ich9: add disable_s3, disable_s4, s4_val properties
[qemu/rayw.git] / hw / i386 / pc.c
blobe07f1fac5654d55998664f05ab87cf494f9c9b99
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/block-backend.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/acpi/cpu_hotplug.h"
57 #include "hw/cpu/icc_bus.h"
58 #include "hw/boards.h"
59 #include "hw/pci/pci_host.h"
60 #include "acpi-build.h"
61 #include "hw/mem/pc-dimm.h"
62 #include "trace.h"
63 #include "qapi/visitor.h"
64 #include "qapi-visit.h"
66 /* debug PC/ISA interrupts */
67 //#define DEBUG_IRQ
69 #ifdef DEBUG_IRQ
70 #define DPRINTF(fmt, ...) \
71 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
72 #else
73 #define DPRINTF(fmt, ...)
74 #endif
76 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
77 * (128K) and other BIOS datastructures (less than 4K reported to be used at
78 * the moment, 32K should be enough for a while). */
79 static unsigned acpi_data_size = 0x20000 + 0x8000;
80 void pc_set_legacy_acpi_data_size(void)
82 acpi_data_size = 0x10000;
85 #define BIOS_CFG_IOPORT 0x510
86 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
87 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
88 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
89 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
90 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
92 #define E820_NR_ENTRIES 16
94 struct e820_entry {
95 uint64_t address;
96 uint64_t length;
97 uint32_t type;
98 } QEMU_PACKED __attribute((__aligned__(4)));
100 struct e820_table {
101 uint32_t count;
102 struct e820_entry entry[E820_NR_ENTRIES];
103 } QEMU_PACKED __attribute((__aligned__(4)));
105 static struct e820_table e820_reserve;
106 static struct e820_entry *e820_table;
107 static unsigned e820_entries;
108 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
110 void gsi_handler(void *opaque, int n, int level)
112 GSIState *s = opaque;
114 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
115 if (n < ISA_NUM_IRQS) {
116 qemu_set_irq(s->i8259_irq[n], level);
118 qemu_set_irq(s->ioapic_irq[n], level);
121 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
122 unsigned size)
126 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
128 return 0xffffffffffffffffULL;
131 /* MSDOS compatibility mode FPU exception support */
132 static qemu_irq ferr_irq;
134 void pc_register_ferr_irq(qemu_irq irq)
136 ferr_irq = irq;
139 /* XXX: add IGNNE support */
140 void cpu_set_ferr(CPUX86State *s)
142 qemu_irq_raise(ferr_irq);
145 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
146 unsigned size)
148 qemu_irq_lower(ferr_irq);
151 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
153 return 0xffffffffffffffffULL;
156 /* TSC handling */
157 uint64_t cpu_get_tsc(CPUX86State *env)
159 return cpu_get_ticks();
162 /* SMM support */
164 static cpu_set_smm_t smm_set;
165 static void *smm_arg;
167 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
169 assert(smm_set == NULL);
170 assert(smm_arg == NULL);
171 smm_set = callback;
172 smm_arg = arg;
175 void cpu_smm_update(CPUX86State *env)
177 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
178 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
183 /* IRQ handling */
184 int cpu_get_pic_interrupt(CPUX86State *env)
186 X86CPU *cpu = x86_env_get_cpu(env);
187 int intno;
189 intno = apic_get_interrupt(cpu->apic_state);
190 if (intno >= 0) {
191 return intno;
193 /* read the irq from the PIC */
194 if (!apic_accept_pic_intr(cpu->apic_state)) {
195 return -1;
198 intno = pic_read_irq(isa_pic);
199 return intno;
202 static void pic_irq_request(void *opaque, int irq, int level)
204 CPUState *cs = first_cpu;
205 X86CPU *cpu = X86_CPU(cs);
207 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
208 if (cpu->apic_state) {
209 CPU_FOREACH(cs) {
210 cpu = X86_CPU(cs);
211 if (apic_accept_pic_intr(cpu->apic_state)) {
212 apic_deliver_pic_intr(cpu->apic_state, level);
215 } else {
216 if (level) {
217 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
218 } else {
219 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
224 /* PC cmos mappings */
226 #define REG_EQUIPMENT_BYTE 0x14
228 static int cmos_get_fd_drive_type(FDriveType fd0)
230 int val;
232 switch (fd0) {
233 case FDRIVE_DRV_144:
234 /* 1.44 Mb 3"5 drive */
235 val = 4;
236 break;
237 case FDRIVE_DRV_288:
238 /* 2.88 Mb 3"5 drive */
239 val = 5;
240 break;
241 case FDRIVE_DRV_120:
242 /* 1.2 Mb 5"5 drive */
243 val = 2;
244 break;
245 case FDRIVE_DRV_NONE:
246 default:
247 val = 0;
248 break;
250 return val;
253 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
254 int16_t cylinders, int8_t heads, int8_t sectors)
256 rtc_set_memory(s, type_ofs, 47);
257 rtc_set_memory(s, info_ofs, cylinders);
258 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
259 rtc_set_memory(s, info_ofs + 2, heads);
260 rtc_set_memory(s, info_ofs + 3, 0xff);
261 rtc_set_memory(s, info_ofs + 4, 0xff);
262 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
263 rtc_set_memory(s, info_ofs + 6, cylinders);
264 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
265 rtc_set_memory(s, info_ofs + 8, sectors);
268 /* convert boot_device letter to something recognizable by the bios */
269 static int boot_device2nibble(char boot_device)
271 switch(boot_device) {
272 case 'a':
273 case 'b':
274 return 0x01; /* floppy boot */
275 case 'c':
276 return 0x02; /* hard drive boot */
277 case 'd':
278 return 0x03; /* CD-ROM boot */
279 case 'n':
280 return 0x04; /* Network boot */
282 return 0;
285 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
287 #define PC_MAX_BOOT_DEVICES 3
288 int nbds, bds[3] = { 0, };
289 int i;
291 nbds = strlen(boot_device);
292 if (nbds > PC_MAX_BOOT_DEVICES) {
293 error_setg(errp, "Too many boot devices for PC");
294 return;
296 for (i = 0; i < nbds; i++) {
297 bds[i] = boot_device2nibble(boot_device[i]);
298 if (bds[i] == 0) {
299 error_setg(errp, "Invalid boot device for PC: '%c'",
300 boot_device[i]);
301 return;
304 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
305 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
308 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
310 set_boot_dev(opaque, boot_device, errp);
313 typedef struct pc_cmos_init_late_arg {
314 ISADevice *rtc_state;
315 BusState *idebus[2];
316 } pc_cmos_init_late_arg;
318 static void pc_cmos_init_late(void *opaque)
320 pc_cmos_init_late_arg *arg = opaque;
321 ISADevice *s = arg->rtc_state;
322 int16_t cylinders;
323 int8_t heads, sectors;
324 int val;
325 int i, trans;
327 val = 0;
328 if (ide_get_geometry(arg->idebus[0], 0,
329 &cylinders, &heads, &sectors) >= 0) {
330 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
331 val |= 0xf0;
333 if (ide_get_geometry(arg->idebus[0], 1,
334 &cylinders, &heads, &sectors) >= 0) {
335 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
336 val |= 0x0f;
338 rtc_set_memory(s, 0x12, val);
340 val = 0;
341 for (i = 0; i < 4; i++) {
342 /* NOTE: ide_get_geometry() returns the physical
343 geometry. It is always such that: 1 <= sects <= 63, 1
344 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
345 geometry can be different if a translation is done. */
346 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
347 &cylinders, &heads, &sectors) >= 0) {
348 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
349 assert((trans & ~3) == 0);
350 val |= trans << (i * 2);
353 rtc_set_memory(s, 0x39, val);
355 qemu_unregister_reset(pc_cmos_init_late, opaque);
358 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
359 const char *boot_device, MachineState *machine,
360 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
361 ISADevice *s)
363 int val, nb, i;
364 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
365 static pc_cmos_init_late_arg arg;
366 PCMachineState *pc_machine = PC_MACHINE(machine);
367 Error *local_err = NULL;
369 /* various important CMOS locations needed by PC/Bochs bios */
371 /* memory size */
372 /* base memory (first MiB) */
373 val = MIN(ram_size / 1024, 640);
374 rtc_set_memory(s, 0x15, val);
375 rtc_set_memory(s, 0x16, val >> 8);
376 /* extended memory (next 64MiB) */
377 if (ram_size > 1024 * 1024) {
378 val = (ram_size - 1024 * 1024) / 1024;
379 } else {
380 val = 0;
382 if (val > 65535)
383 val = 65535;
384 rtc_set_memory(s, 0x17, val);
385 rtc_set_memory(s, 0x18, val >> 8);
386 rtc_set_memory(s, 0x30, val);
387 rtc_set_memory(s, 0x31, val >> 8);
388 /* memory between 16MiB and 4GiB */
389 if (ram_size > 16 * 1024 * 1024) {
390 val = (ram_size - 16 * 1024 * 1024) / 65536;
391 } else {
392 val = 0;
394 if (val > 65535)
395 val = 65535;
396 rtc_set_memory(s, 0x34, val);
397 rtc_set_memory(s, 0x35, val >> 8);
398 /* memory above 4GiB */
399 val = above_4g_mem_size / 65536;
400 rtc_set_memory(s, 0x5b, val);
401 rtc_set_memory(s, 0x5c, val >> 8);
402 rtc_set_memory(s, 0x5d, val >> 16);
404 /* set the number of CPU */
405 rtc_set_memory(s, 0x5f, smp_cpus - 1);
407 object_property_add_link(OBJECT(machine), "rtc_state",
408 TYPE_ISA_DEVICE,
409 (Object **)&pc_machine->rtc,
410 object_property_allow_set_link,
411 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
412 object_property_set_link(OBJECT(machine), OBJECT(s),
413 "rtc_state", &error_abort);
415 set_boot_dev(s, boot_device, &local_err);
416 if (local_err) {
417 error_report("%s", error_get_pretty(local_err));
418 exit(1);
421 /* floppy type */
422 if (floppy) {
423 for (i = 0; i < 2; i++) {
424 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
427 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
428 cmos_get_fd_drive_type(fd_type[1]);
429 rtc_set_memory(s, 0x10, val);
431 val = 0;
432 nb = 0;
433 if (fd_type[0] < FDRIVE_DRV_NONE) {
434 nb++;
436 if (fd_type[1] < FDRIVE_DRV_NONE) {
437 nb++;
439 switch (nb) {
440 case 0:
441 break;
442 case 1:
443 val |= 0x01; /* 1 drive, ready for boot */
444 break;
445 case 2:
446 val |= 0x41; /* 2 drives, ready for boot */
447 break;
449 val |= 0x02; /* FPU is there */
450 val |= 0x04; /* PS/2 mouse installed */
451 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
453 /* hard drives */
454 arg.rtc_state = s;
455 arg.idebus[0] = idebus0;
456 arg.idebus[1] = idebus1;
457 qemu_register_reset(pc_cmos_init_late, &arg);
460 #define TYPE_PORT92 "port92"
461 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
463 /* port 92 stuff: could be split off */
464 typedef struct Port92State {
465 ISADevice parent_obj;
467 MemoryRegion io;
468 uint8_t outport;
469 qemu_irq *a20_out;
470 } Port92State;
472 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
473 unsigned size)
475 Port92State *s = opaque;
476 int oldval = s->outport;
478 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
479 s->outport = val;
480 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
481 if ((val & 1) && !(oldval & 1)) {
482 qemu_system_reset_request();
486 static uint64_t port92_read(void *opaque, hwaddr addr,
487 unsigned size)
489 Port92State *s = opaque;
490 uint32_t ret;
492 ret = s->outport;
493 DPRINTF("port92: read 0x%02x\n", ret);
494 return ret;
497 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
499 Port92State *s = PORT92(dev);
501 s->a20_out = a20_out;
504 static const VMStateDescription vmstate_port92_isa = {
505 .name = "port92",
506 .version_id = 1,
507 .minimum_version_id = 1,
508 .fields = (VMStateField[]) {
509 VMSTATE_UINT8(outport, Port92State),
510 VMSTATE_END_OF_LIST()
514 static void port92_reset(DeviceState *d)
516 Port92State *s = PORT92(d);
518 s->outport &= ~1;
521 static const MemoryRegionOps port92_ops = {
522 .read = port92_read,
523 .write = port92_write,
524 .impl = {
525 .min_access_size = 1,
526 .max_access_size = 1,
528 .endianness = DEVICE_LITTLE_ENDIAN,
531 static void port92_initfn(Object *obj)
533 Port92State *s = PORT92(obj);
535 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
537 s->outport = 0;
540 static void port92_realizefn(DeviceState *dev, Error **errp)
542 ISADevice *isadev = ISA_DEVICE(dev);
543 Port92State *s = PORT92(dev);
545 isa_register_ioport(isadev, &s->io, 0x92);
548 static void port92_class_initfn(ObjectClass *klass, void *data)
550 DeviceClass *dc = DEVICE_CLASS(klass);
552 dc->realize = port92_realizefn;
553 dc->reset = port92_reset;
554 dc->vmsd = &vmstate_port92_isa;
556 * Reason: unlike ordinary ISA devices, this one needs additional
557 * wiring: its A20 output line needs to be wired up by
558 * port92_init().
560 dc->cannot_instantiate_with_device_add_yet = true;
563 static const TypeInfo port92_info = {
564 .name = TYPE_PORT92,
565 .parent = TYPE_ISA_DEVICE,
566 .instance_size = sizeof(Port92State),
567 .instance_init = port92_initfn,
568 .class_init = port92_class_initfn,
571 static void port92_register_types(void)
573 type_register_static(&port92_info);
576 type_init(port92_register_types)
578 static void handle_a20_line_change(void *opaque, int irq, int level)
580 X86CPU *cpu = opaque;
582 /* XXX: send to all CPUs ? */
583 /* XXX: add logic to handle multiple A20 line sources */
584 x86_cpu_set_a20(cpu, level);
587 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
589 int index = le32_to_cpu(e820_reserve.count);
590 struct e820_entry *entry;
592 if (type != E820_RAM) {
593 /* old FW_CFG_E820_TABLE entry -- reservations only */
594 if (index >= E820_NR_ENTRIES) {
595 return -EBUSY;
597 entry = &e820_reserve.entry[index++];
599 entry->address = cpu_to_le64(address);
600 entry->length = cpu_to_le64(length);
601 entry->type = cpu_to_le32(type);
603 e820_reserve.count = cpu_to_le32(index);
606 /* new "etc/e820" file -- include ram too */
607 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
608 e820_table[e820_entries].address = cpu_to_le64(address);
609 e820_table[e820_entries].length = cpu_to_le64(length);
610 e820_table[e820_entries].type = cpu_to_le32(type);
611 e820_entries++;
613 return e820_entries;
616 int e820_get_num_entries(void)
618 return e820_entries;
621 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
623 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
624 *address = le64_to_cpu(e820_table[idx].address);
625 *length = le64_to_cpu(e820_table[idx].length);
626 return true;
628 return false;
631 /* Calculates the limit to CPU APIC ID values
633 * This function returns the limit for the APIC ID value, so that all
634 * CPU APIC IDs are < pc_apic_id_limit().
636 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
638 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
640 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
643 static FWCfgState *bochs_bios_init(void)
645 FWCfgState *fw_cfg;
646 uint8_t *smbios_tables, *smbios_anchor;
647 size_t smbios_tables_len, smbios_anchor_len;
648 uint64_t *numa_fw_cfg;
649 int i, j;
650 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
652 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
653 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
655 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
656 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
657 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
658 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
659 * may see".
661 * So, this means we must not use max_cpus, here, but the maximum possible
662 * APIC ID value, plus one.
664 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
665 * the APIC ID, not the "CPU index"
667 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
668 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
669 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
670 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
671 acpi_tables, acpi_tables_len);
672 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
674 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
675 if (smbios_tables) {
676 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
677 smbios_tables, smbios_tables_len);
680 smbios_get_tables(&smbios_tables, &smbios_tables_len,
681 &smbios_anchor, &smbios_anchor_len);
682 if (smbios_anchor) {
683 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
684 smbios_tables, smbios_tables_len);
685 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
686 smbios_anchor, smbios_anchor_len);
689 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
690 &e820_reserve, sizeof(e820_reserve));
691 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
692 sizeof(struct e820_entry) * e820_entries);
694 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
695 /* allocate memory for the NUMA channel: one (64bit) word for the number
696 * of nodes, one word for each VCPU->node and one word for each node to
697 * hold the amount of memory.
699 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
700 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
701 for (i = 0; i < max_cpus; i++) {
702 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
703 assert(apic_id < apic_id_limit);
704 for (j = 0; j < nb_numa_nodes; j++) {
705 if (test_bit(i, numa_info[j].node_cpu)) {
706 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
707 break;
711 for (i = 0; i < nb_numa_nodes; i++) {
712 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
714 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
715 (1 + apic_id_limit + nb_numa_nodes) *
716 sizeof(*numa_fw_cfg));
718 return fw_cfg;
721 static long get_file_size(FILE *f)
723 long where, size;
725 /* XXX: on Unix systems, using fstat() probably makes more sense */
727 where = ftell(f);
728 fseek(f, 0, SEEK_END);
729 size = ftell(f);
730 fseek(f, where, SEEK_SET);
732 return size;
735 static void load_linux(FWCfgState *fw_cfg,
736 const char *kernel_filename,
737 const char *initrd_filename,
738 const char *kernel_cmdline,
739 hwaddr max_ram_size)
741 uint16_t protocol;
742 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
743 uint32_t initrd_max;
744 uint8_t header[8192], *setup, *kernel, *initrd_data;
745 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
746 FILE *f;
747 char *vmode;
749 /* Align to 16 bytes as a paranoia measure */
750 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
752 /* load the kernel header */
753 f = fopen(kernel_filename, "rb");
754 if (!f || !(kernel_size = get_file_size(f)) ||
755 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
756 MIN(ARRAY_SIZE(header), kernel_size)) {
757 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
758 kernel_filename, strerror(errno));
759 exit(1);
762 /* kernel protocol version */
763 #if 0
764 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
765 #endif
766 if (ldl_p(header+0x202) == 0x53726448) {
767 protocol = lduw_p(header+0x206);
768 } else {
769 /* This looks like a multiboot kernel. If it is, let's stop
770 treating it like a Linux kernel. */
771 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
772 kernel_cmdline, kernel_size, header)) {
773 return;
775 protocol = 0;
778 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
779 /* Low kernel */
780 real_addr = 0x90000;
781 cmdline_addr = 0x9a000 - cmdline_size;
782 prot_addr = 0x10000;
783 } else if (protocol < 0x202) {
784 /* High but ancient kernel */
785 real_addr = 0x90000;
786 cmdline_addr = 0x9a000 - cmdline_size;
787 prot_addr = 0x100000;
788 } else {
789 /* High and recent kernel */
790 real_addr = 0x10000;
791 cmdline_addr = 0x20000;
792 prot_addr = 0x100000;
795 #if 0
796 fprintf(stderr,
797 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
798 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
799 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
800 real_addr,
801 cmdline_addr,
802 prot_addr);
803 #endif
805 /* highest address for loading the initrd */
806 if (protocol >= 0x203) {
807 initrd_max = ldl_p(header+0x22c);
808 } else {
809 initrd_max = 0x37ffffff;
812 if (initrd_max >= max_ram_size - acpi_data_size) {
813 initrd_max = max_ram_size - acpi_data_size - 1;
816 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
817 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
818 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
820 if (protocol >= 0x202) {
821 stl_p(header+0x228, cmdline_addr);
822 } else {
823 stw_p(header+0x20, 0xA33F);
824 stw_p(header+0x22, cmdline_addr-real_addr);
827 /* handle vga= parameter */
828 vmode = strstr(kernel_cmdline, "vga=");
829 if (vmode) {
830 unsigned int video_mode;
831 /* skip "vga=" */
832 vmode += 4;
833 if (!strncmp(vmode, "normal", 6)) {
834 video_mode = 0xffff;
835 } else if (!strncmp(vmode, "ext", 3)) {
836 video_mode = 0xfffe;
837 } else if (!strncmp(vmode, "ask", 3)) {
838 video_mode = 0xfffd;
839 } else {
840 video_mode = strtol(vmode, NULL, 0);
842 stw_p(header+0x1fa, video_mode);
845 /* loader type */
846 /* High nybble = B reserved for QEMU; low nybble is revision number.
847 If this code is substantially changed, you may want to consider
848 incrementing the revision. */
849 if (protocol >= 0x200) {
850 header[0x210] = 0xB0;
852 /* heap */
853 if (protocol >= 0x201) {
854 header[0x211] |= 0x80; /* CAN_USE_HEAP */
855 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
858 /* load initrd */
859 if (initrd_filename) {
860 if (protocol < 0x200) {
861 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
862 exit(1);
865 initrd_size = get_image_size(initrd_filename);
866 if (initrd_size < 0) {
867 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
868 initrd_filename, strerror(errno));
869 exit(1);
872 initrd_addr = (initrd_max-initrd_size) & ~4095;
874 initrd_data = g_malloc(initrd_size);
875 load_image(initrd_filename, initrd_data);
877 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
878 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
879 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
881 stl_p(header+0x218, initrd_addr);
882 stl_p(header+0x21c, initrd_size);
885 /* load kernel and setup */
886 setup_size = header[0x1f1];
887 if (setup_size == 0) {
888 setup_size = 4;
890 setup_size = (setup_size+1)*512;
891 kernel_size -= setup_size;
893 setup = g_malloc(setup_size);
894 kernel = g_malloc(kernel_size);
895 fseek(f, 0, SEEK_SET);
896 if (fread(setup, 1, setup_size, f) != setup_size) {
897 fprintf(stderr, "fread() failed\n");
898 exit(1);
900 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
901 fprintf(stderr, "fread() failed\n");
902 exit(1);
904 fclose(f);
905 memcpy(setup, header, MIN(sizeof(header), setup_size));
907 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
908 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
909 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
911 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
912 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
913 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
915 option_rom[nb_option_roms].name = "linuxboot.bin";
916 option_rom[nb_option_roms].bootindex = 0;
917 nb_option_roms++;
920 #define NE2000_NB_MAX 6
922 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
923 0x280, 0x380 };
924 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
926 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
928 static int nb_ne2k = 0;
930 if (nb_ne2k == NE2000_NB_MAX)
931 return;
932 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
933 ne2000_irq[nb_ne2k], nd);
934 nb_ne2k++;
937 DeviceState *cpu_get_current_apic(void)
939 if (current_cpu) {
940 X86CPU *cpu = X86_CPU(current_cpu);
941 return cpu->apic_state;
942 } else {
943 return NULL;
947 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
949 X86CPU *cpu = opaque;
951 if (level) {
952 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
956 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
957 DeviceState *icc_bridge, Error **errp)
959 X86CPU *cpu;
960 Error *local_err = NULL;
962 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
963 if (local_err != NULL) {
964 error_propagate(errp, local_err);
965 return NULL;
968 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
969 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
971 if (local_err) {
972 error_propagate(errp, local_err);
973 object_unref(OBJECT(cpu));
974 cpu = NULL;
976 return cpu;
979 static const char *current_cpu_model;
981 void pc_hot_add_cpu(const int64_t id, Error **errp)
983 DeviceState *icc_bridge;
984 int64_t apic_id = x86_cpu_apic_id_from_index(id);
986 if (id < 0) {
987 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
988 return;
991 if (cpu_exists(apic_id)) {
992 error_setg(errp, "Unable to add CPU: %" PRIi64
993 ", it already exists", id);
994 return;
997 if (id >= max_cpus) {
998 error_setg(errp, "Unable to add CPU: %" PRIi64
999 ", max allowed: %d", id, max_cpus - 1);
1000 return;
1003 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1004 error_setg(errp, "Unable to add CPU: %" PRIi64
1005 ", resulting APIC ID (%" PRIi64 ") is too large",
1006 id, apic_id);
1007 return;
1010 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1011 TYPE_ICC_BRIDGE, NULL));
1012 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1015 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1017 int i;
1018 X86CPU *cpu = NULL;
1019 Error *error = NULL;
1020 unsigned long apic_id_limit;
1022 /* init CPUs */
1023 if (cpu_model == NULL) {
1024 #ifdef TARGET_X86_64
1025 cpu_model = "qemu64";
1026 #else
1027 cpu_model = "qemu32";
1028 #endif
1030 current_cpu_model = cpu_model;
1032 apic_id_limit = pc_apic_id_limit(max_cpus);
1033 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1034 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1035 apic_id_limit - 1);
1036 exit(1);
1039 for (i = 0; i < smp_cpus; i++) {
1040 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1041 icc_bridge, &error);
1042 if (error) {
1043 error_report("%s", error_get_pretty(error));
1044 error_free(error);
1045 exit(1);
1049 /* map APIC MMIO area if CPU has APIC */
1050 if (cpu && cpu->apic_state) {
1051 /* XXX: what if the base changes? */
1052 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1053 APIC_DEFAULT_ADDRESS, 0x1000);
1056 /* tell smbios about cpuid version and features */
1057 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1060 /* pci-info ROM file. Little endian format */
1061 typedef struct PcRomPciInfo {
1062 uint64_t w32_min;
1063 uint64_t w32_max;
1064 uint64_t w64_min;
1065 uint64_t w64_max;
1066 } PcRomPciInfo;
1068 typedef struct PcGuestInfoState {
1069 PcGuestInfo info;
1070 Notifier machine_done;
1071 } PcGuestInfoState;
1073 static
1074 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1076 PcGuestInfoState *guest_info_state = container_of(notifier,
1077 PcGuestInfoState,
1078 machine_done);
1079 acpi_setup(&guest_info_state->info);
1082 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1083 ram_addr_t above_4g_mem_size)
1085 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1086 PcGuestInfo *guest_info = &guest_info_state->info;
1087 int i, j;
1089 guest_info->ram_size_below_4g = below_4g_mem_size;
1090 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1091 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1092 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1093 guest_info->numa_nodes = nb_numa_nodes;
1094 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1095 sizeof *guest_info->node_mem);
1096 for (i = 0; i < nb_numa_nodes; i++) {
1097 guest_info->node_mem[i] = numa_info[i].node_mem;
1100 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1101 sizeof *guest_info->node_cpu);
1103 for (i = 0; i < max_cpus; i++) {
1104 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1105 assert(apic_id < guest_info->apic_id_limit);
1106 for (j = 0; j < nb_numa_nodes; j++) {
1107 if (test_bit(i, numa_info[j].node_cpu)) {
1108 guest_info->node_cpu[apic_id] = j;
1109 break;
1114 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1115 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1116 return guest_info;
1119 /* setup pci memory address space mapping into system address space */
1120 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1121 MemoryRegion *pci_address_space)
1123 /* Set to lower priority than RAM */
1124 memory_region_add_subregion_overlap(system_memory, 0x0,
1125 pci_address_space, -1);
1128 void pc_acpi_init(const char *default_dsdt)
1130 char *filename;
1132 if (acpi_tables != NULL) {
1133 /* manually set via -acpitable, leave it alone */
1134 return;
1137 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1138 if (filename == NULL) {
1139 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1140 } else {
1141 char *arg;
1142 QemuOpts *opts;
1143 Error *err = NULL;
1145 arg = g_strdup_printf("file=%s", filename);
1147 /* creates a deep copy of "arg" */
1148 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1149 g_assert(opts != NULL);
1151 acpi_table_add_builtin(opts, &err);
1152 if (err) {
1153 error_report("WARNING: failed to load %s: %s", filename,
1154 error_get_pretty(err));
1155 error_free(err);
1157 g_free(arg);
1158 g_free(filename);
1162 FWCfgState *xen_load_linux(const char *kernel_filename,
1163 const char *kernel_cmdline,
1164 const char *initrd_filename,
1165 ram_addr_t below_4g_mem_size,
1166 PcGuestInfo *guest_info)
1168 int i;
1169 FWCfgState *fw_cfg;
1171 assert(kernel_filename != NULL);
1173 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1174 rom_set_fw(fw_cfg);
1176 load_linux(fw_cfg, kernel_filename, initrd_filename,
1177 kernel_cmdline, below_4g_mem_size);
1178 for (i = 0; i < nb_option_roms; i++) {
1179 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1180 !strcmp(option_rom[i].name, "multiboot.bin"));
1181 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1183 guest_info->fw_cfg = fw_cfg;
1184 return fw_cfg;
1187 FWCfgState *pc_memory_init(MachineState *machine,
1188 MemoryRegion *system_memory,
1189 ram_addr_t below_4g_mem_size,
1190 ram_addr_t above_4g_mem_size,
1191 MemoryRegion *rom_memory,
1192 MemoryRegion **ram_memory,
1193 PcGuestInfo *guest_info)
1195 int linux_boot, i;
1196 MemoryRegion *ram, *option_rom_mr;
1197 MemoryRegion *ram_below_4g, *ram_above_4g;
1198 FWCfgState *fw_cfg;
1199 PCMachineState *pcms = PC_MACHINE(machine);
1201 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1203 linux_boot = (machine->kernel_filename != NULL);
1205 /* Allocate RAM. We allocate it as a single memory region and use
1206 * aliases to address portions of it, mostly for backwards compatibility
1207 * with older qemus that used qemu_ram_alloc().
1209 ram = g_malloc(sizeof(*ram));
1210 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1211 machine->ram_size);
1212 *ram_memory = ram;
1213 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1214 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1215 0, below_4g_mem_size);
1216 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1217 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1218 if (above_4g_mem_size > 0) {
1219 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1220 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1221 below_4g_mem_size, above_4g_mem_size);
1222 memory_region_add_subregion(system_memory, 0x100000000ULL,
1223 ram_above_4g);
1224 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1227 if (!guest_info->has_reserved_memory &&
1228 (machine->ram_slots ||
1229 (machine->maxram_size > machine->ram_size))) {
1230 MachineClass *mc = MACHINE_GET_CLASS(machine);
1232 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1233 mc->name);
1234 exit(EXIT_FAILURE);
1237 /* initialize hotplug memory address space */
1238 if (guest_info->has_reserved_memory &&
1239 (machine->ram_size < machine->maxram_size)) {
1240 ram_addr_t hotplug_mem_size =
1241 machine->maxram_size - machine->ram_size;
1243 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1244 error_report("unsupported amount of memory slots: %"PRIu64,
1245 machine->ram_slots);
1246 exit(EXIT_FAILURE);
1249 pcms->hotplug_memory_base =
1250 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1252 if (pcms->enforce_aligned_dimm) {
1253 /* size hotplug region assuming 1G page max alignment per slot */
1254 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1257 if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1258 hotplug_mem_size) {
1259 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1260 machine->maxram_size);
1261 exit(EXIT_FAILURE);
1264 memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1265 "hotplug-memory", hotplug_mem_size);
1266 memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1267 &pcms->hotplug_memory);
1270 /* Initialize PC system firmware */
1271 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1273 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1274 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1275 &error_abort);
1276 vmstate_register_ram_global(option_rom_mr);
1277 memory_region_add_subregion_overlap(rom_memory,
1278 PC_ROM_MIN_VGA,
1279 option_rom_mr,
1282 fw_cfg = bochs_bios_init();
1283 rom_set_fw(fw_cfg);
1285 if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1286 uint64_t *val = g_malloc(sizeof(*val));
1287 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1288 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1291 if (linux_boot) {
1292 load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1293 machine->kernel_cmdline, below_4g_mem_size);
1296 for (i = 0; i < nb_option_roms; i++) {
1297 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1299 guest_info->fw_cfg = fw_cfg;
1300 return fw_cfg;
1303 qemu_irq *pc_allocate_cpu_irq(void)
1305 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1308 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1310 DeviceState *dev = NULL;
1312 if (pci_bus) {
1313 PCIDevice *pcidev = pci_vga_init(pci_bus);
1314 dev = pcidev ? &pcidev->qdev : NULL;
1315 } else if (isa_bus) {
1316 ISADevice *isadev = isa_vga_init(isa_bus);
1317 dev = isadev ? DEVICE(isadev) : NULL;
1319 return dev;
1322 static void cpu_request_exit(void *opaque, int irq, int level)
1324 CPUState *cpu = current_cpu;
1326 if (cpu && level) {
1327 cpu_exit(cpu);
1331 static const MemoryRegionOps ioport80_io_ops = {
1332 .write = ioport80_write,
1333 .read = ioport80_read,
1334 .endianness = DEVICE_NATIVE_ENDIAN,
1335 .impl = {
1336 .min_access_size = 1,
1337 .max_access_size = 1,
1341 static const MemoryRegionOps ioportF0_io_ops = {
1342 .write = ioportF0_write,
1343 .read = ioportF0_read,
1344 .endianness = DEVICE_NATIVE_ENDIAN,
1345 .impl = {
1346 .min_access_size = 1,
1347 .max_access_size = 1,
1351 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1352 ISADevice **rtc_state,
1353 ISADevice **floppy,
1354 bool no_vmport,
1355 uint32 hpet_irqs)
1357 int i;
1358 DriveInfo *fd[MAX_FD];
1359 DeviceState *hpet = NULL;
1360 int pit_isa_irq = 0;
1361 qemu_irq pit_alt_irq = NULL;
1362 qemu_irq rtc_irq = NULL;
1363 qemu_irq *a20_line;
1364 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1365 qemu_irq *cpu_exit_irq;
1366 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1367 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1369 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1370 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1372 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1373 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1376 * Check if an HPET shall be created.
1378 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1379 * when the HPET wants to take over. Thus we have to disable the latter.
1381 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1382 /* In order to set property, here not using sysbus_try_create_simple */
1383 hpet = qdev_try_create(NULL, TYPE_HPET);
1384 if (hpet) {
1385 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1386 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1387 * IRQ8 and IRQ2.
1389 uint8_t compat = object_property_get_int(OBJECT(hpet),
1390 HPET_INTCAP, NULL);
1391 if (!compat) {
1392 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1394 qdev_init_nofail(hpet);
1395 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1397 for (i = 0; i < GSI_NUM_PINS; i++) {
1398 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1400 pit_isa_irq = -1;
1401 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1402 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1405 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1407 qemu_register_boot_set(pc_boot_set, *rtc_state);
1409 if (!xen_enabled()) {
1410 if (kvm_irqchip_in_kernel()) {
1411 pit = kvm_pit_init(isa_bus, 0x40);
1412 } else {
1413 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1415 if (hpet) {
1416 /* connect PIT to output control line of the HPET */
1417 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1419 pcspk_init(isa_bus, pit);
1422 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1423 if (serial_hds[i]) {
1424 serial_isa_init(isa_bus, i, serial_hds[i]);
1428 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1429 if (parallel_hds[i]) {
1430 parallel_init(isa_bus, i, parallel_hds[i]);
1434 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1435 i8042 = isa_create_simple(isa_bus, "i8042");
1436 i8042_setup_a20_line(i8042, &a20_line[0]);
1437 if (!no_vmport) {
1438 vmport_init(isa_bus);
1439 vmmouse = isa_try_create(isa_bus, "vmmouse");
1440 } else {
1441 vmmouse = NULL;
1443 if (vmmouse) {
1444 DeviceState *dev = DEVICE(vmmouse);
1445 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1446 qdev_init_nofail(dev);
1448 port92 = isa_create_simple(isa_bus, "port92");
1449 port92_init(port92, &a20_line[1]);
1451 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1452 DMA_init(0, cpu_exit_irq);
1454 for(i = 0; i < MAX_FD; i++) {
1455 fd[i] = drive_get(IF_FLOPPY, 0, i);
1457 *floppy = fdctrl_init_isa(isa_bus, fd);
1460 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1462 int i;
1464 for (i = 0; i < nb_nics; i++) {
1465 NICInfo *nd = &nd_table[i];
1467 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1468 pc_init_ne2k_isa(isa_bus, nd);
1469 } else {
1470 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1475 void pc_pci_device_init(PCIBus *pci_bus)
1477 int max_bus;
1478 int bus;
1480 max_bus = drive_get_max_bus(IF_SCSI);
1481 for (bus = 0; bus <= max_bus; bus++) {
1482 pci_create_simple(pci_bus, -1, "lsi53c895a");
1486 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1488 DeviceState *dev;
1489 SysBusDevice *d;
1490 unsigned int i;
1492 if (kvm_irqchip_in_kernel()) {
1493 dev = qdev_create(NULL, "kvm-ioapic");
1494 } else {
1495 dev = qdev_create(NULL, "ioapic");
1497 if (parent_name) {
1498 object_property_add_child(object_resolve_path(parent_name, NULL),
1499 "ioapic", OBJECT(dev), NULL);
1501 qdev_init_nofail(dev);
1502 d = SYS_BUS_DEVICE(dev);
1503 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1505 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1506 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1510 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1512 MachineClass *mc = MACHINE_CLASS(oc);
1513 QEMUMachine *qm = data;
1515 mc->family = qm->family;
1516 mc->name = qm->name;
1517 mc->alias = qm->alias;
1518 mc->desc = qm->desc;
1519 mc->init = qm->init;
1520 mc->reset = qm->reset;
1521 mc->hot_add_cpu = qm->hot_add_cpu;
1522 mc->kvm_type = qm->kvm_type;
1523 mc->block_default_type = qm->block_default_type;
1524 mc->units_per_default_bus = qm->units_per_default_bus;
1525 mc->max_cpus = qm->max_cpus;
1526 mc->no_serial = qm->no_serial;
1527 mc->no_parallel = qm->no_parallel;
1528 mc->use_virtcon = qm->use_virtcon;
1529 mc->use_sclp = qm->use_sclp;
1530 mc->no_floppy = qm->no_floppy;
1531 mc->no_cdrom = qm->no_cdrom;
1532 mc->no_sdcard = qm->no_sdcard;
1533 mc->is_default = qm->is_default;
1534 mc->default_machine_opts = qm->default_machine_opts;
1535 mc->default_boot_order = qm->default_boot_order;
1536 mc->default_display = qm->default_display;
1537 mc->compat_props = qm->compat_props;
1538 mc->hw_version = qm->hw_version;
1541 void qemu_register_pc_machine(QEMUMachine *m)
1543 char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1544 TypeInfo ti = {
1545 .name = name,
1546 .parent = TYPE_PC_MACHINE,
1547 .class_init = pc_generic_machine_class_init,
1548 .class_data = (void *)m,
1551 type_register(&ti);
1552 g_free(name);
1555 static int pc_dimm_count(Object *obj, void *opaque)
1557 int *count = opaque;
1559 if (object_dynamic_cast(obj, TYPE_PC_DIMM)) {
1560 (*count)++;
1563 object_child_foreach(obj, pc_dimm_count, opaque);
1564 return 0;
1567 static int pc_existing_dimms_capacity(Object *obj, void *opaque)
1569 Error *local_err = NULL;
1570 uint64_t *size = opaque;
1572 if (object_dynamic_cast(obj, TYPE_PC_DIMM)) {
1573 (*size) += object_property_get_int(obj, PC_DIMM_SIZE_PROP, &local_err);
1575 if (local_err) {
1576 qerror_report_err(local_err);
1577 error_free(local_err);
1578 return 1;
1582 object_child_foreach(obj, pc_dimm_count, opaque);
1583 return 0;
1586 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1587 DeviceState *dev, Error **errp)
1589 int slot;
1590 HotplugHandlerClass *hhc;
1591 Error *local_err = NULL;
1592 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1593 MachineState *machine = MACHINE(hotplug_dev);
1594 PCDIMMDevice *dimm = PC_DIMM(dev);
1595 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1596 MemoryRegion *mr = ddc->get_memory_region(dimm);
1597 uint64_t existing_dimms_capacity = 0;
1598 uint64_t align = TARGET_PAGE_SIZE;
1599 uint64_t addr;
1601 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1602 if (local_err) {
1603 goto out;
1606 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1607 align = memory_region_get_alignment(mr);
1610 addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1611 memory_region_size(&pcms->hotplug_memory),
1612 !addr ? NULL : &addr, align,
1613 memory_region_size(mr), &local_err);
1614 if (local_err) {
1615 goto out;
1618 if (pc_existing_dimms_capacity(OBJECT(machine), &existing_dimms_capacity)) {
1619 error_setg(&local_err, "failed to get total size of existing DIMMs");
1620 goto out;
1623 if (existing_dimms_capacity + memory_region_size(mr) >
1624 machine->maxram_size - machine->ram_size) {
1625 error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1626 " in use of total 0x" RAM_ADDR_FMT,
1627 existing_dimms_capacity, machine->maxram_size);
1628 goto out;
1631 object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1632 if (local_err) {
1633 goto out;
1635 trace_mhp_pc_dimm_assigned_address(addr);
1637 slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1638 if (local_err) {
1639 goto out;
1642 slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1643 machine->ram_slots, &local_err);
1644 if (local_err) {
1645 goto out;
1647 object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1648 if (local_err) {
1649 goto out;
1651 trace_mhp_pc_dimm_assigned_slot(slot);
1653 if (!pcms->acpi_dev) {
1654 error_setg(&local_err,
1655 "memory hotplug is not enabled: missing acpi device");
1656 goto out;
1659 if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1660 error_setg(&local_err, "hypervisor has no free memory slots left");
1661 goto out;
1664 memory_region_add_subregion(&pcms->hotplug_memory,
1665 addr - pcms->hotplug_memory_base, mr);
1666 vmstate_register_ram(mr, dev);
1668 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1669 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1670 out:
1671 error_propagate(errp, local_err);
1674 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1675 DeviceState *dev, Error **errp)
1677 HotplugHandlerClass *hhc;
1678 Error *local_err = NULL;
1679 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1681 if (!dev->hotplugged) {
1682 goto out;
1685 if (!pcms->acpi_dev) {
1686 error_setg(&local_err,
1687 "cpu hotplug is not enabled: missing acpi device");
1688 goto out;
1691 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1692 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1693 if (local_err) {
1694 goto out;
1697 /* increment the number of CPUs */
1698 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1699 out:
1700 error_propagate(errp, local_err);
1703 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1704 DeviceState *dev, Error **errp)
1706 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1707 pc_dimm_plug(hotplug_dev, dev, errp);
1708 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1709 pc_cpu_plug(hotplug_dev, dev, errp);
1713 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1714 DeviceState *dev)
1716 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1718 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1719 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1720 return HOTPLUG_HANDLER(machine);
1723 return pcmc->get_hotplug_handler ?
1724 pcmc->get_hotplug_handler(machine, dev) : NULL;
1727 static void
1728 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1729 const char *name, Error **errp)
1731 PCMachineState *pcms = PC_MACHINE(obj);
1732 int64_t value = memory_region_size(&pcms->hotplug_memory);
1734 visit_type_int(v, &value, name, errp);
1737 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1738 void *opaque, const char *name,
1739 Error **errp)
1741 PCMachineState *pcms = PC_MACHINE(obj);
1742 uint64_t value = pcms->max_ram_below_4g;
1744 visit_type_size(v, &value, name, errp);
1747 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1748 void *opaque, const char *name,
1749 Error **errp)
1751 PCMachineState *pcms = PC_MACHINE(obj);
1752 Error *error = NULL;
1753 uint64_t value;
1755 visit_type_size(v, &value, name, &error);
1756 if (error) {
1757 error_propagate(errp, error);
1758 return;
1760 if (value > (1ULL << 32)) {
1761 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1762 "Machine option 'max-ram-below-4g=%"PRIu64
1763 "' expects size less than or equal to 4G", value);
1764 error_propagate(errp, error);
1765 return;
1768 if (value < (1ULL << 20)) {
1769 error_report("Warning: small max_ram_below_4g(%"PRIu64
1770 ") less than 1M. BIOS may not work..",
1771 value);
1774 pcms->max_ram_below_4g = value;
1777 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1778 const char *name, Error **errp)
1780 PCMachineState *pcms = PC_MACHINE(obj);
1781 OnOffAuto vmport = pcms->vmport;
1783 visit_type_OnOffAuto(v, &vmport, name, errp);
1786 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1787 const char *name, Error **errp)
1789 PCMachineState *pcms = PC_MACHINE(obj);
1791 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1794 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1796 PCMachineState *pcms = PC_MACHINE(obj);
1798 return pcms->enforce_aligned_dimm;
1801 static void pc_machine_initfn(Object *obj)
1803 PCMachineState *pcms = PC_MACHINE(obj);
1805 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1806 pc_machine_get_hotplug_memory_region_size,
1807 NULL, NULL, NULL, NULL);
1809 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1810 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1811 pc_machine_get_max_ram_below_4g,
1812 pc_machine_set_max_ram_below_4g,
1813 NULL, NULL, NULL);
1814 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1815 "Maximum ram below the 4G boundary (32bit boundary)",
1816 NULL);
1818 pcms->vmport = ON_OFF_AUTO_AUTO;
1819 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1820 pc_machine_get_vmport,
1821 pc_machine_set_vmport,
1822 NULL, NULL, NULL);
1823 object_property_set_description(obj, PC_MACHINE_VMPORT,
1824 "Enable vmport (pc & q35)",
1825 NULL);
1827 pcms->enforce_aligned_dimm = true;
1828 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1829 pc_machine_get_aligned_dimm,
1830 NULL, NULL);
1833 static void pc_machine_class_init(ObjectClass *oc, void *data)
1835 MachineClass *mc = MACHINE_CLASS(oc);
1836 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1837 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1839 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1840 mc->get_hotplug_handler = pc_get_hotpug_handler;
1841 hc->plug = pc_machine_device_plug_cb;
1844 static const TypeInfo pc_machine_info = {
1845 .name = TYPE_PC_MACHINE,
1846 .parent = TYPE_MACHINE,
1847 .abstract = true,
1848 .instance_size = sizeof(PCMachineState),
1849 .instance_init = pc_machine_initfn,
1850 .class_size = sizeof(PCMachineClass),
1851 .class_init = pc_machine_class_init,
1852 .interfaces = (InterfaceInfo[]) {
1853 { TYPE_HOTPLUG_HANDLER },
1858 static void pc_machine_register_types(void)
1860 type_register_static(&pc_machine_info);
1863 type_init(pc_machine_register_types)