4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include <sys/types.h>
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
36 #include "disas/disas.h"
38 #include "qemu/timer.h"
39 #include "exec/memory.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
44 #include <sys/param.h>
45 #if __FreeBSD_version >= 700104
46 #define HAVE_KINFO_GETVMMAP
47 #define sigqueue sigqueue_freebsd /* avoid redefinition */
50 #include <machine/profile.h>
60 #include "exec/cputlb.h"
61 #include "translate-all.h"
63 //#define DEBUG_TB_INVALIDATE
65 /* make various TB consistency checks */
66 //#define DEBUG_TB_CHECK
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 typedef struct PageDesc
{
76 /* list of TBs intersecting this ram page */
77 TranslationBlock
*first_tb
;
78 /* in order to optimize self modifying code, we count the number
79 of lookups we do to a given page to use a bitmap */
80 unsigned int code_write_count
;
82 #if defined(CONFIG_USER_ONLY)
87 /* In system mode we want L1_MAP to be based on ram offsets,
88 while in user mode we want it to be based on virtual addresses. */
89 #if !defined(CONFIG_USER_ONLY)
90 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
91 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
99 /* The bits remaining after N lower levels of page tables. */
100 #define V_L1_BITS_REM \
101 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
103 #if V_L1_BITS_REM < 4
104 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
106 #define V_L1_BITS V_L1_BITS_REM
109 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113 uintptr_t qemu_real_host_page_size
;
114 uintptr_t qemu_host_page_size
;
115 uintptr_t qemu_host_page_mask
;
117 /* This is a multi-level map on the virtual address space.
118 The bottom level has pointers to PageDesc. */
119 static void *l1_map
[V_L1_SIZE
];
121 /* code generation context */
124 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
125 tb_page_addr_t phys_page2
);
126 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
);
128 void cpu_gen_init(void)
130 tcg_context_init(&tcg_ctx
);
133 /* return non zero if the very first instruction is invalid so that
134 the virtual CPU can trigger an exception.
136 '*gen_code_size_ptr' contains the size of the generated code (host
139 int cpu_gen_code(CPUArchState
*env
, TranslationBlock
*tb
, int *gen_code_size_ptr
)
141 TCGContext
*s
= &tcg_ctx
;
142 uint8_t *gen_code_buf
;
144 #ifdef CONFIG_PROFILER
148 #ifdef CONFIG_PROFILER
149 s
->tb_count1
++; /* includes aborted translations because of
151 ti
= profile_getclock();
155 gen_intermediate_code(env
, tb
);
157 /* generate machine code */
158 gen_code_buf
= tb
->tc_ptr
;
159 tb
->tb_next_offset
[0] = 0xffff;
160 tb
->tb_next_offset
[1] = 0xffff;
161 s
->tb_next_offset
= tb
->tb_next_offset
;
162 #ifdef USE_DIRECT_JUMP
163 s
->tb_jmp_offset
= tb
->tb_jmp_offset
;
166 s
->tb_jmp_offset
= NULL
;
167 s
->tb_next
= tb
->tb_next
;
170 #ifdef CONFIG_PROFILER
172 s
->interm_time
+= profile_getclock() - ti
;
173 s
->code_time
-= profile_getclock();
175 gen_code_size
= tcg_gen_code(s
, gen_code_buf
);
176 *gen_code_size_ptr
= gen_code_size
;
177 #ifdef CONFIG_PROFILER
178 s
->code_time
+= profile_getclock();
179 s
->code_in_len
+= tb
->size
;
180 s
->code_out_len
+= gen_code_size
;
184 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM
)) {
185 qemu_log("OUT: [size=%d]\n", *gen_code_size_ptr
);
186 log_disas(tb
->tc_ptr
, *gen_code_size_ptr
);
194 /* The cpu state corresponding to 'searched_pc' is restored.
196 static int cpu_restore_state_from_tb(TranslationBlock
*tb
, CPUArchState
*env
,
197 uintptr_t searched_pc
)
199 TCGContext
*s
= &tcg_ctx
;
202 #ifdef CONFIG_PROFILER
206 #ifdef CONFIG_PROFILER
207 ti
= profile_getclock();
211 gen_intermediate_code_pc(env
, tb
);
214 /* Reset the cycle counter to the start of the block. */
215 env
->icount_decr
.u16
.low
+= tb
->icount
;
216 /* Clear the IO flag. */
220 /* find opc index corresponding to search_pc */
221 tc_ptr
= (uintptr_t)tb
->tc_ptr
;
222 if (searched_pc
< tc_ptr
)
225 s
->tb_next_offset
= tb
->tb_next_offset
;
226 #ifdef USE_DIRECT_JUMP
227 s
->tb_jmp_offset
= tb
->tb_jmp_offset
;
230 s
->tb_jmp_offset
= NULL
;
231 s
->tb_next
= tb
->tb_next
;
233 j
= tcg_gen_code_search_pc(s
, (uint8_t *)tc_ptr
, searched_pc
- tc_ptr
);
236 /* now find start of instruction before */
237 while (s
->gen_opc_instr_start
[j
] == 0) {
240 env
->icount_decr
.u16
.low
-= s
->gen_opc_icount
[j
];
242 restore_state_to_opc(env
, tb
, j
);
244 #ifdef CONFIG_PROFILER
245 s
->restore_time
+= profile_getclock() - ti
;
251 bool cpu_restore_state(CPUArchState
*env
, uintptr_t retaddr
)
253 TranslationBlock
*tb
;
255 tb
= tb_find_pc(retaddr
);
257 cpu_restore_state_from_tb(tb
, env
, retaddr
);
264 static inline void map_exec(void *addr
, long size
)
267 VirtualProtect(addr
, size
,
268 PAGE_EXECUTE_READWRITE
, &old_protect
);
271 static inline void map_exec(void *addr
, long size
)
273 unsigned long start
, end
, page_size
;
275 page_size
= getpagesize();
276 start
= (unsigned long)addr
;
277 start
&= ~(page_size
- 1);
279 end
= (unsigned long)addr
+ size
;
280 end
+= page_size
- 1;
281 end
&= ~(page_size
- 1);
283 mprotect((void *)start
, end
- start
,
284 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
288 static void page_init(void)
290 /* NOTE: we can always suppose that qemu_host_page_size >=
294 SYSTEM_INFO system_info
;
296 GetSystemInfo(&system_info
);
297 qemu_real_host_page_size
= system_info
.dwPageSize
;
300 qemu_real_host_page_size
= getpagesize();
302 if (qemu_host_page_size
== 0) {
303 qemu_host_page_size
= qemu_real_host_page_size
;
305 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
306 qemu_host_page_size
= TARGET_PAGE_SIZE
;
308 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
310 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
312 #ifdef HAVE_KINFO_GETVMMAP
313 struct kinfo_vmentry
*freep
;
316 freep
= kinfo_getvmmap(getpid(), &cnt
);
319 for (i
= 0; i
< cnt
; i
++) {
320 unsigned long startaddr
, endaddr
;
322 startaddr
= freep
[i
].kve_start
;
323 endaddr
= freep
[i
].kve_end
;
324 if (h2g_valid(startaddr
)) {
325 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
327 if (h2g_valid(endaddr
)) {
328 endaddr
= h2g(endaddr
);
329 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
331 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
333 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
344 last_brk
= (unsigned long)sbrk(0);
346 f
= fopen("/compat/linux/proc/self/maps", "r");
351 unsigned long startaddr
, endaddr
;
354 n
= fscanf(f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
356 if (n
== 2 && h2g_valid(startaddr
)) {
357 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
359 if (h2g_valid(endaddr
)) {
360 endaddr
= h2g(endaddr
);
364 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
376 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
382 #if defined(CONFIG_USER_ONLY)
383 /* We can't use g_malloc because it may recurse into a locked mutex. */
384 # define ALLOC(P, SIZE) \
386 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
387 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
390 # define ALLOC(P, SIZE) \
391 do { P = g_malloc0(SIZE); } while (0)
394 /* Level 1. Always allocated. */
395 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
398 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
405 ALLOC(p
, sizeof(void *) * L2_SIZE
);
409 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
417 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
423 return pd
+ (index
& (L2_SIZE
- 1));
426 static inline PageDesc
*page_find(tb_page_addr_t index
)
428 return page_find_alloc(index
, 0);
431 #if !defined(CONFIG_USER_ONLY)
432 #define mmap_lock() do { } while (0)
433 #define mmap_unlock() do { } while (0)
436 #if defined(CONFIG_USER_ONLY)
437 /* Currently it is not recommended to allocate big chunks of data in
438 user mode. It will change when a dedicated libc will be used. */
439 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
440 region in which the guest needs to run. Revisit this. */
441 #define USE_STATIC_CODE_GEN_BUFFER
444 /* ??? Should configure for this, not list operating systems here. */
445 #if (defined(__linux__) \
446 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
447 || defined(__DragonFly__) || defined(__OpenBSD__) \
448 || defined(__NetBSD__))
452 /* Minimum size of the code gen buffer. This number is randomly chosen,
453 but not so small that we can't have a fair number of TB's live. */
454 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
456 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
457 indicated, this is constrained by the range of direct branches on the
458 host cpu, as used by the TCG implementation of goto_tb. */
459 #if defined(__x86_64__)
460 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
461 #elif defined(__sparc__)
462 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463 #elif defined(__arm__)
464 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
465 #elif defined(__s390x__)
466 /* We have a +- 4GB range on the branches; leave some slop. */
467 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
469 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
472 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
474 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
475 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
476 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
478 static inline size_t size_code_gen_buffer(size_t tb_size
)
480 /* Size the buffer. */
482 #ifdef USE_STATIC_CODE_GEN_BUFFER
483 tb_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
485 /* ??? Needs adjustments. */
486 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
487 static buffer, we could size this on RESERVED_VA, on the text
488 segment size of the executable, or continue to use the default. */
489 tb_size
= (unsigned long)(ram_size
/ 4);
492 if (tb_size
< MIN_CODE_GEN_BUFFER_SIZE
) {
493 tb_size
= MIN_CODE_GEN_BUFFER_SIZE
;
495 if (tb_size
> MAX_CODE_GEN_BUFFER_SIZE
) {
496 tb_size
= MAX_CODE_GEN_BUFFER_SIZE
;
498 tcg_ctx
.code_gen_buffer_size
= tb_size
;
502 #ifdef USE_STATIC_CODE_GEN_BUFFER
503 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
504 __attribute__((aligned(CODE_GEN_ALIGN
)));
506 static inline void *alloc_code_gen_buffer(void)
508 map_exec(static_code_gen_buffer
, tcg_ctx
.code_gen_buffer_size
);
509 return static_code_gen_buffer
;
511 #elif defined(USE_MMAP)
512 static inline void *alloc_code_gen_buffer(void)
514 int flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
518 /* Constrain the position of the buffer based on the host cpu.
519 Note that these addresses are chosen in concert with the
520 addresses assigned in the relevant linker script file. */
521 # if defined(__PIE__) || defined(__PIC__)
522 /* Don't bother setting a preferred location if we're building
523 a position-independent executable. We're more likely to get
524 an address near the main executable if we let the kernel
525 choose the address. */
526 # elif defined(__x86_64__) && defined(MAP_32BIT)
527 /* Force the memory down into low memory with the executable.
528 Leave the choice of exact location with the kernel. */
530 /* Cannot expect to map more than 800MB in low memory. */
531 if (tcg_ctx
.code_gen_buffer_size
> 800u * 1024 * 1024) {
532 tcg_ctx
.code_gen_buffer_size
= 800u * 1024 * 1024;
534 # elif defined(__sparc__)
535 start
= 0x40000000ul
;
536 # elif defined(__s390x__)
537 start
= 0x90000000ul
;
540 buf
= mmap((void *)start
, tcg_ctx
.code_gen_buffer_size
,
541 PROT_WRITE
| PROT_READ
| PROT_EXEC
, flags
, -1, 0);
542 return buf
== MAP_FAILED
? NULL
: buf
;
545 static inline void *alloc_code_gen_buffer(void)
547 void *buf
= g_malloc(tcg_ctx
.code_gen_buffer_size
);
550 map_exec(buf
, tcg_ctx
.code_gen_buffer_size
);
554 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
556 static inline void code_gen_alloc(size_t tb_size
)
558 tcg_ctx
.code_gen_buffer_size
= size_code_gen_buffer(tb_size
);
559 tcg_ctx
.code_gen_buffer
= alloc_code_gen_buffer();
560 if (tcg_ctx
.code_gen_buffer
== NULL
) {
561 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
565 qemu_madvise(tcg_ctx
.code_gen_buffer
, tcg_ctx
.code_gen_buffer_size
,
568 /* Steal room for the prologue at the end of the buffer. This ensures
569 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
570 from TB's to the prologue are going to be in range. It also means
571 that we don't need to mark (additional) portions of the data segment
573 tcg_ctx
.code_gen_prologue
= tcg_ctx
.code_gen_buffer
+
574 tcg_ctx
.code_gen_buffer_size
- 1024;
575 tcg_ctx
.code_gen_buffer_size
-= 1024;
577 tcg_ctx
.code_gen_buffer_max_size
= tcg_ctx
.code_gen_buffer_size
-
578 (TCG_MAX_OP_SIZE
* OPC_BUF_SIZE
);
579 tcg_ctx
.code_gen_max_blocks
= tcg_ctx
.code_gen_buffer_size
/
580 CODE_GEN_AVG_BLOCK_SIZE
;
582 g_malloc(tcg_ctx
.code_gen_max_blocks
* sizeof(TranslationBlock
));
585 /* Must be called before using the QEMU cpus. 'tb_size' is the size
586 (in bytes) allocated to the translation buffer. Zero means default
588 void tcg_exec_init(unsigned long tb_size
)
591 code_gen_alloc(tb_size
);
592 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
593 tcg_register_jit(tcg_ctx
.code_gen_buffer
, tcg_ctx
.code_gen_buffer_size
);
595 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
596 /* There's no guest base to take into account, so go ahead and
597 initialize the prologue now. */
598 tcg_prologue_init(&tcg_ctx
);
602 bool tcg_enabled(void)
604 return tcg_ctx
.code_gen_buffer
!= NULL
;
607 /* Allocate a new translation block. Flush the translation buffer if
608 too many translation blocks or too much generated code. */
609 static TranslationBlock
*tb_alloc(target_ulong pc
)
611 TranslationBlock
*tb
;
613 if (tcg_ctx
.tb_ctx
.nb_tbs
>= tcg_ctx
.code_gen_max_blocks
||
614 (tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
) >=
615 tcg_ctx
.code_gen_buffer_max_size
) {
618 tb
= &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
++];
624 void tb_free(TranslationBlock
*tb
)
626 /* In practice this is mostly used for single use temporary TB
627 Ignore the hard cases and just back up if this TB happens to
628 be the last one generated. */
629 if (tcg_ctx
.tb_ctx
.nb_tbs
> 0 &&
630 tb
== &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
- 1]) {
631 tcg_ctx
.code_gen_ptr
= tb
->tc_ptr
;
632 tcg_ctx
.tb_ctx
.nb_tbs
--;
636 static inline void invalidate_page_bitmap(PageDesc
*p
)
638 if (p
->code_bitmap
) {
639 g_free(p
->code_bitmap
);
640 p
->code_bitmap
= NULL
;
642 p
->code_write_count
= 0;
645 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
646 static void page_flush_tb_1(int level
, void **lp
)
656 for (i
= 0; i
< L2_SIZE
; ++i
) {
657 pd
[i
].first_tb
= NULL
;
658 invalidate_page_bitmap(pd
+ i
);
663 for (i
= 0; i
< L2_SIZE
; ++i
) {
664 page_flush_tb_1(level
- 1, pp
+ i
);
669 static void page_flush_tb(void)
673 for (i
= 0; i
< V_L1_SIZE
; i
++) {
674 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
678 /* flush all the translation blocks */
679 /* XXX: tb_flush is currently not thread safe */
680 void tb_flush(CPUArchState
*env1
)
684 #if defined(DEBUG_FLUSH)
685 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
686 (unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
),
687 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.tb_ctx
.nb_tbs
> 0 ?
688 ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)) /
689 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
691 if ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)
692 > tcg_ctx
.code_gen_buffer_size
) {
693 cpu_abort(env1
, "Internal error: code buffer overflow\n");
695 tcg_ctx
.tb_ctx
.nb_tbs
= 0;
697 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
698 memset(env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof(void *));
701 memset(tcg_ctx
.tb_ctx
.tb_phys_hash
, 0,
702 CODE_GEN_PHYS_HASH_SIZE
* sizeof(void *));
705 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
706 /* XXX: flush processor icache at this point if cache flush is
708 tcg_ctx
.tb_ctx
.tb_flush_count
++;
711 #ifdef DEBUG_TB_CHECK
713 static void tb_invalidate_check(target_ulong address
)
715 TranslationBlock
*tb
;
718 address
&= TARGET_PAGE_MASK
;
719 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
720 for (tb
= tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
721 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
722 address
>= tb
->pc
+ tb
->size
)) {
723 printf("ERROR invalidate: address=" TARGET_FMT_lx
724 " PC=%08lx size=%04x\n",
725 address
, (long)tb
->pc
, tb
->size
);
731 /* verify that all the pages have correct rights for code */
732 static void tb_page_check(void)
734 TranslationBlock
*tb
;
735 int i
, flags1
, flags2
;
737 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
738 for (tb
= tcg_ctx
.tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
;
739 tb
= tb
->phys_hash_next
) {
740 flags1
= page_get_flags(tb
->pc
);
741 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
742 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
743 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
744 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
752 static inline void tb_hash_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
754 TranslationBlock
*tb1
;
759 *ptb
= tb1
->phys_hash_next
;
762 ptb
= &tb1
->phys_hash_next
;
766 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
768 TranslationBlock
*tb1
;
773 n1
= (uintptr_t)tb1
& 3;
774 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
776 *ptb
= tb1
->page_next
[n1
];
779 ptb
= &tb1
->page_next
[n1
];
783 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
785 TranslationBlock
*tb1
, **ptb
;
788 ptb
= &tb
->jmp_next
[n
];
791 /* find tb(n) in circular list */
794 n1
= (uintptr_t)tb1
& 3;
795 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
796 if (n1
== n
&& tb1
== tb
) {
800 ptb
= &tb1
->jmp_first
;
802 ptb
= &tb1
->jmp_next
[n1
];
805 /* now we can suppress tb(n) from the list */
806 *ptb
= tb
->jmp_next
[n
];
808 tb
->jmp_next
[n
] = NULL
;
812 /* reset the jump entry 'n' of a TB so that it is not chained to
814 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
816 tb_set_jmp_target(tb
, n
, (uintptr_t)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
819 /* invalidate one TB */
820 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
825 tb_page_addr_t phys_pc
;
826 TranslationBlock
*tb1
, *tb2
;
828 /* remove the TB from the hash list */
829 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
830 h
= tb_phys_hash_func(phys_pc
);
831 tb_hash_remove(&tcg_ctx
.tb_ctx
.tb_phys_hash
[h
], tb
);
833 /* remove the TB from the page list */
834 if (tb
->page_addr
[0] != page_addr
) {
835 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
836 tb_page_remove(&p
->first_tb
, tb
);
837 invalidate_page_bitmap(p
);
839 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
840 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
841 tb_page_remove(&p
->first_tb
, tb
);
842 invalidate_page_bitmap(p
);
845 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 1;
847 /* remove the TB from the hash list */
848 h
= tb_jmp_cache_hash_func(tb
->pc
);
849 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
850 if (env
->tb_jmp_cache
[h
] == tb
) {
851 env
->tb_jmp_cache
[h
] = NULL
;
855 /* suppress this TB from the two jump lists */
856 tb_jmp_remove(tb
, 0);
857 tb_jmp_remove(tb
, 1);
859 /* suppress any remaining jumps to this TB */
862 n1
= (uintptr_t)tb1
& 3;
866 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
867 tb2
= tb1
->jmp_next
[n1
];
868 tb_reset_jump(tb1
, n1
);
869 tb1
->jmp_next
[n1
] = NULL
;
872 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2); /* fail safe */
874 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
++;
877 static inline void set_bits(uint8_t *tab
, int start
, int len
)
883 mask
= 0xff << (start
& 7);
884 if ((start
& ~7) == (end
& ~7)) {
886 mask
&= ~(0xff << (end
& 7));
891 start
= (start
+ 8) & ~7;
893 while (start
< end1
) {
898 mask
= ~(0xff << (end
& 7));
904 static void build_page_bitmap(PageDesc
*p
)
906 int n
, tb_start
, tb_end
;
907 TranslationBlock
*tb
;
909 p
->code_bitmap
= g_malloc0(TARGET_PAGE_SIZE
/ 8);
913 n
= (uintptr_t)tb
& 3;
914 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
915 /* NOTE: this is subtle as a TB may span two physical pages */
917 /* NOTE: tb_end may be after the end of the page, but
918 it is not a problem */
919 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
920 tb_end
= tb_start
+ tb
->size
;
921 if (tb_end
> TARGET_PAGE_SIZE
) {
922 tb_end
= TARGET_PAGE_SIZE
;
926 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
928 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
929 tb
= tb
->page_next
[n
];
933 TranslationBlock
*tb_gen_code(CPUArchState
*env
,
934 target_ulong pc
, target_ulong cs_base
,
935 int flags
, int cflags
)
937 TranslationBlock
*tb
;
939 tb_page_addr_t phys_pc
, phys_page2
;
940 target_ulong virt_page2
;
943 phys_pc
= get_page_addr_code(env
, pc
);
946 /* flush must be done */
948 /* cannot fail at this point */
950 /* Don't forget to invalidate previous TB info. */
951 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 1;
953 tc_ptr
= tcg_ctx
.code_gen_ptr
;
955 tb
->cs_base
= cs_base
;
958 cpu_gen_code(env
, tb
, &code_gen_size
);
959 tcg_ctx
.code_gen_ptr
= (void *)(((uintptr_t)tcg_ctx
.code_gen_ptr
+
960 code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
962 /* check next page if needed */
963 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
965 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
966 phys_page2
= get_page_addr_code(env
, virt_page2
);
968 tb_link_page(tb
, phys_pc
, phys_page2
);
973 * Invalidate all TBs which intersect with the target physical address range
974 * [start;end[. NOTE: start and end may refer to *different* physical pages.
975 * 'is_cpu_write_access' should be true if called from a real cpu write
976 * access: the virtual CPU will exit the current TB if code is modified inside
979 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
,
980 int is_cpu_write_access
)
982 while (start
< end
) {
983 tb_invalidate_phys_page_range(start
, end
, is_cpu_write_access
);
984 start
&= TARGET_PAGE_MASK
;
985 start
+= TARGET_PAGE_SIZE
;
990 * Invalidate all TBs which intersect with the target physical address range
991 * [start;end[. NOTE: start and end must refer to the *same* physical page.
992 * 'is_cpu_write_access' should be true if called from a real cpu write
993 * access: the virtual CPU will exit the current TB if code is modified inside
996 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
997 int is_cpu_write_access
)
999 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1000 CPUArchState
*env
= cpu_single_env
;
1001 CPUState
*cpu
= NULL
;
1002 tb_page_addr_t tb_start
, tb_end
;
1005 #ifdef TARGET_HAS_PRECISE_SMC
1006 int current_tb_not_found
= is_cpu_write_access
;
1007 TranslationBlock
*current_tb
= NULL
;
1008 int current_tb_modified
= 0;
1009 target_ulong current_pc
= 0;
1010 target_ulong current_cs_base
= 0;
1011 int current_flags
= 0;
1012 #endif /* TARGET_HAS_PRECISE_SMC */
1014 p
= page_find(start
>> TARGET_PAGE_BITS
);
1018 if (!p
->code_bitmap
&&
1019 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1020 is_cpu_write_access
) {
1021 /* build code bitmap */
1022 build_page_bitmap(p
);
1025 cpu
= ENV_GET_CPU(env
);
1028 /* we remove all the TBs in the range [start, end[ */
1029 /* XXX: see if in some cases it could be faster to invalidate all
1032 while (tb
!= NULL
) {
1033 n
= (uintptr_t)tb
& 3;
1034 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1035 tb_next
= tb
->page_next
[n
];
1036 /* NOTE: this is subtle as a TB may span two physical pages */
1038 /* NOTE: tb_end may be after the end of the page, but
1039 it is not a problem */
1040 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1041 tb_end
= tb_start
+ tb
->size
;
1043 tb_start
= tb
->page_addr
[1];
1044 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1046 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1047 #ifdef TARGET_HAS_PRECISE_SMC
1048 if (current_tb_not_found
) {
1049 current_tb_not_found
= 0;
1051 if (env
->mem_io_pc
) {
1052 /* now we have a real cpu fault */
1053 current_tb
= tb_find_pc(env
->mem_io_pc
);
1056 if (current_tb
== tb
&&
1057 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1058 /* If we are modifying the current TB, we must stop
1059 its execution. We could be more precise by checking
1060 that the modification is after the current PC, but it
1061 would require a specialized function to partially
1062 restore the CPU state */
1064 current_tb_modified
= 1;
1065 cpu_restore_state_from_tb(current_tb
, env
, env
->mem_io_pc
);
1066 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1069 #endif /* TARGET_HAS_PRECISE_SMC */
1070 /* we need to do that to handle the case where a signal
1071 occurs while doing tb_phys_invalidate() */
1074 saved_tb
= cpu
->current_tb
;
1075 cpu
->current_tb
= NULL
;
1077 tb_phys_invalidate(tb
, -1);
1079 cpu
->current_tb
= saved_tb
;
1080 if (env
&& env
->interrupt_request
&& cpu
->current_tb
) {
1081 cpu_interrupt(env
, env
->interrupt_request
);
1087 #if !defined(CONFIG_USER_ONLY)
1088 /* if no code remaining, no need to continue to use slow writes */
1090 invalidate_page_bitmap(p
);
1091 if (is_cpu_write_access
) {
1092 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1096 #ifdef TARGET_HAS_PRECISE_SMC
1097 if (current_tb_modified
) {
1098 /* we generate a block containing just the instruction
1099 modifying the memory. It will ensure that it cannot modify
1101 cpu
->current_tb
= NULL
;
1102 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1103 cpu_resume_from_signal(env
, NULL
);
1108 /* len must be <= 8 and start must be a multiple of len */
1109 void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1116 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1117 cpu_single_env
->mem_io_vaddr
, len
,
1118 cpu_single_env
->eip
,
1119 cpu_single_env
->eip
+
1120 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1123 p
= page_find(start
>> TARGET_PAGE_BITS
);
1127 if (p
->code_bitmap
) {
1128 offset
= start
& ~TARGET_PAGE_MASK
;
1129 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1130 if (b
& ((1 << len
) - 1)) {
1135 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1139 #if !defined(CONFIG_SOFTMMU)
1140 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1141 uintptr_t pc
, void *puc
)
1143 TranslationBlock
*tb
;
1146 #ifdef TARGET_HAS_PRECISE_SMC
1147 TranslationBlock
*current_tb
= NULL
;
1148 CPUArchState
*env
= cpu_single_env
;
1149 CPUState
*cpu
= NULL
;
1150 int current_tb_modified
= 0;
1151 target_ulong current_pc
= 0;
1152 target_ulong current_cs_base
= 0;
1153 int current_flags
= 0;
1156 addr
&= TARGET_PAGE_MASK
;
1157 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1162 #ifdef TARGET_HAS_PRECISE_SMC
1163 if (tb
&& pc
!= 0) {
1164 current_tb
= tb_find_pc(pc
);
1167 cpu
= ENV_GET_CPU(env
);
1170 while (tb
!= NULL
) {
1171 n
= (uintptr_t)tb
& 3;
1172 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1173 #ifdef TARGET_HAS_PRECISE_SMC
1174 if (current_tb
== tb
&&
1175 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1176 /* If we are modifying the current TB, we must stop
1177 its execution. We could be more precise by checking
1178 that the modification is after the current PC, but it
1179 would require a specialized function to partially
1180 restore the CPU state */
1182 current_tb_modified
= 1;
1183 cpu_restore_state_from_tb(current_tb
, env
, pc
);
1184 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1187 #endif /* TARGET_HAS_PRECISE_SMC */
1188 tb_phys_invalidate(tb
, addr
);
1189 tb
= tb
->page_next
[n
];
1192 #ifdef TARGET_HAS_PRECISE_SMC
1193 if (current_tb_modified
) {
1194 /* we generate a block containing just the instruction
1195 modifying the memory. It will ensure that it cannot modify
1197 cpu
->current_tb
= NULL
;
1198 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1199 cpu_resume_from_signal(env
, puc
);
1205 /* add the tb in the target page and protect it if necessary */
1206 static inline void tb_alloc_page(TranslationBlock
*tb
,
1207 unsigned int n
, tb_page_addr_t page_addr
)
1210 #ifndef CONFIG_USER_ONLY
1211 bool page_already_protected
;
1214 tb
->page_addr
[n
] = page_addr
;
1215 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1216 tb
->page_next
[n
] = p
->first_tb
;
1217 #ifndef CONFIG_USER_ONLY
1218 page_already_protected
= p
->first_tb
!= NULL
;
1220 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1221 invalidate_page_bitmap(p
);
1223 #if defined(TARGET_HAS_SMC) || 1
1225 #if defined(CONFIG_USER_ONLY)
1226 if (p
->flags
& PAGE_WRITE
) {
1231 /* force the host page as non writable (writes will have a
1232 page fault + mprotect overhead) */
1233 page_addr
&= qemu_host_page_mask
;
1235 for (addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1236 addr
+= TARGET_PAGE_SIZE
) {
1238 p2
= page_find(addr
>> TARGET_PAGE_BITS
);
1243 p2
->flags
&= ~PAGE_WRITE
;
1245 mprotect(g2h(page_addr
), qemu_host_page_size
,
1246 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1247 #ifdef DEBUG_TB_INVALIDATE
1248 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1253 /* if some code is already present, then the pages are already
1254 protected. So we handle the case where only the first TB is
1255 allocated in a physical page */
1256 if (!page_already_protected
) {
1257 tlb_protect_code(page_addr
);
1261 #endif /* TARGET_HAS_SMC */
1264 /* add a new TB and link it to the physical page tables. phys_page2 is
1265 (-1) to indicate that only one page contains the TB. */
1266 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
1267 tb_page_addr_t phys_page2
)
1270 TranslationBlock
**ptb
;
1272 /* Grab the mmap lock to stop another thread invalidating this TB
1273 before we are done. */
1275 /* add in the physical hash table */
1276 h
= tb_phys_hash_func(phys_pc
);
1277 ptb
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
1278 tb
->phys_hash_next
= *ptb
;
1281 /* add in the page list */
1282 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1283 if (phys_page2
!= -1) {
1284 tb_alloc_page(tb
, 1, phys_page2
);
1286 tb
->page_addr
[1] = -1;
1289 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2);
1290 tb
->jmp_next
[0] = NULL
;
1291 tb
->jmp_next
[1] = NULL
;
1293 /* init original jump addresses */
1294 if (tb
->tb_next_offset
[0] != 0xffff) {
1295 tb_reset_jump(tb
, 0);
1297 if (tb
->tb_next_offset
[1] != 0xffff) {
1298 tb_reset_jump(tb
, 1);
1301 #ifdef DEBUG_TB_CHECK
1307 #if defined(CONFIG_QEMU_LDST_OPTIMIZATION) && defined(CONFIG_SOFTMMU)
1308 /* check whether the given addr is in TCG generated code buffer or not */
1309 bool is_tcg_gen_code(uintptr_t tc_ptr
)
1311 /* This can be called during code generation, code_gen_buffer_max_size
1312 is used instead of code_gen_ptr for upper boundary checking */
1313 return (tc_ptr
>= (uintptr_t)tcg_ctx
.code_gen_buffer
&&
1314 tc_ptr
< (uintptr_t)(tcg_ctx
.code_gen_buffer
+
1315 tcg_ctx
.code_gen_buffer_max_size
));
1319 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1320 tb[1].tc_ptr. Return NULL if not found */
1321 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1323 int m_min
, m_max
, m
;
1325 TranslationBlock
*tb
;
1327 if (tcg_ctx
.tb_ctx
.nb_tbs
<= 0) {
1330 if (tc_ptr
< (uintptr_t)tcg_ctx
.code_gen_buffer
||
1331 tc_ptr
>= (uintptr_t)tcg_ctx
.code_gen_ptr
) {
1334 /* binary search (cf Knuth) */
1336 m_max
= tcg_ctx
.tb_ctx
.nb_tbs
- 1;
1337 while (m_min
<= m_max
) {
1338 m
= (m_min
+ m_max
) >> 1;
1339 tb
= &tcg_ctx
.tb_ctx
.tbs
[m
];
1340 v
= (uintptr_t)tb
->tc_ptr
;
1343 } else if (tc_ptr
< v
) {
1349 return &tcg_ctx
.tb_ctx
.tbs
[m_max
];
1352 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1354 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1356 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1359 tb1
= tb
->jmp_next
[n
];
1361 /* find head of list */
1363 n1
= (uintptr_t)tb1
& 3;
1364 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
1368 tb1
= tb1
->jmp_next
[n1
];
1370 /* we are now sure now that tb jumps to tb1 */
1373 /* remove tb from the jmp_first list */
1374 ptb
= &tb_next
->jmp_first
;
1377 n1
= (uintptr_t)tb1
& 3;
1378 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
1379 if (n1
== n
&& tb1
== tb
) {
1382 ptb
= &tb1
->jmp_next
[n1
];
1384 *ptb
= tb
->jmp_next
[n
];
1385 tb
->jmp_next
[n
] = NULL
;
1387 /* suppress the jump to next tb in generated code */
1388 tb_reset_jump(tb
, n
);
1390 /* suppress jumps in the tb on which we could have jumped */
1391 tb_reset_jump_recursive(tb_next
);
1395 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1397 tb_reset_jump_recursive2(tb
, 0);
1398 tb_reset_jump_recursive2(tb
, 1);
1401 #if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
1402 void tb_invalidate_phys_addr(hwaddr addr
)
1404 ram_addr_t ram_addr
;
1405 MemoryRegionSection
*section
;
1407 section
= phys_page_find(address_space_memory
.dispatch
,
1408 addr
>> TARGET_PAGE_BITS
);
1409 if (!(memory_region_is_ram(section
->mr
)
1410 || (section
->mr
->rom_device
&& section
->mr
->readable
))) {
1413 ram_addr
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1414 + memory_region_section_addr(section
, addr
);
1415 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1417 #endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
1419 void cpu_unlink_tb(CPUState
*cpu
)
1421 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1422 problem and hope the cpu will stop of its own accord. For userspace
1423 emulation this often isn't actually as bad as it sounds. Often
1424 signals are used primarily to interrupt blocking syscalls. */
1425 TranslationBlock
*tb
;
1426 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1428 spin_lock(&interrupt_lock
);
1429 tb
= cpu
->current_tb
;
1430 /* if the cpu is currently executing code, we must unlink it and
1431 all the potentially executing TB */
1433 cpu
->current_tb
= NULL
;
1434 tb_reset_jump_recursive(tb
);
1436 spin_unlock(&interrupt_lock
);
1439 void tb_check_watchpoint(CPUArchState
*env
)
1441 TranslationBlock
*tb
;
1443 tb
= tb_find_pc(env
->mem_io_pc
);
1445 cpu_abort(env
, "check_watchpoint: could not find TB for pc=%p",
1446 (void *)env
->mem_io_pc
);
1448 cpu_restore_state_from_tb(tb
, env
, env
->mem_io_pc
);
1449 tb_phys_invalidate(tb
, -1);
1452 #ifndef CONFIG_USER_ONLY
1453 /* mask must never be zero, except for A20 change call */
1454 static void tcg_handle_interrupt(CPUArchState
*env
, int mask
)
1456 CPUState
*cpu
= ENV_GET_CPU(env
);
1459 old_mask
= env
->interrupt_request
;
1460 env
->interrupt_request
|= mask
;
1463 * If called from iothread context, wake the target cpu in
1466 if (!qemu_cpu_is_self(cpu
)) {
1472 env
->icount_decr
.u16
.high
= 0xffff;
1474 && (mask
& ~old_mask
) != 0) {
1475 cpu_abort(env
, "Raised interrupt while not in I/O function");
1482 CPUInterruptHandler cpu_interrupt_handler
= tcg_handle_interrupt
;
1484 /* in deterministic execution mode, instructions doing device I/Os
1485 must be at the end of the TB */
1486 void cpu_io_recompile(CPUArchState
*env
, uintptr_t retaddr
)
1488 TranslationBlock
*tb
;
1490 target_ulong pc
, cs_base
;
1493 tb
= tb_find_pc(retaddr
);
1495 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
1498 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
1499 cpu_restore_state_from_tb(tb
, env
, retaddr
);
1500 /* Calculate how many instructions had been executed before the fault
1502 n
= n
- env
->icount_decr
.u16
.low
;
1503 /* Generate a new TB ending on the I/O insn. */
1505 /* On MIPS and SH, delay slot instructions can only be restarted if
1506 they were already the first instruction in the TB. If this is not
1507 the first instruction in a TB then re-execute the preceding
1509 #if defined(TARGET_MIPS)
1510 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
1511 env
->active_tc
.PC
-= 4;
1512 env
->icount_decr
.u16
.low
++;
1513 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
1515 #elif defined(TARGET_SH4)
1516 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
1519 env
->icount_decr
.u16
.low
++;
1520 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
1523 /* This should never happen. */
1524 if (n
> CF_COUNT_MASK
) {
1525 cpu_abort(env
, "TB too big during recompile");
1528 cflags
= n
| CF_LAST_IO
;
1530 cs_base
= tb
->cs_base
;
1532 tb_phys_invalidate(tb
, -1);
1533 /* FIXME: In theory this could raise an exception. In practice
1534 we have already translated the block once so it's probably ok. */
1535 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
1536 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1537 the first in the TB) then we end up generating a whole new TB and
1538 repeating the fault, which is horribly inefficient.
1539 Better would be to execute just this insn uncached, or generate a
1541 cpu_resume_from_signal(env
, NULL
);
1544 void tb_flush_jmp_cache(CPUArchState
*env
, target_ulong addr
)
1548 /* Discard jump cache entries for any tb which might potentially
1549 overlap the flushed page. */
1550 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1551 memset(&env
->tb_jmp_cache
[i
], 0,
1552 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1554 i
= tb_jmp_cache_hash_page(addr
);
1555 memset(&env
->tb_jmp_cache
[i
], 0,
1556 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1559 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
1561 int i
, target_code_size
, max_target_code_size
;
1562 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
1563 TranslationBlock
*tb
;
1565 target_code_size
= 0;
1566 max_target_code_size
= 0;
1568 direct_jmp_count
= 0;
1569 direct_jmp2_count
= 0;
1570 for (i
= 0; i
< tcg_ctx
.tb_ctx
.nb_tbs
; i
++) {
1571 tb
= &tcg_ctx
.tb_ctx
.tbs
[i
];
1572 target_code_size
+= tb
->size
;
1573 if (tb
->size
> max_target_code_size
) {
1574 max_target_code_size
= tb
->size
;
1576 if (tb
->page_addr
[1] != -1) {
1579 if (tb
->tb_next_offset
[0] != 0xffff) {
1581 if (tb
->tb_next_offset
[1] != 0xffff) {
1582 direct_jmp2_count
++;
1586 /* XXX: avoid using doubles ? */
1587 cpu_fprintf(f
, "Translation buffer state:\n");
1588 cpu_fprintf(f
, "gen code size %td/%zd\n",
1589 tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
,
1590 tcg_ctx
.code_gen_buffer_max_size
);
1591 cpu_fprintf(f
, "TB count %d/%d\n",
1592 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.code_gen_max_blocks
);
1593 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
1594 tcg_ctx
.tb_ctx
.nb_tbs
? target_code_size
/
1595 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1596 max_target_code_size
);
1597 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1598 tcg_ctx
.tb_ctx
.nb_tbs
? (tcg_ctx
.code_gen_ptr
-
1599 tcg_ctx
.code_gen_buffer
) /
1600 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1601 target_code_size
? (double) (tcg_ctx
.code_gen_ptr
-
1602 tcg_ctx
.code_gen_buffer
) /
1603 target_code_size
: 0);
1604 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n", cross_page
,
1605 tcg_ctx
.tb_ctx
.nb_tbs
? (cross_page
* 100) /
1606 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1607 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1609 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp_count
* 100) /
1610 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1612 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp2_count
* 100) /
1613 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1614 cpu_fprintf(f
, "\nStatistics:\n");
1615 cpu_fprintf(f
, "TB flush count %d\n", tcg_ctx
.tb_ctx
.tb_flush_count
);
1616 cpu_fprintf(f
, "TB invalidate count %d\n",
1617 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
);
1618 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
1619 tcg_dump_info(f
, cpu_fprintf
);
1622 #else /* CONFIG_USER_ONLY */
1624 void cpu_interrupt(CPUArchState
*env
, int mask
)
1626 CPUState
*cpu
= ENV_GET_CPU(env
);
1628 env
->interrupt_request
|= mask
;
1633 * Walks guest process memory "regions" one by one
1634 * and calls callback function 'fn' for each region.
1636 struct walk_memory_regions_data
{
1637 walk_memory_regions_fn fn
;
1643 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1644 abi_ulong end
, int new_prot
)
1646 if (data
->start
!= -1ul) {
1647 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1653 data
->start
= (new_prot
? end
: -1ul);
1654 data
->prot
= new_prot
;
1659 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1660 abi_ulong base
, int level
, void **lp
)
1666 return walk_memory_regions_end(data
, base
, 0);
1672 for (i
= 0; i
< L2_SIZE
; ++i
) {
1673 int prot
= pd
[i
].flags
;
1675 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1676 if (prot
!= data
->prot
) {
1677 rc
= walk_memory_regions_end(data
, pa
, prot
);
1686 for (i
= 0; i
< L2_SIZE
; ++i
) {
1687 pa
= base
| ((abi_ulong
)i
<<
1688 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
1689 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1699 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1701 struct walk_memory_regions_data data
;
1709 for (i
= 0; i
< V_L1_SIZE
; i
++) {
1710 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
1711 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
1718 return walk_memory_regions_end(&data
, 0, 0);
1721 static int dump_region(void *priv
, abi_ulong start
,
1722 abi_ulong end
, unsigned long prot
)
1724 FILE *f
= (FILE *)priv
;
1726 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
1727 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
1728 start
, end
, end
- start
,
1729 ((prot
& PAGE_READ
) ? 'r' : '-'),
1730 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
1731 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
1736 /* dump memory mappings */
1737 void page_dump(FILE *f
)
1739 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
1740 "start", "end", "size", "prot");
1741 walk_memory_regions(f
, dump_region
);
1744 int page_get_flags(target_ulong address
)
1748 p
= page_find(address
>> TARGET_PAGE_BITS
);
1755 /* Modify the flags of a page and invalidate the code if necessary.
1756 The flag PAGE_WRITE_ORG is positioned automatically depending
1757 on PAGE_WRITE. The mmap_lock should already be held. */
1758 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
1760 target_ulong addr
, len
;
1762 /* This function should never be called with addresses outside the
1763 guest address space. If this assert fires, it probably indicates
1764 a missing call to h2g_valid. */
1765 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1766 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1768 assert(start
< end
);
1770 start
= start
& TARGET_PAGE_MASK
;
1771 end
= TARGET_PAGE_ALIGN(end
);
1773 if (flags
& PAGE_WRITE
) {
1774 flags
|= PAGE_WRITE_ORG
;
1777 for (addr
= start
, len
= end
- start
;
1779 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1780 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
1782 /* If the write protection bit is set, then we invalidate
1784 if (!(p
->flags
& PAGE_WRITE
) &&
1785 (flags
& PAGE_WRITE
) &&
1787 tb_invalidate_phys_page(addr
, 0, NULL
);
1793 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
1799 /* This function should never be called with addresses outside the
1800 guest address space. If this assert fires, it probably indicates
1801 a missing call to h2g_valid. */
1802 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1803 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1809 if (start
+ len
- 1 < start
) {
1810 /* We've wrapped around. */
1814 /* must do before we loose bits in the next step */
1815 end
= TARGET_PAGE_ALIGN(start
+ len
);
1816 start
= start
& TARGET_PAGE_MASK
;
1818 for (addr
= start
, len
= end
- start
;
1820 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1821 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1825 if (!(p
->flags
& PAGE_VALID
)) {
1829 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
)) {
1832 if (flags
& PAGE_WRITE
) {
1833 if (!(p
->flags
& PAGE_WRITE_ORG
)) {
1836 /* unprotect the page if it was put read-only because it
1837 contains translated code */
1838 if (!(p
->flags
& PAGE_WRITE
)) {
1839 if (!page_unprotect(addr
, 0, NULL
)) {
1849 /* called from signal handler: invalidate the code and unprotect the
1850 page. Return TRUE if the fault was successfully handled. */
1851 int page_unprotect(target_ulong address
, uintptr_t pc
, void *puc
)
1855 target_ulong host_start
, host_end
, addr
;
1857 /* Technically this isn't safe inside a signal handler. However we
1858 know this only ever happens in a synchronous SEGV handler, so in
1859 practice it seems to be ok. */
1862 p
= page_find(address
>> TARGET_PAGE_BITS
);
1868 /* if the page was really writable, then we change its
1869 protection back to writable */
1870 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
1871 host_start
= address
& qemu_host_page_mask
;
1872 host_end
= host_start
+ qemu_host_page_size
;
1875 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
1876 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1877 p
->flags
|= PAGE_WRITE
;
1880 /* and since the content will be modified, we must invalidate
1881 the corresponding translated code. */
1882 tb_invalidate_phys_page(addr
, pc
, puc
);
1883 #ifdef DEBUG_TB_CHECK
1884 tb_invalidate_check(addr
);
1887 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
1896 #endif /* CONFIG_USER_ONLY */