i.MX: split the GPT timer implementation into per SOC definitions
[qemu/rayw.git] / hw / misc / imx6_ccm.c
blob17e15d4c92eba70ce581d9a4681909d2ad3454e1
1 /*
2 * IMX6 Clock Control Module
4 * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 * To get the timer frequencies right, we need to emulate at least part of
10 * the CCM.
13 #include "qemu/osdep.h"
14 #include "hw/misc/imx6_ccm.h"
15 #include "qemu/log.h"
17 #ifndef DEBUG_IMX6_CCM
18 #define DEBUG_IMX6_CCM 0
19 #endif
21 #define DPRINTF(fmt, args...) \
22 do { \
23 if (DEBUG_IMX6_CCM) { \
24 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \
25 __func__, ##args); \
26 } \
27 } while (0)
29 static char const *imx6_ccm_reg_name(uint32_t reg)
31 static char unknown[20];
33 switch (reg) {
34 case CCM_CCR:
35 return "CCR";
36 case CCM_CCDR:
37 return "CCDR";
38 case CCM_CSR:
39 return "CSR";
40 case CCM_CCSR:
41 return "CCSR";
42 case CCM_CACRR:
43 return "CACRR";
44 case CCM_CBCDR:
45 return "CBCDR";
46 case CCM_CBCMR:
47 return "CBCMR";
48 case CCM_CSCMR1:
49 return "CSCMR1";
50 case CCM_CSCMR2:
51 return "CSCMR2";
52 case CCM_CSCDR1:
53 return "CSCDR1";
54 case CCM_CS1CDR:
55 return "CS1CDR";
56 case CCM_CS2CDR:
57 return "CS2CDR";
58 case CCM_CDCDR:
59 return "CDCDR";
60 case CCM_CHSCCDR:
61 return "CHSCCDR";
62 case CCM_CSCDR2:
63 return "CSCDR2";
64 case CCM_CSCDR3:
65 return "CSCDR3";
66 case CCM_CDHIPR:
67 return "CDHIPR";
68 case CCM_CTOR:
69 return "CTOR";
70 case CCM_CLPCR:
71 return "CLPCR";
72 case CCM_CISR:
73 return "CISR";
74 case CCM_CIMR:
75 return "CIMR";
76 case CCM_CCOSR:
77 return "CCOSR";
78 case CCM_CGPR:
79 return "CGPR";
80 case CCM_CCGR0:
81 return "CCGR0";
82 case CCM_CCGR1:
83 return "CCGR1";
84 case CCM_CCGR2:
85 return "CCGR2";
86 case CCM_CCGR3:
87 return "CCGR3";
88 case CCM_CCGR4:
89 return "CCGR4";
90 case CCM_CCGR5:
91 return "CCGR5";
92 case CCM_CCGR6:
93 return "CCGR6";
94 case CCM_CMEOR:
95 return "CMEOR";
96 default:
97 sprintf(unknown, "%d ?", reg);
98 return unknown;
102 static char const *imx6_analog_reg_name(uint32_t reg)
104 static char unknown[20];
106 switch (reg) {
107 case CCM_ANALOG_PLL_ARM:
108 return "PLL_ARM";
109 case CCM_ANALOG_PLL_ARM_SET:
110 return "PLL_ARM_SET";
111 case CCM_ANALOG_PLL_ARM_CLR:
112 return "PLL_ARM_CLR";
113 case CCM_ANALOG_PLL_ARM_TOG:
114 return "PLL_ARM_TOG";
115 case CCM_ANALOG_PLL_USB1:
116 return "PLL_USB1";
117 case CCM_ANALOG_PLL_USB1_SET:
118 return "PLL_USB1_SET";
119 case CCM_ANALOG_PLL_USB1_CLR:
120 return "PLL_USB1_CLR";
121 case CCM_ANALOG_PLL_USB1_TOG:
122 return "PLL_USB1_TOG";
123 case CCM_ANALOG_PLL_USB2:
124 return "PLL_USB2";
125 case CCM_ANALOG_PLL_USB2_SET:
126 return "PLL_USB2_SET";
127 case CCM_ANALOG_PLL_USB2_CLR:
128 return "PLL_USB2_CLR";
129 case CCM_ANALOG_PLL_USB2_TOG:
130 return "PLL_USB2_TOG";
131 case CCM_ANALOG_PLL_SYS:
132 return "PLL_SYS";
133 case CCM_ANALOG_PLL_SYS_SET:
134 return "PLL_SYS_SET";
135 case CCM_ANALOG_PLL_SYS_CLR:
136 return "PLL_SYS_CLR";
137 case CCM_ANALOG_PLL_SYS_TOG:
138 return "PLL_SYS_TOG";
139 case CCM_ANALOG_PLL_SYS_SS:
140 return "PLL_SYS_SS";
141 case CCM_ANALOG_PLL_SYS_NUM:
142 return "PLL_SYS_NUM";
143 case CCM_ANALOG_PLL_SYS_DENOM:
144 return "PLL_SYS_DENOM";
145 case CCM_ANALOG_PLL_AUDIO:
146 return "PLL_AUDIO";
147 case CCM_ANALOG_PLL_AUDIO_SET:
148 return "PLL_AUDIO_SET";
149 case CCM_ANALOG_PLL_AUDIO_CLR:
150 return "PLL_AUDIO_CLR";
151 case CCM_ANALOG_PLL_AUDIO_TOG:
152 return "PLL_AUDIO_TOG";
153 case CCM_ANALOG_PLL_AUDIO_NUM:
154 return "PLL_AUDIO_NUM";
155 case CCM_ANALOG_PLL_AUDIO_DENOM:
156 return "PLL_AUDIO_DENOM";
157 case CCM_ANALOG_PLL_VIDEO:
158 return "PLL_VIDEO";
159 case CCM_ANALOG_PLL_VIDEO_SET:
160 return "PLL_VIDEO_SET";
161 case CCM_ANALOG_PLL_VIDEO_CLR:
162 return "PLL_VIDEO_CLR";
163 case CCM_ANALOG_PLL_VIDEO_TOG:
164 return "PLL_VIDEO_TOG";
165 case CCM_ANALOG_PLL_VIDEO_NUM:
166 return "PLL_VIDEO_NUM";
167 case CCM_ANALOG_PLL_VIDEO_DENOM:
168 return "PLL_VIDEO_DENOM";
169 case CCM_ANALOG_PLL_MLB:
170 return "PLL_MLB";
171 case CCM_ANALOG_PLL_MLB_SET:
172 return "PLL_MLB_SET";
173 case CCM_ANALOG_PLL_MLB_CLR:
174 return "PLL_MLB_CLR";
175 case CCM_ANALOG_PLL_MLB_TOG:
176 return "PLL_MLB_TOG";
177 case CCM_ANALOG_PLL_ENET:
178 return "PLL_ENET";
179 case CCM_ANALOG_PLL_ENET_SET:
180 return "PLL_ENET_SET";
181 case CCM_ANALOG_PLL_ENET_CLR:
182 return "PLL_ENET_CLR";
183 case CCM_ANALOG_PLL_ENET_TOG:
184 return "PLL_ENET_TOG";
185 case CCM_ANALOG_PFD_480:
186 return "PFD_480";
187 case CCM_ANALOG_PFD_480_SET:
188 return "PFD_480_SET";
189 case CCM_ANALOG_PFD_480_CLR:
190 return "PFD_480_CLR";
191 case CCM_ANALOG_PFD_480_TOG:
192 return "PFD_480_TOG";
193 case CCM_ANALOG_PFD_528:
194 return "PFD_528";
195 case CCM_ANALOG_PFD_528_SET:
196 return "PFD_528_SET";
197 case CCM_ANALOG_PFD_528_CLR:
198 return "PFD_528_CLR";
199 case CCM_ANALOG_PFD_528_TOG:
200 return "PFD_528_TOG";
201 case CCM_ANALOG_MISC0:
202 return "MISC0";
203 case CCM_ANALOG_MISC0_SET:
204 return "MISC0_SET";
205 case CCM_ANALOG_MISC0_CLR:
206 return "MISC0_CLR";
207 case CCM_ANALOG_MISC0_TOG:
208 return "MISC0_TOG";
209 case CCM_ANALOG_MISC2:
210 return "MISC2";
211 case CCM_ANALOG_MISC2_SET:
212 return "MISC2_SET";
213 case CCM_ANALOG_MISC2_CLR:
214 return "MISC2_CLR";
215 case CCM_ANALOG_MISC2_TOG:
216 return "MISC2_TOG";
217 case PMU_REG_1P1:
218 return "PMU_REG_1P1";
219 case PMU_REG_3P0:
220 return "PMU_REG_3P0";
221 case PMU_REG_2P5:
222 return "PMU_REG_2P5";
223 case PMU_REG_CORE:
224 return "PMU_REG_CORE";
225 case PMU_MISC1:
226 return "PMU_MISC1";
227 case PMU_MISC1_SET:
228 return "PMU_MISC1_SET";
229 case PMU_MISC1_CLR:
230 return "PMU_MISC1_CLR";
231 case PMU_MISC1_TOG:
232 return "PMU_MISC1_TOG";
233 case USB_ANALOG_DIGPROG:
234 return "USB_ANALOG_DIGPROG";
235 default:
236 sprintf(unknown, "%d ?", reg);
237 return unknown;
241 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
243 static const VMStateDescription vmstate_imx6_ccm = {
244 .name = TYPE_IMX6_CCM,
245 .version_id = 1,
246 .minimum_version_id = 1,
247 .fields = (VMStateField[]) {
248 VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX),
249 VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX),
250 VMSTATE_END_OF_LIST()
254 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev)
256 uint64_t freq = 24000000;
258 if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) {
259 freq *= 22;
260 } else {
261 freq *= 20;
264 DPRINTF("freq = %d\n", (uint32_t)freq);
266 return freq;
269 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev)
271 uint64_t freq = 0;
273 freq = imx6_analog_get_pll2_clk(dev) * 18
274 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC);
276 DPRINTF("freq = %d\n", (uint32_t)freq);
278 return freq;
281 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev)
283 uint64_t freq = 0;
285 freq = imx6_analog_get_pll2_clk(dev) * 18
286 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC);
288 DPRINTF("freq = %d\n", (uint32_t)freq);
290 return freq;
293 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev)
295 uint64_t freq = 0;
297 switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) {
298 case 0:
299 freq = imx6_analog_get_pll2_clk(dev);
300 break;
301 case 1:
302 freq = imx6_analog_get_pll2_pfd2_clk(dev);
303 break;
304 case 2:
305 freq = imx6_analog_get_pll2_pfd0_clk(dev);
306 break;
307 case 3:
308 freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2;
309 break;
310 default:
311 /* We should never get there */
312 g_assert_not_reached();
313 break;
316 DPRINTF("freq = %d\n", (uint32_t)freq);
318 return freq;
321 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev)
323 uint64_t freq = 0;
325 freq = imx6_analog_get_periph_clk(dev)
326 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF));
328 DPRINTF("freq = %d\n", (uint32_t)freq);
330 return freq;
333 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev)
335 uint64_t freq = 0;
337 freq = imx6_ccm_get_ahb_clk(dev)
338 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF));;
340 DPRINTF("freq = %d\n", (uint32_t)freq);
342 return freq;
345 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev)
347 uint64_t freq = 0;
349 freq = imx6_ccm_get_ipg_clk(dev)
350 / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF));
352 DPRINTF("freq = %d\n", (uint32_t)freq);
354 return freq;
357 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
359 uint32_t freq = 0;
360 IMX6CCMState *s = IMX6_CCM(dev);
362 switch (clock) {
363 case CLK_NONE:
364 break;
365 case CLK_IPG:
366 freq = imx6_ccm_get_ipg_clk(s);
367 break;
368 case CLK_IPG_HIGH:
369 freq = imx6_ccm_get_per_clk(s);
370 break;
371 case CLK_32k:
372 freq = CKIL_FREQ;
373 break;
374 case CLK_HIGH:
375 freq = 24000000;
376 break;
377 case CLK_HIGH_DIV:
378 freq = 24000000 / 8;
379 break;
380 default:
381 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
382 TYPE_IMX6_CCM, __func__, clock);
383 break;
386 DPRINTF("Clock = %d) = %d\n", clock, freq);
388 return freq;
391 static void imx6_ccm_reset(DeviceState *dev)
393 IMX6CCMState *s = IMX6_CCM(dev);
395 DPRINTF("\n");
397 s->ccm[CCM_CCR] = 0x040116FF;
398 s->ccm[CCM_CCDR] = 0x00000000;
399 s->ccm[CCM_CSR] = 0x00000010;
400 s->ccm[CCM_CCSR] = 0x00000100;
401 s->ccm[CCM_CACRR] = 0x00000000;
402 s->ccm[CCM_CBCDR] = 0x00018D40;
403 s->ccm[CCM_CBCMR] = 0x00022324;
404 s->ccm[CCM_CSCMR1] = 0x00F00000;
405 s->ccm[CCM_CSCMR2] = 0x02B92F06;
406 s->ccm[CCM_CSCDR1] = 0x00490B00;
407 s->ccm[CCM_CS1CDR] = 0x0EC102C1;
408 s->ccm[CCM_CS2CDR] = 0x000736C1;
409 s->ccm[CCM_CDCDR] = 0x33F71F92;
410 s->ccm[CCM_CHSCCDR] = 0x0002A150;
411 s->ccm[CCM_CSCDR2] = 0x0002A150;
412 s->ccm[CCM_CSCDR3] = 0x00014841;
413 s->ccm[CCM_CDHIPR] = 0x00000000;
414 s->ccm[CCM_CTOR] = 0x00000000;
415 s->ccm[CCM_CLPCR] = 0x00000079;
416 s->ccm[CCM_CISR] = 0x00000000;
417 s->ccm[CCM_CIMR] = 0xFFFFFFFF;
418 s->ccm[CCM_CCOSR] = 0x000A0001;
419 s->ccm[CCM_CGPR] = 0x0000FE62;
420 s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
421 s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
422 s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
423 s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
424 s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
425 s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
426 s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
427 s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
429 s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042;
430 s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
431 s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
432 s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
433 s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
434 s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
435 s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
436 s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
437 s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
438 s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
439 s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
440 s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
441 s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
442 s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000;
443 s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
444 s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
445 s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
447 s->analog[PMU_REG_1P1] = 0x00001073;
448 s->analog[PMU_REG_3P0] = 0x00000F74;
449 s->analog[PMU_REG_2P5] = 0x00005071;
450 s->analog[PMU_REG_CORE] = 0x00402010;
451 s->analog[PMU_MISC0] = 0x04000000;
452 s->analog[PMU_MISC1] = 0x00000000;
453 s->analog[PMU_MISC2] = 0x00272727;
455 s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004;
456 s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
457 s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
458 s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
459 s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
460 s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004;
461 s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
462 s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
463 s->analog[USB_ANALOG_DIGPROG] = 0x00000000;
465 /* all PLLs need to be locked */
466 s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
467 s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
468 s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
469 s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
470 s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
471 s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
472 s->analog[CCM_ANALOG_PLL_MLB] |= CCM_ANALOG_PLL_LOCK;
473 s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
476 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size)
478 uint32_t value = 0;
479 uint32_t index = offset >> 2;
480 IMX6CCMState *s = (IMX6CCMState *)opaque;
482 value = s->ccm[index];
484 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value);
486 return (uint64_t)value;
489 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value,
490 unsigned size)
492 uint32_t index = offset >> 2;
493 IMX6CCMState *s = (IMX6CCMState *)opaque;
495 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index),
496 (uint32_t)value);
499 * We will do a better implementation later. In particular some bits
500 * cannot be written to.
502 s->ccm[index] = (uint32_t)value;
505 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size)
507 uint32_t value;
508 uint32_t index = offset >> 2;
509 IMX6CCMState *s = (IMX6CCMState *)opaque;
511 switch (index) {
512 case CCM_ANALOG_PLL_ARM_SET:
513 case CCM_ANALOG_PLL_USB1_SET:
514 case CCM_ANALOG_PLL_USB2_SET:
515 case CCM_ANALOG_PLL_SYS_SET:
516 case CCM_ANALOG_PLL_AUDIO_SET:
517 case CCM_ANALOG_PLL_VIDEO_SET:
518 case CCM_ANALOG_PLL_MLB_SET:
519 case CCM_ANALOG_PLL_ENET_SET:
520 case CCM_ANALOG_PFD_480_SET:
521 case CCM_ANALOG_PFD_528_SET:
522 case CCM_ANALOG_MISC0_SET:
523 case PMU_MISC1_SET:
524 case CCM_ANALOG_MISC2_SET:
525 case USB_ANALOG_USB1_VBUS_DETECT_SET:
526 case USB_ANALOG_USB1_CHRG_DETECT_SET:
527 case USB_ANALOG_USB1_MISC_SET:
528 case USB_ANALOG_USB2_VBUS_DETECT_SET:
529 case USB_ANALOG_USB2_CHRG_DETECT_SET:
530 case USB_ANALOG_USB2_MISC_SET:
532 * All REG_NAME_SET register access are in fact targeting the
533 * the REG_NAME register.
535 value = s->analog[index - 1];
536 break;
537 case CCM_ANALOG_PLL_ARM_CLR:
538 case CCM_ANALOG_PLL_USB1_CLR:
539 case CCM_ANALOG_PLL_USB2_CLR:
540 case CCM_ANALOG_PLL_SYS_CLR:
541 case CCM_ANALOG_PLL_AUDIO_CLR:
542 case CCM_ANALOG_PLL_VIDEO_CLR:
543 case CCM_ANALOG_PLL_MLB_CLR:
544 case CCM_ANALOG_PLL_ENET_CLR:
545 case CCM_ANALOG_PFD_480_CLR:
546 case CCM_ANALOG_PFD_528_CLR:
547 case CCM_ANALOG_MISC0_CLR:
548 case PMU_MISC1_CLR:
549 case CCM_ANALOG_MISC2_CLR:
550 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
551 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
552 case USB_ANALOG_USB1_MISC_CLR:
553 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
554 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
555 case USB_ANALOG_USB2_MISC_CLR:
557 * All REG_NAME_CLR register access are in fact targeting the
558 * the REG_NAME register.
560 value = s->analog[index - 2];
561 break;
562 case CCM_ANALOG_PLL_ARM_TOG:
563 case CCM_ANALOG_PLL_USB1_TOG:
564 case CCM_ANALOG_PLL_USB2_TOG:
565 case CCM_ANALOG_PLL_SYS_TOG:
566 case CCM_ANALOG_PLL_AUDIO_TOG:
567 case CCM_ANALOG_PLL_VIDEO_TOG:
568 case CCM_ANALOG_PLL_MLB_TOG:
569 case CCM_ANALOG_PLL_ENET_TOG:
570 case CCM_ANALOG_PFD_480_TOG:
571 case CCM_ANALOG_PFD_528_TOG:
572 case CCM_ANALOG_MISC0_TOG:
573 case PMU_MISC1_TOG:
574 case CCM_ANALOG_MISC2_TOG:
575 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
576 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
577 case USB_ANALOG_USB1_MISC_TOG:
578 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
579 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
580 case USB_ANALOG_USB2_MISC_TOG:
582 * All REG_NAME_TOG register access are in fact targeting the
583 * the REG_NAME register.
585 value = s->analog[index - 3];
586 break;
587 default:
588 value = s->analog[index];
589 break;
592 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value);
594 return (uint64_t)value;
597 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value,
598 unsigned size)
600 uint32_t index = offset >> 2;
601 IMX6CCMState *s = (IMX6CCMState *)opaque;
603 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index),
604 (uint32_t)value);
606 switch (index) {
607 case CCM_ANALOG_PLL_ARM_SET:
608 case CCM_ANALOG_PLL_USB1_SET:
609 case CCM_ANALOG_PLL_USB2_SET:
610 case CCM_ANALOG_PLL_SYS_SET:
611 case CCM_ANALOG_PLL_AUDIO_SET:
612 case CCM_ANALOG_PLL_VIDEO_SET:
613 case CCM_ANALOG_PLL_MLB_SET:
614 case CCM_ANALOG_PLL_ENET_SET:
615 case CCM_ANALOG_PFD_480_SET:
616 case CCM_ANALOG_PFD_528_SET:
617 case CCM_ANALOG_MISC0_SET:
618 case PMU_MISC1_SET:
619 case CCM_ANALOG_MISC2_SET:
620 case USB_ANALOG_USB1_VBUS_DETECT_SET:
621 case USB_ANALOG_USB1_CHRG_DETECT_SET:
622 case USB_ANALOG_USB1_MISC_SET:
623 case USB_ANALOG_USB2_VBUS_DETECT_SET:
624 case USB_ANALOG_USB2_CHRG_DETECT_SET:
625 case USB_ANALOG_USB2_MISC_SET:
627 * All REG_NAME_SET register access are in fact targeting the
628 * the REG_NAME register. So we change the value of the
629 * REG_NAME register, setting bits passed in the value.
631 s->analog[index - 1] |= value;
632 break;
633 case CCM_ANALOG_PLL_ARM_CLR:
634 case CCM_ANALOG_PLL_USB1_CLR:
635 case CCM_ANALOG_PLL_USB2_CLR:
636 case CCM_ANALOG_PLL_SYS_CLR:
637 case CCM_ANALOG_PLL_AUDIO_CLR:
638 case CCM_ANALOG_PLL_VIDEO_CLR:
639 case CCM_ANALOG_PLL_MLB_CLR:
640 case CCM_ANALOG_PLL_ENET_CLR:
641 case CCM_ANALOG_PFD_480_CLR:
642 case CCM_ANALOG_PFD_528_CLR:
643 case CCM_ANALOG_MISC0_CLR:
644 case PMU_MISC1_CLR:
645 case CCM_ANALOG_MISC2_CLR:
646 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
647 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
648 case USB_ANALOG_USB1_MISC_CLR:
649 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
650 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
651 case USB_ANALOG_USB2_MISC_CLR:
653 * All REG_NAME_CLR register access are in fact targeting the
654 * the REG_NAME register. So we change the value of the
655 * REG_NAME register, unsetting bits passed in the value.
657 s->analog[index - 2] &= ~value;
658 break;
659 case CCM_ANALOG_PLL_ARM_TOG:
660 case CCM_ANALOG_PLL_USB1_TOG:
661 case CCM_ANALOG_PLL_USB2_TOG:
662 case CCM_ANALOG_PLL_SYS_TOG:
663 case CCM_ANALOG_PLL_AUDIO_TOG:
664 case CCM_ANALOG_PLL_VIDEO_TOG:
665 case CCM_ANALOG_PLL_MLB_TOG:
666 case CCM_ANALOG_PLL_ENET_TOG:
667 case CCM_ANALOG_PFD_480_TOG:
668 case CCM_ANALOG_PFD_528_TOG:
669 case CCM_ANALOG_MISC0_TOG:
670 case PMU_MISC1_TOG:
671 case CCM_ANALOG_MISC2_TOG:
672 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
673 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
674 case USB_ANALOG_USB1_MISC_TOG:
675 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
676 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
677 case USB_ANALOG_USB2_MISC_TOG:
679 * All REG_NAME_TOG register access are in fact targeting the
680 * the REG_NAME register. So we change the value of the
681 * REG_NAME register, toggling bits passed in the value.
683 s->analog[index - 3] ^= value;
684 break;
685 default:
687 * We will do a better implementation later. In particular some bits
688 * cannot be written to.
690 s->analog[index] = value;
691 break;
695 static const struct MemoryRegionOps imx6_ccm_ops = {
696 .read = imx6_ccm_read,
697 .write = imx6_ccm_write,
698 .endianness = DEVICE_NATIVE_ENDIAN,
699 .valid = {
701 * Our device would not work correctly if the guest was doing
702 * unaligned access. This might not be a limitation on the real
703 * device but in practice there is no reason for a guest to access
704 * this device unaligned.
706 .min_access_size = 4,
707 .max_access_size = 4,
708 .unaligned = false,
712 static const struct MemoryRegionOps imx6_analog_ops = {
713 .read = imx6_analog_read,
714 .write = imx6_analog_write,
715 .endianness = DEVICE_NATIVE_ENDIAN,
716 .valid = {
718 * Our device would not work correctly if the guest was doing
719 * unaligned access. This might not be a limitation on the real
720 * device but in practice there is no reason for a guest to access
721 * this device unaligned.
723 .min_access_size = 4,
724 .max_access_size = 4,
725 .unaligned = false,
729 static void imx6_ccm_init(Object *obj)
731 DeviceState *dev = DEVICE(obj);
732 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
733 IMX6CCMState *s = IMX6_CCM(obj);
735 /* initialize a container for the all memory range */
736 memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000);
738 /* We initialize an IO memory region for the CCM part */
739 memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s,
740 TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
742 /* Add the CCM as a subregion at offset 0 */
743 memory_region_add_subregion(&s->container, 0, &s->ioccm);
745 /* We initialize an IO memory region for the ANALOG part */
746 memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s,
747 TYPE_IMX6_CCM ".analog",
748 CCM_ANALOG_MAX * sizeof(uint32_t));
750 /* Add the ANALOG as a subregion at offset 0x4000 */
751 memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
753 sysbus_init_mmio(sd, &s->container);
756 static void imx6_ccm_class_init(ObjectClass *klass, void *data)
758 DeviceClass *dc = DEVICE_CLASS(klass);
759 IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
761 dc->reset = imx6_ccm_reset;
762 dc->vmsd = &vmstate_imx6_ccm;
763 dc->desc = "i.MX6 Clock Control Module";
765 ccm->get_clock_frequency = imx6_ccm_get_clock_frequency;
768 static const TypeInfo imx6_ccm_info = {
769 .name = TYPE_IMX6_CCM,
770 .parent = TYPE_IMX_CCM,
771 .instance_size = sizeof(IMX6CCMState),
772 .instance_init = imx6_ccm_init,
773 .class_init = imx6_ccm_class_init,
776 static void imx6_ccm_register_types(void)
778 type_register_static(&imx6_ccm_info);
781 type_init(imx6_ccm_register_types)