hw/block/nvme: refactor aio submission
[qemu/rayw.git] / hw / block / nvme.c
blob84cde40fad56114a2508b67b97774f5ae0087371
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * [pmrdev=<mem_backend_file_id>,] \
23 * max_ioqpairs=<N[optional]>, \
24 * aerl=<N[optional]>, aer_max_queued=<N[optional]>, \
25 * mdts=<N[optional]>
27 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
28 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
30 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
31 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
32 * both provided.
33 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
34 * For example:
35 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
36 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
39 * nvme device parameters
40 * ~~~~~~~~~~~~~~~~~~~~~~
41 * - `aerl`
42 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
43 * of concurrently outstanding Asynchronous Event Request commands suppoert
44 * by the controller. This is a 0's based value.
46 * - `aer_max_queued`
47 * This is the maximum number of events that the device will enqueue for
48 * completion when there are no oustanding AERs. When the maximum number of
49 * enqueued events are reached, subsequent events will be dropped.
53 #include "qemu/osdep.h"
54 #include "qemu/units.h"
55 #include "qemu/error-report.h"
56 #include "hw/block/block.h"
57 #include "hw/pci/msix.h"
58 #include "hw/pci/pci.h"
59 #include "hw/qdev-properties.h"
60 #include "migration/vmstate.h"
61 #include "sysemu/sysemu.h"
62 #include "qapi/error.h"
63 #include "qapi/visitor.h"
64 #include "sysemu/hostmem.h"
65 #include "sysemu/block-backend.h"
66 #include "exec/memory.h"
67 #include "qemu/log.h"
68 #include "qemu/module.h"
69 #include "qemu/cutils.h"
70 #include "trace.h"
71 #include "nvme.h"
73 #define NVME_MAX_IOQPAIRS 0xffff
74 #define NVME_DB_SIZE 4
75 #define NVME_SPEC_VER 0x00010300
76 #define NVME_CMB_BIR 2
77 #define NVME_PMR_BIR 2
78 #define NVME_TEMPERATURE 0x143
79 #define NVME_TEMPERATURE_WARNING 0x157
80 #define NVME_TEMPERATURE_CRITICAL 0x175
81 #define NVME_NUM_FW_SLOTS 1
83 #define NVME_GUEST_ERR(trace, fmt, ...) \
84 do { \
85 (trace_##trace)(__VA_ARGS__); \
86 qemu_log_mask(LOG_GUEST_ERROR, #trace \
87 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
88 } while (0)
90 static const bool nvme_feature_support[NVME_FID_MAX] = {
91 [NVME_ARBITRATION] = true,
92 [NVME_POWER_MANAGEMENT] = true,
93 [NVME_TEMPERATURE_THRESHOLD] = true,
94 [NVME_ERROR_RECOVERY] = true,
95 [NVME_VOLATILE_WRITE_CACHE] = true,
96 [NVME_NUMBER_OF_QUEUES] = true,
97 [NVME_INTERRUPT_COALESCING] = true,
98 [NVME_INTERRUPT_VECTOR_CONF] = true,
99 [NVME_WRITE_ATOMICITY] = true,
100 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
101 [NVME_TIMESTAMP] = true,
104 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
105 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
106 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
107 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
108 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
109 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
112 static void nvme_process_sq(void *opaque);
114 static uint16_t nvme_cid(NvmeRequest *req)
116 if (!req) {
117 return 0xffff;
120 return le16_to_cpu(req->cqe.cid);
123 static uint16_t nvme_sqid(NvmeRequest *req)
125 return le16_to_cpu(req->sq->sqid);
128 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
130 hwaddr low = n->ctrl_mem.addr;
131 hwaddr hi = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
133 return addr >= low && addr < hi;
136 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
138 assert(nvme_addr_is_cmb(n, addr));
140 return &n->cmbuf[addr - n->ctrl_mem.addr];
143 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
145 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr)) {
146 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
147 return 0;
150 return pci_dma_read(&n->parent_obj, addr, buf, size);
153 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
155 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
158 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
160 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
163 static void nvme_inc_cq_tail(NvmeCQueue *cq)
165 cq->tail++;
166 if (cq->tail >= cq->size) {
167 cq->tail = 0;
168 cq->phase = !cq->phase;
172 static void nvme_inc_sq_head(NvmeSQueue *sq)
174 sq->head = (sq->head + 1) % sq->size;
177 static uint8_t nvme_cq_full(NvmeCQueue *cq)
179 return (cq->tail + 1) % cq->size == cq->head;
182 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
184 return sq->head == sq->tail;
187 static void nvme_irq_check(NvmeCtrl *n)
189 if (msix_enabled(&(n->parent_obj))) {
190 return;
192 if (~n->bar.intms & n->irq_status) {
193 pci_irq_assert(&n->parent_obj);
194 } else {
195 pci_irq_deassert(&n->parent_obj);
199 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
201 if (cq->irq_enabled) {
202 if (msix_enabled(&(n->parent_obj))) {
203 trace_pci_nvme_irq_msix(cq->vector);
204 msix_notify(&(n->parent_obj), cq->vector);
205 } else {
206 trace_pci_nvme_irq_pin();
207 assert(cq->vector < 32);
208 n->irq_status |= 1 << cq->vector;
209 nvme_irq_check(n);
211 } else {
212 trace_pci_nvme_irq_masked();
216 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
218 if (cq->irq_enabled) {
219 if (msix_enabled(&(n->parent_obj))) {
220 return;
221 } else {
222 assert(cq->vector < 32);
223 n->irq_status &= ~(1 << cq->vector);
224 nvme_irq_check(n);
229 static void nvme_req_clear(NvmeRequest *req)
231 req->ns = NULL;
232 memset(&req->cqe, 0x0, sizeof(req->cqe));
235 static void nvme_req_exit(NvmeRequest *req)
237 if (req->qsg.sg) {
238 qemu_sglist_destroy(&req->qsg);
241 if (req->iov.iov) {
242 qemu_iovec_destroy(&req->iov);
246 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
247 size_t len)
249 if (!len) {
250 return NVME_SUCCESS;
253 trace_pci_nvme_map_addr_cmb(addr, len);
255 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
256 return NVME_DATA_TRAS_ERROR;
259 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
261 return NVME_SUCCESS;
264 static uint16_t nvme_map_addr(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
265 hwaddr addr, size_t len)
267 if (!len) {
268 return NVME_SUCCESS;
271 trace_pci_nvme_map_addr(addr, len);
273 if (nvme_addr_is_cmb(n, addr)) {
274 if (qsg && qsg->sg) {
275 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
278 assert(iov);
280 if (!iov->iov) {
281 qemu_iovec_init(iov, 1);
284 return nvme_map_addr_cmb(n, iov, addr, len);
287 if (iov && iov->iov) {
288 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
291 assert(qsg);
293 if (!qsg->sg) {
294 pci_dma_sglist_init(qsg, &n->parent_obj, 1);
297 qemu_sglist_add(qsg, addr, len);
299 return NVME_SUCCESS;
302 static uint16_t nvme_map_prp(NvmeCtrl *n, uint64_t prp1, uint64_t prp2,
303 uint32_t len, NvmeRequest *req)
305 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
306 trans_len = MIN(len, trans_len);
307 int num_prps = (len >> n->page_bits) + 1;
308 uint16_t status;
309 bool prp_list_in_cmb = false;
310 int ret;
312 QEMUSGList *qsg = &req->qsg;
313 QEMUIOVector *iov = &req->iov;
315 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
317 if (unlikely(!prp1)) {
318 trace_pci_nvme_err_invalid_prp();
319 return NVME_INVALID_FIELD | NVME_DNR;
322 if (nvme_addr_is_cmb(n, prp1)) {
323 qemu_iovec_init(iov, num_prps);
324 } else {
325 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
328 status = nvme_map_addr(n, qsg, iov, prp1, trans_len);
329 if (status) {
330 return status;
333 len -= trans_len;
334 if (len) {
335 if (unlikely(!prp2)) {
336 trace_pci_nvme_err_invalid_prp2_missing();
337 return NVME_INVALID_FIELD | NVME_DNR;
340 if (len > n->page_size) {
341 uint64_t prp_list[n->max_prp_ents];
342 uint32_t nents, prp_trans;
343 int i = 0;
345 if (nvme_addr_is_cmb(n, prp2)) {
346 prp_list_in_cmb = true;
349 nents = (len + n->page_size - 1) >> n->page_bits;
350 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
351 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
352 if (ret) {
353 trace_pci_nvme_err_addr_read(prp2);
354 return NVME_DATA_TRAS_ERROR;
356 while (len != 0) {
357 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
359 if (i == n->max_prp_ents - 1 && len > n->page_size) {
360 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
361 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
362 return NVME_INVALID_FIELD | NVME_DNR;
365 if (prp_list_in_cmb != nvme_addr_is_cmb(n, prp_ent)) {
366 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
369 i = 0;
370 nents = (len + n->page_size - 1) >> n->page_bits;
371 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
372 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
373 prp_trans);
374 if (ret) {
375 trace_pci_nvme_err_addr_read(prp_ent);
376 return NVME_DATA_TRAS_ERROR;
378 prp_ent = le64_to_cpu(prp_list[i]);
381 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
382 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
383 return NVME_INVALID_FIELD | NVME_DNR;
386 trans_len = MIN(len, n->page_size);
387 status = nvme_map_addr(n, qsg, iov, prp_ent, trans_len);
388 if (status) {
389 return status;
392 len -= trans_len;
393 i++;
395 } else {
396 if (unlikely(prp2 & (n->page_size - 1))) {
397 trace_pci_nvme_err_invalid_prp2_align(prp2);
398 return NVME_INVALID_FIELD | NVME_DNR;
400 status = nvme_map_addr(n, qsg, iov, prp2, len);
401 if (status) {
402 return status;
407 return NVME_SUCCESS;
410 static uint16_t nvme_dma_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
411 uint64_t prp1, uint64_t prp2, DMADirection dir,
412 NvmeRequest *req)
414 uint16_t status = NVME_SUCCESS;
416 status = nvme_map_prp(n, prp1, prp2, len, req);
417 if (status) {
418 return status;
421 /* assert that only one of qsg and iov carries data */
422 assert((req->qsg.nsg > 0) != (req->iov.niov > 0));
424 if (req->qsg.nsg > 0) {
425 uint64_t residual;
427 if (dir == DMA_DIRECTION_TO_DEVICE) {
428 residual = dma_buf_write(ptr, len, &req->qsg);
429 } else {
430 residual = dma_buf_read(ptr, len, &req->qsg);
433 if (unlikely(residual)) {
434 trace_pci_nvme_err_invalid_dma();
435 status = NVME_INVALID_FIELD | NVME_DNR;
437 } else {
438 size_t bytes;
440 if (dir == DMA_DIRECTION_TO_DEVICE) {
441 bytes = qemu_iovec_to_buf(&req->iov, 0, ptr, len);
442 } else {
443 bytes = qemu_iovec_from_buf(&req->iov, 0, ptr, len);
446 if (unlikely(bytes != len)) {
447 trace_pci_nvme_err_invalid_dma();
448 status = NVME_INVALID_FIELD | NVME_DNR;
452 return status;
455 static uint16_t nvme_map_dptr(NvmeCtrl *n, size_t len, NvmeRequest *req)
457 NvmeCmd *cmd = &req->cmd;
458 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
459 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
461 return nvme_map_prp(n, prp1, prp2, len, req);
464 static void nvme_post_cqes(void *opaque)
466 NvmeCQueue *cq = opaque;
467 NvmeCtrl *n = cq->ctrl;
468 NvmeRequest *req, *next;
469 int ret;
471 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
472 NvmeSQueue *sq;
473 hwaddr addr;
475 if (nvme_cq_full(cq)) {
476 break;
479 sq = req->sq;
480 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
481 req->cqe.sq_id = cpu_to_le16(sq->sqid);
482 req->cqe.sq_head = cpu_to_le16(sq->head);
483 addr = cq->dma_addr + cq->tail * n->cqe_size;
484 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
485 sizeof(req->cqe));
486 if (ret) {
487 trace_pci_nvme_err_addr_write(addr);
488 trace_pci_nvme_err_cfs();
489 n->bar.csts = NVME_CSTS_FAILED;
490 break;
492 QTAILQ_REMOVE(&cq->req_list, req, entry);
493 nvme_inc_cq_tail(cq);
494 nvme_req_exit(req);
495 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
497 if (cq->tail != cq->head) {
498 nvme_irq_assert(n, cq);
502 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
504 assert(cq->cqid == req->sq->cqid);
505 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
506 req->status);
507 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
508 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
509 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
512 static void nvme_process_aers(void *opaque)
514 NvmeCtrl *n = opaque;
515 NvmeAsyncEvent *event, *next;
517 trace_pci_nvme_process_aers(n->aer_queued);
519 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
520 NvmeRequest *req;
521 NvmeAerResult *result;
523 /* can't post cqe if there is nothing to complete */
524 if (!n->outstanding_aers) {
525 trace_pci_nvme_no_outstanding_aers();
526 break;
529 /* ignore if masked (cqe posted, but event not cleared) */
530 if (n->aer_mask & (1 << event->result.event_type)) {
531 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
532 continue;
535 QTAILQ_REMOVE(&n->aer_queue, event, entry);
536 n->aer_queued--;
538 n->aer_mask |= 1 << event->result.event_type;
539 n->outstanding_aers--;
541 req = n->aer_reqs[n->outstanding_aers];
543 result = (NvmeAerResult *) &req->cqe.result;
544 result->event_type = event->result.event_type;
545 result->event_info = event->result.event_info;
546 result->log_page = event->result.log_page;
547 g_free(event);
549 req->status = NVME_SUCCESS;
551 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
552 result->log_page);
554 nvme_enqueue_req_completion(&n->admin_cq, req);
558 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
559 uint8_t event_info, uint8_t log_page)
561 NvmeAsyncEvent *event;
563 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
565 if (n->aer_queued == n->params.aer_max_queued) {
566 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
567 return;
570 event = g_new(NvmeAsyncEvent, 1);
571 event->result = (NvmeAerResult) {
572 .event_type = event_type,
573 .event_info = event_info,
574 .log_page = log_page,
577 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
578 n->aer_queued++;
580 nvme_process_aers(n);
583 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
585 n->aer_mask &= ~(1 << event_type);
586 if (!QTAILQ_EMPTY(&n->aer_queue)) {
587 nvme_process_aers(n);
591 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
593 uint8_t mdts = n->params.mdts;
595 if (mdts && len > n->page_size << mdts) {
596 return NVME_INVALID_FIELD | NVME_DNR;
599 return NVME_SUCCESS;
602 static inline uint16_t nvme_check_bounds(NvmeCtrl *n, NvmeNamespace *ns,
603 uint64_t slba, uint32_t nlb)
605 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
607 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
608 return NVME_LBA_RANGE | NVME_DNR;
611 return NVME_SUCCESS;
614 static void nvme_rw_cb(void *opaque, int ret)
616 NvmeRequest *req = opaque;
617 NvmeCtrl *n = nvme_ctrl(req);
619 BlockBackend *blk = n->conf.blk;
620 BlockAcctCookie *acct = &req->acct;
621 BlockAcctStats *stats = blk_get_stats(blk);
623 Error *local_err = NULL;
625 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
627 if (!ret) {
628 block_acct_done(stats, acct);
629 req->status = NVME_SUCCESS;
630 } else {
631 uint16_t status;
633 block_acct_failed(stats, acct);
635 switch (req->cmd.opcode) {
636 case NVME_CMD_READ:
637 status = NVME_UNRECOVERED_READ;
638 break;
639 case NVME_CMD_FLUSH:
640 case NVME_CMD_WRITE:
641 case NVME_CMD_WRITE_ZEROES:
642 status = NVME_WRITE_FAULT;
643 break;
644 default:
645 status = NVME_INTERNAL_DEV_ERROR;
646 break;
649 trace_pci_nvme_err_aio(nvme_cid(req), strerror(ret), status);
651 error_setg_errno(&local_err, -ret, "aio failed");
652 error_report_err(local_err);
654 req->status = status;
657 nvme_enqueue_req_completion(nvme_cq(req), req);
660 static uint16_t nvme_do_aio(BlockBackend *blk, int64_t offset, size_t len,
661 NvmeRequest *req)
663 BlockAcctCookie *acct = &req->acct;
664 BlockAcctStats *stats = blk_get_stats(blk);
666 bool is_write = false;
668 trace_pci_nvme_do_aio(nvme_cid(req), req->cmd.opcode,
669 nvme_io_opc_str(req->cmd.opcode), blk_name(blk),
670 offset, len);
672 switch (req->cmd.opcode) {
673 case NVME_CMD_FLUSH:
674 block_acct_start(stats, acct, 0, BLOCK_ACCT_FLUSH);
675 req->aiocb = blk_aio_flush(blk, nvme_rw_cb, req);
676 break;
678 case NVME_CMD_WRITE_ZEROES:
679 block_acct_start(stats, acct, len, BLOCK_ACCT_WRITE);
680 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, len,
681 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
682 req);
683 break;
685 case NVME_CMD_WRITE:
686 is_write = true;
688 /* fallthrough */
690 case NVME_CMD_READ:
691 block_acct_start(stats, acct, len,
692 is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ);
694 if (req->qsg.sg) {
695 if (is_write) {
696 req->aiocb = dma_blk_write(blk, &req->qsg, offset,
697 BDRV_SECTOR_SIZE, nvme_rw_cb, req);
698 } else {
699 req->aiocb = dma_blk_read(blk, &req->qsg, offset,
700 BDRV_SECTOR_SIZE, nvme_rw_cb, req);
702 } else {
703 if (is_write) {
704 req->aiocb = blk_aio_pwritev(blk, offset, &req->iov, 0,
705 nvme_rw_cb, req);
706 } else {
707 req->aiocb = blk_aio_preadv(blk, offset, &req->iov, 0,
708 nvme_rw_cb, req);
712 break;
715 return NVME_NO_COMPLETE;
718 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
720 return nvme_do_aio(n->conf.blk, 0, 0, req);
723 static uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
725 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
726 NvmeNamespace *ns = req->ns;
727 uint64_t slba = le64_to_cpu(rw->slba);
728 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
729 uint64_t offset = nvme_l2b(ns, slba);
730 uint32_t count = nvme_l2b(ns, nlb);
731 uint16_t status;
733 trace_pci_nvme_write_zeroes(nvme_cid(req), slba, nlb);
735 status = nvme_check_bounds(n, ns, slba, nlb);
736 if (status) {
737 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
738 return status;
741 return nvme_do_aio(n->conf.blk, offset, count, req);
744 static uint16_t nvme_rw(NvmeCtrl *n, NvmeRequest *req)
746 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
747 NvmeNamespace *ns = req->ns;
748 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
749 uint64_t slba = le64_to_cpu(rw->slba);
751 uint64_t data_size = nvme_l2b(ns, nlb);
752 uint64_t data_offset = nvme_l2b(ns, slba);
753 enum BlockAcctType acct = req->cmd.opcode == NVME_CMD_WRITE ?
754 BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
755 uint16_t status;
757 trace_pci_nvme_rw(nvme_cid(req), nvme_io_opc_str(rw->opcode), nlb,
758 data_size, slba);
760 status = nvme_check_mdts(n, data_size);
761 if (status) {
762 trace_pci_nvme_err_mdts(nvme_cid(req), data_size);
763 goto invalid;
766 status = nvme_check_bounds(n, ns, slba, nlb);
767 if (status) {
768 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
769 goto invalid;
772 status = nvme_map_dptr(n, data_size, req);
773 if (status) {
774 goto invalid;
777 return nvme_do_aio(n->conf.blk, data_offset, data_size, req);
779 invalid:
780 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
781 return status;
784 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
786 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
788 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
789 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
791 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
792 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
793 return NVME_INVALID_NSID | NVME_DNR;
796 req->ns = &n->namespaces[nsid - 1];
797 switch (req->cmd.opcode) {
798 case NVME_CMD_FLUSH:
799 return nvme_flush(n, req);
800 case NVME_CMD_WRITE_ZEROES:
801 return nvme_write_zeroes(n, req);
802 case NVME_CMD_WRITE:
803 case NVME_CMD_READ:
804 return nvme_rw(n, req);
805 default:
806 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
807 return NVME_INVALID_OPCODE | NVME_DNR;
811 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
813 n->sq[sq->sqid] = NULL;
814 timer_del(sq->timer);
815 timer_free(sq->timer);
816 g_free(sq->io_req);
817 if (sq->sqid) {
818 g_free(sq);
822 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
824 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
825 NvmeRequest *r, *next;
826 NvmeSQueue *sq;
827 NvmeCQueue *cq;
828 uint16_t qid = le16_to_cpu(c->qid);
830 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
831 trace_pci_nvme_err_invalid_del_sq(qid);
832 return NVME_INVALID_QID | NVME_DNR;
835 trace_pci_nvme_del_sq(qid);
837 sq = n->sq[qid];
838 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
839 r = QTAILQ_FIRST(&sq->out_req_list);
840 assert(r->aiocb);
841 blk_aio_cancel(r->aiocb);
843 if (!nvme_check_cqid(n, sq->cqid)) {
844 cq = n->cq[sq->cqid];
845 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
847 nvme_post_cqes(cq);
848 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
849 if (r->sq == sq) {
850 QTAILQ_REMOVE(&cq->req_list, r, entry);
851 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
856 nvme_free_sq(sq, n);
857 return NVME_SUCCESS;
860 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
861 uint16_t sqid, uint16_t cqid, uint16_t size)
863 int i;
864 NvmeCQueue *cq;
866 sq->ctrl = n;
867 sq->dma_addr = dma_addr;
868 sq->sqid = sqid;
869 sq->size = size;
870 sq->cqid = cqid;
871 sq->head = sq->tail = 0;
872 sq->io_req = g_new0(NvmeRequest, sq->size);
874 QTAILQ_INIT(&sq->req_list);
875 QTAILQ_INIT(&sq->out_req_list);
876 for (i = 0; i < sq->size; i++) {
877 sq->io_req[i].sq = sq;
878 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
880 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
882 assert(n->cq[cqid]);
883 cq = n->cq[cqid];
884 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
885 n->sq[sqid] = sq;
888 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
890 NvmeSQueue *sq;
891 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
893 uint16_t cqid = le16_to_cpu(c->cqid);
894 uint16_t sqid = le16_to_cpu(c->sqid);
895 uint16_t qsize = le16_to_cpu(c->qsize);
896 uint16_t qflags = le16_to_cpu(c->sq_flags);
897 uint64_t prp1 = le64_to_cpu(c->prp1);
899 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
901 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
902 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
903 return NVME_INVALID_CQID | NVME_DNR;
905 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
906 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
907 return NVME_INVALID_QID | NVME_DNR;
909 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
910 trace_pci_nvme_err_invalid_create_sq_size(qsize);
911 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
913 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
914 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
915 return NVME_INVALID_FIELD | NVME_DNR;
917 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
918 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
919 return NVME_INVALID_FIELD | NVME_DNR;
921 sq = g_malloc0(sizeof(*sq));
922 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
923 return NVME_SUCCESS;
926 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
927 uint64_t off, NvmeRequest *req)
929 NvmeCmd *cmd = &req->cmd;
930 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
931 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
932 uint32_t nsid = le32_to_cpu(cmd->nsid);
934 uint32_t trans_len;
935 time_t current_ms;
936 uint64_t units_read = 0, units_written = 0;
937 uint64_t read_commands = 0, write_commands = 0;
938 NvmeSmartLog smart;
939 BlockAcctStats *s;
941 if (nsid && nsid != 0xffffffff) {
942 return NVME_INVALID_FIELD | NVME_DNR;
945 s = blk_get_stats(n->conf.blk);
947 units_read = s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
948 units_written = s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
949 read_commands = s->nr_ops[BLOCK_ACCT_READ];
950 write_commands = s->nr_ops[BLOCK_ACCT_WRITE];
952 if (off > sizeof(smart)) {
953 return NVME_INVALID_FIELD | NVME_DNR;
956 trans_len = MIN(sizeof(smart) - off, buf_len);
958 memset(&smart, 0x0, sizeof(smart));
960 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(units_read, 1000));
961 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(units_written,
962 1000));
963 smart.host_read_commands[0] = cpu_to_le64(read_commands);
964 smart.host_write_commands[0] = cpu_to_le64(write_commands);
966 smart.temperature = cpu_to_le16(n->temperature);
968 if ((n->temperature >= n->features.temp_thresh_hi) ||
969 (n->temperature <= n->features.temp_thresh_low)) {
970 smart.critical_warning |= NVME_SMART_TEMPERATURE;
973 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
974 smart.power_on_hours[0] =
975 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
977 if (!rae) {
978 nvme_clear_events(n, NVME_AER_TYPE_SMART);
981 return nvme_dma_prp(n, (uint8_t *) &smart + off, trans_len, prp1, prp2,
982 DMA_DIRECTION_FROM_DEVICE, req);
985 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
986 NvmeRequest *req)
988 uint32_t trans_len;
989 NvmeCmd *cmd = &req->cmd;
990 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
991 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
992 NvmeFwSlotInfoLog fw_log = {
993 .afi = 0x1,
996 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
998 if (off > sizeof(fw_log)) {
999 return NVME_INVALID_FIELD | NVME_DNR;
1002 trans_len = MIN(sizeof(fw_log) - off, buf_len);
1004 return nvme_dma_prp(n, (uint8_t *) &fw_log + off, trans_len, prp1, prp2,
1005 DMA_DIRECTION_FROM_DEVICE, req);
1008 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
1009 uint64_t off, NvmeRequest *req)
1011 uint32_t trans_len;
1012 NvmeCmd *cmd = &req->cmd;
1013 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
1014 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
1015 NvmeErrorLog errlog;
1017 if (!rae) {
1018 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
1021 if (off > sizeof(errlog)) {
1022 return NVME_INVALID_FIELD | NVME_DNR;
1025 memset(&errlog, 0x0, sizeof(errlog));
1027 trans_len = MIN(sizeof(errlog) - off, buf_len);
1029 return nvme_dma_prp(n, (uint8_t *)&errlog, trans_len, prp1, prp2,
1030 DMA_DIRECTION_FROM_DEVICE, req);
1033 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
1035 NvmeCmd *cmd = &req->cmd;
1037 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1038 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1039 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
1040 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
1041 uint8_t lid = dw10 & 0xff;
1042 uint8_t lsp = (dw10 >> 8) & 0xf;
1043 uint8_t rae = (dw10 >> 15) & 0x1;
1044 uint32_t numdl, numdu;
1045 uint64_t off, lpol, lpou;
1046 size_t len;
1047 uint16_t status;
1049 numdl = (dw10 >> 16);
1050 numdu = (dw11 & 0xffff);
1051 lpol = dw12;
1052 lpou = dw13;
1054 len = (((numdu << 16) | numdl) + 1) << 2;
1055 off = (lpou << 32ULL) | lpol;
1057 if (off & 0x3) {
1058 return NVME_INVALID_FIELD | NVME_DNR;
1061 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
1063 status = nvme_check_mdts(n, len);
1064 if (status) {
1065 trace_pci_nvme_err_mdts(nvme_cid(req), len);
1066 return status;
1069 switch (lid) {
1070 case NVME_LOG_ERROR_INFO:
1071 return nvme_error_info(n, rae, len, off, req);
1072 case NVME_LOG_SMART_INFO:
1073 return nvme_smart_info(n, rae, len, off, req);
1074 case NVME_LOG_FW_SLOT_INFO:
1075 return nvme_fw_log_info(n, len, off, req);
1076 default:
1077 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
1078 return NVME_INVALID_FIELD | NVME_DNR;
1082 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
1084 n->cq[cq->cqid] = NULL;
1085 timer_del(cq->timer);
1086 timer_free(cq->timer);
1087 msix_vector_unuse(&n->parent_obj, cq->vector);
1088 if (cq->cqid) {
1089 g_free(cq);
1093 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
1095 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
1096 NvmeCQueue *cq;
1097 uint16_t qid = le16_to_cpu(c->qid);
1099 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
1100 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
1101 return NVME_INVALID_CQID | NVME_DNR;
1104 cq = n->cq[qid];
1105 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
1106 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
1107 return NVME_INVALID_QUEUE_DEL;
1109 nvme_irq_deassert(n, cq);
1110 trace_pci_nvme_del_cq(qid);
1111 nvme_free_cq(cq, n);
1112 return NVME_SUCCESS;
1115 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
1116 uint16_t cqid, uint16_t vector, uint16_t size,
1117 uint16_t irq_enabled)
1119 int ret;
1121 ret = msix_vector_use(&n->parent_obj, vector);
1122 assert(ret == 0);
1123 cq->ctrl = n;
1124 cq->cqid = cqid;
1125 cq->size = size;
1126 cq->dma_addr = dma_addr;
1127 cq->phase = 1;
1128 cq->irq_enabled = irq_enabled;
1129 cq->vector = vector;
1130 cq->head = cq->tail = 0;
1131 QTAILQ_INIT(&cq->req_list);
1132 QTAILQ_INIT(&cq->sq_list);
1133 n->cq[cqid] = cq;
1134 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
1137 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
1139 NvmeCQueue *cq;
1140 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
1141 uint16_t cqid = le16_to_cpu(c->cqid);
1142 uint16_t vector = le16_to_cpu(c->irq_vector);
1143 uint16_t qsize = le16_to_cpu(c->qsize);
1144 uint16_t qflags = le16_to_cpu(c->cq_flags);
1145 uint64_t prp1 = le64_to_cpu(c->prp1);
1147 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
1148 NVME_CQ_FLAGS_IEN(qflags) != 0);
1150 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
1151 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
1152 return NVME_INVALID_CQID | NVME_DNR;
1154 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
1155 trace_pci_nvme_err_invalid_create_cq_size(qsize);
1156 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
1158 if (unlikely(!prp1)) {
1159 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
1160 return NVME_INVALID_FIELD | NVME_DNR;
1162 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
1163 trace_pci_nvme_err_invalid_create_cq_vector(vector);
1164 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1166 if (unlikely(vector >= n->params.msix_qsize)) {
1167 trace_pci_nvme_err_invalid_create_cq_vector(vector);
1168 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1170 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
1171 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
1172 return NVME_INVALID_FIELD | NVME_DNR;
1175 cq = g_malloc0(sizeof(*cq));
1176 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
1177 NVME_CQ_FLAGS_IEN(qflags));
1180 * It is only required to set qs_created when creating a completion queue;
1181 * creating a submission queue without a matching completion queue will
1182 * fail.
1184 n->qs_created = true;
1185 return NVME_SUCCESS;
1188 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
1190 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1191 uint64_t prp1 = le64_to_cpu(c->prp1);
1192 uint64_t prp2 = le64_to_cpu(c->prp2);
1194 trace_pci_nvme_identify_ctrl();
1196 return nvme_dma_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), prp1,
1197 prp2, DMA_DIRECTION_FROM_DEVICE, req);
1200 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req)
1202 NvmeNamespace *ns;
1203 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1204 uint32_t nsid = le32_to_cpu(c->nsid);
1205 uint64_t prp1 = le64_to_cpu(c->prp1);
1206 uint64_t prp2 = le64_to_cpu(c->prp2);
1208 trace_pci_nvme_identify_ns(nsid);
1210 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
1211 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
1212 return NVME_INVALID_NSID | NVME_DNR;
1215 ns = &n->namespaces[nsid - 1];
1217 return nvme_dma_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns), prp1,
1218 prp2, DMA_DIRECTION_FROM_DEVICE, req);
1221 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req)
1223 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1224 static const int data_len = NVME_IDENTIFY_DATA_SIZE;
1225 uint32_t min_nsid = le32_to_cpu(c->nsid);
1226 uint64_t prp1 = le64_to_cpu(c->prp1);
1227 uint64_t prp2 = le64_to_cpu(c->prp2);
1228 uint32_t *list;
1229 uint16_t ret;
1230 int i, j = 0;
1232 trace_pci_nvme_identify_nslist(min_nsid);
1235 * Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
1236 * since the Active Namespace ID List should return namespaces with ids
1237 * *higher* than the NSID specified in the command. This is also specified
1238 * in the spec (NVM Express v1.3d, Section 5.15.4).
1240 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
1241 return NVME_INVALID_NSID | NVME_DNR;
1244 list = g_malloc0(data_len);
1245 for (i = 0; i < n->num_namespaces; i++) {
1246 if (i < min_nsid) {
1247 continue;
1249 list[j++] = cpu_to_le32(i + 1);
1250 if (j == data_len / sizeof(uint32_t)) {
1251 break;
1254 ret = nvme_dma_prp(n, (uint8_t *)list, data_len, prp1, prp2,
1255 DMA_DIRECTION_FROM_DEVICE, req);
1256 g_free(list);
1257 return ret;
1260 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
1262 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1263 uint32_t nsid = le32_to_cpu(c->nsid);
1264 uint64_t prp1 = le64_to_cpu(c->prp1);
1265 uint64_t prp2 = le64_to_cpu(c->prp2);
1267 uint8_t list[NVME_IDENTIFY_DATA_SIZE];
1269 struct data {
1270 struct {
1271 NvmeIdNsDescr hdr;
1272 uint8_t v[16];
1273 } uuid;
1276 struct data *ns_descrs = (struct data *)list;
1278 trace_pci_nvme_identify_ns_descr_list(nsid);
1280 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
1281 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
1282 return NVME_INVALID_NSID | NVME_DNR;
1285 memset(list, 0x0, sizeof(list));
1288 * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
1289 * structure, a Namespace UUID (nidt = 0x3) must be reported in the
1290 * Namespace Identification Descriptor. Add a very basic Namespace UUID
1291 * here.
1293 ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
1294 ns_descrs->uuid.hdr.nidl = NVME_NIDT_UUID_LEN;
1295 stl_be_p(&ns_descrs->uuid.v, nsid);
1297 return nvme_dma_prp(n, list, NVME_IDENTIFY_DATA_SIZE, prp1, prp2,
1298 DMA_DIRECTION_FROM_DEVICE, req);
1301 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
1303 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1305 switch (le32_to_cpu(c->cns)) {
1306 case NVME_ID_CNS_NS:
1307 return nvme_identify_ns(n, req);
1308 case NVME_ID_CNS_CTRL:
1309 return nvme_identify_ctrl(n, req);
1310 case NVME_ID_CNS_NS_ACTIVE_LIST:
1311 return nvme_identify_nslist(n, req);
1312 case NVME_ID_CNS_NS_DESCR_LIST:
1313 return nvme_identify_ns_descr_list(n, req);
1314 default:
1315 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
1316 return NVME_INVALID_FIELD | NVME_DNR;
1320 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
1322 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
1324 req->cqe.result = 1;
1325 if (nvme_check_sqid(n, sqid)) {
1326 return NVME_INVALID_FIELD | NVME_DNR;
1329 return NVME_SUCCESS;
1332 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
1334 trace_pci_nvme_setfeat_timestamp(ts);
1336 n->host_timestamp = le64_to_cpu(ts);
1337 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1340 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
1342 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1343 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
1345 union nvme_timestamp {
1346 struct {
1347 uint64_t timestamp:48;
1348 uint64_t sync:1;
1349 uint64_t origin:3;
1350 uint64_t rsvd1:12;
1352 uint64_t all;
1355 union nvme_timestamp ts;
1356 ts.all = 0;
1357 ts.timestamp = n->host_timestamp + elapsed_time;
1359 /* If the host timestamp is non-zero, set the timestamp origin */
1360 ts.origin = n->host_timestamp ? 0x01 : 0x00;
1362 trace_pci_nvme_getfeat_timestamp(ts.all);
1364 return cpu_to_le64(ts.all);
1367 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
1369 NvmeCmd *cmd = &req->cmd;
1370 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
1371 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
1373 uint64_t timestamp = nvme_get_timestamp(n);
1375 return nvme_dma_prp(n, (uint8_t *)&timestamp, sizeof(timestamp), prp1,
1376 prp2, DMA_DIRECTION_FROM_DEVICE, req);
1379 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
1381 NvmeCmd *cmd = &req->cmd;
1382 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1383 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1384 uint32_t nsid = le32_to_cpu(cmd->nsid);
1385 uint32_t result;
1386 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1387 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
1388 uint16_t iv;
1390 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
1391 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
1394 trace_pci_nvme_getfeat(nvme_cid(req), fid, sel, dw11);
1396 if (!nvme_feature_support[fid]) {
1397 return NVME_INVALID_FIELD | NVME_DNR;
1400 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1401 if (!nsid || nsid > n->num_namespaces) {
1403 * The Reservation Notification Mask and Reservation Persistence
1404 * features require a status code of Invalid Field in Command when
1405 * NSID is 0xFFFFFFFF. Since the device does not support those
1406 * features we can always return Invalid Namespace or Format as we
1407 * should do for all other features.
1409 return NVME_INVALID_NSID | NVME_DNR;
1413 switch (sel) {
1414 case NVME_GETFEAT_SELECT_CURRENT:
1415 break;
1416 case NVME_GETFEAT_SELECT_SAVED:
1417 /* no features are saveable by the controller; fallthrough */
1418 case NVME_GETFEAT_SELECT_DEFAULT:
1419 goto defaults;
1420 case NVME_GETFEAT_SELECT_CAP:
1421 result = nvme_feature_cap[fid];
1422 goto out;
1425 switch (fid) {
1426 case NVME_TEMPERATURE_THRESHOLD:
1427 result = 0;
1430 * The controller only implements the Composite Temperature sensor, so
1431 * return 0 for all other sensors.
1433 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1434 goto out;
1437 switch (NVME_TEMP_THSEL(dw11)) {
1438 case NVME_TEMP_THSEL_OVER:
1439 result = n->features.temp_thresh_hi;
1440 goto out;
1441 case NVME_TEMP_THSEL_UNDER:
1442 result = n->features.temp_thresh_low;
1443 goto out;
1446 return NVME_INVALID_FIELD | NVME_DNR;
1447 case NVME_VOLATILE_WRITE_CACHE:
1448 result = blk_enable_write_cache(n->conf.blk);
1449 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
1450 goto out;
1451 case NVME_ASYNCHRONOUS_EVENT_CONF:
1452 result = n->features.async_config;
1453 goto out;
1454 case NVME_TIMESTAMP:
1455 return nvme_get_feature_timestamp(n, req);
1456 default:
1457 break;
1460 defaults:
1461 switch (fid) {
1462 case NVME_TEMPERATURE_THRESHOLD:
1463 result = 0;
1465 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1466 break;
1469 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
1470 result = NVME_TEMPERATURE_WARNING;
1473 break;
1474 case NVME_NUMBER_OF_QUEUES:
1475 result = (n->params.max_ioqpairs - 1) |
1476 ((n->params.max_ioqpairs - 1) << 16);
1477 trace_pci_nvme_getfeat_numq(result);
1478 break;
1479 case NVME_INTERRUPT_VECTOR_CONF:
1480 iv = dw11 & 0xffff;
1481 if (iv >= n->params.max_ioqpairs + 1) {
1482 return NVME_INVALID_FIELD | NVME_DNR;
1485 result = iv;
1486 if (iv == n->admin_cq.vector) {
1487 result |= NVME_INTVC_NOCOALESCING;
1490 break;
1491 default:
1492 result = nvme_feature_default[fid];
1493 break;
1496 out:
1497 req->cqe.result = cpu_to_le32(result);
1498 return NVME_SUCCESS;
1501 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
1503 uint16_t ret;
1504 uint64_t timestamp;
1505 NvmeCmd *cmd = &req->cmd;
1506 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
1507 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
1509 ret = nvme_dma_prp(n, (uint8_t *)&timestamp, sizeof(timestamp), prp1,
1510 prp2, DMA_DIRECTION_TO_DEVICE, req);
1511 if (ret != NVME_SUCCESS) {
1512 return ret;
1515 nvme_set_timestamp(n, timestamp);
1517 return NVME_SUCCESS;
1520 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
1522 NvmeCmd *cmd = &req->cmd;
1523 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1524 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1525 uint32_t nsid = le32_to_cpu(cmd->nsid);
1526 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1527 uint8_t save = NVME_SETFEAT_SAVE(dw10);
1529 trace_pci_nvme_setfeat(nvme_cid(req), fid, save, dw11);
1531 if (save) {
1532 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
1535 if (!nvme_feature_support[fid]) {
1536 return NVME_INVALID_FIELD | NVME_DNR;
1539 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1540 if (!nsid || (nsid != NVME_NSID_BROADCAST &&
1541 nsid > n->num_namespaces)) {
1542 return NVME_INVALID_NSID | NVME_DNR;
1544 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
1545 if (nsid > n->num_namespaces) {
1546 return NVME_INVALID_NSID | NVME_DNR;
1549 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
1552 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
1553 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1556 switch (fid) {
1557 case NVME_TEMPERATURE_THRESHOLD:
1558 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1559 break;
1562 switch (NVME_TEMP_THSEL(dw11)) {
1563 case NVME_TEMP_THSEL_OVER:
1564 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
1565 break;
1566 case NVME_TEMP_THSEL_UNDER:
1567 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
1568 break;
1569 default:
1570 return NVME_INVALID_FIELD | NVME_DNR;
1573 if (((n->temperature >= n->features.temp_thresh_hi) ||
1574 (n->temperature <= n->features.temp_thresh_low)) &&
1575 NVME_AEC_SMART(n->features.async_config) & NVME_SMART_TEMPERATURE) {
1576 nvme_enqueue_event(n, NVME_AER_TYPE_SMART,
1577 NVME_AER_INFO_SMART_TEMP_THRESH,
1578 NVME_LOG_SMART_INFO);
1581 break;
1582 case NVME_VOLATILE_WRITE_CACHE:
1583 if (!(dw11 & 0x1) && blk_enable_write_cache(n->conf.blk)) {
1584 blk_flush(n->conf.blk);
1587 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
1588 break;
1589 case NVME_NUMBER_OF_QUEUES:
1590 if (n->qs_created) {
1591 return NVME_CMD_SEQ_ERROR | NVME_DNR;
1595 * NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
1596 * and NSQR.
1598 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
1599 return NVME_INVALID_FIELD | NVME_DNR;
1602 trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
1603 ((dw11 >> 16) & 0xFFFF) + 1,
1604 n->params.max_ioqpairs,
1605 n->params.max_ioqpairs);
1606 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
1607 ((n->params.max_ioqpairs - 1) << 16));
1608 break;
1609 case NVME_ASYNCHRONOUS_EVENT_CONF:
1610 n->features.async_config = dw11;
1611 break;
1612 case NVME_TIMESTAMP:
1613 return nvme_set_feature_timestamp(n, req);
1614 default:
1615 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1617 return NVME_SUCCESS;
1620 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
1622 trace_pci_nvme_aer(nvme_cid(req));
1624 if (n->outstanding_aers > n->params.aerl) {
1625 trace_pci_nvme_aer_aerl_exceeded();
1626 return NVME_AER_LIMIT_EXCEEDED;
1629 n->aer_reqs[n->outstanding_aers] = req;
1630 n->outstanding_aers++;
1632 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1633 nvme_process_aers(n);
1636 return NVME_NO_COMPLETE;
1639 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
1641 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
1642 nvme_adm_opc_str(req->cmd.opcode));
1644 switch (req->cmd.opcode) {
1645 case NVME_ADM_CMD_DELETE_SQ:
1646 return nvme_del_sq(n, req);
1647 case NVME_ADM_CMD_CREATE_SQ:
1648 return nvme_create_sq(n, req);
1649 case NVME_ADM_CMD_GET_LOG_PAGE:
1650 return nvme_get_log(n, req);
1651 case NVME_ADM_CMD_DELETE_CQ:
1652 return nvme_del_cq(n, req);
1653 case NVME_ADM_CMD_CREATE_CQ:
1654 return nvme_create_cq(n, req);
1655 case NVME_ADM_CMD_IDENTIFY:
1656 return nvme_identify(n, req);
1657 case NVME_ADM_CMD_ABORT:
1658 return nvme_abort(n, req);
1659 case NVME_ADM_CMD_SET_FEATURES:
1660 return nvme_set_feature(n, req);
1661 case NVME_ADM_CMD_GET_FEATURES:
1662 return nvme_get_feature(n, req);
1663 case NVME_ADM_CMD_ASYNC_EV_REQ:
1664 return nvme_aer(n, req);
1665 default:
1666 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
1667 return NVME_INVALID_OPCODE | NVME_DNR;
1671 static void nvme_process_sq(void *opaque)
1673 NvmeSQueue *sq = opaque;
1674 NvmeCtrl *n = sq->ctrl;
1675 NvmeCQueue *cq = n->cq[sq->cqid];
1677 uint16_t status;
1678 hwaddr addr;
1679 NvmeCmd cmd;
1680 NvmeRequest *req;
1682 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
1683 addr = sq->dma_addr + sq->head * n->sqe_size;
1684 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
1685 trace_pci_nvme_err_addr_read(addr);
1686 trace_pci_nvme_err_cfs();
1687 n->bar.csts = NVME_CSTS_FAILED;
1688 break;
1690 nvme_inc_sq_head(sq);
1692 req = QTAILQ_FIRST(&sq->req_list);
1693 QTAILQ_REMOVE(&sq->req_list, req, entry);
1694 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
1695 nvme_req_clear(req);
1696 req->cqe.cid = cmd.cid;
1697 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
1699 status = sq->sqid ? nvme_io_cmd(n, req) :
1700 nvme_admin_cmd(n, req);
1701 if (status != NVME_NO_COMPLETE) {
1702 req->status = status;
1703 nvme_enqueue_req_completion(cq, req);
1708 static void nvme_clear_ctrl(NvmeCtrl *n)
1710 int i;
1712 blk_drain(n->conf.blk);
1714 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1715 if (n->sq[i] != NULL) {
1716 nvme_free_sq(n->sq[i], n);
1719 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1720 if (n->cq[i] != NULL) {
1721 nvme_free_cq(n->cq[i], n);
1725 while (!QTAILQ_EMPTY(&n->aer_queue)) {
1726 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
1727 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1728 g_free(event);
1731 n->aer_queued = 0;
1732 n->outstanding_aers = 0;
1733 n->qs_created = false;
1735 blk_flush(n->conf.blk);
1736 n->bar.cc = 0;
1739 static int nvme_start_ctrl(NvmeCtrl *n)
1741 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
1742 uint32_t page_size = 1 << page_bits;
1744 if (unlikely(n->cq[0])) {
1745 trace_pci_nvme_err_startfail_cq();
1746 return -1;
1748 if (unlikely(n->sq[0])) {
1749 trace_pci_nvme_err_startfail_sq();
1750 return -1;
1752 if (unlikely(!n->bar.asq)) {
1753 trace_pci_nvme_err_startfail_nbarasq();
1754 return -1;
1756 if (unlikely(!n->bar.acq)) {
1757 trace_pci_nvme_err_startfail_nbaracq();
1758 return -1;
1760 if (unlikely(n->bar.asq & (page_size - 1))) {
1761 trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
1762 return -1;
1764 if (unlikely(n->bar.acq & (page_size - 1))) {
1765 trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
1766 return -1;
1768 if (unlikely(NVME_CC_MPS(n->bar.cc) <
1769 NVME_CAP_MPSMIN(n->bar.cap))) {
1770 trace_pci_nvme_err_startfail_page_too_small(
1771 NVME_CC_MPS(n->bar.cc),
1772 NVME_CAP_MPSMIN(n->bar.cap));
1773 return -1;
1775 if (unlikely(NVME_CC_MPS(n->bar.cc) >
1776 NVME_CAP_MPSMAX(n->bar.cap))) {
1777 trace_pci_nvme_err_startfail_page_too_large(
1778 NVME_CC_MPS(n->bar.cc),
1779 NVME_CAP_MPSMAX(n->bar.cap));
1780 return -1;
1782 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
1783 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
1784 trace_pci_nvme_err_startfail_cqent_too_small(
1785 NVME_CC_IOCQES(n->bar.cc),
1786 NVME_CTRL_CQES_MIN(n->bar.cap));
1787 return -1;
1789 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
1790 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
1791 trace_pci_nvme_err_startfail_cqent_too_large(
1792 NVME_CC_IOCQES(n->bar.cc),
1793 NVME_CTRL_CQES_MAX(n->bar.cap));
1794 return -1;
1796 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
1797 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
1798 trace_pci_nvme_err_startfail_sqent_too_small(
1799 NVME_CC_IOSQES(n->bar.cc),
1800 NVME_CTRL_SQES_MIN(n->bar.cap));
1801 return -1;
1803 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
1804 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
1805 trace_pci_nvme_err_startfail_sqent_too_large(
1806 NVME_CC_IOSQES(n->bar.cc),
1807 NVME_CTRL_SQES_MAX(n->bar.cap));
1808 return -1;
1810 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
1811 trace_pci_nvme_err_startfail_asqent_sz_zero();
1812 return -1;
1814 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
1815 trace_pci_nvme_err_startfail_acqent_sz_zero();
1816 return -1;
1819 n->page_bits = page_bits;
1820 n->page_size = page_size;
1821 n->max_prp_ents = n->page_size / sizeof(uint64_t);
1822 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1823 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1824 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1825 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1826 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1827 NVME_AQA_ASQS(n->bar.aqa) + 1);
1829 nvme_set_timestamp(n, 0ULL);
1831 QTAILQ_INIT(&n->aer_queue);
1833 return 0;
1836 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1837 unsigned size)
1839 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1840 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
1841 "MMIO write not 32-bit aligned,"
1842 " offset=0x%"PRIx64"", offset);
1843 /* should be ignored, fall through for now */
1846 if (unlikely(size < sizeof(uint32_t))) {
1847 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
1848 "MMIO write smaller than 32-bits,"
1849 " offset=0x%"PRIx64", size=%u",
1850 offset, size);
1851 /* should be ignored, fall through for now */
1854 switch (offset) {
1855 case 0xc: /* INTMS */
1856 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1857 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1858 "undefined access to interrupt mask set"
1859 " when MSI-X is enabled");
1860 /* should be ignored, fall through for now */
1862 n->bar.intms |= data & 0xffffffff;
1863 n->bar.intmc = n->bar.intms;
1864 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
1865 nvme_irq_check(n);
1866 break;
1867 case 0x10: /* INTMC */
1868 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1869 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1870 "undefined access to interrupt mask clr"
1871 " when MSI-X is enabled");
1872 /* should be ignored, fall through for now */
1874 n->bar.intms &= ~(data & 0xffffffff);
1875 n->bar.intmc = n->bar.intms;
1876 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
1877 nvme_irq_check(n);
1878 break;
1879 case 0x14: /* CC */
1880 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
1881 /* Windows first sends data, then sends enable bit */
1882 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1883 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1885 n->bar.cc = data;
1888 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1889 n->bar.cc = data;
1890 if (unlikely(nvme_start_ctrl(n))) {
1891 trace_pci_nvme_err_startfail();
1892 n->bar.csts = NVME_CSTS_FAILED;
1893 } else {
1894 trace_pci_nvme_mmio_start_success();
1895 n->bar.csts = NVME_CSTS_READY;
1897 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1898 trace_pci_nvme_mmio_stopped();
1899 nvme_clear_ctrl(n);
1900 n->bar.csts &= ~NVME_CSTS_READY;
1902 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1903 trace_pci_nvme_mmio_shutdown_set();
1904 nvme_clear_ctrl(n);
1905 n->bar.cc = data;
1906 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1907 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1908 trace_pci_nvme_mmio_shutdown_cleared();
1909 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1910 n->bar.cc = data;
1912 break;
1913 case 0x1C: /* CSTS */
1914 if (data & (1 << 4)) {
1915 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
1916 "attempted to W1C CSTS.NSSRO"
1917 " but CAP.NSSRS is zero (not supported)");
1918 } else if (data != 0) {
1919 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
1920 "attempted to set a read only bit"
1921 " of controller status");
1923 break;
1924 case 0x20: /* NSSR */
1925 if (data == 0x4E564D65) {
1926 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
1927 } else {
1928 /* The spec says that writes of other values have no effect */
1929 return;
1931 break;
1932 case 0x24: /* AQA */
1933 n->bar.aqa = data & 0xffffffff;
1934 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
1935 break;
1936 case 0x28: /* ASQ */
1937 n->bar.asq = data;
1938 trace_pci_nvme_mmio_asqaddr(data);
1939 break;
1940 case 0x2c: /* ASQ hi */
1941 n->bar.asq |= data << 32;
1942 trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1943 break;
1944 case 0x30: /* ACQ */
1945 trace_pci_nvme_mmio_acqaddr(data);
1946 n->bar.acq = data;
1947 break;
1948 case 0x34: /* ACQ hi */
1949 n->bar.acq |= data << 32;
1950 trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1951 break;
1952 case 0x38: /* CMBLOC */
1953 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
1954 "invalid write to reserved CMBLOC"
1955 " when CMBSZ is zero, ignored");
1956 return;
1957 case 0x3C: /* CMBSZ */
1958 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
1959 "invalid write to read only CMBSZ, ignored");
1960 return;
1961 case 0xE00: /* PMRCAP */
1962 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
1963 "invalid write to PMRCAP register, ignored");
1964 return;
1965 case 0xE04: /* TODO PMRCTL */
1966 break;
1967 case 0xE08: /* PMRSTS */
1968 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
1969 "invalid write to PMRSTS register, ignored");
1970 return;
1971 case 0xE0C: /* PMREBS */
1972 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
1973 "invalid write to PMREBS register, ignored");
1974 return;
1975 case 0xE10: /* PMRSWTP */
1976 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
1977 "invalid write to PMRSWTP register, ignored");
1978 return;
1979 case 0xE14: /* TODO PMRMSC */
1980 break;
1981 default:
1982 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
1983 "invalid MMIO write,"
1984 " offset=0x%"PRIx64", data=%"PRIx64"",
1985 offset, data);
1986 break;
1990 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1992 NvmeCtrl *n = (NvmeCtrl *)opaque;
1993 uint8_t *ptr = (uint8_t *)&n->bar;
1994 uint64_t val = 0;
1996 trace_pci_nvme_mmio_read(addr);
1998 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1999 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
2000 "MMIO read not 32-bit aligned,"
2001 " offset=0x%"PRIx64"", addr);
2002 /* should RAZ, fall through for now */
2003 } else if (unlikely(size < sizeof(uint32_t))) {
2004 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
2005 "MMIO read smaller than 32-bits,"
2006 " offset=0x%"PRIx64"", addr);
2007 /* should RAZ, fall through for now */
2010 if (addr < sizeof(n->bar)) {
2012 * When PMRWBM bit 1 is set then read from
2013 * from PMRSTS should ensure prior writes
2014 * made it to persistent media
2016 if (addr == 0xE08 &&
2017 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
2018 memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
2020 memcpy(&val, ptr + addr, size);
2021 } else {
2022 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
2023 "MMIO read beyond last register,"
2024 " offset=0x%"PRIx64", returning 0", addr);
2027 return val;
2030 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
2032 uint32_t qid;
2034 if (unlikely(addr & ((1 << 2) - 1))) {
2035 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
2036 "doorbell write not 32-bit aligned,"
2037 " offset=0x%"PRIx64", ignoring", addr);
2038 return;
2041 if (((addr - 0x1000) >> 2) & 1) {
2042 /* Completion queue doorbell write */
2044 uint16_t new_head = val & 0xffff;
2045 int start_sqs;
2046 NvmeCQueue *cq;
2048 qid = (addr - (0x1000 + (1 << 2))) >> 3;
2049 if (unlikely(nvme_check_cqid(n, qid))) {
2050 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
2051 "completion queue doorbell write"
2052 " for nonexistent queue,"
2053 " sqid=%"PRIu32", ignoring", qid);
2056 * NVM Express v1.3d, Section 4.1 state: "If host software writes
2057 * an invalid value to the Submission Queue Tail Doorbell or
2058 * Completion Queue Head Doorbell regiter and an Asynchronous Event
2059 * Request command is outstanding, then an asynchronous event is
2060 * posted to the Admin Completion Queue with a status code of
2061 * Invalid Doorbell Write Value."
2063 * Also note that the spec includes the "Invalid Doorbell Register"
2064 * status code, but nowhere does it specify when to use it.
2065 * However, it seems reasonable to use it here in a similar
2066 * fashion.
2068 if (n->outstanding_aers) {
2069 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2070 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2071 NVME_LOG_ERROR_INFO);
2074 return;
2077 cq = n->cq[qid];
2078 if (unlikely(new_head >= cq->size)) {
2079 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
2080 "completion queue doorbell write value"
2081 " beyond queue size, sqid=%"PRIu32","
2082 " new_head=%"PRIu16", ignoring",
2083 qid, new_head);
2085 if (n->outstanding_aers) {
2086 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2087 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2088 NVME_LOG_ERROR_INFO);
2091 return;
2094 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
2096 start_sqs = nvme_cq_full(cq) ? 1 : 0;
2097 cq->head = new_head;
2098 if (start_sqs) {
2099 NvmeSQueue *sq;
2100 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
2101 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2103 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2106 if (cq->tail == cq->head) {
2107 nvme_irq_deassert(n, cq);
2109 } else {
2110 /* Submission queue doorbell write */
2112 uint16_t new_tail = val & 0xffff;
2113 NvmeSQueue *sq;
2115 qid = (addr - 0x1000) >> 3;
2116 if (unlikely(nvme_check_sqid(n, qid))) {
2117 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
2118 "submission queue doorbell write"
2119 " for nonexistent queue,"
2120 " sqid=%"PRIu32", ignoring", qid);
2122 if (n->outstanding_aers) {
2123 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2124 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2125 NVME_LOG_ERROR_INFO);
2128 return;
2131 sq = n->sq[qid];
2132 if (unlikely(new_tail >= sq->size)) {
2133 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
2134 "submission queue doorbell write value"
2135 " beyond queue size, sqid=%"PRIu32","
2136 " new_tail=%"PRIu16", ignoring",
2137 qid, new_tail);
2139 if (n->outstanding_aers) {
2140 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2141 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2142 NVME_LOG_ERROR_INFO);
2145 return;
2148 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
2150 sq->tail = new_tail;
2151 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2155 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
2156 unsigned size)
2158 NvmeCtrl *n = (NvmeCtrl *)opaque;
2160 trace_pci_nvme_mmio_write(addr, data);
2162 if (addr < sizeof(n->bar)) {
2163 nvme_write_bar(n, addr, data, size);
2164 } else {
2165 nvme_process_db(n, addr, data);
2169 static const MemoryRegionOps nvme_mmio_ops = {
2170 .read = nvme_mmio_read,
2171 .write = nvme_mmio_write,
2172 .endianness = DEVICE_LITTLE_ENDIAN,
2173 .impl = {
2174 .min_access_size = 2,
2175 .max_access_size = 8,
2179 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
2180 unsigned size)
2182 NvmeCtrl *n = (NvmeCtrl *)opaque;
2183 stn_le_p(&n->cmbuf[addr], size, data);
2186 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
2188 NvmeCtrl *n = (NvmeCtrl *)opaque;
2189 return ldn_le_p(&n->cmbuf[addr], size);
2192 static const MemoryRegionOps nvme_cmb_ops = {
2193 .read = nvme_cmb_read,
2194 .write = nvme_cmb_write,
2195 .endianness = DEVICE_LITTLE_ENDIAN,
2196 .impl = {
2197 .min_access_size = 1,
2198 .max_access_size = 8,
2202 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
2204 NvmeParams *params = &n->params;
2206 if (params->num_queues) {
2207 warn_report("num_queues is deprecated; please use max_ioqpairs "
2208 "instead");
2210 params->max_ioqpairs = params->num_queues - 1;
2213 if (params->max_ioqpairs < 1 ||
2214 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
2215 error_setg(errp, "max_ioqpairs must be between 1 and %d",
2216 NVME_MAX_IOQPAIRS);
2217 return;
2220 if (params->msix_qsize < 1 ||
2221 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
2222 error_setg(errp, "msix_qsize must be between 1 and %d",
2223 PCI_MSIX_FLAGS_QSIZE + 1);
2224 return;
2227 if (!n->conf.blk) {
2228 error_setg(errp, "drive property not set");
2229 return;
2232 if (!params->serial) {
2233 error_setg(errp, "serial property not set");
2234 return;
2237 if (!n->params.cmb_size_mb && n->pmrdev) {
2238 if (host_memory_backend_is_mapped(n->pmrdev)) {
2239 error_setg(errp, "can't use already busy memdev: %s",
2240 object_get_canonical_path_component(OBJECT(n->pmrdev)));
2241 return;
2244 if (!is_power_of_2(n->pmrdev->size)) {
2245 error_setg(errp, "pmr backend size needs to be power of 2 in size");
2246 return;
2249 host_memory_backend_set_mapped(n->pmrdev, true);
2253 static void nvme_init_state(NvmeCtrl *n)
2255 n->num_namespaces = 1;
2256 /* add one to max_ioqpairs to account for the admin queue pair */
2257 n->reg_size = pow2ceil(sizeof(NvmeBar) +
2258 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
2259 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
2260 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
2261 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
2262 n->temperature = NVME_TEMPERATURE;
2263 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
2264 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
2265 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
2268 static void nvme_init_blk(NvmeCtrl *n, Error **errp)
2270 if (!blkconf_blocksizes(&n->conf, errp)) {
2271 return;
2273 blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
2274 false, errp);
2277 static void nvme_init_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
2279 int64_t bs_size;
2280 NvmeIdNs *id_ns = &ns->id_ns;
2282 bs_size = blk_getlength(n->conf.blk);
2283 if (bs_size < 0) {
2284 error_setg_errno(errp, -bs_size, "could not get backing file size");
2285 return;
2288 n->ns_size = bs_size;
2290 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
2291 id_ns->nsze = cpu_to_le64(nvme_ns_nlbas(n, ns));
2293 /* no thin provisioning */
2294 id_ns->ncap = id_ns->nsze;
2295 id_ns->nuse = id_ns->ncap;
2298 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
2300 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
2301 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
2303 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
2304 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
2305 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
2306 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
2307 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
2308 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
2309 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
2311 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2312 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
2313 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2314 pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
2315 PCI_BASE_ADDRESS_SPACE_MEMORY |
2316 PCI_BASE_ADDRESS_MEM_TYPE_64 |
2317 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
2320 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
2322 /* Controller Capabilities register */
2323 NVME_CAP_SET_PMRS(n->bar.cap, 1);
2325 /* PMR Capabities register */
2326 n->bar.pmrcap = 0;
2327 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
2328 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
2329 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
2330 NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
2331 /* Turn on bit 1 support */
2332 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
2333 NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
2334 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
2336 /* PMR Control register */
2337 n->bar.pmrctl = 0;
2338 NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
2340 /* PMR Status register */
2341 n->bar.pmrsts = 0;
2342 NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
2343 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
2344 NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
2345 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
2347 /* PMR Elasticity Buffer Size register */
2348 n->bar.pmrebs = 0;
2349 NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
2350 NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
2351 NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
2353 /* PMR Sustained Write Throughput register */
2354 n->bar.pmrswtp = 0;
2355 NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
2356 NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
2358 /* PMR Memory Space Control register */
2359 n->bar.pmrmsc = 0;
2360 NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
2361 NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
2363 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
2364 PCI_BASE_ADDRESS_SPACE_MEMORY |
2365 PCI_BASE_ADDRESS_MEM_TYPE_64 |
2366 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
2369 static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
2371 uint8_t *pci_conf = pci_dev->config;
2373 pci_conf[PCI_INTERRUPT_PIN] = 1;
2374 pci_config_set_prog_interface(pci_conf, 0x2);
2375 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
2376 pcie_endpoint_cap_init(pci_dev, 0x80);
2378 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
2379 n->reg_size);
2380 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
2381 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
2382 if (msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp)) {
2383 return;
2386 if (n->params.cmb_size_mb) {
2387 nvme_init_cmb(n, pci_dev);
2388 } else if (n->pmrdev) {
2389 nvme_init_pmr(n, pci_dev);
2393 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
2395 NvmeIdCtrl *id = &n->id_ctrl;
2396 uint8_t *pci_conf = pci_dev->config;
2397 char *subnqn;
2399 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
2400 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
2401 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
2402 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
2403 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
2404 id->rab = 6;
2405 id->ieee[0] = 0x00;
2406 id->ieee[1] = 0x02;
2407 id->ieee[2] = 0xb3;
2408 id->mdts = n->params.mdts;
2409 id->ver = cpu_to_le32(NVME_SPEC_VER);
2410 id->oacs = cpu_to_le16(0);
2413 * Because the controller always completes the Abort command immediately,
2414 * there can never be more than one concurrently executing Abort command,
2415 * so this value is never used for anything. Note that there can easily be
2416 * many Abort commands in the queues, but they are not considered
2417 * "executing" until processed by nvme_abort.
2419 * The specification recommends a value of 3 for Abort Command Limit (four
2420 * concurrently outstanding Abort commands), so lets use that though it is
2421 * inconsequential.
2423 id->acl = 3;
2424 id->aerl = n->params.aerl;
2425 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
2426 id->lpa = NVME_LPA_EXTENDED;
2428 /* recommended default value (~70 C) */
2429 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
2430 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
2432 id->sqes = (0x6 << 4) | 0x6;
2433 id->cqes = (0x4 << 4) | 0x4;
2434 id->nn = cpu_to_le32(n->num_namespaces);
2435 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
2436 NVME_ONCS_FEATURES);
2438 subnqn = g_strdup_printf("nqn.2019-08.org.qemu:%s", n->params.serial);
2439 strpadcpy((char *)id->subnqn, sizeof(id->subnqn), subnqn, '\0');
2440 g_free(subnqn);
2442 id->psd[0].mp = cpu_to_le16(0x9c4);
2443 id->psd[0].enlat = cpu_to_le32(0x10);
2444 id->psd[0].exlat = cpu_to_le32(0x4);
2445 if (blk_enable_write_cache(n->conf.blk)) {
2446 id->vwc = 1;
2449 n->bar.cap = 0;
2450 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
2451 NVME_CAP_SET_CQR(n->bar.cap, 1);
2452 NVME_CAP_SET_TO(n->bar.cap, 0xf);
2453 NVME_CAP_SET_CSS(n->bar.cap, 1);
2454 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
2456 n->bar.vs = NVME_SPEC_VER;
2457 n->bar.intmc = n->bar.intms = 0;
2460 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
2462 NvmeCtrl *n = NVME(pci_dev);
2463 Error *local_err = NULL;
2465 int i;
2467 nvme_check_constraints(n, &local_err);
2468 if (local_err) {
2469 error_propagate(errp, local_err);
2470 return;
2473 nvme_init_state(n);
2474 nvme_init_blk(n, &local_err);
2475 if (local_err) {
2476 error_propagate(errp, local_err);
2477 return;
2480 nvme_init_pci(n, pci_dev, &local_err);
2481 if (local_err) {
2482 error_propagate(errp, local_err);
2483 return;
2486 nvme_init_ctrl(n, pci_dev);
2488 for (i = 0; i < n->num_namespaces; i++) {
2489 nvme_init_namespace(n, &n->namespaces[i], &local_err);
2490 if (local_err) {
2491 error_propagate(errp, local_err);
2492 return;
2497 static void nvme_exit(PCIDevice *pci_dev)
2499 NvmeCtrl *n = NVME(pci_dev);
2501 nvme_clear_ctrl(n);
2502 g_free(n->namespaces);
2503 g_free(n->cq);
2504 g_free(n->sq);
2505 g_free(n->aer_reqs);
2507 if (n->params.cmb_size_mb) {
2508 g_free(n->cmbuf);
2511 if (n->pmrdev) {
2512 host_memory_backend_set_mapped(n->pmrdev, false);
2514 msix_uninit_exclusive_bar(pci_dev);
2517 static Property nvme_props[] = {
2518 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
2519 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
2520 HostMemoryBackend *),
2521 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
2522 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
2523 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
2524 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
2525 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
2526 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
2527 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
2528 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
2529 DEFINE_PROP_END_OF_LIST(),
2532 static const VMStateDescription nvme_vmstate = {
2533 .name = "nvme",
2534 .unmigratable = 1,
2537 static void nvme_class_init(ObjectClass *oc, void *data)
2539 DeviceClass *dc = DEVICE_CLASS(oc);
2540 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
2542 pc->realize = nvme_realize;
2543 pc->exit = nvme_exit;
2544 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
2545 pc->vendor_id = PCI_VENDOR_ID_INTEL;
2546 pc->device_id = 0x5845;
2547 pc->revision = 2;
2549 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2550 dc->desc = "Non-Volatile Memory Express";
2551 device_class_set_props(dc, nvme_props);
2552 dc->vmsd = &nvme_vmstate;
2555 static void nvme_instance_init(Object *obj)
2557 NvmeCtrl *s = NVME(obj);
2559 device_add_bootindex_property(obj, &s->conf.bootindex,
2560 "bootindex", "/namespace@1,0",
2561 DEVICE(obj));
2564 static const TypeInfo nvme_info = {
2565 .name = TYPE_NVME,
2566 .parent = TYPE_PCI_DEVICE,
2567 .instance_size = sizeof(NvmeCtrl),
2568 .class_init = nvme_class_init,
2569 .instance_init = nvme_instance_init,
2570 .interfaces = (InterfaceInfo[]) {
2571 { INTERFACE_PCIE_DEVICE },
2576 static void nvme_register_types(void)
2578 type_register_static(&nvme_info);
2581 type_init(nvme_register_types)