE_NAME("cortex-a53"),
201 ARM_CPU_TYPE_NAME("cortex-a57"),
202 ARM_CPU_TYPE_NAME("cortex-a72"),
203 ARM_CPU_TYPE_NAME("a64fx"),
204 ARM_CPU_TYPE_NAME("host"),
205 ARM_CPU_TYPE_NAME("max"),
208 static bool cpu_type_valid(const char *cpu)
210 int i;
212 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
213 if (strcmp(cpu, valid_cpus[i]) == 0) {
214 return true;
217 return false;
220 static void create_kaslr_seed(MachineState *ms, const char *node)
222 uint64_t seed;
224 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
225 return;
227 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
230 static void create_fdt(VirtMachineState *vms)
232 MachineState *ms = MACHINE(vms);
233 int nb_numa_nodes = ms->numa_state->num_nodes;
234 void *fdt = create_device_tree(&vms->fdt_size);
236 if (!fdt) {
237 error_report("create_device_tree() failed");
238 exit(1);
241 ms->fdt = fdt;
243 /* Header */
244 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
245 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
246 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
248 /* /chosen must exist for load_dtb to fill in necessary properties later */
249 qemu_fdt_add_subnode(fdt, "/chosen");
250 create_kaslr_seed(ms, "/chosen");
252 if (vms->secure) {
253 qemu_fdt_add_subnode(fdt, "/secure-chosen");
254 create_kaslr_seed(ms, "/secure-chosen");
257 /* Clock node, for the benefit of the UART. The kernel device tree
258 * binding documentation claims the PL011 node clock properties are
259 * optional but in practice if you omit them the kernel refuses to
260 * probe for the device.
262 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
263 qemu_fdt_add_subnode(fdt, "/apb-pclk");
264 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
267 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
268 "clk24mhz");
269 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
271 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
272 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
273 uint32_t *matrix = g_malloc0(size);
274 int idx, i, j;
276 for (i = 0; i < nb_numa_nodes; i++) {
277 for (j = 0; j < nb_numa_nodes; j++) {
278 idx = (i * nb_numa_nodes + j) * 3;
279 matrix[idx + 0] = cpu_to_be32(i);
280 matrix[idx + 1] = cpu_to_be32(j);
281 matrix[idx + 2] =
282 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
286 qemu_fdt_add_subnode(fdt, "/distance-map");
287 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
288 "numa-distance-map-v1");
289 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
290 matrix, size);
291 g_free(matrix);
295 static void fdt_add_timer_nodes(const VirtMachineState *vms)
297 /* On real hardware these interrupts are level-triggered.
298 * On KVM they were edge-triggered before host kernel version 4.4,
299 * and level-triggered afterwards.
300 * On emulated QEMU they are level-triggered.
302 * Getting the DTB info about them wrong is awkward for some
303 * guest kernels:
304 * pre-4.8 ignore the DT and leave the interrupt configured
305 * with whatever the GIC reset value (or the bootloader) left it at
306 * 4.8 before rc6 honour the incorrect data by programming it back
307 * into the GIC, causing problems
308 * 4.8rc6 and later ignore the DT and always write "level triggered"
309 * into the GIC
311 * For backwards-compatibility, virt-2.8 and earlier will continue
312 * to say these are edge-triggered, but later machines will report
313 * the correct information.
315 ARMCPU *armcpu;
316 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
317 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
318 MachineState *ms = MACHINE(vms);
320 if (vmc->claim_edge_triggered_timers) {
321 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
324 if (vms->gic_version == VIRT_GIC_VERSION_2) {
325 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
326 GIC_FDT_IRQ_PPI_CPU_WIDTH,
327 (1 << MACHINE(vms)->smp.cpus) - 1);
330 qemu_fdt_add_subnode(ms->fdt, "/timer");
332 armcpu = ARM_CPU(qemu_get_cpu(0));
333 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
334 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
335 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
336 compat, sizeof(compat));
337 } else {
338 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
339 "arm,armv7-timer");
341 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
342 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
346 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
349 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
351 int cpu;
352 int addr_cells = 1;
353 const MachineState *ms = MACHINE(vms);
354 int smp_cpus = ms->smp.cpus;
357 * From Documentation/devicetree/bindings/arm/cpus.txt
358 * On ARM v8 64-bit systems value should be set to 2,
359 * that corresponds to the MPIDR_EL1 register size.
360 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
361 * in the system, #address-cells can be set to 1, since
362 * MPIDR_EL1[63:32] bits are not used for CPUs
363 * identification.
365 * Here we actually don't know whether our system is 32- or 64-bit one.
366 * The simplest way to go is to examine affinity IDs of all our CPUs. If
367 * at least one of them has Aff3 populated, we set #address-cells to 2.
369 for (cpu = 0; cpu < smp_cpus; cpu++) {
370 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
372 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
373 addr_cells = 2;
374 break;
378 qemu_fdt_add_subnode(ms->fdt, "/cpus");
379 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
380 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
382 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
383 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
384 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
385 CPUState *cs = CPU(armcpu);
387 qemu_fdt_add_subnode(ms->fdt, nodename);
388 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
389 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
390 armcpu->dtb_compatible);
392 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
393 qemu_fdt_setprop_string(ms->fdt, nodename,
394 "enable-method", "psci");
397 if (addr_cells == 2) {
398 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
399 armcpu->mp_affinity);
400 } else {
401 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
402 armcpu->mp_affinity);
405 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
406 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
407 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
410 g_free(nodename);
414 static void fdt_add_its_gic_node(VirtMachineState *vms)
416 char *nodename;
417 MachineState *ms = MACHINE(vms);
419 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
420 nodename = g_strdup_printf("/intc/its@%" PRIx64,
421 vms->memmap[VIRT_GIC_ITS].base);
422 qemu_fdt_add_subnode(ms->fdt, nodename);
423 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
424 "arm,gic-v3-its");
425 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
426 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
427 2, vms->memmap[VIRT_GIC_ITS].base,
428 2, vms->memmap[VIRT_GIC_ITS].size);
429 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
430 g_free(nodename);
433 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
435 MachineState *ms = MACHINE(vms);
436 char *nodename;
438 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
439 vms->memmap[VIRT_GIC_V2M].base);
440 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
441 qemu_fdt_add_subnode(ms->fdt, nodename);
442 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
443 "arm,gic-v2m-frame");
444 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
445 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
446 2, vms->memmap[VIRT_GIC_V2M].base,
447 2, vms->memmap[VIRT_GIC_V2M].size);
448 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
449 g_free(nodename);
452 static void fdt_add_gic_node(VirtMachineState *vms)
454 MachineState *ms = MACHINE(vms);
455 char *nodename;
457 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
458 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
460 nodename = g_strdup_printf("/intc@%" PRIx64,
461 vms->memmap[VIRT_GIC_DIST].base);
462 qemu_fdt_add_subnode(ms->fdt, nodename);
463 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
464 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
465 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
466 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
467 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
468 if (vms->gic_version == VIRT_GIC_VERSION_3) {
469 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
471 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
472 "arm,gic-v3");
474 qemu_fdt_setprop_cell(ms->fdt, nodename,
475 "#redistributor-regions", nb_redist_regions);
477 if (nb_redist_regions == 1) {
478 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
479 2, vms->memmap[VIRT_GIC_DIST].base,
480 2, vms->memmap[VIRT_GIC_DIST].size,
481 2, vms->memmap[VIRT_GIC_REDIST].base,
482 2, vms->memmap[VIRT_GIC_REDIST].size);
483 } else {
484 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
485 2, vms->memmap[VIRT_GIC_DIST].base,
486 2, vms->memmap[VIRT_GIC_DIST].size,
487 2, vms->memmap[VIRT_GIC_REDIST].base,
488 2, vms->memmap[VIRT_GIC_REDIST].size,
489 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
490 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
493 if (vms->virt) {
494 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
495 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
496 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
498 } else {
499 /* 'cortex-a15-gic' means 'GIC v2' */
500 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
501 "arm,cortex-a15-gic");
502 if (!vms->virt) {
503 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
504 2, vms->memmap[VIRT_GIC_DIST].base,
505 2, vms->memmap[VIRT_GIC_DIST].size,
506 2, vms->memmap[VIRT_GIC_CPU].base,
507 2, vms->memmap[VIRT_GIC_CPU].size);
508 } else {
509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
510 2, vms->memmap[VIRT_GIC_DIST].base,
511 2, vms->memmap[VIRT_GIC_DIST].size,
512 2, vms->memmap[VIRT_GIC_CPU].base,
513 2, vms->memmap[VIRT_GIC_CPU].size,
514 2, vms->memmap[VIRT_GIC_HYP].base,
515 2, vms->memmap[VIRT_GIC_HYP].size,
516 2, vms->memmap[VIRT_GIC_VCPU].base,
517 2, vms->memmap[VIRT_GIC_VCPU].size);
518 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
519 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
520 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
524 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
525 g_free(nodename);
528 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
530 ARMCPU *armcpu = ARM_CPU(first_cpu);
531 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
532 MachineState *ms = MACHINE(vms);
534 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
535 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
536 return;
539 if (vms->gic_version == VIRT_GIC_VERSION_2) {
540 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
541 GIC_FDT_IRQ_PPI_CPU_WIDTH,
542 (1 << MACHINE(vms)->smp.cpus) - 1);
545 qemu_fdt_add_subnode(ms->fdt, "/pmu");
546 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
547 const char compat[] = "arm,armv8-pmuv3";
548 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
549 compat, sizeof(compat));
550 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
551 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
555 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
557 DeviceState *dev;
558 MachineState *ms = MACHINE(vms);
559 int irq = vms->irqmap[VIRT_ACPI_GED];
560 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
562 if (ms->ram_slots) {
563 event |= ACPI_GED_MEM_HOTPLUG_EVT;
566 if (ms->nvdimms_state->is_enabled) {
567 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
570 dev = qdev_new(TYPE_ACPI_GED);
571 qdev_prop_set_uint32(dev, "ged-event", event);
573 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
574 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
575 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
577 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
579 return dev;
582 static void create_its(VirtMachineState *vms)
584 const char *itsclass = its_class_name();
585 DeviceState *dev;
587 if (!strcmp(itsclass, "arm-gicv3-its")) {
588 if (!vms->tcg_its) {
589 itsclass = NULL;
593 if (!itsclass) {
594 /* Do nothing if not supported */
595 return;
598 dev = qdev_new(itsclass);
600 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
601 &error_abort);
602 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
603 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
605 fdt_add_its_gic_node(vms);
606 vms->msi_controller = VIRT_MSI_CTRL_ITS;
609 static void create_v2m(VirtMachineState *vms)
611 int i;
612 int irq = vms->irqmap[VIRT_GIC_V2M];
613 DeviceState *dev;
615 dev = qdev_new("arm-gicv2m");
616 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
617 qdev_prop_set_uint32(dev, "base-spi", irq);
618 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
619 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
621 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
622 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
623 qdev_get_gpio_in(vms->gic, irq + i));
626 fdt_add_v2m_gic_node(vms);
627 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
630 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
632 MachineState *ms = MACHINE(vms);
633 /* We create a standalone GIC */
634 SysBusDevice *gicbusdev;
635 const char *gictype;
636 int type = vms->gic_version, i;
637 unsigned int smp_cpus = ms->smp.cpus;
638 uint32_t nb_redist_regions = 0;
640 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
642 vms->gic = qdev_new(gictype);
643 qdev_prop_set_uint32(vms->gic, "revision", type);
644 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
645 /* Note that the num-irq property counts both internal and external
646 * interrupts; there are always 32 of the former (mandated by GIC spec).
648 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
649 if (!kvm_irqchip_in_kernel()) {
650 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
653 if (type == 3) {
654 uint32_t redist0_capacity =
655 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
656 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
658 nb_redist_regions = virt_gicv3_redist_region_count(vms);
660 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
661 nb_redist_regions);
662 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
664 if (!kvm_irqchip_in_kernel()) {
665 if (vms->tcg_its) {
666 object_property_set_link(OBJECT(vms->gic), "sysmem",
667 OBJECT(mem), &error_fatal);
668 qdev_prop_set_bit(vms->gic, "has-lpi", true);
672 if (nb_redist_regions == 2) {
673 uint32_t redist1_capacity =
674 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
676 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
677 MIN(smp_cpus - redist0_count, redist1_capacity));
679 } else {
680 if (!kvm_irqchip_in_kernel()) {
681 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
682 vms->virt);
685 gicbusdev = SYS_BUS_DEVICE(vms->gic);
686 sysbus_realize_and_unref(gicbusdev, &error_fatal);
687 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
688 if (type == 3) {
689 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
690 if (nb_redist_regions == 2) {
691 sysbus_mmio_map(gicbusdev, 2,
692 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
694 } else {
695 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
696 if (vms->virt) {
697 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
698 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
702 /* Wire the outputs from each CPU's generic timer and the GICv3
703 * maintenance interrupt signal to the appropriate GIC PPI inputs,
704 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
706 for (i = 0; i < smp_cpus; i++) {
707 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
708 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
709 int irq;
710 /* Mapping from the output timer irq lines from the CPU to the
711 * GIC PPI inputs we use for the virt board.
713 const int timer_irq[] = {
714 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
715 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
716 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
717 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
720 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
721 qdev_connect_gpio_out(cpudev, irq,
722 qdev_get_gpio_in(vms->gic,
723 ppibase + timer_irq[irq]));
726 if (type == 3) {
727 qemu_irq irq = qdev_get_gpio_in(vms->gic,
728 ppibase + ARCH_GIC_MAINT_IRQ);
729 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
730 0, irq);
731 } else if (vms->virt) {
732 qemu_irq irq = qdev_get_gpio_in(vms->gic,
733 ppibase + ARCH_GIC_MAINT_IRQ);
734 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
737 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
738 qdev_get_gpio_in(vms->gic, ppibase
739 + VIRTUAL_PMU_IRQ));
741 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
742 sysbus_connect_irq(gicbusdev, i + smp_cpus,
743 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
744 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
745 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
746 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
747 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
750 fdt_add_gic_node(vms);
752 if (type == 3 && vms->its) {
753 create_its(vms);
754 } else if (type == 2) {
755 create_v2m(vms);
759 static void create_uart(const VirtMachineState *vms, int uart,
760 MemoryRegion *mem, Chardev *chr)
762 char *nodename;
763 hwaddr base = vms->memmap[uart].base;
764 hwaddr size = vms->memmap[uart].size;
765 int irq = vms->irqmap[uart];
766 const char compat[] = "arm,pl011\0arm,primecell";
767 const char clocknames[] = "uartclk\0apb_pclk";
768 DeviceState *dev = qdev_new(TYPE_PL011);
769 SysBusDevice *s = SYS_BUS_DEVICE(dev);
770 MachineState *ms = MACHINE(vms);
772 qdev_prop_set_chr(dev, "chardev", chr);
773 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
774 memory_region_add_subregion(mem, base,
775 sysbus_mmio_get_region(s, 0));
776 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
778 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
779 qemu_fdt_add_subnode(ms->fdt, nodename);
780 /* Note that we can't use setprop_string because of the embedded NUL */
781 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
782 compat, sizeof(compat));
783 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
784 2, base, 2, size);
785 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
786 GIC_FDT_IRQ_TYPE_SPI, irq,
787 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
788 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
789 vms->clock_phandle, vms->clock_phandle);
790 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
791 clocknames, sizeof(clocknames));
793 if (uart == VIRT_UART) {
794 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
795 } else {
796 /* Mark as not usable by the normal world */
797 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
798 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
800 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
801 nodename);
804 g_free(nodename);
807 static void create_rtc(const VirtMachineState *vms)
809 char *nodename;
810 hwaddr base = vms->memmap[VIRT_RTC].base;
811 hwaddr size = vms->memmap[VIRT_RTC].size;
812 int irq = vms->irqmap[VIRT_RTC];
813 const char compat[] = "arm,pl031\0arm,primecell";
814 MachineState *ms = MACHINE(vms);
816 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
818 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
819 qemu_fdt_add_subnode(ms->fdt, nodename);
820 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
821 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
822 2, base, 2, size);
823 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
824 GIC_FDT_IRQ_TYPE_SPI, irq,
825 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
826 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
827 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
828 g_free(nodename);
831 static DeviceState *gpio_key_dev;
832 static void virt_powerdown_req(Notifier *n, void *opaque)
834 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
836 if (s->acpi_dev) {
837 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
838 } else {
839 /* use gpio Pin 3 for power button event */
840 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
844 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
845 uint32_t phandle)
847 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
848 qdev_get_gpio_in(pl061_dev, 3));
850 qemu_fdt_add_subnode(fdt, "/gpio-keys");
851 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
852 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
853 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
855 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
856 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
857 "label", "GPIO Key Poweroff");
858 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
859 KEY_POWER);
860 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
861 "gpios", phandle, 3, 0);
864 #define SECURE_GPIO_POWEROFF 0
865 #define SECURE_GPIO_RESET 1
867 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
868 uint32_t phandle)
870 DeviceState *gpio_pwr_dev;
872 /* gpio-pwr */
873 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
875 /* connect secure pl061 to gpio-pwr */
876 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
877 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
878 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
879 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
881 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
882 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
883 "gpio-poweroff");
884 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
885 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
886 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
887 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
888 "okay");
890 qemu_fdt_add_subnode(fdt, "/gpio-restart");
891 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
892 "gpio-restart");
893 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
894 "gpios", phandle, SECURE_GPIO_RESET, 0);
895 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
896 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
897 "okay");
900 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
901 MemoryRegion *mem)
903 char *nodename;
904 DeviceState *pl061_dev;
905 hwaddr base = vms->memmap[gpio].base;
906 hwaddr size = vms->memmap[gpio].size;
907 int irq = vms->irqmap[gpio];
908 const char compat[] = "arm,pl061\0arm,primecell";
909 SysBusDevice *s;
910 MachineState *ms = MACHINE(vms);
912 pl061_dev = qdev_new("pl061");
913 /* Pull lines down to 0 if not driven by the PL061 */
914 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
915 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
916 s = SYS_BUS_DEVICE(pl061_dev);
917 sysbus_realize_and_unref(s, &error_fatal);
918 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
919 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
921 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
922 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
923 qemu_fdt_add_subnode(ms->fdt, nodename);
924 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
925 2, base, 2, size);
926 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
927 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
928 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
929 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
930 GIC_FDT_IRQ_TYPE_SPI, irq,
931 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
932 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
933 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
934 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
936 if (gpio != VIRT_GPIO) {
937 /* Mark as not usable by the normal world */
938 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
939 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
941 g_free(nodename);
943 /* Child gpio devices */
944 if (gpio == VIRT_GPIO) {
945 create_gpio_keys(ms->fdt, pl061_dev, phandle);
946 } else {
947 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
951 static void create_virtio_devices(const VirtMachineState *vms)
953 int i;
954 hwaddr size = vms->memmap[VIRT_MMIO].size;
955 MachineState *ms = MACHINE(vms);
957 /* We create the transports in forwards order. Since qbus_realize()
958 * prepends (not appends) new child buses, the incrementing loop below will
959 * create a list of virtio-mmio buses with decreasing base addresses.
961 * When a -device option is processed from the command line,
962 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
963 * order. The upshot is that -device options in increasing command line
964 * order are mapped to virtio-mmio buses with decreasing base addresses.
966 * When this code was originally written, that arrangement ensured that the
967 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
968 * the first -device on the command line. (The end-to-end order is a
969 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
970 * guest kernel's name-to-address assignment strategy.)
972 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
973 * the message, if not necessarily the code, of commit 70161ff336.
974 * Therefore the loop now establishes the inverse of the original intent.
976 * Unfortunately, we can't counteract the kernel change by reversing the
977 * loop; it would break existing command lines.
979 * In any case, the kernel makes no guarantee about the stability of
980 * enumeration order of virtio devices (as demonstrated by it changing
981 * between kernel versions). For reliable and stable identification
982 * of disks users must use UUIDs or similar mechanisms.
984 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
985 int irq = vms->irqmap[VIRT_MMIO] + i;
986 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
988 sysbus_create_simple("virtio-mmio", base,
989 qdev_get_gpio_in(vms->gic, irq));
992 /* We add dtb nodes in reverse order so that they appear in the finished
993 * device tree lowest address first.
995 * Note that this mapping is independent of the loop above. The previous
996 * loop influences virtio device to virtio transport assignment, whereas
997 * this loop controls how virtio transports are laid out in the dtb.
999 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1000 char *nodename;
1001 int irq = vms->irqmap[VIRT_MMIO] + i;
1002 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1004 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1005 qemu_fdt_add_subnode(ms->fdt, nodename);
1006 qemu_fdt_setprop_string(ms->fdt, nodename,
1007 "compatible", "virtio,mmio");
1008 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1009 2, base, 2, size);
1010 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1011 GIC_FDT_IRQ_TYPE_SPI, irq,
1012 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1013 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1014 g_free(nodename);
1018 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1020 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1021 const char *name,
1022 const char *alias_prop_name)
1025 * Create a single flash device. We use the same parameters as
1026 * the flash devices on the Versatile Express board.
1028 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1030 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1031 qdev_prop_set_uint8(dev, "width", 4);
1032 qdev_prop_set_uint8(dev, "device-width", 2);
1033 qdev_prop_set_bit(dev, "big-endian", false);
1034 qdev_prop_set_uint16(dev, "id0", 0x89);
1035 qdev_prop_set_uint16(dev, "id1", 0x18);
1036 qdev_prop_set_uint16(dev, "id2", 0x00);
1037 qdev_prop_set_uint16(dev, "id3", 0x00);
1038 qdev_prop_set_string(dev, "name", name);
1039 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1040 object_property_add_alias(OBJECT(vms), alias_prop_name,
1041 OBJECT(dev), "drive");
1042 return PFLASH_CFI01(dev);
1045 static void virt_flash_create(VirtMachineState *vms)
1047 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1048 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1051 static void virt_flash_map1(PFlashCFI01 *flash,
1052 hwaddr base, hwaddr size,
1053 MemoryRegion *sysmem)
1055 DeviceState *dev = DEVICE(flash);
1057 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1058 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1059 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1060 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1062 memory_region_add_subregion(sysmem, base,
1063 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1064 0));
1067 static void virt_flash_map(VirtMachineState *vms,
1068 MemoryRegion *sysmem,
1069 MemoryRegion *secure_sysmem)
1072 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1073 * sysmem is the system memory space. secure_sysmem is the secure view
1074 * of the system, and the first flash device should be made visible only
1075 * there. The second flash device is visible to both secure and nonsecure.
1076 * If sysmem == secure_sysmem this means there is no separate Secure
1077 * address space and both flash devices are generally visible.
1079 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1080 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1082 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1083 secure_sysmem);
1084 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1085 sysmem);
1088 static void virt_flash_fdt(VirtMachineState *vms,
1089 MemoryRegion *sysmem,
1090 MemoryRegion *secure_sysmem)
1092 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1093 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1094 MachineState *ms = MACHINE(vms);
1095 char *nodename;
1097 if (sysmem == secure_sysmem) {
1098 /* Report both flash devices as a single node in the DT */
1099 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1100 qemu_fdt_add_subnode(ms->fdt, nodename);
1101 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1102 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1103 2, flashbase, 2, flashsize,
1104 2, flashbase + flashsize, 2, flashsize);
1105 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1106 g_free(nodename);
1107 } else {
1109 * Report the devices as separate nodes so we can mark one as
1110 * only visible to the secure world.
1112 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1113 qemu_fdt_add_subnode(ms->fdt, nodename);
1114 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1115 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1116 2, flashbase, 2, flashsize);
1117 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1118 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1119 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1120 g_free(nodename);
1122 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1123 qemu_fdt_add_subnode(ms->fdt, nodename);
1124 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1125 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1126 2, flashbase + flashsize, 2, flashsize);
1127 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1128 g_free(nodename);
1132 static bool virt_firmware_init(VirtMachineState *vms,
1133 MemoryRegion *sysmem,
1134 MemoryRegion *secure_sysmem)
1136 int i;
1137 const char *bios_name;
1138 BlockBackend *pflash_blk0;
1140 /* Map legacy -drive if=pflash to machine properties */
1141 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1142 pflash_cfi01_legacy_drive(vms->flash[i],
1143 drive_get(IF_PFLASH, 0, i));
1146 virt_flash_map(vms, sysmem, secure_sysmem);
1148 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1150 bios_name = MACHINE(vms)->firmware;
1151 if (bios_name) {
1152 char *fname;
1153 MemoryRegion *mr;
1154 int image_size;
1156 if (pflash_blk0) {
1157 error_report("The contents of the first flash device may be "
1158 "specified with -bios or with -drive if=pflash... "
1159 "but you cannot use both options at once");
1160 exit(1);
1163 /* Fall back to -bios */
1165 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1166 if (!fname) {
1167 error_report("Could not find ROM image '%s'", bios_name);
1168 exit(1);
1170 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1171 image_size = load_image_mr(fname, mr);
1172 g_free(fname);
1173 if (image_size < 0) {
1174 error_report("Could not load ROM image '%s'", bios_name);
1175 exit(1);
1179 return pflash_blk0 || bios_name;
1182 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1184 MachineState *ms = MACHINE(vms);
1185 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1186 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1187 FWCfgState *fw_cfg;
1188 char *nodename;
1190 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1191 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1193 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1194 qemu_fdt_add_subnode(ms->fdt, nodename);
1195 qemu_fdt_setprop_string(ms->fdt, nodename,
1196 "compatible", "qemu,fw-cfg-mmio");
1197 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1198 2, base, 2, size);
1199 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1200 g_free(nodename);
1201 return fw_cfg;
1204 static void create_pcie_irq_map(const MachineState *ms,
1205 uint32_t gic_phandle,
1206 int first_irq, const char *nodename)
1208 int devfn, pin;
1209 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1210 uint32_t *irq_map = full_irq_map;
1212 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1213 for (pin = 0; pin < 4; pin++) {
1214 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1215 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1216 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1217 int i;
1219 uint32_t map[] = {
1220 devfn << 8, 0, 0, /* devfn */
1221 pin + 1, /* PCI pin */
1222 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1224 /* Convert map to big endian */
1225 for (i = 0; i < 10; i++) {
1226 irq_map[i] = cpu_to_be32(map[i]);
1228 irq_map += 10;
1232 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1233 full_irq_map, sizeof(full_irq_map));
1235 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1236 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1237 0, 0,
1238 0x7 /* PCI irq */);
1241 static void create_smmu(const VirtMachineState *vms,
1242 PCIBus *bus)
1244 char *node;
1245 const char compat[] = "arm,smmu-v3";
1246 int irq = vms->irqmap[VIRT_SMMU];
1247 int i;
1248 hwaddr base = vms->memmap[VIRT_SMMU].base;
1249 hwaddr size = vms->memmap[VIRT_SMMU].size;
1250 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1251 DeviceState *dev;
1252 MachineState *ms = MACHINE(vms);
1254 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1255 return;
1258 dev = qdev_new("arm-smmuv3");
1260 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1261 &error_abort);
1262 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1263 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1264 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1265 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1266 qdev_get_gpio_in(vms->gic, irq + i));
1269 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1270 qemu_fdt_add_subnode(ms->fdt, node);
1271 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1272 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1274 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1275 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1276 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1277 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1278 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1280 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1281 sizeof(irq_names));
1283 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1284 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1285 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1287 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1289 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1290 g_free(node);
1293 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1295 const char compat[] = "virtio,pci-iommu";
1296 uint16_t bdf = vms->virtio_iommu_bdf;
1297 MachineState *ms = MACHINE(vms);
1298 char *node;
1300 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1302 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1303 qemu_fdt_add_subnode(ms->fdt, node);
1304 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1305 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1306 1, bdf << 8, 1, 0, 1, 0,
1307 1, 0, 1, 0);
1309 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1310 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1311 g_free(node);
1313 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1314 0x0, vms->iommu_phandle, 0x0, bdf,
1315 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1318 static void create_pcie(VirtMachineState *vms)
1320 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1321 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1322 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1323 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1324 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1325 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1326 hwaddr base_ecam, size_ecam;
1327 hwaddr base = base_mmio;
1328 int nr_pcie_buses;
1329 int irq = vms->irqmap[VIRT_PCIE];
1330 MemoryRegion *mmio_alias;
1331 MemoryRegion *mmio_reg;
1332 MemoryRegion *ecam_alias;
1333 MemoryRegion *ecam_reg;
1334 DeviceState *dev;
1335 char *nodename;
1336 int i, ecam_id;
1337 PCIHostState *pci;
1338 MachineState *ms = MACHINE(vms);
1340 dev = qdev_new(TYPE_GPEX_HOST);
1341 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1343 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1344 base_ecam = vms->memmap[ecam_id].base;
1345 size_ecam = vms->memmap[ecam_id].size;
1346 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1347 /* Map only the first size_ecam bytes of ECAM space */
1348 ecam_alias = g_new0(MemoryRegion, 1);
1349 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1350 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1351 ecam_reg, 0, size_ecam);
1352 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1354 /* Map the MMIO window into system address space so as to expose
1355 * the section of PCI MMIO space which starts at the same base address
1356 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1357 * the window).
1359 mmio_alias = g_new0(MemoryRegion, 1);
1360 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1361 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1362 mmio_reg, base_mmio, size_mmio);
1363 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1365 if (vms->highmem) {
1366 /* Map high MMIO space */
1367 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1369 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1370 mmio_reg, base_mmio_high, size_mmio_high);
1371 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1372 high_mmio_alias);
1375 /* Map IO port space */
1376 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1378 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1379 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1380 qdev_get_gpio_in(vms->gic, irq + i));
1381 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1384 pci = PCI_HOST_BRIDGE(dev);
1385 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1386 vms->bus = pci->bus;
1387 if (vms->bus) {
1388 for (i = 0; i < nb_nics; i++) {
1389 NICInfo *nd = &nd_table[i];
1391 if (!nd->model) {
1392 nd->model = g_strdup("virtio");
1395 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1399 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1400 qemu_fdt_add_subnode(ms->fdt, nodename);
1401 qemu_fdt_setprop_string(ms->fdt, nodename,
1402 "compatible", "pci-host-ecam-generic");
1403 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1404 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1405 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1406 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1407 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1408 nr_pcie_buses - 1);
1409 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1411 if (vms->msi_phandle) {
1412 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1413 vms->msi_phandle);
1416 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1417 2, base_ecam, 2, size_ecam);
1419 if (vms->highmem) {
1420 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1421 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1422 2, base_pio, 2, size_pio,
1423 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1424 2, base_mmio, 2, size_mmio,
1425 1, FDT_PCI_RANGE_MMIO_64BIT,
1426 2, base_mmio_high,
1427 2, base_mmio_high, 2, size_mmio_high);
1428 } else {
1429 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1430 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1431 2, base_pio, 2, size_pio,
1432 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1433 2, base_mmio, 2, size_mmio);
1436 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1437 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1439 if (vms->iommu) {
1440 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1442 switch (vms->iommu) {
1443 case VIRT_IOMMU_SMMUV3:
1444 create_smmu(vms, vms->bus);
1445 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1446 0x0, vms->iommu_phandle, 0x0, 0x10000);
1447 break;
1448 default:
1449 g_assert_not_reached();
1454 static void create_platform_bus(VirtMachineState *vms)
1456 DeviceState *dev;
1457 SysBusDevice *s;
1458 int i;
1459 MemoryRegion *sysmem = get_system_memory();
1461 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1462 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1463 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1464 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1465 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1466 vms->platform_bus_dev = dev;
1468 s = SYS_BUS_DEVICE(dev);
1469 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1470 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1471 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1474 memory_region_add_subregion(sysmem,
1475 vms->memmap[VIRT_PLATFORM_BUS].base,
1476 sysbus_mmio_get_region(s, 0));
1479 static void create_tag_ram(MemoryRegion *tag_sysmem,
1480 hwaddr base, hwaddr size,
1481 const char *name)
1483 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1485 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1486 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1489 static void create_secure_ram(VirtMachineState *vms,
1490 MemoryRegion *secure_sysmem,
1491 MemoryRegion *secure_tag_sysmem)
1493 MemoryRegion *secram = g_new(MemoryRegion, 1);
1494 char *nodename;
1495 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1496 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1497 MachineState *ms = MACHINE(vms);
1499 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1500 &error_fatal);
1501 memory_region_add_subregion(secure_sysmem, base, secram);
1503 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1504 qemu_fdt_add_subnode(ms->fdt, nodename);
1505 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1506 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1507 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1508 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1510 if (secure_tag_sysmem) {
1511 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1514 g_free(nodename);
1517 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1519 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1520 bootinfo);
1521 MachineState *ms = MACHINE(board);
1524 *fdt_size = board->fdt_size;
1525 return ms->fdt;
1528 static void virt_build_smbios(VirtMachineState *vms)
1530 MachineClass *mc = MACHINE_GET_CLASS(vms);
1531 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1532 uint8_t *smbios_tables, *smbios_anchor;
1533 size_t smbios_tables_len, smbios_anchor_len;
1534 const char *product = "QEMU Virtual Machine";
1536 if (kvm_enabled()) {
1537 product = "KVM Virtual Machine";
1540 smbios_set_defaults("QEMU", product,
1541 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1542 true, SMBIOS_ENTRY_POINT_30);
1544 smbios_get_tables(MACHINE(vms), NULL, 0,
1545 &smbios_tables, &smbios_tables_len,
1546 &smbios_anchor, &smbios_anchor_len,
1547 &error_fatal);
1549 if (smbios_anchor) {
1550 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1551 smbios_tables, smbios_tables_len);
1552 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1553 smbios_anchor, smbios_anchor_len);
1557 static
1558 void virt_machine_done(Notifier *notifier, void *data)
1560 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1561 machine_done);
1562 MachineState *ms = MACHINE(vms);
1563 ARMCPU *cpu = ARM_CPU(first_cpu);
1564 struct arm_boot_info *info = &vms->bootinfo;
1565 AddressSpace *as = arm_boot_address_space(cpu, info);
1568 * If the user provided a dtb, we assume the dynamic sysbus nodes
1569 * already are integrated there. This corresponds to a use case where
1570 * the dynamic sysbus nodes are complex and their generation is not yet
1571 * supported. In that case the user can take charge of the guest dt
1572 * while qemu takes charge of the qom stuff.
1574 if (info->dtb_filename == NULL) {
1575 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1576 vms->memmap[VIRT_PLATFORM_BUS].base,
1577 vms->memmap[VIRT_PLATFORM_BUS].size,
1578 vms->irqmap[VIRT_PLATFORM_BUS]);
1580 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1581 exit(1);
1584 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1586 virt_acpi_setup(vms);
1587 virt_build_smbios(vms);
1590 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1592 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1593 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1595 if (!vmc->disallow_affinity_adjustment) {
1596 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1597 * GIC's target-list limitations. 32-bit KVM hosts currently
1598 * always create clusters of 4 CPUs, but that is expected to
1599 * change when they gain support for gicv3. When KVM is enabled
1600 * it will override the changes we make here, therefore our
1601 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1602 * and to improve SGI efficiency.
1604 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1605 clustersz = GICV3_TARGETLIST_BITS;
1606 } else {
1607 clustersz = GIC_TARGETLIST_BITS;
1610 return arm_cpu_mp_affinity(idx, clustersz);
1613 static void virt_set_memmap(VirtMachineState *vms)
1615 MachineState *ms = MACHINE(vms);
1616 hwaddr base, device_memory_base, device_memory_size;
1617 int i;
1619 vms->memmap = extended_memmap;
1621 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1622 vms->memmap[i] = base_memmap[i];
1625 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1626 error_report("unsupported number of memory slots: %"PRIu64,
1627 ms->ram_slots);
1628 exit(EXIT_FAILURE);
1632 * We compute the base of the high IO region depending on the
1633 * amount of initial and device memory. The device memory start/size
1634 * is aligned on 1GiB. We never put the high IO region below 256GiB
1635 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1636 * The device region size assumes 1GiB page max alignment per slot.
1638 device_memory_base =
1639 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1640 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1642 /* Base address of the high IO region */
1643 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1644 if (base < device_memory_base) {
1645 error_report("maxmem/slots too huge");
1646 exit(EXIT_FAILURE);
1648 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1649 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1652 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1653 hwaddr size = extended_memmap[i].size;
1655 base = ROUND_UP(base, size);
1656 vms->memmap[i].base = base;
1657 vms->memmap[i].size = size;
1658 base += size;
1660 vms->highest_gpa = base - 1;
1661 if (device_memory_size > 0) {
1662 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1663 ms->device_memory->base = device_memory_base;
1664 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1665 "device-memory", device_memory_size);
1670 * finalize_gic_version - Determines the final gic_version
1671 * according to the gic-version property
1673 * Default GIC type is v2
1675 static void finalize_gic_version(VirtMachineState *vms)
1677 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1679 if (kvm_enabled()) {
1680 int probe_bitmap;
1682 if (!kvm_irqchip_in_kernel()) {
1683 switch (vms->gic_version) {
1684 case VIRT_GIC_VERSION_HOST:
1685 warn_report(
1686 "gic-version=host not relevant with kernel-irqchip=off "
1687 "as only userspace GICv2 is supported. Using v2 ...");
1688 return;
1689 case VIRT_GIC_VERSION_MAX:
1690 case VIRT_GIC_VERSION_NOSEL:
1691 vms->gic_version = VIRT_GIC_VERSION_2;
1692 return;
1693 case VIRT_GIC_VERSION_2:
1694 return;
1695 case VIRT_GIC_VERSION_3:
1696 error_report(
1697 "gic-version=3 is not supported with kernel-irqchip=off");
1698 exit(1);
1702 probe_bitmap = kvm_arm_vgic_probe();
1703 if (!probe_bitmap) {
1704 error_report("Unable to determine GIC version supported by host");
1705 exit(1);
1708 switch (vms->gic_version) {
1709 case VIRT_GIC_VERSION_HOST:
1710 case VIRT_GIC_VERSION_MAX:
1711 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1712 vms->gic_version = VIRT_GIC_VERSION_3;
1713 } else {
1714 vms->gic_version = VIRT_GIC_VERSION_2;
1716 return;
1717 case VIRT_GIC_VERSION_NOSEL:
1718 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1719 vms->gic_version = VIRT_GIC_VERSION_2;
1720 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1722 * in case the host does not support v2 in-kernel emulation or
1723 * the end-user requested more than 8 VCPUs we now default
1724 * to v3. In any case defaulting to v2 would be broken.
1726 vms->gic_version = VIRT_GIC_VERSION_3;
1727 } else if (max_cpus > GIC_NCPU) {
1728 error_report("host only supports in-kernel GICv2 emulation "
1729 "but more than 8 vcpus are requested");
1730 exit(1);
1732 break;
1733 case VIRT_GIC_VERSION_2:
1734 case VIRT_GIC_VERSION_3:
1735 break;
1738 /* Check chosen version is effectively supported by the host */
1739 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1740 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1741 error_report("host does not support in-kernel GICv2 emulation");
1742 exit(1);
1743 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1744 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1745 error_report("host does not support in-kernel GICv3 emulation");
1746 exit(1);
1748 return;
1751 /* TCG mode */
1752 switch (vms->gic_version) {
1753 case VIRT_GIC_VERSION_NOSEL:
1754 vms->gic_version = VIRT_GIC_VERSION_2;
1755 break;
1756 case VIRT_GIC_VERSION_MAX:
1757 vms->gic_version = VIRT_GIC_VERSION_3;
1758 break;
1759 case VIRT_GIC_VERSION_HOST:
1760 error_report("gic-version=host requires KVM");
1761 exit(1);
1762 case VIRT_GIC_VERSION_2:
1763 case VIRT_GIC_VERSION_3:
1764 break;
1769 * virt_cpu_post_init() must be called after the CPUs have
1770 * been realized and the GIC has been created.
1772 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1774 int max_cpus = MACHINE(vms)->smp.max_cpus;
1775 bool aarch64, pmu, steal_time;
1776 CPUState *cpu;
1778 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1779 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1780 steal_time = object_property_get_bool(OBJECT(first_cpu),
1781 "kvm-steal-time", NULL);
1783 if (kvm_enabled()) {
1784 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1785 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1787 if (steal_time) {
1788 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1789 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1791 /* The memory region size must be a multiple of host page size. */
1792 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1794 if (pvtime_size > pvtime_reg_size) {
1795 error_report("pvtime requires a %" HWADDR_PRId
1796 " byte memory region for %d CPUs,"
1797 " but only %" HWADDR_PRId " has been reserved",
1798 pvtime_size, max_cpus, pvtime_reg_size);
1799 exit(1);
1802 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1803 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1806 CPU_FOREACH(cpu) {
1807 if (pmu) {
1808 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1809 if (kvm_irqchip_in_kernel()) {
1810 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1812 kvm_arm_pmu_init(cpu);
1814 if (steal_time) {
1815 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1816 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1819 } else {
1820 if (aarch64 && vms->highmem) {
1821 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1822 int pamax = arm_pamax(ARM_CPU(first_cpu));
1824 if (pamax < requested_pa_size) {
1825 error_report("VCPU supports less PA bits (%d) than "
1826 "requested by the memory map (%d)",
1827 pamax, requested_pa_size);
1828 exit(1);
1834 static void machvirt_init(MachineState *machine)
1836 VirtMachineState *vms = VIRT_MACHINE(machine);
1837 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1838 MachineClass *mc = MACHINE_GET_CLASS(machine);
1839 const CPUArchIdList *possible_cpus;
1840 MemoryRegion *sysmem = get_system_memory();
1841 MemoryRegion *secure_sysmem = NULL;
1842 MemoryRegion *tag_sysmem = NULL;
1843 MemoryRegion *secure_tag_sysmem = NULL;
1844 int n, virt_max_cpus;
1845 bool firmware_loaded;
1846 bool aarch64 = true;
1847 bool has_ged = !vmc->no_ged;
1848 unsigned int smp_cpus = machine->smp.cpus;
1849 unsigned int max_cpus = machine->smp.max_cpus;
1852 * In accelerated mode, the memory map is computed earlier in kvm_type()
1853 * to create a VM with the right number of IPA bits.
1855 if (!vms->memmap) {
1856 virt_set_memmap(vms);
1859 /* We can probe only here because during property set
1860 * KVM is not available yet
1862 finalize_gic_version(vms);
1864 if (!cpu_type_valid(machine->cpu_type)) {
1865 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1866 exit(1);
1869 if (vms->secure) {
1871 * The Secure view of the world is the same as the NonSecure,
1872 * but with a few extra devices. Create it as a container region
1873 * containing the system memory at low priority; any secure-only
1874 * devices go in at higher priority and take precedence.
1876 secure_sysmem = g_new(MemoryRegion, 1);
1877 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1878 UINT64_MAX);
1879 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1882 firmware_loaded = virt_firmware_init(vms, sysmem,
1883 secure_sysmem ?: sysmem);
1885 /* If we have an EL3 boot ROM then the assumption is that it will
1886 * implement PSCI itself, so disable QEMU's internal implementation
1887 * so it doesn't get in the way. Instead of starting secondary
1888 * CPUs in PSCI powerdown state we will start them all running and
1889 * let the boot ROM sort them out.
1890 * The usual case is that we do use QEMU's PSCI implementation;
1891 * if the guest has EL2 then we will use SMC as the conduit,
1892 * and otherwise we will use HVC (for backwards compatibility and
1893 * because if we're using KVM then we must use HVC).
1895 if (vms->secure && firmware_loaded) {
1896 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1897 } else if (vms->virt) {
1898 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1899 } else {
1900 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1903 /* The maximum number of CPUs depends on the GIC version, or on how
1904 * many redistributors we can fit into the memory map.
1906 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1907 virt_max_cpus =
1908 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1909 virt_max_cpus +=
1910 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1911 } else {
1912 virt_max_cpus = GIC_NCPU;
1915 if (max_cpus > virt_max_cpus) {
1916 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1917 "supported by machine 'mach-virt' (%d)",
1918 max_cpus, virt_max_cpus);
1919 exit(1);
1922 if (vms->virt && kvm_enabled()) {
1923 error_report("mach-virt: KVM does not support providing "
1924 "Virtualization extensions to the guest CPU");
1925 exit(1);
1928 if (vms->mte && kvm_enabled()) {
1929 error_report("mach-virt: KVM does not support providing "
1930 "MTE to the guest CPU");
1931 exit(1);
1934 create_fdt(vms);
1936 possible_cpus = mc->possible_cpu_arch_ids(machine);
1937 assert(possible_cpus->len == max_cpus);
1938 for (n = 0; n < possible_cpus->len; n++) {
1939 Object *cpuobj;
1940 CPUState *cs;
1942 if (n >= smp_cpus) {
1943 break;
1946 cpuobj = object_new(possible_cpus->cpus[n].type);
1947 object_property_set_int(cpuobj, "mp-affinity",
1948 possible_cpus->cpus[n].arch_id, NULL);
1950 cs = CPU(cpuobj);
1951 cs->cpu_index = n;
1953 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1954 &error_fatal);
1956 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1958 if (!vms->secure) {
1959 object_property_set_bool(cpuobj, "has_el3", false, NULL);
1962 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1963 object_property_set_bool(cpuobj, "has_el2", false, NULL);
1966 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1967 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1968 NULL);
1970 /* Secondary CPUs start in PSCI powered-down state */
1971 if (n > 0) {
1972 object_property_set_bool(cpuobj, "start-powered-off", true,
1973 NULL);
1977 if (vmc->kvm_no_adjvtime &&
1978 object_property_find(cpuobj, "kvm-no-adjvtime")) {
1979 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1982 if (vmc->no_kvm_steal_time &&
1983 object_property_find(cpuobj, "kvm-steal-time")) {
1984 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1987 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1988 object_property_set_bool(cpuobj, "pmu", false, NULL);
1991 if (object_property_find(cpuobj, "reset-cbar")) {
1992 object_property_set_int(cpuobj, "reset-cbar",
1993 vms->memmap[VIRT_CPUPERIPHS].base,
1994 &error_abort);
1997 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1998 &error_abort);
1999 if (vms->secure) {
2000 object_property_set_link(cpuobj, "secure-memory",
2001 OBJECT(secure_sysmem), &error_abort);
2004 if (vms->mte) {
2005 /* Create the memory region only once, but link to all cpus. */
2006 if (!tag_sysmem) {
2008 * The property exists only if MemTag is supported.
2009 * If it is, we must allocate the ram to back that up.
2011 if (!object_property_find(cpuobj, "tag-memory")) {
2012 error_report("MTE requested, but not supported "
2013 "by the guest CPU");
2014 exit(1);
2017 tag_sysmem = g_new(MemoryRegion, 1);
2018 memory_region_init(tag_sysmem, OBJECT(machine),
2019 "tag-memory", UINT64_MAX / 32);
2021 if (vms->secure) {
2022 secure_tag_sysmem = g_new(MemoryRegion, 1);
2023 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2024 "secure-tag-memory", UINT64_MAX / 32);
2026 /* As with ram, secure-tag takes precedence over tag. */
2027 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2028 tag_sysmem, -1);
2032 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2033 &error_abort);
2034 if (vms->secure) {
2035 object_property_set_link(cpuobj, "secure-tag-memory",
2036 OBJECT(secure_tag_sysmem),
2037 &error_abort);
2041 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2042 object_unref(cpuobj);
2044 fdt_add_timer_nodes(vms);
2045 fdt_add_cpu_nodes(vms);
2047 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2048 machine->ram);
2049 if (machine->device_memory) {
2050 memory_region_add_subregion(sysmem, machine->device_memory->base,
2051 &machine->device_memory->mr);
2054 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2056 create_gic(vms, sysmem);
2058 virt_cpu_post_init(vms, sysmem);
2060 fdt_add_pmu_nodes(vms);
2062 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2064 if (vms->secure) {
2065 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2066 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2069 if (tag_sysmem) {
2070 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2071 machine->ram_size, "mach-virt.tag");
2074 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2076 create_rtc(vms);
2078 create_pcie(vms);
2080 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2081 vms->acpi_dev = create_acpi_ged(vms);
2082 } else {
2083 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2086 if (vms->secure && !vmc->no_secure_gpio) {
2087 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2090 /* connect powerdown request */
2091 vms->powerdown_notifier.notify = virt_powerdown_req;
2092 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2094 /* Create mmio transports, so the user can create virtio backends
2095 * (which will be automatically plugged in to the transports). If
2096 * no backend is created the transport will just sit harmlessly idle.
2098 create_virtio_devices(vms);
2100 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2101 rom_set_fw(vms->fw_cfg);
2103 create_platform_bus(vms);
2105 if (machine->nvdimms_state->is_enabled) {
2106 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2107 .space_id = AML_AS_SYSTEM_MEMORY,
2108 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2109 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2112 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2113 arm_virt_nvdimm_acpi_dsmio,
2114 vms->fw_cfg, OBJECT(vms));
2117 vms->bootinfo.ram_size = machine->ram_size;
2118 vms->bootinfo.nb_cpus = smp_cpus;
2119 vms->bootinfo.board_id = -1;
2120 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2121 vms->bootinfo.get_dtb = machvirt_dtb;
2122 vms->bootinfo.skip_dtb_autoload = true;
2123 vms->bootinfo.firmware_loaded = firmware_loaded;
2124 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2126 vms->machine_done.notify = virt_machine_done;
2127 qemu_add_machine_init_done_notifier(&vms->machine_done);
2130 static bool virt_get_secure(Object *obj, Error **errp)
2132 VirtMachineState *vms = VIRT_MACHINE(obj);
2134 return vms->secure;
2137 static void virt_set_secure(Object *obj, bool value, Error **errp)
2139 VirtMachineState *vms = VIRT_MACHINE(obj);
2141 vms->secure = value;
2144 static bool virt_get_virt(Object *obj, Error **errp)
2146 VirtMachineState *vms = VIRT_MACHINE(obj);
2148 return vms->virt;
2151 static void virt_set_virt(Object *obj, bool value, Error **errp)
2153 VirtMachineState *vms = VIRT_MACHINE(obj);
2155 vms->virt = value;
2158 static bool virt_get_highmem(Object *obj, Error **errp)
2160 VirtMachineState *vms = VIRT_MACHINE(obj);
2162 return vms->highmem;
2165 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2167 VirtMachineState *vms = VIRT_MACHINE(obj);
2169 vms->highmem = value;
2172 static bool virt_get_its(Object *obj, Error **errp)
2174 VirtMachineState *vms = VIRT_MACHINE(obj);
2176 return vms->its;
2179 static void virt_set_its(Object *obj, bool value, Error **errp)
2181 VirtMachineState *vms = VIRT_MACHINE(obj);
2183 vms->its = value;
2186 static char *virt_get_oem_id(Object *obj, Error **errp)
2188 VirtMachineState *vms = VIRT_MACHINE(obj);
2190 return g_strdup(vms->oem_id);
2193 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2195 VirtMachineState *vms = VIRT_MACHINE(obj);
2196 size_t len = strlen(value);
2198 if (len > 6) {
2199 error_setg(errp,
2200 "User specified oem-id value is bigger than 6 bytes in size");
2201 return;
2204 strncpy(vms->oem_id, value, 6);
2207 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2209 VirtMachineState *vms = VIRT_MACHINE(obj);
2211 return g_strdup(vms->oem_table_id);
2214 static void virt_set_oem_table_id(Object *obj, const char *value,
2215 Error **errp)
2217 VirtMachineState *vms = VIRT_MACHINE(obj);
2218 size_t len = strlen(value);
2220 if (len > 8) {
2221 error_setg(errp,
2222 "User specified oem-table-id value is bigger than 8 bytes in size");
2223 return;
2225 strncpy(vms->oem_table_id, value, 8);
2229 bool virt_is_acpi_enabled(VirtMachineState *vms)
2231 if (vms->acpi == ON_OFF_AUTO_OFF) {
2232 return false;
2234 return true;
2237 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2238 void *opaque, Error **errp)
2240 VirtMachineState *vms = VIRT_MACHINE(obj);
2241 OnOffAuto acpi = vms->acpi;
2243 visit_type_OnOffAuto(v, name, &acpi, errp);
2246 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2247 void *opaque, Error **errp)
2249 VirtMachineState *vms = VIRT_MACHINE(obj);
2251 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2254 static bool virt_get_ras(Object *obj, Error **errp)
2256 VirtMachineState *vms = VIRT_MACHINE(obj);
2258 return vms->ras;
2261 static void virt_set_ras(Object *obj, bool value, Error **errp)
2263 VirtMachineState *vms = VIRT_MACHINE(obj);
2265 vms->ras = value;
2268 static bool virt_get_mte(Object *obj, Error **errp)
2270 VirtMachineState *vms = VIRT_MACHINE(obj);
2272 return vms->mte;
2275 static void virt_set_mte(Object *obj, bool value, Error **errp)
2277 VirtMachineState *vms = VIRT_MACHINE(obj);
2279 vms->mte = value;
2282 static char *virt_get_gic_version(Object *obj, Error **errp)
2284 VirtMachineState *vms = VIRT_MACHINE(obj);
2285 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2287 return g_strdup(val);
2290 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2292 VirtMachineState *vms = VIRT_MACHINE(obj);
2294 if (!strcmp(value, "3")) {
2295 vms->gic_version = VIRT_GIC_VERSION_3;
2296 } else if (!strcmp(value, "2")) {
2297 vms->gic_version = VIRT_GIC_VERSION_2;
2298 } else if (!strcmp(value, "host")) {
2299 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2300 } else if (!strcmp(value, "max")) {
2301 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2302 } else {
2303 error_setg(errp, "Invalid gic-version value");
2304 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2308 static char *virt_get_iommu(Object *obj, Error **errp)
2310 VirtMachineState *vms = VIRT_MACHINE(obj);
2312 switch (vms->iommu) {
2313 case VIRT_IOMMU_NONE:
2314 return g_strdup("none");
2315 case VIRT_IOMMU_SMMUV3:
2316 return g_strdup("smmuv3");
2317 default:
2318 g_assert_not_reached();
2322 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2324 VirtMachineState *vms = VIRT_MACHINE(obj);
2326 if (!strcmp(value, "smmuv3")) {
2327 vms->iommu = VIRT_IOMMU_SMMUV3;
2328 } else if (!strcmp(value, "none")) {
2329 vms->iommu = VIRT_IOMMU_NONE;
2330 } else {
2331 error_setg(errp, "Invalid iommu value");
2332 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2336 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2338 VirtMachineState *vms = VIRT_MACHINE(obj);
2340 return vms->default_bus_bypass_iommu;
2343 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2344 Error **errp)
2346 VirtMachineState *vms = VIRT_MACHINE(obj);
2348 vms->default_bus_bypass_iommu = value;
2351 static CpuInstanceProperties
2352 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2354 MachineClass *mc = MACHINE_GET_CLASS(ms);
2355 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2357 assert(cpu_index < possible_cpus->len);
2358 return possible_cpus->cpus[cpu_index].props;
2361 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2363 return idx % ms->numa_state->num_nodes;
2366 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2368 int n;
2369 unsigned int max_cpus = ms->smp.max_cpus;
2370 VirtMachineState *vms = VIRT_MACHINE(ms);
2372 if (ms->possible_cpus) {
2373 assert(ms->possible_cpus->len == max_cpus);
2374 return ms->possible_cpus;
2377 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2378 sizeof(CPUArchId) * max_cpus);
2379 ms->possible_cpus->len = max_cpus;
2380 for (n = 0; n < ms->possible_cpus->len; n++) {
2381 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2382 ms->possible_cpus->cpus[n].arch_id =
2383 virt_cpu_mp_affinity(vms, n);
2384 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2385 ms->possible_cpus->cpus[n].props.thread_id = n;
2387 return ms->possible_cpus;
2390 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2391 Error **errp)
2393 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2394 const MachineState *ms = MACHINE(hotplug_dev);
2395 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2397 if (!vms->acpi_dev) {
2398 error_setg(errp,
2399 "memory hotplug is not enabled: missing acpi-ged device");
2400 return;
2403 if (vms->mte) {
2404 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2405 return;
2408 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2409 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2410 return;
2413 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2416 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2417 DeviceState *dev, Error **errp)
2419 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2420 MachineState *ms = MACHINE(hotplug_dev);
2421 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2423 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2425 if (is_nvdimm) {
2426 nvdimm_plug(ms->nvdimms_state);
2429 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2430 dev, &error_abort);
2433 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2434 DeviceState *dev, Error **errp)
2436 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2438 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2439 virt_memory_pre_plug(hotplug_dev, dev, errp);
2440 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2441 hwaddr db_start = 0, db_end = 0;
2442 char *resv_prop_str;
2444 switch (vms->msi_controller) {
2445 case VIRT_MSI_CTRL_NONE:
2446 return;
2447 case VIRT_MSI_CTRL_ITS:
2448 /* GITS_TRANSLATER page */
2449 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2450 db_end = base_memmap[VIRT_GIC_ITS].base +
2451 base_memmap[VIRT_GIC_ITS].size - 1;
2452 break;
2453 case VIRT_MSI_CTRL_GICV2M:
2454 /* MSI_SETSPI_NS page */
2455 db_start = base_memmap[VIRT_GIC_V2M].base;
2456 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2457 break;
2459 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2460 db_start, db_end,
2461 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2463 qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2464 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2465 g_free(resv_prop_str);
2469 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2470 DeviceState *dev, Error **errp)
2472 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2474 if (vms->platform_bus_dev) {
2475 MachineClass *mc = MACHINE_GET_CLASS(vms);
2477 if (device_is_dynamic_sysbus(mc, dev)) {
2478 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2479 SYS_BUS_DEVICE(dev));
2482 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2483 virt_memory_plug(hotplug_dev, dev, errp);
2485 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2486 PCIDevice *pdev = PCI_DEVICE(dev);
2488 vms->iommu = VIRT_IOMMU_VIRTIO;
2489 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2490 create_virtio_iommu_dt_bindings(vms);
2494 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2495 DeviceState *dev, Error **errp)
2497 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2498 Error *local_err = NULL;
2500 if (!vms->acpi_dev) {
2501 error_setg(&local_err,
2502 "memory hotplug is not enabled: missing acpi-ged device");
2503 goto out;
2506 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2507 error_setg(&local_err,
2508 "nvdimm device hot unplug is not supported yet.");
2509 goto out;
2512 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2513 &local_err);
2514 out:
2515 error_propagate(errp, local_err);
2518 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2519 DeviceState *dev, Error **errp)
2521 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2522 Error *local_err = NULL;
2524 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2525 if (local_err) {
2526 goto out;
2529 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2530 qdev_unrealize(dev);
2532 out:
2533 error_propagate(errp, local_err);
2536 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2537 DeviceState *dev, Error **errp)
2539 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2540 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2541 } else {
2542 error_setg(errp, "device unplug request for unsupported device"
2543 " type: %s", object_get_typename(OBJECT(dev)));
2547 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2548 DeviceState *dev, Error **errp)
2550 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2551 virt_dimm_unplug(hotplug_dev, dev, errp);
2552 } else {
2553 error_setg(errp, "virt: device unplug for unsupported device"
2554 " type: %s", object_get_typename(OBJECT(dev)));
2558 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2559 DeviceState *dev)
2561 MachineClass *mc = MACHINE_GET_CLASS(machine);
2563 if (device_is_dynamic_sysbus(mc, dev) ||
2564 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2565 return HOTPLUG_HANDLER(machine);
2567 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2568 VirtMachineState *vms = VIRT_MACHINE(machine);
2570 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2571 return HOTPLUG_HANDLER(machine);
2574 return NULL;
2578 * for arm64 kvm_type [7-0] encodes the requested number of bits
2579 * in the IPA address space
2581 static int virt_kvm_type(MachineState *ms, const char *type_str)
2583 VirtMachineState *vms = VIRT_MACHINE(ms);
2584 int max_vm_pa_size, requested_pa_size;
2585 bool fixed_ipa;
2587 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2589 /* we freeze the memory map to compute the highest gpa */
2590 virt_set_memmap(vms);
2592 requested_pa_size = 64 - clz64(vms->highest_gpa);
2595 * KVM requires the IPA size to be at least 32 bits.
2597 if (requested_pa_size < 32) {
2598 requested_pa_size = 32;
2601 if (requested_pa_size > max_vm_pa_size) {
2602 error_report("-m and ,maxmem option values "
2603 "require an IPA range (%d bits) larger than "
2604 "the one supported by the host (%d bits)",
2605 requested_pa_size, max_vm_pa_size);
2606 exit(1);
2609 * We return the requested PA log size, unless KVM only supports
2610 * the implicit legacy 40b IPA setting, in which case the kvm_type
2611 * must be 0.
2613 return fixed_ipa ? 0 : requested_pa_size;
2616 static void virt_machine_class_init(ObjectClass *oc, void *data)
2618 MachineClass *mc = MACHINE_CLASS(oc);
2619 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2621 mc->init = machvirt_init;
2622 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2623 * The value may be reduced later when we have more information about the
2624 * configuration of the particular instance.
2626 mc->max_cpus = 512;
2627 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2628 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2629 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2630 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2631 #ifdef CONFIG_TPM
2632 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2633 #endif
2634 mc->block_default_type = IF_VIRTIO;
2635 mc->no_cdrom = 1;
2636 mc->pci_allow_0_address = true;
2637 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2638 mc->minimum_page_bits = 12;
2639 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2640 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2641 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2642 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2643 mc->kvm_type = virt_kvm_type;
2644 assert(!mc->get_hotplug_handler);
2645 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2646 hc->pre_plug = virt_machine_device_pre_plug_cb;
2647 hc->plug = virt_machine_device_plug_cb;
2648 hc->unplug_request = virt_machine_device_unplug_request_cb;
2649 hc->unplug = virt_machine_device_unplug_cb;
2650 mc->nvdimm_supported = true;
2651 mc->auto_enable_numa_with_memhp = true;
2652 mc->auto_enable_numa_with_memdev = true;
2653 mc->default_ram_id = "mach-virt.ram";
2655 object_class_property_add(oc, "acpi", "OnOffAuto",
2656 virt_get_acpi, virt_set_acpi,
2657 NULL, NULL);
2658 object_class_property_set_description(oc, "acpi",
2659 "Enable ACPI");
2660 object_class_property_add_bool(oc, "secure", virt_get_secure,
2661 virt_set_secure);
2662 object_class_property_set_description(oc, "secure",
2663 "Set on/off to enable/disable the ARM "
2664 "Security Extensions (TrustZone)");
2666 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2667 virt_set_virt);
2668 object_class_property_set_description(oc, "virtualization",
2669 "Set on/off to enable/disable emulating a "
2670 "guest CPU which implements the ARM "
2671 "Virtualization Extensions");
2673 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2674 virt_set_highmem);
2675 object_class_property_set_description(oc, "highmem",
2676 "Set on/off to enable/disable using "
2677 "physical address space above 32 bits");
2679 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2680 virt_set_gic_version);
2681 object_class_property_set_description(oc, "gic-version",
2682 "Set GIC version. "
2683 "Valid values are 2, 3, host and max");
2685 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2686 object_class_property_set_description(oc, "iommu",
2687 "Set the IOMMU type. "
2688 "Valid values are none and smmuv3");
2690 object_class_property_add_bool(oc, "default_bus_bypass_iommu",
2691 virt_get_default_bus_bypass_iommu,
2692 virt_set_default_bus_bypass_iommu);
2693 object_class_property_set_description(oc, "default_bus_bypass_iommu",
2694 "Set on/off to enable/disable "
2695 "bypass_iommu for default root bus");
2697 object_class_property_add_bool(oc, "ras", virt_get_ras,
2698 virt_set_ras);
2699 object_class_property_set_description(oc, "ras",
2700 "Set on/off to enable/disable reporting host memory errors "
2701 "to a KVM guest using ACPI and guest external abort exceptions");
2703 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2704 object_class_property_set_description(oc, "mte",
2705 "Set on/off to enable/disable emulating a "
2706 "guest CPU which implements the ARM "
2707 "Memory Tagging Extension");
2709 object_class_property_add_bool(oc, "its", virt_get_its,
2710 virt_set_its);
2711 object_class_property_set_description(oc, "its",
2712 "Set on/off to enable/disable "
2713 "ITS instantiation");
2715 object_class_property_add_str(oc, "x-oem-id",
2716 virt_get_oem_id,
2717 virt_set_oem_id);
2718 object_class_property_set_description(oc, "x-oem-id",
2719 "Override the default value of field OEMID "
2720 "in ACPI table header."
2721 "The string may be up to 6 bytes in size");
2724 object_class_property_add_str(oc, "x-oem-table-id",
2725 virt_get_oem_table_id,
2726 virt_set_oem_table_id);
2727 object_class_property_set_description(oc, "x-oem-table-id",
2728 "Override the default value of field OEM Table ID "
2729 "in ACPI table header."
2730 "The string may be up to 8 bytes in size");
2734 static void virt_instance_init(Object *obj)
2736 VirtMachineState *vms = VIRT_MACHINE(obj);
2737 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2739 /* EL3 is disabled by default on virt: this makes us consistent
2740 * between KVM and TCG for this board, and it also allows us to
2741 * boot UEFI blobs which assume no TrustZone support.
2743 vms->secure = false;
2745 /* EL2 is also disabled by default, for similar reasons */
2746 vms->virt = false;
2748 /* High memory is enabled by default */
2749 vms->highmem = true;
2750 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2752 vms->highmem_ecam = !vmc->no_highmem_ecam;
2754 if (vmc->no_its) {
2755 vms->its = false;
2756 } else {
2757 /* Default allows ITS instantiation */
2758 vms->its = true;
2760 if (vmc->no_tcg_its) {
2761 vms->tcg_its = false;
2762 } else {
2763 vms->tcg_its = true;
2767 /* Default disallows iommu instantiation */
2768 vms->iommu = VIRT_IOMMU_NONE;
2770 /* The default root bus is attached to iommu by default */
2771 vms->default_bus_bypass_iommu = false;
2773 /* Default disallows RAS instantiation */
2774 vms->ras = false;
2776 /* MTE is disabled by default. */
2777 vms->mte = false;
2779 vms->irqmap = a15irqmap;
2781 virt_flash_create(vms);
2783 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2784 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2787 static const TypeInfo virt_machine_info = {
2788 .name = TYPE_VIRT_MACHINE,
2789 .parent = TYPE_MACHINE,
2790 .abstract = true,
2791 .instance_size = sizeof(VirtMachineState),
2792 .class_size = sizeof(VirtMachineClass),
2793 .class_init = virt_machine_class_init,
2794 .instance_init = virt_instance_init,
2795 .interfaces = (InterfaceInfo[]) {
2796 { TYPE_HOTPLUG_HANDLER },
2801 static void machvirt_machine_init(void)
2803 type_register_static(&virt_machine_info);
2805 type_init(machvirt_machine_init);
2807 static void virt_machine_6_2_options(MachineClass *mc)
2810 DEFINE_VIRT_MACHINE_AS_LATEST(6, 2)
2812 static void virt_machine_6_1_options(MachineClass *mc)
2814 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2816 virt_machine_6_2_options(mc);
2817 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
2818 mc->smp_props.prefer_sockets = true;
2820 /* qemu ITS was introduced with 6.2 */
2821 vmc->no_tcg_its = true;
2823 DEFINE_VIRT_MACHINE(6, 1)
2825 static void virt_machine_6_0_options(MachineClass *mc)
2827 virt_machine_6_1_options(mc);
2828 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
2830 DEFINE_VIRT_MACHINE(6, 0)
2832 static void virt_machine_5_2_options(MachineClass *mc)
2834 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2836 virt_machine_6_0_options(mc);
2837 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2838 vmc->no_secure_gpio = true;
2840 DEFINE_VIRT_MACHINE(5, 2)
2842 static void virt_machine_5_1_options(MachineClass *mc)
2844 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2846 virt_machine_5_2_options(mc);
2847 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2848 vmc->no_kvm_steal_time = true;
2850 DEFINE_VIRT_MACHINE(5, 1)
2852 static void virt_machine_5_0_options(MachineClass *mc)
2854 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2856 virt_machine_5_1_options(mc);
2857 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2858 mc->numa_mem_supported = true;
2859 vmc->acpi_expose_flash = true;
2860 mc->auto_enable_numa_with_memdev = false;
2862 DEFINE_VIRT_MACHINE(5, 0)
2864 static void virt_machine_4_2_options(MachineClass *mc)
2866 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2868 virt_machine_5_0_options(mc);
2869 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2870 vmc->kvm_no_adjvtime = true;
2872 DEFINE_VIRT_MACHINE(4, 2)
2874 static void virt_machine_4_1_options(MachineClass *mc)
2876 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2878 virt_machine_4_2_options(mc);
2879 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2880 vmc->no_ged = true;
2881 mc->auto_enable_numa_with_memhp = false;
2883 DEFINE_VIRT_MACHINE(4, 1)
2885 static void virt_machine_4_0_options(MachineClass *mc)
2887 virt_machine_4_1_options(mc);
2888 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2890 DEFINE_VIRT_MACHINE(4, 0)
2892 static void virt_machine_3_1_options(MachineClass *mc)
2894 virt_machine_4_0_options(mc);
2895 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2897 DEFINE_VIRT_MACHINE(3, 1)
2899 static void virt_machine_3_0_options(MachineClass *mc)
2901 virt_machine_3_1_options(mc);
2902 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2904 DEFINE_VIRT_MACHINE(3, 0)
2906 static void virt_machine_2_12_options(MachineClass *mc)
2908 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2910 virt_machine_3_0_options(mc);
2911 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2912 vmc->no_highmem_ecam = true;
2913 mc->max_cpus = 255;
2915 DEFINE_VIRT_MACHINE(2, 12)
2917 static void virt_machine_2_11_options(MachineClass *mc)
2919 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2921 virt_machine_2_12_options(mc);
2922 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2923 vmc->smbios_old_sys_ver = true;
2925 DEFINE_VIRT_MACHINE(2, 11)
2927 static void virt_machine_2_10_options(MachineClass *mc)
2929 virt_machine_2_11_options(mc);
2930 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2931 /* before 2.11 we never faulted accesses to bad addresses */
2932 mc->ignore_memory_transaction_failures = true;
2934 DEFINE_VIRT_MACHINE(2, 10)
2936 static void virt_machine_2_9_options(MachineClass *mc)
2938 virt_machine_2_10_options(mc);
2939 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2941 DEFINE_VIRT_MACHINE(2, 9)
2943 static void virt_machine_2_8_options(MachineClass *mc)
2945 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2947 virt_machine_2_9_options(mc);
2948 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2949 /* For 2.8 and earlier we falsely claimed in the DT that
2950 * our timers were edge-triggered, not level-triggered.
2952 vmc->claim_edge_triggered_timers = true;
2954 DEFINE_VIRT_MACHINE(2, 8)
2956 static void virt_machine_2_7_options(MachineClass *mc)
2958 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2960 virt_machine_2_8_options(mc);
2961 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2962 /* ITS was introduced with 2.8 */
2963 vmc->no_its = true;
2964 /* Stick with 1K pages for migration compatibility */
2965 mc->minimum_page_bits = 0;
2967 DEFINE_VIRT_MACHINE(2, 7)
2969 static void virt_machine_2_6_options(MachineClass *mc)
2971 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2973 virt_machine_2_7_options(mc);
2974 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2975 vmc->disallow_affinity_adjustment = true;
2976 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2977 vmc->no_pmu = true;
2979 DEFINE_VIRT_MACHINE(2, 6)