1 #include "qemu/osdep.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/cpu_ldst.h"
13 #include <zlib.h> /* For crc32 */
14 #include "exec/semihost.h"
15 #include "sysemu/kvm.h"
17 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
19 #ifndef CONFIG_USER_ONLY
20 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
21 int access_type
, ARMMMUIdx mmu_idx
,
22 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
23 target_ulong
*page_size
, uint32_t *fsr
,
26 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
27 int access_type
, ARMMMUIdx mmu_idx
,
28 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
29 target_ulong
*page_size_ptr
, uint32_t *fsr
,
32 /* Definitions for the PMCCNTR and PMCR registers */
38 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
42 /* VFP data registers are always little-endian. */
43 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
45 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
48 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
49 /* Aliases for Q regs. */
52 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
53 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
57 switch (reg
- nregs
) {
58 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
59 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
60 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
65 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
69 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
71 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
74 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
77 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
78 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
82 switch (reg
- nregs
) {
83 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
84 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
85 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
90 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
94 /* 128 bit FP register */
95 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
96 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
100 stl_p(buf
, vfp_get_fpsr(env
));
104 stl_p(buf
, vfp_get_fpcr(env
));
111 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
115 /* 128 bit FP register */
116 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
117 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
121 vfp_set_fpsr(env
, ldl_p(buf
));
125 vfp_set_fpcr(env
, ldl_p(buf
));
132 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
134 assert(ri
->fieldoffset
);
135 if (cpreg_field_is_64bit(ri
)) {
136 return CPREG_FIELD64(env
, ri
);
138 return CPREG_FIELD32(env
, ri
);
142 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
145 assert(ri
->fieldoffset
);
146 if (cpreg_field_is_64bit(ri
)) {
147 CPREG_FIELD64(env
, ri
) = value
;
149 CPREG_FIELD32(env
, ri
) = value
;
153 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
155 return (char *)env
+ ri
->fieldoffset
;
158 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
160 /* Raw read of a coprocessor register (as needed for migration, etc). */
161 if (ri
->type
& ARM_CP_CONST
) {
162 return ri
->resetvalue
;
163 } else if (ri
->raw_readfn
) {
164 return ri
->raw_readfn(env
, ri
);
165 } else if (ri
->readfn
) {
166 return ri
->readfn(env
, ri
);
168 return raw_read(env
, ri
);
172 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
175 /* Raw write of a coprocessor register (as needed for migration, etc).
176 * Note that constant registers are treated as write-ignored; the
177 * caller should check for success by whether a readback gives the
180 if (ri
->type
& ARM_CP_CONST
) {
182 } else if (ri
->raw_writefn
) {
183 ri
->raw_writefn(env
, ri
, v
);
184 } else if (ri
->writefn
) {
185 ri
->writefn(env
, ri
, v
);
187 raw_write(env
, ri
, v
);
191 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
193 /* Return true if the regdef would cause an assertion if you called
194 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
195 * program bug for it not to have the NO_RAW flag).
196 * NB that returning false here doesn't necessarily mean that calling
197 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
198 * read/write access functions which are safe for raw use" from "has
199 * read/write access functions which have side effects but has forgotten
200 * to provide raw access functions".
201 * The tests here line up with the conditions in read/write_raw_cp_reg()
202 * and assertions in raw_read()/raw_write().
204 if ((ri
->type
& ARM_CP_CONST
) ||
206 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
212 bool write_cpustate_to_list(ARMCPU
*cpu
)
214 /* Write the coprocessor state from cpu->env to the (index,value) list. */
218 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
219 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
220 const ARMCPRegInfo
*ri
;
222 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
227 if (ri
->type
& ARM_CP_NO_RAW
) {
230 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
235 bool write_list_to_cpustate(ARMCPU
*cpu
)
240 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
241 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
242 uint64_t v
= cpu
->cpreg_values
[i
];
243 const ARMCPRegInfo
*ri
;
245 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
250 if (ri
->type
& ARM_CP_NO_RAW
) {
253 /* Write value and confirm it reads back as written
254 * (to catch read-only registers and partially read-only
255 * registers where the incoming migration value doesn't match)
257 write_raw_cp_reg(&cpu
->env
, ri
, v
);
258 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
265 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
267 ARMCPU
*cpu
= opaque
;
269 const ARMCPRegInfo
*ri
;
271 regidx
= *(uint32_t *)key
;
272 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
274 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
275 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
276 /* The value array need not be initialized at this point */
277 cpu
->cpreg_array_len
++;
281 static void count_cpreg(gpointer key
, gpointer opaque
)
283 ARMCPU
*cpu
= opaque
;
285 const ARMCPRegInfo
*ri
;
287 regidx
= *(uint32_t *)key
;
288 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
290 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
291 cpu
->cpreg_array_len
++;
295 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
297 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
298 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
309 void init_cpreg_list(ARMCPU
*cpu
)
311 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
312 * Note that we require cpreg_tuples[] to be sorted by key ID.
317 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
318 keys
= g_list_sort(keys
, cpreg_key_compare
);
320 cpu
->cpreg_array_len
= 0;
322 g_list_foreach(keys
, count_cpreg
, cpu
);
324 arraylen
= cpu
->cpreg_array_len
;
325 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
326 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
327 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
328 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
329 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
330 cpu
->cpreg_array_len
= 0;
332 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
334 assert(cpu
->cpreg_array_len
== arraylen
);
340 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
341 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
343 * access_el3_aa32ns: Used to check AArch32 register views.
344 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
346 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
347 const ARMCPRegInfo
*ri
,
350 bool secure
= arm_is_secure_below_el3(env
);
352 assert(!arm_el_is_aa64(env
, 3));
354 return CP_ACCESS_TRAP_UNCATEGORIZED
;
359 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
360 const ARMCPRegInfo
*ri
,
363 if (!arm_el_is_aa64(env
, 3)) {
364 return access_el3_aa32ns(env
, ri
, isread
);
369 /* Some secure-only AArch32 registers trap to EL3 if used from
370 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
371 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
372 * We assume that the .access field is set to PL1_RW.
374 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
375 const ARMCPRegInfo
*ri
,
378 if (arm_current_el(env
) == 3) {
381 if (arm_is_secure_below_el3(env
)) {
382 return CP_ACCESS_TRAP_EL3
;
384 /* This will be EL1 NS and EL2 NS, which just UNDEF */
385 return CP_ACCESS_TRAP_UNCATEGORIZED
;
388 /* Check for traps to "powerdown debug" registers, which are controlled
391 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
394 int el
= arm_current_el(env
);
396 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDOSA
)
397 && !arm_is_secure_below_el3(env
)) {
398 return CP_ACCESS_TRAP_EL2
;
400 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
401 return CP_ACCESS_TRAP_EL3
;
406 /* Check for traps to "debug ROM" registers, which are controlled
407 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
409 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
412 int el
= arm_current_el(env
);
414 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDRA
)
415 && !arm_is_secure_below_el3(env
)) {
416 return CP_ACCESS_TRAP_EL2
;
418 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
419 return CP_ACCESS_TRAP_EL3
;
424 /* Check for traps to general debug registers, which are controlled
425 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
427 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
430 int el
= arm_current_el(env
);
432 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDA
)
433 && !arm_is_secure_below_el3(env
)) {
434 return CP_ACCESS_TRAP_EL2
;
436 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
437 return CP_ACCESS_TRAP_EL3
;
442 /* Check for traps to performance monitor registers, which are controlled
443 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
445 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
448 int el
= arm_current_el(env
);
450 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
451 && !arm_is_secure_below_el3(env
)) {
452 return CP_ACCESS_TRAP_EL2
;
454 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
455 return CP_ACCESS_TRAP_EL3
;
460 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
462 ARMCPU
*cpu
= arm_env_get_cpu(env
);
464 raw_write(env
, ri
, value
);
465 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
468 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
470 ARMCPU
*cpu
= arm_env_get_cpu(env
);
472 if (raw_read(env
, ri
) != value
) {
473 /* Unlike real hardware the qemu TLB uses virtual addresses,
474 * not modified virtual addresses, so this causes a TLB flush.
476 tlb_flush(CPU(cpu
), 1);
477 raw_write(env
, ri
, value
);
481 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
484 ARMCPU
*cpu
= arm_env_get_cpu(env
);
486 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
487 && !extended_addresses_enabled(env
)) {
488 /* For VMSA (when not using the LPAE long descriptor page table
489 * format) this register includes the ASID, so do a TLB flush.
490 * For PMSA it is purely a process ID and no action is needed.
492 tlb_flush(CPU(cpu
), 1);
494 raw_write(env
, ri
, value
);
497 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
500 /* Invalidate all (TLBIALL) */
501 ARMCPU
*cpu
= arm_env_get_cpu(env
);
503 tlb_flush(CPU(cpu
), 1);
506 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
509 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
510 ARMCPU
*cpu
= arm_env_get_cpu(env
);
512 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
515 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
518 /* Invalidate by ASID (TLBIASID) */
519 ARMCPU
*cpu
= arm_env_get_cpu(env
);
521 tlb_flush(CPU(cpu
), value
== 0);
524 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
527 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
528 ARMCPU
*cpu
= arm_env_get_cpu(env
);
530 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
533 /* IS variants of TLB operations must affect all cores */
534 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
539 CPU_FOREACH(other_cs
) {
540 tlb_flush(other_cs
, 1);
544 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
549 CPU_FOREACH(other_cs
) {
550 tlb_flush(other_cs
, value
== 0);
554 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
559 CPU_FOREACH(other_cs
) {
560 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
564 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
569 CPU_FOREACH(other_cs
) {
570 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
574 static const ARMCPRegInfo cp_reginfo
[] = {
575 /* Define the secure and non-secure FCSE identifier CP registers
576 * separately because there is no secure bank in V8 (no _EL3). This allows
577 * the secure register to be properly reset and migrated. There is also no
578 * v8 EL1 version of the register so the non-secure instance stands alone.
580 { .name
= "FCSEIDR(NS)",
581 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
582 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
583 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
584 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
585 { .name
= "FCSEIDR(S)",
586 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
587 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
588 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
589 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
590 /* Define the secure and non-secure context identifier CP registers
591 * separately because there is no secure bank in V8 (no _EL3). This allows
592 * the secure register to be properly reset and migrated. In the
593 * non-secure case, the 32-bit register will have reset and migration
594 * disabled during registration as it is handled by the 64-bit instance.
596 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
597 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
598 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
599 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
600 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
601 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
602 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
603 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
604 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
605 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
609 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
610 /* NB: Some of these registers exist in v8 but with more precise
611 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
613 /* MMU Domain access control / MPU write buffer control */
615 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
616 .access
= PL1_RW
, .resetvalue
= 0,
617 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
618 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
619 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
620 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
621 * For v6 and v5, these mappings are overly broad.
623 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
624 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
625 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
626 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
627 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
628 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
629 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
630 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
631 /* Cache maintenance ops; some of this space may be overridden later. */
632 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
633 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
634 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
638 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
639 /* Not all pre-v6 cores implemented this WFI, so this is slightly
642 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
643 .access
= PL1_W
, .type
= ARM_CP_WFI
},
647 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
648 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
649 * is UNPREDICTABLE; we choose to NOP as most implementations do).
651 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
652 .access
= PL1_W
, .type
= ARM_CP_WFI
},
653 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
654 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
655 * OMAPCP will override this space.
657 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
658 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
660 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
661 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
663 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
664 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
665 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
667 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
668 * implementing it as RAZ means the "debug architecture version" bits
669 * will read as a reserved value, which should cause Linux to not try
670 * to use the debug hardware.
672 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
673 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
674 /* MMU TLB control. Note that the wildcarding means we cover not just
675 * the unified TLB ops but also the dside/iside/inner-shareable variants.
677 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
678 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
679 .type
= ARM_CP_NO_RAW
},
680 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
681 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
682 .type
= ARM_CP_NO_RAW
},
683 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
684 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
685 .type
= ARM_CP_NO_RAW
},
686 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
687 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
688 .type
= ARM_CP_NO_RAW
},
689 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
690 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
691 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
692 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
696 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
701 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
702 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
703 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
704 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
705 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
707 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
708 /* VFP coprocessor: cp10 & cp11 [23:20] */
709 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
711 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
712 /* ASEDIS [31] bit is RAO/WI */
716 /* VFPv3 and upwards with NEON implement 32 double precision
717 * registers (D0-D31).
719 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
720 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
721 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
727 env
->cp15
.cpacr_el1
= value
;
730 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
733 if (arm_feature(env
, ARM_FEATURE_V8
)) {
734 /* Check if CPACR accesses are to be trapped to EL2 */
735 if (arm_current_el(env
) == 1 &&
736 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
737 return CP_ACCESS_TRAP_EL2
;
738 /* Check if CPACR accesses are to be trapped to EL3 */
739 } else if (arm_current_el(env
) < 3 &&
740 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
741 return CP_ACCESS_TRAP_EL3
;
748 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
751 /* Check if CPTR accesses are set to trap to EL3 */
752 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
753 return CP_ACCESS_TRAP_EL3
;
759 static const ARMCPRegInfo v6_cp_reginfo
[] = {
760 /* prefetch by MVA in v6, NOP in v7 */
761 { .name
= "MVA_prefetch",
762 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
763 .access
= PL1_W
, .type
= ARM_CP_NOP
},
764 /* We need to break the TB after ISB to execute self-modifying code
765 * correctly and also to take any pending interrupts immediately.
766 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
768 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
769 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
770 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
771 .access
= PL0_W
, .type
= ARM_CP_NOP
},
772 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
773 .access
= PL0_W
, .type
= ARM_CP_NOP
},
774 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
776 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
777 offsetof(CPUARMState
, cp15
.ifar_ns
) },
779 /* Watchpoint Fault Address Register : should actually only be present
780 * for 1136, 1176, 11MPCore.
782 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
783 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
784 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
785 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
786 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
787 .resetvalue
= 0, .writefn
= cpacr_write
},
791 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
794 /* Performance monitor registers user accessibility is controlled
795 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
796 * trapping to EL2 or EL3 for other accesses.
798 int el
= arm_current_el(env
);
800 if (el
== 0 && !env
->cp15
.c9_pmuserenr
) {
801 return CP_ACCESS_TRAP
;
803 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
804 && !arm_is_secure_below_el3(env
)) {
805 return CP_ACCESS_TRAP_EL2
;
807 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
808 return CP_ACCESS_TRAP_EL3
;
814 #ifndef CONFIG_USER_ONLY
816 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
818 /* This does not support checking PMCCFILTR_EL0 register */
820 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
827 void pmccntr_sync(CPUARMState
*env
)
831 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
832 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
834 if (env
->cp15
.c9_pmcr
& PMCRD
) {
835 /* Increment once every 64 processor clock cycles */
839 if (arm_ccnt_enabled(env
)) {
840 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
844 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
850 /* The counter has been reset */
851 env
->cp15
.c15_ccnt
= 0;
854 /* only the DP, X, D and E bits are writable */
855 env
->cp15
.c9_pmcr
&= ~0x39;
856 env
->cp15
.c9_pmcr
|= (value
& 0x39);
861 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
863 uint64_t total_ticks
;
865 if (!arm_ccnt_enabled(env
)) {
866 /* Counter is disabled, do not change value */
867 return env
->cp15
.c15_ccnt
;
870 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
871 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
873 if (env
->cp15
.c9_pmcr
& PMCRD
) {
874 /* Increment once every 64 processor clock cycles */
877 return total_ticks
- env
->cp15
.c15_ccnt
;
880 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
883 uint64_t total_ticks
;
885 if (!arm_ccnt_enabled(env
)) {
886 /* Counter is disabled, set the absolute value */
887 env
->cp15
.c15_ccnt
= value
;
891 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
892 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
894 if (env
->cp15
.c9_pmcr
& PMCRD
) {
895 /* Increment once every 64 processor clock cycles */
898 env
->cp15
.c15_ccnt
= total_ticks
- value
;
901 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
904 uint64_t cur_val
= pmccntr_read(env
, NULL
);
906 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
909 #else /* CONFIG_USER_ONLY */
911 void pmccntr_sync(CPUARMState
*env
)
917 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
921 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
925 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
929 env
->cp15
.c9_pmcnten
|= value
;
932 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
936 env
->cp15
.c9_pmcnten
&= ~value
;
939 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
942 env
->cp15
.c9_pmovsr
&= ~value
;
945 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
948 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
951 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
954 env
->cp15
.c9_pmuserenr
= value
& 1;
957 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
960 /* We have no event counters so only the C bit can be changed */
962 env
->cp15
.c9_pminten
|= value
;
965 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
969 env
->cp15
.c9_pminten
&= ~value
;
972 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
975 /* Note that even though the AArch64 view of this register has bits
976 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
977 * architectural requirements for bits which are RES0 only in some
978 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
979 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
981 raw_write(env
, ri
, value
& ~0x1FULL
);
984 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
986 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
987 * For bits that vary between AArch32/64, code needs to check the
988 * current execution mode before directly using the feature bit.
990 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
992 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
993 valid_mask
&= ~SCR_HCE
;
995 /* On ARMv7, SMD (or SCD as it is called in v7) is only
996 * supported if EL2 exists. The bit is UNK/SBZP when
997 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
998 * when EL2 is unavailable.
999 * On ARMv8, this bit is always available.
1001 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1002 !arm_feature(env
, ARM_FEATURE_V8
)) {
1003 valid_mask
&= ~SCR_SMD
;
1007 /* Clear all-context RES0 bits. */
1008 value
&= valid_mask
;
1009 raw_write(env
, ri
, value
);
1012 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1014 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1016 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1019 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1020 ri
->secure
& ARM_CP_SECSTATE_S
);
1022 return cpu
->ccsidr
[index
];
1025 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1028 raw_write(env
, ri
, value
& 0xf);
1031 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1033 CPUState
*cs
= ENV_GET_CPU(env
);
1036 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1039 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1042 /* External aborts are not possible in QEMU so A bit is always clear */
1046 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1047 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1048 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1049 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1050 /* Performance monitors are implementation defined in v7,
1051 * but with an ARM recommended set of registers, which we
1052 * follow (although we don't actually implement any counters)
1054 * Performance registers fall into three categories:
1055 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1056 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1057 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1058 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1059 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1061 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1062 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1063 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1064 .writefn
= pmcntenset_write
,
1065 .accessfn
= pmreg_access
,
1066 .raw_writefn
= raw_write
},
1067 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1068 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1069 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1070 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1071 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1072 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1074 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1075 .accessfn
= pmreg_access
,
1076 .writefn
= pmcntenclr_write
,
1077 .type
= ARM_CP_ALIAS
},
1078 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1079 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1080 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1081 .type
= ARM_CP_ALIAS
,
1082 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1083 .writefn
= pmcntenclr_write
},
1084 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
1085 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1086 .accessfn
= pmreg_access
,
1087 .writefn
= pmovsr_write
,
1088 .raw_writefn
= raw_write
},
1089 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1090 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
1091 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1092 .type
= ARM_CP_ALIAS
,
1093 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1094 .writefn
= pmovsr_write
,
1095 .raw_writefn
= raw_write
},
1096 /* Unimplemented so WI. */
1097 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
1098 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
1099 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1100 * We choose to RAZ/WI.
1102 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
1103 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1104 .accessfn
= pmreg_access
},
1105 #ifndef CONFIG_USER_ONLY
1106 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
1107 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
1108 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
1109 .accessfn
= pmreg_access
},
1110 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1111 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
1112 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1114 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
1116 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1117 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1118 .writefn
= pmccfiltr_write
,
1119 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1121 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1123 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1125 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
1126 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
1127 .raw_writefn
= raw_write
},
1128 /* Unimplemented, RAZ/WI. */
1129 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1130 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1131 .accessfn
= pmreg_access
},
1132 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1133 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
1134 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1136 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1137 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
1138 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
1139 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1140 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1142 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1143 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1144 .access
= PL1_RW
, .accessfn
= access_tpm
,
1145 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1147 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1148 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1149 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1150 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1151 .writefn
= pmintenclr_write
, },
1152 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
1153 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
1154 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1155 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1156 .writefn
= pmintenclr_write
},
1157 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
1158 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
1159 .access
= PL1_RW
, .writefn
= vbar_write
,
1160 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
1161 offsetof(CPUARMState
, cp15
.vbar_ns
) },
1163 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1164 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1165 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1166 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1167 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1168 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1169 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1170 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1171 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1172 * just RAZ for all cores:
1174 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1175 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1176 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1177 /* Auxiliary fault status registers: these also are IMPDEF, and we
1178 * choose to RAZ/WI for all cores.
1180 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1181 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1182 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1183 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1184 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1185 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1186 /* MAIR can just read-as-written because we don't implement caches
1187 * and so don't need to care about memory attributes.
1189 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1190 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1191 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1193 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1194 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1195 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1197 /* For non-long-descriptor page tables these are PRRR and NMRR;
1198 * regardless they still act as reads-as-written for QEMU.
1200 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1201 * allows them to assign the correct fieldoffset based on the endianness
1202 * handled in the field definitions.
1204 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1205 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1206 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1207 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1208 .resetfn
= arm_cp_reset_ignore
},
1209 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1210 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1211 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1212 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1213 .resetfn
= arm_cp_reset_ignore
},
1214 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1215 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1216 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1217 /* 32 bit ITLB invalidates */
1218 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1219 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1220 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1221 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1222 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1223 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1224 /* 32 bit DTLB invalidates */
1225 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1226 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1227 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1228 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1229 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1230 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1231 /* 32 bit TLB invalidates */
1232 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1233 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1234 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1235 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1236 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1237 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1238 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1239 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1243 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1244 /* 32 bit TLB invalidates, Inner Shareable */
1245 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1246 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1247 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1248 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1249 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1250 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1251 .writefn
= tlbiasid_is_write
},
1252 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1253 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1254 .writefn
= tlbimvaa_is_write
},
1258 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1265 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1268 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1269 return CP_ACCESS_TRAP
;
1271 return CP_ACCESS_OK
;
1274 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1275 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1276 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1278 .writefn
= teecr_write
},
1279 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1280 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1281 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1285 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1286 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1287 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1289 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1290 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1292 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1293 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1294 .resetfn
= arm_cp_reset_ignore
},
1295 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1296 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1297 .access
= PL0_R
|PL1_W
,
1298 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1300 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1301 .access
= PL0_R
|PL1_W
,
1302 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1303 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1304 .resetfn
= arm_cp_reset_ignore
},
1305 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1306 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1308 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1309 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1311 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1312 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1317 #ifndef CONFIG_USER_ONLY
1319 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1322 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1323 * Writable only at the highest implemented exception level.
1325 int el
= arm_current_el(env
);
1329 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1330 return CP_ACCESS_TRAP
;
1334 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
1335 arm_is_secure_below_el3(env
)) {
1336 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1337 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1345 if (!isread
&& el
< arm_highest_el(env
)) {
1346 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1349 return CP_ACCESS_OK
;
1352 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
1355 unsigned int cur_el
= arm_current_el(env
);
1356 bool secure
= arm_is_secure(env
);
1358 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1360 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1361 return CP_ACCESS_TRAP
;
1364 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1365 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1366 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1367 return CP_ACCESS_TRAP_EL2
;
1369 return CP_ACCESS_OK
;
1372 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
1375 unsigned int cur_el
= arm_current_el(env
);
1376 bool secure
= arm_is_secure(env
);
1378 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1379 * EL0[PV]TEN is zero.
1382 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1383 return CP_ACCESS_TRAP
;
1386 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1387 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1388 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1389 return CP_ACCESS_TRAP_EL2
;
1391 return CP_ACCESS_OK
;
1394 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1395 const ARMCPRegInfo
*ri
,
1398 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
1401 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1402 const ARMCPRegInfo
*ri
,
1405 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
1408 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1411 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
1414 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1417 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
1420 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1421 const ARMCPRegInfo
*ri
,
1424 /* The AArch64 register view of the secure physical timer is
1425 * always accessible from EL3, and configurably accessible from
1428 switch (arm_current_el(env
)) {
1430 if (!arm_is_secure(env
)) {
1431 return CP_ACCESS_TRAP
;
1433 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1434 return CP_ACCESS_TRAP_EL3
;
1436 return CP_ACCESS_OK
;
1439 return CP_ACCESS_TRAP
;
1441 return CP_ACCESS_OK
;
1443 g_assert_not_reached();
1447 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1449 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1452 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1454 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1457 /* Timer enabled: calculate and set current ISTATUS, irq, and
1458 * reset timer to when ISTATUS next has to change
1460 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1461 cpu
->env
.cp15
.cntvoff_el2
: 0;
1462 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1463 /* Note that this must be unsigned 64 bit arithmetic: */
1464 int istatus
= count
- offset
>= gt
->cval
;
1467 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1468 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1469 (istatus
&& !(gt
->ctl
& 2)));
1471 /* Next transition is when count rolls back over to zero */
1472 nexttick
= UINT64_MAX
;
1474 /* Next transition is when we hit cval */
1475 nexttick
= gt
->cval
+ offset
;
1477 /* Note that the desired next expiry time might be beyond the
1478 * signed-64-bit range of a QEMUTimer -- in this case we just
1479 * set the timer for as far in the future as possible. When the
1480 * timer expires we will reset the timer for any remaining period.
1482 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1483 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1485 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1487 /* Timer disabled: ISTATUS and timer output always clear */
1489 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1490 timer_del(cpu
->gt_timer
[timeridx
]);
1494 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1497 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1499 timer_del(cpu
->gt_timer
[timeridx
]);
1502 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1504 return gt_get_countervalue(env
);
1507 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1509 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1512 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1516 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1517 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1520 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1523 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1525 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1526 (gt_get_countervalue(env
) - offset
));
1529 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1533 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1535 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1536 sextract64(value
, 0, 32);
1537 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1540 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1544 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1545 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1547 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1548 if ((oldval
^ value
) & 1) {
1549 /* Enable toggled */
1550 gt_recalc_timer(cpu
, timeridx
);
1551 } else if ((oldval
^ value
) & 2) {
1552 /* IMASK toggled: don't need to recalculate,
1553 * just set the interrupt line based on ISTATUS
1555 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1556 (oldval
& 4) && !(value
& 2));
1560 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1562 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1565 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1568 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1571 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1573 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1576 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1579 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1582 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1585 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1588 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1590 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1593 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1596 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1599 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1601 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1604 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1607 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1610 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1613 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1616 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1619 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1621 raw_write(env
, ri
, value
);
1622 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1625 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1627 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1630 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1633 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1636 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1638 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1641 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1644 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1647 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1650 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1653 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1655 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1658 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1661 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1664 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1666 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1669 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1672 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1675 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1678 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1681 void arm_gt_ptimer_cb(void *opaque
)
1683 ARMCPU
*cpu
= opaque
;
1685 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1688 void arm_gt_vtimer_cb(void *opaque
)
1690 ARMCPU
*cpu
= opaque
;
1692 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1695 void arm_gt_htimer_cb(void *opaque
)
1697 ARMCPU
*cpu
= opaque
;
1699 gt_recalc_timer(cpu
, GTIMER_HYP
);
1702 void arm_gt_stimer_cb(void *opaque
)
1704 ARMCPU
*cpu
= opaque
;
1706 gt_recalc_timer(cpu
, GTIMER_SEC
);
1709 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1710 /* Note that CNTFRQ is purely reads-as-written for the benefit
1711 * of software; writing it doesn't actually change the timer frequency.
1712 * Our reset value matches the fixed frequency we implement the timer at.
1714 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1715 .type
= ARM_CP_ALIAS
,
1716 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1717 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1719 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1720 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1721 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1722 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1723 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1725 /* overall control: mostly access permissions */
1726 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1727 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1729 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1732 /* per-timer control */
1733 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1734 .secure
= ARM_CP_SECSTATE_NS
,
1735 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1736 .accessfn
= gt_ptimer_access
,
1737 .fieldoffset
= offsetoflow32(CPUARMState
,
1738 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1739 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1741 { .name
= "CNTP_CTL(S)",
1742 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1743 .secure
= ARM_CP_SECSTATE_S
,
1744 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1745 .accessfn
= gt_ptimer_access
,
1746 .fieldoffset
= offsetoflow32(CPUARMState
,
1747 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1748 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1750 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1751 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1752 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1753 .accessfn
= gt_ptimer_access
,
1754 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1756 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1758 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1759 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1760 .accessfn
= gt_vtimer_access
,
1761 .fieldoffset
= offsetoflow32(CPUARMState
,
1762 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1763 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1765 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1766 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1767 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1768 .accessfn
= gt_vtimer_access
,
1769 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1771 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1773 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1774 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1775 .secure
= ARM_CP_SECSTATE_NS
,
1776 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1777 .accessfn
= gt_ptimer_access
,
1778 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1780 { .name
= "CNTP_TVAL(S)",
1781 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1782 .secure
= ARM_CP_SECSTATE_S
,
1783 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1784 .accessfn
= gt_ptimer_access
,
1785 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1787 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1788 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1789 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1790 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1791 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1793 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1794 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1795 .accessfn
= gt_vtimer_access
,
1796 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1798 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1799 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1800 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1801 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1802 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1804 /* The counter itself */
1805 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1806 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1807 .accessfn
= gt_pct_access
,
1808 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1810 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1811 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1812 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1813 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1815 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1816 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1817 .accessfn
= gt_vct_access
,
1818 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1820 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1821 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1822 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1823 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1825 /* Comparison value, indicating when the timer goes off */
1826 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1827 .secure
= ARM_CP_SECSTATE_NS
,
1828 .access
= PL1_RW
| PL0_R
,
1829 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1830 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1831 .accessfn
= gt_ptimer_access
,
1832 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1834 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1835 .secure
= ARM_CP_SECSTATE_S
,
1836 .access
= PL1_RW
| PL0_R
,
1837 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1838 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1839 .accessfn
= gt_ptimer_access
,
1840 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1842 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1843 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1844 .access
= PL1_RW
| PL0_R
,
1846 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1847 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1848 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1850 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1851 .access
= PL1_RW
| PL0_R
,
1852 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1853 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1854 .accessfn
= gt_vtimer_access
,
1855 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1857 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1858 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1859 .access
= PL1_RW
| PL0_R
,
1861 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1862 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1863 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1865 /* Secure timer -- this is actually restricted to only EL3
1866 * and configurably Secure-EL1 via the accessfn.
1868 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1869 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1870 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1871 .accessfn
= gt_stimer_access
,
1872 .readfn
= gt_sec_tval_read
,
1873 .writefn
= gt_sec_tval_write
,
1874 .resetfn
= gt_sec_timer_reset
,
1876 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1877 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1878 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1879 .accessfn
= gt_stimer_access
,
1880 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1882 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1884 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1885 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1886 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1887 .accessfn
= gt_stimer_access
,
1888 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1889 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1895 /* In user-mode none of the generic timer registers are accessible,
1896 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1897 * so instead just don't register any of them.
1899 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1905 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1907 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1908 raw_write(env
, ri
, value
);
1909 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1910 raw_write(env
, ri
, value
& 0xfffff6ff);
1912 raw_write(env
, ri
, value
& 0xfffff1ff);
1916 #ifndef CONFIG_USER_ONLY
1917 /* get_phys_addr() isn't present for user-mode-only targets */
1919 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1923 /* The ATS12NSO* operations must trap to EL3 if executed in
1924 * Secure EL1 (which can only happen if EL3 is AArch64).
1925 * They are simply UNDEF if executed from NS EL1.
1926 * They function normally from EL2 or EL3.
1928 if (arm_current_el(env
) == 1) {
1929 if (arm_is_secure_below_el3(env
)) {
1930 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
1932 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1935 return CP_ACCESS_OK
;
1938 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1939 int access_type
, ARMMMUIdx mmu_idx
)
1942 target_ulong page_size
;
1947 MemTxAttrs attrs
= {};
1948 ARMMMUFaultInfo fi
= {};
1950 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1951 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
, &fi
);
1952 if (extended_addresses_enabled(env
)) {
1953 /* fsr is a DFSR/IFSR value for the long descriptor
1954 * translation table format, but with WnR always clear.
1955 * Convert it to a 64-bit PAR.
1957 par64
= (1 << 11); /* LPAE bit always set */
1959 par64
|= phys_addr
& ~0xfffULL
;
1960 if (!attrs
.secure
) {
1961 par64
|= (1 << 9); /* NS */
1963 /* We don't set the ATTR or SH fields in the PAR. */
1966 par64
|= (fsr
& 0x3f) << 1; /* FS */
1967 /* Note that S2WLK and FSTAGE are always zero, because we don't
1968 * implement virtualization and therefore there can't be a stage 2
1973 /* fsr is a DFSR/IFSR value for the short descriptor
1974 * translation table format (with WnR always clear).
1975 * Convert it to a 32-bit PAR.
1978 /* We do not set any attribute bits in the PAR */
1979 if (page_size
== (1 << 24)
1980 && arm_feature(env
, ARM_FEATURE_V7
)) {
1981 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1983 par64
= phys_addr
& 0xfffff000;
1985 if (!attrs
.secure
) {
1986 par64
|= (1 << 9); /* NS */
1989 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
1990 ((fsr
& 0xf) << 1) | 1;
1996 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1998 int access_type
= ri
->opc2
& 1;
2001 int el
= arm_current_el(env
);
2002 bool secure
= arm_is_secure_below_el3(env
);
2004 switch (ri
->opc2
& 6) {
2006 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2009 mmu_idx
= ARMMMUIdx_S1E3
;
2012 mmu_idx
= ARMMMUIdx_S1NSE1
;
2015 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2018 g_assert_not_reached();
2022 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2025 mmu_idx
= ARMMMUIdx_S1SE0
;
2028 mmu_idx
= ARMMMUIdx_S1NSE0
;
2031 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2034 g_assert_not_reached();
2038 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2039 mmu_idx
= ARMMMUIdx_S12NSE1
;
2042 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2043 mmu_idx
= ARMMMUIdx_S12NSE0
;
2046 g_assert_not_reached();
2049 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
2051 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2054 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2057 int access_type
= ri
->opc2
& 1;
2060 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
2062 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2065 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2068 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
2069 return CP_ACCESS_TRAP
;
2071 return CP_ACCESS_OK
;
2074 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2077 int access_type
= ri
->opc2
& 1;
2079 int secure
= arm_is_secure_below_el3(env
);
2081 switch (ri
->opc2
& 6) {
2084 case 0: /* AT S1E1R, AT S1E1W */
2085 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2087 case 4: /* AT S1E2R, AT S1E2W */
2088 mmu_idx
= ARMMMUIdx_S1E2
;
2090 case 6: /* AT S1E3R, AT S1E3W */
2091 mmu_idx
= ARMMMUIdx_S1E3
;
2094 g_assert_not_reached();
2097 case 2: /* AT S1E0R, AT S1E0W */
2098 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2100 case 4: /* AT S12E1R, AT S12E1W */
2101 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
2103 case 6: /* AT S12E0R, AT S12E0W */
2104 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
2107 g_assert_not_reached();
2110 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
2114 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
2115 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
2116 .access
= PL1_RW
, .resetvalue
= 0,
2117 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
2118 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
2119 .writefn
= par_write
},
2120 #ifndef CONFIG_USER_ONLY
2121 /* This underdecoding is safe because the reginfo is NO_RAW. */
2122 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
2123 .access
= PL1_W
, .accessfn
= ats_access
,
2124 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
2129 /* Return basic MPU access permission bits. */
2130 static uint32_t simple_mpu_ap_bits(uint32_t val
)
2137 for (i
= 0; i
< 16; i
+= 2) {
2138 ret
|= (val
>> i
) & mask
;
2144 /* Pad basic MPU access permission bits to extended format. */
2145 static uint32_t extended_mpu_ap_bits(uint32_t val
)
2152 for (i
= 0; i
< 16; i
+= 2) {
2153 ret
|= (val
& mask
) << i
;
2159 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2162 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
2165 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2167 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2170 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2173 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2176 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2178 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2181 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2183 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2189 u32p
+= env
->cp15
.c6_rgnr
;
2193 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2196 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2197 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2203 u32p
+= env
->cp15
.c6_rgnr
;
2204 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2208 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2210 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2211 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2217 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2220 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2223 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2224 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2226 if (value
>= nrgs
) {
2227 qemu_log_mask(LOG_GUEST_ERROR
,
2228 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2229 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2233 raw_write(env
, ri
, value
);
2236 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2237 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2238 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2239 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2240 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2241 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2242 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2243 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2244 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2245 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2246 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2247 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2248 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2249 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2251 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2252 .writefn
= pmsav7_rgnr_write
},
2256 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2257 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2258 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2259 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2260 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2261 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2262 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2263 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2264 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2265 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2267 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2269 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2271 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2273 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2275 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2276 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2278 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2279 /* Protection region base and size registers */
2280 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2281 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2282 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2283 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2284 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2285 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2286 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2287 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2288 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2289 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2290 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2291 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2292 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2293 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2294 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2295 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2296 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2297 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2298 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2299 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2300 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2301 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2302 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2303 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2307 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2310 TCR
*tcr
= raw_ptr(env
, ri
);
2311 int maskshift
= extract32(value
, 0, 3);
2313 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2314 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2315 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2316 * using Long-desciptor translation table format */
2317 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2318 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2319 /* In an implementation that includes the Security Extensions
2320 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2321 * Short-descriptor translation table format.
2323 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2329 /* Update the masks corresponding to the TCR bank being written
2330 * Note that we always calculate mask and base_mask, but
2331 * they are only used for short-descriptor tables (ie if EAE is 0);
2332 * for long-descriptor tables the TCR fields are used differently
2333 * and the mask and base_mask values are meaningless.
2335 tcr
->raw_tcr
= value
;
2336 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2337 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2340 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2343 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2345 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2346 /* With LPAE the TTBCR could result in a change of ASID
2347 * via the TTBCR.A1 bit, so do a TLB flush.
2349 tlb_flush(CPU(cpu
), 1);
2351 vmsa_ttbcr_raw_write(env
, ri
, value
);
2354 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2356 TCR
*tcr
= raw_ptr(env
, ri
);
2358 /* Reset both the TCR as well as the masks corresponding to the bank of
2359 * the TCR being reset.
2363 tcr
->base_mask
= 0xffffc000u
;
2366 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2369 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2370 TCR
*tcr
= raw_ptr(env
, ri
);
2372 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2373 tlb_flush(CPU(cpu
), 1);
2374 tcr
->raw_tcr
= value
;
2377 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2380 /* 64 bit accesses to the TTBRs can change the ASID and so we
2381 * must flush the TLB.
2383 if (cpreg_field_is_64bit(ri
)) {
2384 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2386 tlb_flush(CPU(cpu
), 1);
2388 raw_write(env
, ri
, value
);
2391 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2394 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2395 CPUState
*cs
= CPU(cpu
);
2397 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2398 if (raw_read(env
, ri
) != value
) {
2399 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2400 ARMMMUIdx_S2NS
, -1);
2401 raw_write(env
, ri
, value
);
2405 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2406 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2407 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2408 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2409 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2410 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2411 .access
= PL1_RW
, .resetvalue
= 0,
2412 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2413 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2414 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2415 .access
= PL1_RW
, .resetvalue
= 0,
2416 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2417 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2418 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2419 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2420 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2425 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2426 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2427 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2429 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2430 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2431 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2432 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2433 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2434 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2435 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2436 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2437 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2438 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2439 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2440 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2441 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2442 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2443 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2444 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2445 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2446 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2447 .raw_writefn
= vmsa_ttbcr_raw_write
,
2448 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2449 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2453 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2456 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2457 /* The OS_TYPE bit in this register changes the reported CPUID! */
2458 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2459 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2462 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2465 env
->cp15
.c15_threadid
= value
& 0xffff;
2468 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2471 /* Wait-for-interrupt (deprecated) */
2472 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2475 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2478 /* On OMAP there are registers indicating the max/min index of dcache lines
2479 * containing a dirty line; cache flush operations have to reset these.
2481 env
->cp15
.c15_i_max
= 0x000;
2482 env
->cp15
.c15_i_min
= 0xff0;
2485 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2486 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2487 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2488 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2490 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2491 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2492 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2494 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2495 .writefn
= omap_ticonfig_write
},
2496 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2498 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2499 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2500 .access
= PL1_RW
, .resetvalue
= 0xff0,
2501 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2502 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2504 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2505 .writefn
= omap_threadid_write
},
2506 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2507 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2508 .type
= ARM_CP_NO_RAW
,
2509 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2510 /* TODO: Peripheral port remap register:
2511 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2512 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2515 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2516 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2517 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2518 .writefn
= omap_cachemaint_write
},
2519 { .name
= "C9", .cp
= 15, .crn
= 9,
2520 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2521 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2525 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2528 env
->cp15
.c15_cpar
= value
& 0x3fff;
2531 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2532 { .name
= "XSCALE_CPAR",
2533 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2534 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2535 .writefn
= xscale_cpar_write
, },
2536 { .name
= "XSCALE_AUXCR",
2537 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2538 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2540 /* XScale specific cache-lockdown: since we have no cache we NOP these
2541 * and hope the guest does not really rely on cache behaviour.
2543 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2544 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2545 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2546 { .name
= "XSCALE_UNLOCK_ICACHE",
2547 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2548 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2549 { .name
= "XSCALE_DCACHE_LOCK",
2550 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2551 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2552 { .name
= "XSCALE_UNLOCK_DCACHE",
2553 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2554 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2558 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2559 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2560 * implementation of this implementation-defined space.
2561 * Ideally this should eventually disappear in favour of actually
2562 * implementing the correct behaviour for all cores.
2564 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2565 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2567 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2572 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2573 /* Cache status: RAZ because we have no cache so it's always clean */
2574 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2575 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2580 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2581 /* We never have a a block transfer operation in progress */
2582 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2583 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2585 /* The cache ops themselves: these all NOP for QEMU */
2586 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2587 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2588 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2589 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2590 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2591 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2592 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2593 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2594 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2595 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2596 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2597 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2601 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2602 /* The cache test-and-clean instructions always return (1 << 30)
2603 * to indicate that there are no dirty cache lines.
2605 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2606 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2607 .resetvalue
= (1 << 30) },
2608 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2609 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2610 .resetvalue
= (1 << 30) },
2614 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2615 /* Ignore ReadBuffer accesses */
2616 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2617 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2618 .access
= PL1_RW
, .resetvalue
= 0,
2619 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2623 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2625 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2626 unsigned int cur_el
= arm_current_el(env
);
2627 bool secure
= arm_is_secure(env
);
2629 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2630 return env
->cp15
.vpidr_el2
;
2632 return raw_read(env
, ri
);
2635 static uint64_t mpidr_read_val(CPUARMState
*env
)
2637 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2638 uint64_t mpidr
= cpu
->mp_affinity
;
2640 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2641 mpidr
|= (1U << 31);
2642 /* Cores which are uniprocessor (non-coherent)
2643 * but still implement the MP extensions set
2644 * bit 30. (For instance, Cortex-R5).
2646 if (cpu
->mp_is_up
) {
2647 mpidr
|= (1u << 30);
2653 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2655 unsigned int cur_el
= arm_current_el(env
);
2656 bool secure
= arm_is_secure(env
);
2658 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2659 return env
->cp15
.vmpidr_el2
;
2661 return mpidr_read_val(env
);
2664 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2665 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2666 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2667 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2671 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2673 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2674 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2675 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2677 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2678 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2679 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2681 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2682 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2683 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2684 offsetof(CPUARMState
, cp15
.par_ns
)} },
2685 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2686 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2687 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2688 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2689 .writefn
= vmsa_ttbr_write
, },
2690 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2691 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2692 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2693 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2694 .writefn
= vmsa_ttbr_write
, },
2698 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2700 return vfp_get_fpcr(env
);
2703 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2706 vfp_set_fpcr(env
, value
);
2709 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2711 return vfp_get_fpsr(env
);
2714 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2717 vfp_set_fpsr(env
, value
);
2720 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2723 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2724 return CP_ACCESS_TRAP
;
2726 return CP_ACCESS_OK
;
2729 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2732 env
->daif
= value
& PSTATE_DAIF
;
2735 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2736 const ARMCPRegInfo
*ri
,
2739 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2740 * SCTLR_EL1.UCI is set.
2742 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2743 return CP_ACCESS_TRAP
;
2745 return CP_ACCESS_OK
;
2748 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2749 * Page D4-1736 (DDI0487A.b)
2752 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2755 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2756 CPUState
*cs
= CPU(cpu
);
2758 if (arm_is_secure_below_el3(env
)) {
2759 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2761 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2765 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2768 bool sec
= arm_is_secure_below_el3(env
);
2771 CPU_FOREACH(other_cs
) {
2773 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2775 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2776 ARMMMUIdx_S12NSE0
, -1);
2781 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2784 /* Note that the 'ALL' scope must invalidate both stage 1 and
2785 * stage 2 translations, whereas most other scopes only invalidate
2786 * stage 1 translations.
2788 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2789 CPUState
*cs
= CPU(cpu
);
2791 if (arm_is_secure_below_el3(env
)) {
2792 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2794 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2795 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2796 ARMMMUIdx_S2NS
, -1);
2798 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2803 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2806 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2807 CPUState
*cs
= CPU(cpu
);
2809 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2812 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2815 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2816 CPUState
*cs
= CPU(cpu
);
2818 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2821 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2824 /* Note that the 'ALL' scope must invalidate both stage 1 and
2825 * stage 2 translations, whereas most other scopes only invalidate
2826 * stage 1 translations.
2828 bool sec
= arm_is_secure_below_el3(env
);
2829 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2832 CPU_FOREACH(other_cs
) {
2834 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2835 } else if (has_el2
) {
2836 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2837 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2839 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2840 ARMMMUIdx_S12NSE0
, -1);
2845 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2850 CPU_FOREACH(other_cs
) {
2851 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2855 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2860 CPU_FOREACH(other_cs
) {
2861 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2865 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2868 /* Invalidate by VA, EL1&0 (AArch64 version).
2869 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2870 * since we don't support flush-for-specific-ASID-only or
2871 * flush-last-level-only.
2873 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2874 CPUState
*cs
= CPU(cpu
);
2875 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2877 if (arm_is_secure_below_el3(env
)) {
2878 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2879 ARMMMUIdx_S1SE0
, -1);
2881 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2882 ARMMMUIdx_S12NSE0
, -1);
2886 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2889 /* Invalidate by VA, EL2
2890 * Currently handles both VAE2 and VALE2, since we don't support
2891 * flush-last-level-only.
2893 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2894 CPUState
*cs
= CPU(cpu
);
2895 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2897 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2900 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2903 /* Invalidate by VA, EL3
2904 * Currently handles both VAE3 and VALE3, since we don't support
2905 * flush-last-level-only.
2907 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2908 CPUState
*cs
= CPU(cpu
);
2909 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2911 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2914 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2917 bool sec
= arm_is_secure_below_el3(env
);
2919 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2921 CPU_FOREACH(other_cs
) {
2923 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2924 ARMMMUIdx_S1SE0
, -1);
2926 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2927 ARMMMUIdx_S12NSE0
, -1);
2932 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2936 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2938 CPU_FOREACH(other_cs
) {
2939 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2943 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2947 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2949 CPU_FOREACH(other_cs
) {
2950 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2954 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2957 /* Invalidate by IPA. This has to invalidate any structures that
2958 * contain only stage 2 translation information, but does not need
2959 * to apply to structures that contain combined stage 1 and stage 2
2960 * translation information.
2961 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2963 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2964 CPUState
*cs
= CPU(cpu
);
2967 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2971 pageaddr
= sextract64(value
<< 12, 0, 48);
2973 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2976 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2982 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2986 pageaddr
= sextract64(value
<< 12, 0, 48);
2988 CPU_FOREACH(other_cs
) {
2989 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2993 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2996 /* We don't implement EL2, so the only control on DC ZVA is the
2997 * bit in the SCTLR which can prohibit access for EL0.
2999 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
3000 return CP_ACCESS_TRAP
;
3002 return CP_ACCESS_OK
;
3005 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3007 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3008 int dzp_bit
= 1 << 4;
3010 /* DZP indicates whether DC ZVA access is allowed */
3011 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
3014 return cpu
->dcz_blocksize
| dzp_bit
;
3017 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3020 if (!(env
->pstate
& PSTATE_SP
)) {
3021 /* Access to SP_EL0 is undefined if it's being used as
3022 * the stack pointer.
3024 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3026 return CP_ACCESS_OK
;
3029 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3031 return env
->pstate
& PSTATE_SP
;
3034 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
3036 update_spsel(env
, val
);
3039 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3042 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3044 if (raw_read(env
, ri
) == value
) {
3045 /* Skip the TLB flush if nothing actually changed; Linux likes
3046 * to do a lot of pointless SCTLR writes.
3051 raw_write(env
, ri
, value
);
3052 /* ??? Lots of these bits are not implemented. */
3053 /* This may enable/disable the MMU, so do a TLB flush. */
3054 tlb_flush(CPU(cpu
), 1);
3057 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3060 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
3061 return CP_ACCESS_TRAP_FP_EL2
;
3063 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
3064 return CP_ACCESS_TRAP_FP_EL3
;
3066 return CP_ACCESS_OK
;
3069 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3072 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
3075 static const ARMCPRegInfo v8_cp_reginfo
[] = {
3076 /* Minimal set of EL0-visible registers. This will need to be expanded
3077 * significantly for system emulation of AArch64 CPUs.
3079 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
3080 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
3081 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
3082 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
3083 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
3084 .type
= ARM_CP_NO_RAW
,
3085 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
3086 .fieldoffset
= offsetof(CPUARMState
, daif
),
3087 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
3088 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
3089 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
3090 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
3091 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
3092 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
3093 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
3094 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
3095 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
3096 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
3097 .readfn
= aa64_dczid_read
},
3098 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
3099 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
3100 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
3101 #ifndef CONFIG_USER_ONLY
3102 /* Avoid overhead of an access check that always passes in user-mode */
3103 .accessfn
= aa64_zva_access
,
3106 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
3107 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
3108 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
3109 /* Cache ops: all NOPs since we don't emulate caches */
3110 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
3111 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3112 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3113 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
3114 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3115 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3116 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
3117 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
3118 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3119 .accessfn
= aa64_cacheop_access
},
3120 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
3121 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3122 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3123 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
3124 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3125 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3126 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
3127 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
3128 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3129 .accessfn
= aa64_cacheop_access
},
3130 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
3131 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3132 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3133 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
3134 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
3135 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3136 .accessfn
= aa64_cacheop_access
},
3137 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
3138 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
3139 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3140 .accessfn
= aa64_cacheop_access
},
3141 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
3142 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3143 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3144 /* TLBI operations */
3145 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
3146 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
3147 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3148 .writefn
= tlbi_aa64_vmalle1is_write
},
3149 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
3150 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
3151 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3152 .writefn
= tlbi_aa64_vae1is_write
},
3153 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
3154 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
3155 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3156 .writefn
= tlbi_aa64_vmalle1is_write
},
3157 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
3158 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
3159 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3160 .writefn
= tlbi_aa64_vae1is_write
},
3161 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
3162 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3163 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3164 .writefn
= tlbi_aa64_vae1is_write
},
3165 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
3166 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3167 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3168 .writefn
= tlbi_aa64_vae1is_write
},
3169 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
3170 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
3171 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3172 .writefn
= tlbi_aa64_vmalle1_write
},
3173 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
3174 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
3175 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3176 .writefn
= tlbi_aa64_vae1_write
},
3177 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
3178 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
3179 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3180 .writefn
= tlbi_aa64_vmalle1_write
},
3181 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
3182 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
3183 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3184 .writefn
= tlbi_aa64_vae1_write
},
3185 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
3186 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3187 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3188 .writefn
= tlbi_aa64_vae1_write
},
3189 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
3190 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3191 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3192 .writefn
= tlbi_aa64_vae1_write
},
3193 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3194 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3195 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3196 .writefn
= tlbi_aa64_ipas2e1is_write
},
3197 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3198 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3199 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3200 .writefn
= tlbi_aa64_ipas2e1is_write
},
3201 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3202 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3203 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3204 .writefn
= tlbi_aa64_alle1is_write
},
3205 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3206 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3207 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3208 .writefn
= tlbi_aa64_alle1is_write
},
3209 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3210 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3211 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3212 .writefn
= tlbi_aa64_ipas2e1_write
},
3213 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3214 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3215 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3216 .writefn
= tlbi_aa64_ipas2e1_write
},
3217 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3218 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3219 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3220 .writefn
= tlbi_aa64_alle1_write
},
3221 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3222 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3223 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3224 .writefn
= tlbi_aa64_alle1is_write
},
3225 #ifndef CONFIG_USER_ONLY
3226 /* 64 bit address translation operations */
3227 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3228 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3229 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3230 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3231 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3232 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3233 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3234 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3235 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3236 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3237 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3238 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3239 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3240 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3241 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3242 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3243 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3244 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3245 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3246 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3247 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3248 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3249 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3250 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3251 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3252 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3253 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3254 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3255 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3256 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3257 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3258 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3259 .type
= ARM_CP_ALIAS
,
3260 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3261 .access
= PL1_RW
, .resetvalue
= 0,
3262 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3263 .writefn
= par_write
},
3265 /* TLB invalidate last level of translation table walk */
3266 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3267 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3268 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3269 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3270 .writefn
= tlbimvaa_is_write
},
3271 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3272 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3273 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3274 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3275 /* 32 bit cache operations */
3276 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3277 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3278 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3279 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3280 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3281 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3282 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3283 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3284 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3285 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3286 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3287 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3288 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3289 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3290 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3291 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3292 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3293 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3294 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3295 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3296 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3297 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3298 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3299 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3300 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3301 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3302 /* MMU Domain access control / MPU write buffer control */
3303 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3304 .access
= PL1_RW
, .resetvalue
= 0,
3305 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3306 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3307 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3308 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3309 .type
= ARM_CP_ALIAS
,
3310 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3312 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3313 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3314 .type
= ARM_CP_ALIAS
,
3315 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3317 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
3318 /* We rely on the access checks not allowing the guest to write to the
3319 * state field when SPSel indicates that it's being used as the stack
3322 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3323 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3324 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3325 .type
= ARM_CP_ALIAS
,
3326 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3327 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3328 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3329 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3330 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3331 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3332 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3333 .type
= ARM_CP_NO_RAW
,
3334 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3335 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
3336 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
3337 .type
= ARM_CP_ALIAS
,
3338 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
3339 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
3340 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3341 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3342 .access
= PL2_RW
, .resetvalue
= 0,
3343 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3344 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3345 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3346 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3347 .access
= PL2_RW
, .resetvalue
= 0,
3348 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3349 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
3350 .type
= ARM_CP_ALIAS
,
3351 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
3353 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
3354 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
3355 .type
= ARM_CP_ALIAS
,
3356 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
3358 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
3359 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
3360 .type
= ARM_CP_ALIAS
,
3361 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
3363 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
3364 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
3365 .type
= ARM_CP_ALIAS
,
3366 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
3368 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
3369 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
3370 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
3372 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
3373 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
3374 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
3375 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3376 .writefn
= sdcr_write
,
3377 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
3381 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3382 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3383 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3384 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3386 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3387 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3388 .type
= ARM_CP_NO_RAW
,
3389 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3391 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3392 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3393 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3394 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3395 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3396 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3397 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3399 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3400 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3401 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3402 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3403 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3404 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3406 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3407 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3408 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3410 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3411 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3412 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3414 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3415 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3416 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3418 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3419 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3420 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3421 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3422 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3423 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3424 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3425 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3426 .cp
= 15, .opc1
= 6, .crm
= 2,
3427 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3428 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3429 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3430 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3431 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3432 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3433 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3434 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3435 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3436 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3437 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3438 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3439 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3440 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3441 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3442 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3444 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3445 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3446 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3447 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3448 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3449 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3450 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3451 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3453 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3454 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3455 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3456 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3457 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3459 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3460 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3461 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3462 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3463 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3464 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3465 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3466 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3467 .access
= PL2_RW
, .accessfn
= access_tda
,
3468 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3469 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3470 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3471 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3472 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3476 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3478 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3479 uint64_t valid_mask
= HCR_MASK
;
3481 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3482 valid_mask
&= ~HCR_HCD
;
3484 valid_mask
&= ~HCR_TSC
;
3487 /* Clear RES0 bits. */
3488 value
&= valid_mask
;
3490 /* These bits change the MMU setup:
3491 * HCR_VM enables stage 2 translation
3492 * HCR_PTW forbids certain page-table setups
3493 * HCR_DC Disables stage1 and enables stage2 translation
3495 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3496 tlb_flush(CPU(cpu
), 1);
3498 raw_write(env
, ri
, value
);
3501 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3502 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3503 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3504 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3505 .writefn
= hcr_write
},
3506 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3507 .type
= ARM_CP_ALIAS
,
3508 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3510 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3511 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3512 .type
= ARM_CP_ALIAS
,
3513 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3514 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3515 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3516 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3517 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3518 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3519 .type
= ARM_CP_ALIAS
,
3520 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3522 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
3523 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3524 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3525 .access
= PL2_RW
, .writefn
= vbar_write
,
3526 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3528 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3529 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3530 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3531 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3532 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3533 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3534 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3535 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3536 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3537 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3538 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3540 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3541 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3542 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3543 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3544 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3545 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3546 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3548 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3549 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3550 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3551 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3553 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3554 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3555 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3557 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3558 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3559 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3561 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3562 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3563 .access
= PL2_RW
, .writefn
= vmsa_tcr_el1_write
,
3564 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3565 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3566 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3567 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3568 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3569 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3570 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3571 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3572 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3573 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3574 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3575 .cp
= 15, .opc1
= 6, .crm
= 2,
3576 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3577 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3578 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3579 .writefn
= vttbr_write
},
3580 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3581 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3582 .access
= PL2_RW
, .writefn
= vttbr_write
,
3583 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3584 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3585 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3586 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3587 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3588 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3589 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3590 .access
= PL2_RW
, .resetvalue
= 0,
3591 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3592 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3593 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3594 .access
= PL2_RW
, .resetvalue
= 0,
3595 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3596 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3597 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3598 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3599 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3600 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3601 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3602 .writefn
= tlbi_aa64_alle2_write
},
3603 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3604 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3605 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3606 .writefn
= tlbi_aa64_vae2_write
},
3607 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3608 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3609 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3610 .writefn
= tlbi_aa64_vae2_write
},
3611 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3612 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3613 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3614 .writefn
= tlbi_aa64_alle2is_write
},
3615 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3616 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3617 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3618 .writefn
= tlbi_aa64_vae2is_write
},
3619 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3620 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3621 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3622 .writefn
= tlbi_aa64_vae2is_write
},
3623 #ifndef CONFIG_USER_ONLY
3624 /* Unlike the other EL2-related AT operations, these must
3625 * UNDEF from EL3 if EL2 is not implemented, which is why we
3626 * define them here rather than with the rest of the AT ops.
3628 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3629 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3630 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3631 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3632 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3633 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3634 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3635 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3636 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3637 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3638 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3639 * to behave as if SCR.NS was 1.
3641 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3643 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3644 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3646 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3647 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3648 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3649 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3650 * reset values as IMPDEF. We choose to reset to 3 to comply with
3651 * both ARMv7 and ARMv8.
3653 .access
= PL2_RW
, .resetvalue
= 3,
3654 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3655 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3656 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3657 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3658 .writefn
= gt_cntvoff_write
,
3659 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3660 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3661 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3662 .writefn
= gt_cntvoff_write
,
3663 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3664 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3665 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3666 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3667 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3668 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3669 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3670 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3671 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3672 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3673 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3674 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3675 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
3676 .resetfn
= gt_hyp_timer_reset
,
3677 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3678 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3680 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3682 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3684 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3686 /* The only field of MDCR_EL2 that has a defined architectural reset value
3687 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3688 * don't impelment any PMU event counters, so using zero as a reset
3689 * value for MDCR_EL2 is okay
3691 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3692 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3693 .access
= PL2_RW
, .resetvalue
= 0,
3694 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
3695 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
3696 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3697 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3698 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3699 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
3700 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3702 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3706 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3709 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3710 * At Secure EL1 it traps to EL3.
3712 if (arm_current_el(env
) == 3) {
3713 return CP_ACCESS_OK
;
3715 if (arm_is_secure_below_el3(env
)) {
3716 return CP_ACCESS_TRAP_EL3
;
3718 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3720 return CP_ACCESS_OK
;
3722 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3725 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3726 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3727 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3728 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3729 .resetvalue
= 0, .writefn
= scr_write
},
3730 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3731 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3732 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3733 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3734 .writefn
= scr_write
},
3735 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3736 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3737 .access
= PL3_RW
, .resetvalue
= 0,
3738 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3740 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3741 .access
= PL3_RW
, .resetvalue
= 0,
3742 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3743 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3744 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3745 .writefn
= vbar_write
, .resetvalue
= 0,
3746 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3747 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
3748 .type
= ARM_CP_ALIAS
, /* reset handled by AArch32 view */
3749 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
3750 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3751 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
3752 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3753 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3754 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3755 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3756 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3757 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3758 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
3759 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3760 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3761 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3762 .type
= ARM_CP_ALIAS
,
3763 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3765 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3766 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3767 .type
= ARM_CP_ALIAS
,
3768 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3769 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3770 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3771 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3772 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3773 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3774 .type
= ARM_CP_ALIAS
,
3775 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3777 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
3778 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3779 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3780 .access
= PL3_RW
, .writefn
= vbar_write
,
3781 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3783 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3784 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3785 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3786 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3787 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3788 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3789 .access
= PL3_RW
, .resetvalue
= 0,
3790 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3791 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3792 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3793 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3795 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3796 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3797 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3799 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3800 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3801 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3803 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3804 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3805 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3806 .writefn
= tlbi_aa64_alle3is_write
},
3807 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3808 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3809 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3810 .writefn
= tlbi_aa64_vae3is_write
},
3811 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3812 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3813 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3814 .writefn
= tlbi_aa64_vae3is_write
},
3815 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3816 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3817 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3818 .writefn
= tlbi_aa64_alle3_write
},
3819 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3820 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3821 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3822 .writefn
= tlbi_aa64_vae3_write
},
3823 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3824 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3825 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3826 .writefn
= tlbi_aa64_vae3_write
},
3830 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3833 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3834 * but the AArch32 CTR has its own reginfo struct)
3836 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3837 return CP_ACCESS_TRAP
;
3839 return CP_ACCESS_OK
;
3842 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3845 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3846 * read via a bit in OSLSR_EL1.
3850 if (ri
->state
== ARM_CP_STATE_AA32
) {
3851 oslock
= (value
== 0xC5ACCE55);
3856 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
3859 static const ARMCPRegInfo debug_cp_reginfo
[] = {
3860 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3861 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3862 * unlike DBGDRAR it is never accessible from EL0.
3863 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3866 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3867 .access
= PL0_R
, .accessfn
= access_tdra
,
3868 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3869 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
3870 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3871 .access
= PL1_R
, .accessfn
= access_tdra
,
3872 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3873 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3874 .access
= PL0_R
, .accessfn
= access_tdra
,
3875 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3876 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3877 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
3878 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3879 .access
= PL1_RW
, .accessfn
= access_tda
,
3880 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
3882 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3883 * We don't implement the configurable EL0 access.
3885 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
3886 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3887 .type
= ARM_CP_ALIAS
,
3888 .access
= PL1_R
, .accessfn
= access_tda
,
3889 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
3890 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
3891 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
3892 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3893 .accessfn
= access_tdosa
,
3894 .writefn
= oslar_write
},
3895 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
3896 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
3897 .access
= PL1_R
, .resetvalue
= 10,
3898 .accessfn
= access_tdosa
,
3899 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
3900 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3901 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3902 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
3903 .access
= PL1_RW
, .accessfn
= access_tdosa
,
3904 .type
= ARM_CP_NOP
},
3905 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3906 * implement vector catch debug events yet.
3909 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3910 .access
= PL1_RW
, .accessfn
= access_tda
,
3911 .type
= ARM_CP_NOP
},
3915 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
3916 /* 64 bit access versions of the (dummy) debug registers */
3917 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
3918 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3919 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
3920 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3924 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
3926 CPUARMState
*env
= &cpu
->env
;
3928 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
3929 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
3931 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
3933 if (env
->cpu_watchpoint
[n
]) {
3934 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
3935 env
->cpu_watchpoint
[n
] = NULL
;
3938 if (!extract64(wcr
, 0, 1)) {
3939 /* E bit clear : watchpoint disabled */
3943 switch (extract64(wcr
, 3, 2)) {
3945 /* LSC 00 is reserved and must behave as if the wp is disabled */
3948 flags
|= BP_MEM_READ
;
3951 flags
|= BP_MEM_WRITE
;
3954 flags
|= BP_MEM_ACCESS
;
3958 /* Attempts to use both MASK and BAS fields simultaneously are
3959 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3960 * thus generating a watchpoint for every byte in the masked region.
3962 mask
= extract64(wcr
, 24, 4);
3963 if (mask
== 1 || mask
== 2) {
3964 /* Reserved values of MASK; we must act as if the mask value was
3965 * some non-reserved value, or as if the watchpoint were disabled.
3966 * We choose the latter.
3970 /* Watchpoint covers an aligned area up to 2GB in size */
3972 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3973 * whether the watchpoint fires when the unmasked bits match; we opt
3974 * to generate the exceptions.
3978 /* Watchpoint covers bytes defined by the byte address select bits */
3979 int bas
= extract64(wcr
, 5, 8);
3983 /* This must act as if the watchpoint is disabled */
3987 if (extract64(wvr
, 2, 1)) {
3988 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3989 * ignored, and BAS[3:0] define which bytes to watch.
3993 /* The BAS bits are supposed to be programmed to indicate a contiguous
3994 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3995 * we fire for each byte in the word/doubleword addressed by the WVR.
3996 * We choose to ignore any non-zero bits after the first range of 1s.
3998 basstart
= ctz32(bas
);
3999 len
= cto32(bas
>> basstart
);
4003 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
4004 &env
->cpu_watchpoint
[n
]);
4007 void hw_watchpoint_update_all(ARMCPU
*cpu
)
4010 CPUARMState
*env
= &cpu
->env
;
4012 /* Completely clear out existing QEMU watchpoints and our array, to
4013 * avoid possible stale entries following migration load.
4015 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
4016 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
4018 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
4019 hw_watchpoint_update(cpu
, i
);
4023 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4026 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4029 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4030 * register reads and behaves as if values written are sign extended.
4031 * Bits [1:0] are RES0.
4033 value
= sextract64(value
, 0, 49) & ~3ULL;
4035 raw_write(env
, ri
, value
);
4036 hw_watchpoint_update(cpu
, i
);
4039 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4042 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4045 raw_write(env
, ri
, value
);
4046 hw_watchpoint_update(cpu
, i
);
4049 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
4051 CPUARMState
*env
= &cpu
->env
;
4052 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
4053 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
4058 if (env
->cpu_breakpoint
[n
]) {
4059 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
4060 env
->cpu_breakpoint
[n
] = NULL
;
4063 if (!extract64(bcr
, 0, 1)) {
4064 /* E bit clear : watchpoint disabled */
4068 bt
= extract64(bcr
, 20, 4);
4071 case 4: /* unlinked address mismatch (reserved if AArch64) */
4072 case 5: /* linked address mismatch (reserved if AArch64) */
4073 qemu_log_mask(LOG_UNIMP
,
4074 "arm: address mismatch breakpoint types not implemented");
4076 case 0: /* unlinked address match */
4077 case 1: /* linked address match */
4079 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4080 * we behave as if the register was sign extended. Bits [1:0] are
4081 * RES0. The BAS field is used to allow setting breakpoints on 16
4082 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4083 * a bp will fire if the addresses covered by the bp and the addresses
4084 * covered by the insn overlap but the insn doesn't start at the
4085 * start of the bp address range. We choose to require the insn and
4086 * the bp to have the same address. The constraints on writing to
4087 * BAS enforced in dbgbcr_write mean we have only four cases:
4088 * 0b0000 => no breakpoint
4089 * 0b0011 => breakpoint on addr
4090 * 0b1100 => breakpoint on addr + 2
4091 * 0b1111 => breakpoint on addr
4092 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4094 int bas
= extract64(bcr
, 5, 4);
4095 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
4104 case 2: /* unlinked context ID match */
4105 case 8: /* unlinked VMID match (reserved if no EL2) */
4106 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4107 qemu_log_mask(LOG_UNIMP
,
4108 "arm: unlinked context breakpoint types not implemented");
4110 case 9: /* linked VMID match (reserved if no EL2) */
4111 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4112 case 3: /* linked context ID match */
4114 /* We must generate no events for Linked context matches (unless
4115 * they are linked to by some other bp/wp, which is handled in
4116 * updates for the linking bp/wp). We choose to also generate no events
4117 * for reserved values.
4122 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
4125 void hw_breakpoint_update_all(ARMCPU
*cpu
)
4128 CPUARMState
*env
= &cpu
->env
;
4130 /* Completely clear out existing QEMU breakpoints and our array, to
4131 * avoid possible stale entries following migration load.
4133 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
4134 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
4136 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
4137 hw_breakpoint_update(cpu
, i
);
4141 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4144 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4147 raw_write(env
, ri
, value
);
4148 hw_breakpoint_update(cpu
, i
);
4151 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4154 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4157 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4160 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
4161 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
4163 raw_write(env
, ri
, value
);
4164 hw_breakpoint_update(cpu
, i
);
4167 static void define_debug_regs(ARMCPU
*cpu
)
4169 /* Define v7 and v8 architectural debug registers.
4170 * These are just dummy implementations for now.
4173 int wrps
, brps
, ctx_cmps
;
4174 ARMCPRegInfo dbgdidr
= {
4175 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
4176 .access
= PL0_R
, .accessfn
= access_tda
,
4177 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
4180 /* Note that all these register fields hold "number of Xs minus 1". */
4181 brps
= extract32(cpu
->dbgdidr
, 24, 4);
4182 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
4183 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
4185 assert(ctx_cmps
<= brps
);
4187 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4188 * of the debug registers such as number of breakpoints;
4189 * check that if they both exist then they agree.
4191 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
4192 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
4193 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
4194 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
4197 define_one_arm_cp_reg(cpu
, &dbgdidr
);
4198 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
4200 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
4201 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
4204 for (i
= 0; i
< brps
+ 1; i
++) {
4205 ARMCPRegInfo dbgregs
[] = {
4206 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
4207 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
4208 .access
= PL1_RW
, .accessfn
= access_tda
,
4209 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
4210 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
4212 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
4213 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
4214 .access
= PL1_RW
, .accessfn
= access_tda
,
4215 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
4216 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
4220 define_arm_cp_regs(cpu
, dbgregs
);
4223 for (i
= 0; i
< wrps
+ 1; i
++) {
4224 ARMCPRegInfo dbgregs
[] = {
4225 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
4226 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
4227 .access
= PL1_RW
, .accessfn
= access_tda
,
4228 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
4229 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
4231 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
4232 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
4233 .access
= PL1_RW
, .accessfn
= access_tda
,
4234 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
4235 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
4239 define_arm_cp_regs(cpu
, dbgregs
);
4243 void register_cp_regs_for_features(ARMCPU
*cpu
)
4245 /* Register all the coprocessor registers based on feature bits */
4246 CPUARMState
*env
= &cpu
->env
;
4247 if (arm_feature(env
, ARM_FEATURE_M
)) {
4248 /* M profile has no coprocessor registers */
4252 define_arm_cp_regs(cpu
, cp_reginfo
);
4253 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
4254 /* Must go early as it is full of wildcards that may be
4255 * overridden by later definitions.
4257 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
4260 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4261 /* The ID registers all have impdef reset values */
4262 ARMCPRegInfo v6_idregs
[] = {
4263 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
4264 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4265 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4266 .resetvalue
= cpu
->id_pfr0
},
4267 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
4268 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
4269 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4270 .resetvalue
= cpu
->id_pfr1
},
4271 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
4272 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
4273 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4274 .resetvalue
= cpu
->id_dfr0
},
4275 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
4276 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
4277 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4278 .resetvalue
= cpu
->id_afr0
},
4279 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
4280 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
4281 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4282 .resetvalue
= cpu
->id_mmfr0
},
4283 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
4284 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
4285 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4286 .resetvalue
= cpu
->id_mmfr1
},
4287 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
4288 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
4289 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4290 .resetvalue
= cpu
->id_mmfr2
},
4291 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
4292 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
4293 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4294 .resetvalue
= cpu
->id_mmfr3
},
4295 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
4296 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4297 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4298 .resetvalue
= cpu
->id_isar0
},
4299 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
4300 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
4301 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4302 .resetvalue
= cpu
->id_isar1
},
4303 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4304 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4305 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4306 .resetvalue
= cpu
->id_isar2
},
4307 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4308 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4309 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4310 .resetvalue
= cpu
->id_isar3
},
4311 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4312 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4313 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4314 .resetvalue
= cpu
->id_isar4
},
4315 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4316 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4317 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4318 .resetvalue
= cpu
->id_isar5
},
4319 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
4320 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
4321 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4322 .resetvalue
= cpu
->id_mmfr4
},
4323 /* 7 is as yet unallocated and must RAZ */
4324 { .name
= "ID_ISAR7_RESERVED", .state
= ARM_CP_STATE_BOTH
,
4325 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
4326 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4330 define_arm_cp_regs(cpu
, v6_idregs
);
4331 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4333 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4335 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4336 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4338 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4339 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4340 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4342 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4343 /* v7 performance monitor control register: same implementor
4344 * field as main ID register, and we implement only the cycle
4347 #ifndef CONFIG_USER_ONLY
4348 ARMCPRegInfo pmcr
= {
4349 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4351 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4352 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4353 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4354 .raw_writefn
= raw_write
,
4356 ARMCPRegInfo pmcr64
= {
4357 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4358 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4359 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4361 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4362 .resetvalue
= cpu
->midr
& 0xff000000,
4363 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4365 define_one_arm_cp_reg(cpu
, &pmcr
);
4366 define_one_arm_cp_reg(cpu
, &pmcr64
);
4368 ARMCPRegInfo clidr
= {
4369 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4370 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4371 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4373 define_one_arm_cp_reg(cpu
, &clidr
);
4374 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4375 define_debug_regs(cpu
);
4377 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4379 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4380 /* AArch64 ID registers, which all have impdef reset values.
4381 * Note that within the ID register ranges the unused slots
4382 * must all RAZ, not UNDEF; future architecture versions may
4383 * define new registers here.
4385 ARMCPRegInfo v8_idregs
[] = {
4386 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4387 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4388 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4389 .resetvalue
= cpu
->id_aa64pfr0
},
4390 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4391 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4392 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4393 .resetvalue
= cpu
->id_aa64pfr1
},
4394 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4395 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
4396 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4398 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4399 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
4400 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4402 { .name
= "ID_AA64PFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4403 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
4404 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4406 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4407 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
4408 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4410 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4411 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
4412 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4414 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4415 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
4416 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4418 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4419 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4420 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4421 /* We mask out the PMUVer field, because we don't currently
4422 * implement the PMU. Not advertising it prevents the guest
4423 * from trying to use it and getting UNDEFs on registers we
4426 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
4427 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4428 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4429 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4430 .resetvalue
= cpu
->id_aa64dfr1
},
4431 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4432 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
4433 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4435 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4436 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
4437 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4439 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4440 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4441 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4442 .resetvalue
= cpu
->id_aa64afr0
},
4443 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4444 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4445 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4446 .resetvalue
= cpu
->id_aa64afr1
},
4447 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4448 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
4449 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4451 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4452 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
4453 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4455 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4456 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4457 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4458 .resetvalue
= cpu
->id_aa64isar0
},
4459 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4460 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4461 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4462 .resetvalue
= cpu
->id_aa64isar1
},
4463 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4464 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
4465 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4467 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4468 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
4469 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4471 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4472 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
4473 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4475 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4476 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
4477 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4479 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4480 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
4481 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4483 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4484 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
4485 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4487 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4488 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4489 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4490 .resetvalue
= cpu
->id_aa64mmfr0
},
4491 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4492 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4493 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4494 .resetvalue
= cpu
->id_aa64mmfr1
},
4495 { .name
= "ID_AA64MMFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4496 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
4497 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4499 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4500 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
4501 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4503 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4504 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
4505 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4507 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4508 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
4509 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4511 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4512 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
4513 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4515 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4516 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
4517 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4519 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4520 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4521 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4522 .resetvalue
= cpu
->mvfr0
},
4523 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4524 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4525 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4526 .resetvalue
= cpu
->mvfr1
},
4527 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4528 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4529 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4530 .resetvalue
= cpu
->mvfr2
},
4531 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4532 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
4533 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4535 { .name
= "MVFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4536 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
4537 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4539 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4540 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
4541 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4543 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4544 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
4545 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4547 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4548 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
4549 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4551 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
4552 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
4553 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4554 .resetvalue
= cpu
->pmceid0
},
4555 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
4556 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
4557 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4558 .resetvalue
= cpu
->pmceid0
},
4559 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
4560 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
4561 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4562 .resetvalue
= cpu
->pmceid1
},
4563 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
4564 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
4565 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4566 .resetvalue
= cpu
->pmceid1
},
4569 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4570 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4571 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4572 ARMCPRegInfo rvbar
= {
4573 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4574 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4575 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4577 define_one_arm_cp_reg(cpu
, &rvbar
);
4579 define_arm_cp_regs(cpu
, v8_idregs
);
4580 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4582 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4583 uint64_t vmpidr_def
= mpidr_read_val(env
);
4584 ARMCPRegInfo vpidr_regs
[] = {
4585 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4586 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4587 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4588 .resetvalue
= cpu
->midr
,
4589 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4590 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4591 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4592 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4593 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4594 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4595 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4596 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4597 .resetvalue
= vmpidr_def
,
4598 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4599 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4600 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4602 .resetvalue
= vmpidr_def
,
4603 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4606 define_arm_cp_regs(cpu
, vpidr_regs
);
4607 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4608 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4609 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4610 ARMCPRegInfo rvbar
= {
4611 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4612 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4613 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4615 define_one_arm_cp_reg(cpu
, &rvbar
);
4618 /* If EL2 is missing but higher ELs are enabled, we need to
4619 * register the no_el2 reginfos.
4621 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4622 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4623 * of MIDR_EL1 and MPIDR_EL1.
4625 ARMCPRegInfo vpidr_regs
[] = {
4626 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4627 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4628 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4629 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4630 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4631 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4632 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4633 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4634 .type
= ARM_CP_NO_RAW
,
4635 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4638 define_arm_cp_regs(cpu
, vpidr_regs
);
4639 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4642 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4643 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4644 ARMCPRegInfo rvbar
= {
4645 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4646 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4647 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
4649 define_one_arm_cp_reg(cpu
, &rvbar
);
4651 /* The behaviour of NSACR is sufficiently various that we don't
4652 * try to describe it in a single reginfo:
4653 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4654 * reads as constant 0xc00 from NS EL1 and NS EL2
4655 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4656 * if v7 without EL3, register doesn't exist
4657 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4659 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4660 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4661 ARMCPRegInfo nsacr
= {
4662 .name
= "NSACR", .type
= ARM_CP_CONST
,
4663 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4664 .access
= PL1_RW
, .accessfn
= nsacr_access
,
4667 define_one_arm_cp_reg(cpu
, &nsacr
);
4669 ARMCPRegInfo nsacr
= {
4671 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4672 .access
= PL3_RW
| PL1_R
,
4674 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
4676 define_one_arm_cp_reg(cpu
, &nsacr
);
4679 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4680 ARMCPRegInfo nsacr
= {
4681 .name
= "NSACR", .type
= ARM_CP_CONST
,
4682 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4686 define_one_arm_cp_reg(cpu
, &nsacr
);
4690 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4691 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4692 /* PMSAv6 not implemented */
4693 assert(arm_feature(env
, ARM_FEATURE_V7
));
4694 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4695 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4697 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4700 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4701 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4703 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4704 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4706 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4707 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4709 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4710 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4712 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4713 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4715 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4716 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4718 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4719 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4721 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4722 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4724 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4725 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4727 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4728 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4730 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4731 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4733 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4734 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4736 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4737 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4738 * be read-only (ie write causes UNDEF exception).
4741 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4742 /* Pre-v8 MIDR space.
4743 * Note that the MIDR isn't a simple constant register because
4744 * of the TI925 behaviour where writes to another register can
4745 * cause the MIDR value to change.
4747 * Unimplemented registers in the c15 0 0 0 space default to
4748 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4749 * and friends override accordingly.
4752 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4753 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4754 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4755 .readfn
= midr_read
,
4756 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4757 .type
= ARM_CP_OVERRIDE
},
4758 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4760 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4761 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4763 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4764 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4766 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4767 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4769 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4770 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4772 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4773 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4776 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4777 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4778 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4779 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4780 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4781 .readfn
= midr_read
},
4782 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4783 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4784 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4785 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4786 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4787 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4788 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4789 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4790 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4791 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4794 ARMCPRegInfo id_cp_reginfo
[] = {
4795 /* These are common to v8 and pre-v8 */
4797 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4798 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4799 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4800 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4801 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4802 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4803 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4805 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4806 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4809 /* TLBTR is specific to VMSA */
4810 ARMCPRegInfo id_tlbtr_reginfo
= {
4812 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4813 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4815 /* MPUIR is specific to PMSA V6+ */
4816 ARMCPRegInfo id_mpuir_reginfo
= {
4818 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4819 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4820 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4822 ARMCPRegInfo crn0_wi_reginfo
= {
4823 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4824 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4825 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4827 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4828 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4830 /* Register the blanket "writes ignored" value first to cover the
4831 * whole space. Then update the specific ID registers to allow write
4832 * access, so that they ignore writes rather than causing them to
4835 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4836 for (r
= id_pre_v8_midr_cp_reginfo
;
4837 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4840 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4843 id_tlbtr_reginfo
.access
= PL1_RW
;
4844 id_tlbtr_reginfo
.access
= PL1_RW
;
4846 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4847 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
4849 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
4851 define_arm_cp_regs(cpu
, id_cp_reginfo
);
4852 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
4853 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
4854 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
4855 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
4859 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
4860 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
4863 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
4864 ARMCPRegInfo auxcr_reginfo
[] = {
4865 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4866 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
4867 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
4868 .resetvalue
= cpu
->reset_auxcr
},
4869 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4870 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
4871 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4873 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4874 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
4875 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4879 define_arm_cp_regs(cpu
, auxcr_reginfo
);
4882 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
4883 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4884 /* 32 bit view is [31:18] 0...0 [43:32]. */
4885 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
4886 | extract64(cpu
->reset_cbar
, 32, 12);
4887 ARMCPRegInfo cbar_reginfo
[] = {
4889 .type
= ARM_CP_CONST
,
4890 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4891 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
4892 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4893 .type
= ARM_CP_CONST
,
4894 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
4895 .access
= PL1_R
, .resetvalue
= cbar32
},
4898 /* We don't implement a r/w 64 bit CBAR currently */
4899 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
4900 define_arm_cp_regs(cpu
, cbar_reginfo
);
4902 ARMCPRegInfo cbar
= {
4904 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4905 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
4906 .fieldoffset
= offsetof(CPUARMState
,
4907 cp15
.c15_config_base_address
)
4909 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
4910 cbar
.access
= PL1_R
;
4911 cbar
.fieldoffset
= 0;
4912 cbar
.type
= ARM_CP_CONST
;
4914 define_one_arm_cp_reg(cpu
, &cbar
);
4918 /* Generic registers whose values depend on the implementation */
4920 ARMCPRegInfo sctlr
= {
4921 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
4922 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4924 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
4925 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
4926 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
4927 .raw_writefn
= raw_write
,
4929 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4930 /* Normally we would always end the TB on an SCTLR write, but Linux
4931 * arch/arm/mach-pxa/sleep.S expects two instructions following
4932 * an MMU enable to execute from cache. Imitate this behaviour.
4934 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
4936 define_one_arm_cp_reg(cpu
, &sctlr
);
4940 ARMCPU
*cpu_arm_init(const char *cpu_model
)
4942 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
4945 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
4947 CPUState
*cs
= CPU(cpu
);
4948 CPUARMState
*env
= &cpu
->env
;
4950 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4951 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
4952 aarch64_fpu_gdb_set_reg
,
4953 34, "aarch64-fpu.xml", 0);
4954 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
4955 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4956 51, "arm-neon.xml", 0);
4957 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
4958 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4959 35, "arm-vfp3.xml", 0);
4960 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
4961 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4962 19, "arm-vfp.xml", 0);
4966 /* Sort alphabetically by type name, except for "any". */
4967 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
4969 ObjectClass
*class_a
= (ObjectClass
*)a
;
4970 ObjectClass
*class_b
= (ObjectClass
*)b
;
4971 const char *name_a
, *name_b
;
4973 name_a
= object_class_get_name(class_a
);
4974 name_b
= object_class_get_name(class_b
);
4975 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
4977 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
4980 return strcmp(name_a
, name_b
);
4984 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
4986 ObjectClass
*oc
= data
;
4987 CPUListState
*s
= user_data
;
4988 const char *typename
;
4991 typename
= object_class_get_name(oc
);
4992 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4993 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
4998 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
5002 .cpu_fprintf
= cpu_fprintf
,
5006 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5007 list
= g_slist_sort(list
, arm_cpu_list_compare
);
5008 (*cpu_fprintf
)(f
, "Available CPUs:\n");
5009 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
5012 /* The 'host' CPU type is dynamically registered only if KVM is
5013 * enabled, so we have to special-case it here:
5015 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
5019 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
5021 ObjectClass
*oc
= data
;
5022 CpuDefinitionInfoList
**cpu_list
= user_data
;
5023 CpuDefinitionInfoList
*entry
;
5024 CpuDefinitionInfo
*info
;
5025 const char *typename
;
5027 typename
= object_class_get_name(oc
);
5028 info
= g_malloc0(sizeof(*info
));
5029 info
->name
= g_strndup(typename
,
5030 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5032 entry
= g_malloc0(sizeof(*entry
));
5033 entry
->value
= info
;
5034 entry
->next
= *cpu_list
;
5038 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
5040 CpuDefinitionInfoList
*cpu_list
= NULL
;
5043 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5044 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
5050 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
5051 void *opaque
, int state
, int secstate
,
5052 int crm
, int opc1
, int opc2
)
5054 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5055 * add a single reginfo struct to the hash table.
5057 uint32_t *key
= g_new(uint32_t, 1);
5058 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
5059 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
5060 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
5062 /* Reset the secure state to the specific incoming state. This is
5063 * necessary as the register may have been defined with both states.
5065 r2
->secure
= secstate
;
5067 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5068 /* Register is banked (using both entries in array).
5069 * Overwriting fieldoffset as the array is only used to define
5070 * banked registers but later only fieldoffset is used.
5072 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
5075 if (state
== ARM_CP_STATE_AA32
) {
5076 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5077 /* If the register is banked then we don't need to migrate or
5078 * reset the 32-bit instance in certain cases:
5080 * 1) If the register has both 32-bit and 64-bit instances then we
5081 * can count on the 64-bit instance taking care of the
5083 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5084 * taking care of the secure bank. This requires that separate
5085 * 32 and 64-bit definitions are provided.
5087 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
5088 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
5089 r2
->type
|= ARM_CP_ALIAS
;
5091 } else if ((secstate
!= r
->secure
) && !ns
) {
5092 /* The register is not banked so we only want to allow migration of
5093 * the non-secure instance.
5095 r2
->type
|= ARM_CP_ALIAS
;
5098 if (r
->state
== ARM_CP_STATE_BOTH
) {
5099 /* We assume it is a cp15 register if the .cp field is left unset.
5105 #ifdef HOST_WORDS_BIGENDIAN
5106 if (r2
->fieldoffset
) {
5107 r2
->fieldoffset
+= sizeof(uint32_t);
5112 if (state
== ARM_CP_STATE_AA64
) {
5113 /* To allow abbreviation of ARMCPRegInfo
5114 * definitions, we treat cp == 0 as equivalent to
5115 * the value for "standard guest-visible sysreg".
5116 * STATE_BOTH definitions are also always "standard
5117 * sysreg" in their AArch64 view (the .cp value may
5118 * be non-zero for the benefit of the AArch32 view).
5120 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
5121 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
5123 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
5124 r2
->opc0
, opc1
, opc2
);
5126 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
5129 r2
->opaque
= opaque
;
5131 /* reginfo passed to helpers is correct for the actual access,
5132 * and is never ARM_CP_STATE_BOTH:
5135 /* Make sure reginfo passed to helpers for wildcarded regs
5136 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5141 /* By convention, for wildcarded registers only the first
5142 * entry is used for migration; the others are marked as
5143 * ALIAS so we don't try to transfer the register
5144 * multiple times. Special registers (ie NOP/WFI) are
5145 * never migratable and not even raw-accessible.
5147 if ((r
->type
& ARM_CP_SPECIAL
)) {
5148 r2
->type
|= ARM_CP_NO_RAW
;
5150 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
5151 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
5152 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
5153 r2
->type
|= ARM_CP_ALIAS
;
5156 /* Check that raw accesses are either forbidden or handled. Note that
5157 * we can't assert this earlier because the setup of fieldoffset for
5158 * banked registers has to be done first.
5160 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
5161 assert(!raw_accessors_invalid(r2
));
5164 /* Overriding of an existing definition must be explicitly
5167 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
5168 ARMCPRegInfo
*oldreg
;
5169 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
5170 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
5171 fprintf(stderr
, "Register redefined: cp=%d %d bit "
5172 "crn=%d crm=%d opc1=%d opc2=%d, "
5173 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
5174 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
5175 oldreg
->name
, r2
->name
);
5176 g_assert_not_reached();
5179 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
5183 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
5184 const ARMCPRegInfo
*r
, void *opaque
)
5186 /* Define implementations of coprocessor registers.
5187 * We store these in a hashtable because typically
5188 * there are less than 150 registers in a space which
5189 * is 16*16*16*8*8 = 262144 in size.
5190 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5191 * If a register is defined twice then the second definition is
5192 * used, so this can be used to define some generic registers and
5193 * then override them with implementation specific variations.
5194 * At least one of the original and the second definition should
5195 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5196 * against accidental use.
5198 * The state field defines whether the register is to be
5199 * visible in the AArch32 or AArch64 execution state. If the
5200 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5201 * reginfo structure for the AArch32 view, which sees the lower
5202 * 32 bits of the 64 bit register.
5204 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5205 * be wildcarded. AArch64 registers are always considered to be 64
5206 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5207 * the register, if any.
5209 int crm
, opc1
, opc2
, state
;
5210 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
5211 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
5212 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
5213 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
5214 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
5215 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
5216 /* 64 bit registers have only CRm and Opc1 fields */
5217 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
5218 /* op0 only exists in the AArch64 encodings */
5219 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
5220 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5221 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
5222 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5223 * encodes a minimum access level for the register. We roll this
5224 * runtime check into our general permission check code, so check
5225 * here that the reginfo's specified permissions are strict enough
5226 * to encompass the generic architectural permission check.
5228 if (r
->state
!= ARM_CP_STATE_AA32
) {
5231 case 0: case 1: case 2:
5244 /* unallocated encoding, so not possible */
5252 /* min_EL EL1, secure mode only (we don't check the latter) */
5256 /* broken reginfo with out-of-range opc1 */
5260 /* assert our permissions are not too lax (stricter is fine) */
5261 assert((r
->access
& ~mask
) == 0);
5264 /* Check that the register definition has enough info to handle
5265 * reads and writes if they are permitted.
5267 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
5268 if (r
->access
& PL3_R
) {
5269 assert((r
->fieldoffset
||
5270 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5273 if (r
->access
& PL3_W
) {
5274 assert((r
->fieldoffset
||
5275 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5279 /* Bad type field probably means missing sentinel at end of reg list */
5280 assert(cptype_valid(r
->type
));
5281 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
5282 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
5283 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
5284 for (state
= ARM_CP_STATE_AA32
;
5285 state
<= ARM_CP_STATE_AA64
; state
++) {
5286 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
5289 if (state
== ARM_CP_STATE_AA32
) {
5290 /* Under AArch32 CP registers can be common
5291 * (same for secure and non-secure world) or banked.
5293 switch (r
->secure
) {
5294 case ARM_CP_SECSTATE_S
:
5295 case ARM_CP_SECSTATE_NS
:
5296 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5297 r
->secure
, crm
, opc1
, opc2
);
5300 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5303 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5309 /* AArch64 registers get mapped to non-secure instance
5311 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5321 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
5322 const ARMCPRegInfo
*regs
, void *opaque
)
5324 /* Define a whole list of registers */
5325 const ARMCPRegInfo
*r
;
5326 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
5327 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
5331 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
5333 return g_hash_table_lookup(cpregs
, &encoded_cp
);
5336 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5339 /* Helper coprocessor write function for write-ignore registers */
5342 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5344 /* Helper coprocessor write function for read-as-zero registers */
5348 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
5350 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5353 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
5355 /* Return true if it is not valid for us to switch to
5356 * this CPU mode (ie all the UNPREDICTABLE cases in
5357 * the ARM ARM CPSRWriteByInstr pseudocode).
5360 /* Changes to or from Hyp via MSR and CPS are illegal. */
5361 if (write_type
== CPSRWriteByInstr
&&
5362 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
5363 mode
== ARM_CPU_MODE_HYP
)) {
5368 case ARM_CPU_MODE_USR
:
5370 case ARM_CPU_MODE_SYS
:
5371 case ARM_CPU_MODE_SVC
:
5372 case ARM_CPU_MODE_ABT
:
5373 case ARM_CPU_MODE_UND
:
5374 case ARM_CPU_MODE_IRQ
:
5375 case ARM_CPU_MODE_FIQ
:
5376 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5377 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5379 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5380 * and CPS are treated as illegal mode changes.
5382 if (write_type
== CPSRWriteByInstr
&&
5383 (env
->cp15
.hcr_el2
& HCR_TGE
) &&
5384 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
5385 !arm_is_secure_below_el3(env
)) {
5389 case ARM_CPU_MODE_HYP
:
5390 return !arm_feature(env
, ARM_FEATURE_EL2
)
5391 || arm_current_el(env
) < 2 || arm_is_secure(env
);
5392 case ARM_CPU_MODE_MON
:
5393 return arm_current_el(env
) < 3;
5399 uint32_t cpsr_read(CPUARMState
*env
)
5402 ZF
= (env
->ZF
== 0);
5403 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
5404 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
5405 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
5406 | ((env
->condexec_bits
& 0xfc) << 8)
5407 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
5410 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
5411 CPSRWriteType write_type
)
5413 uint32_t changed_daif
;
5415 if (mask
& CPSR_NZCV
) {
5416 env
->ZF
= (~val
) & CPSR_Z
;
5418 env
->CF
= (val
>> 29) & 1;
5419 env
->VF
= (val
<< 3) & 0x80000000;
5422 env
->QF
= ((val
& CPSR_Q
) != 0);
5424 env
->thumb
= ((val
& CPSR_T
) != 0);
5425 if (mask
& CPSR_IT_0_1
) {
5426 env
->condexec_bits
&= ~3;
5427 env
->condexec_bits
|= (val
>> 25) & 3;
5429 if (mask
& CPSR_IT_2_7
) {
5430 env
->condexec_bits
&= 3;
5431 env
->condexec_bits
|= (val
>> 8) & 0xfc;
5433 if (mask
& CPSR_GE
) {
5434 env
->GE
= (val
>> 16) & 0xf;
5437 /* In a V7 implementation that includes the security extensions but does
5438 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5439 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5440 * bits respectively.
5442 * In a V8 implementation, it is permitted for privileged software to
5443 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5445 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
5446 arm_feature(env
, ARM_FEATURE_EL3
) &&
5447 !arm_feature(env
, ARM_FEATURE_EL2
) &&
5448 !arm_is_secure(env
)) {
5450 changed_daif
= (env
->daif
^ val
) & mask
;
5452 if (changed_daif
& CPSR_A
) {
5453 /* Check to see if we are allowed to change the masking of async
5454 * abort exceptions from a non-secure state.
5456 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
5457 qemu_log_mask(LOG_GUEST_ERROR
,
5458 "Ignoring attempt to switch CPSR_A flag from "
5459 "non-secure world with SCR.AW bit clear\n");
5464 if (changed_daif
& CPSR_F
) {
5465 /* Check to see if we are allowed to change the masking of FIQ
5466 * exceptions from a non-secure state.
5468 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
5469 qemu_log_mask(LOG_GUEST_ERROR
,
5470 "Ignoring attempt to switch CPSR_F flag from "
5471 "non-secure world with SCR.FW bit clear\n");
5475 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5476 * If this bit is set software is not allowed to mask
5477 * FIQs, but is allowed to set CPSR_F to 0.
5479 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
5481 qemu_log_mask(LOG_GUEST_ERROR
,
5482 "Ignoring attempt to enable CPSR_F flag "
5483 "(non-maskable FIQ [NMFI] support enabled)\n");
5489 env
->daif
&= ~(CPSR_AIF
& mask
);
5490 env
->daif
|= val
& CPSR_AIF
& mask
;
5492 if (write_type
!= CPSRWriteRaw
&&
5493 (env
->uncached_cpsr
& CPSR_M
) != CPSR_USER
&&
5494 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
5495 if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
5496 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5497 * v7, and has defined behaviour in v8:
5498 * + leave CPSR.M untouched
5499 * + allow changes to the other CPSR fields
5501 * For user changes via the GDB stub, we don't set PSTATE.IL,
5502 * as this would be unnecessarily harsh for a user error.
5505 if (write_type
!= CPSRWriteByGDBStub
&&
5506 arm_feature(env
, ARM_FEATURE_V8
)) {
5511 switch_mode(env
, val
& CPSR_M
);
5514 mask
&= ~CACHED_CPSR_BITS
;
5515 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5518 /* Sign/zero extend */
5519 uint32_t HELPER(sxtb16
)(uint32_t x
)
5522 res
= (uint16_t)(int8_t)x
;
5523 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5527 uint32_t HELPER(uxtb16
)(uint32_t x
)
5530 res
= (uint16_t)(uint8_t)x
;
5531 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5535 uint32_t HELPER(clz
)(uint32_t x
)
5540 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5544 if (num
== INT_MIN
&& den
== -1)
5549 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5556 uint32_t HELPER(rbit
)(uint32_t x
)
5561 #if defined(CONFIG_USER_ONLY)
5563 /* These should probably raise undefined insn exceptions. */
5564 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5566 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5568 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5571 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5573 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5575 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5579 void switch_mode(CPUARMState
*env
, int mode
)
5581 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5583 if (mode
!= ARM_CPU_MODE_USR
) {
5584 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5588 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5589 uint32_t cur_el
, bool secure
)
5594 void aarch64_sync_64_to_32(CPUARMState
*env
)
5596 g_assert_not_reached();
5601 void switch_mode(CPUARMState
*env
, int mode
)
5606 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5607 if (mode
== old_mode
)
5610 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5611 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5612 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5613 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5614 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5615 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5618 i
= bank_number(old_mode
);
5619 env
->banked_r13
[i
] = env
->regs
[13];
5620 env
->banked_r14
[i
] = env
->regs
[14];
5621 env
->banked_spsr
[i
] = env
->spsr
;
5623 i
= bank_number(mode
);
5624 env
->regs
[13] = env
->banked_r13
[i
];
5625 env
->regs
[14] = env
->banked_r14
[i
];
5626 env
->spsr
= env
->banked_spsr
[i
];
5629 /* Physical Interrupt Target EL Lookup Table
5631 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5633 * The below multi-dimensional table is used for looking up the target
5634 * exception level given numerous condition criteria. Specifically, the
5635 * target EL is based on SCR and HCR routing controls as well as the
5636 * currently executing EL and secure state.
5639 * target_el_table[2][2][2][2][2][4]
5640 * | | | | | +--- Current EL
5641 * | | | | +------ Non-secure(0)/Secure(1)
5642 * | | | +--------- HCR mask override
5643 * | | +------------ SCR exec state control
5644 * | +--------------- SCR mask override
5645 * +------------------ 32-bit(0)/64-bit(1) EL3
5647 * The table values are as such:
5651 * The ARM ARM target EL table includes entries indicating that an "exception
5652 * is not taken". The two cases where this is applicable are:
5653 * 1) An exception is taken from EL3 but the SCR does not have the exception
5655 * 2) An exception is taken from EL2 but the HCR does not have the exception
5657 * In these two cases, the below table contain a target of EL1. This value is
5658 * returned as it is expected that the consumer of the table data will check
5659 * for "target EL >= current EL" to ensure the exception is not taken.
5663 * BIT IRQ IMO Non-secure Secure
5664 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5666 static const int8_t target_el_table
[2][2][2][2][2][4] = {
5667 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5668 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5669 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5670 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5671 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5672 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5673 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5674 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5675 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5676 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5677 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5678 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5679 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5680 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5681 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5682 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5686 * Determine the target EL for physical exceptions
5688 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5689 uint32_t cur_el
, bool secure
)
5691 CPUARMState
*env
= cs
->env_ptr
;
5696 /* Is the highest EL AArch64? */
5697 int is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
5699 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5700 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5702 /* Either EL2 is the highest EL (and so the EL2 register width
5703 * is given by is64); or there is no EL2 or EL3, in which case
5704 * the value of 'rw' does not affect the table lookup anyway.
5711 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5712 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5715 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5716 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5719 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5720 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5724 /* If HCR.TGE is set then HCR is treated as being 1 */
5725 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5727 /* Perform a table-lookup for the target EL given the current state */
5728 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5730 assert(target_el
> 0);
5735 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5737 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5740 stl_phys(cs
->as
, env
->regs
[13], val
);
5743 static uint32_t v7m_pop(CPUARMState
*env
)
5745 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5748 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5753 /* Switch to V7M main or process stack pointer. */
5754 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5757 if (env
->v7m
.current_sp
!= process
) {
5758 tmp
= env
->v7m
.other_sp
;
5759 env
->v7m
.other_sp
= env
->regs
[13];
5760 env
->regs
[13] = tmp
;
5761 env
->v7m
.current_sp
= process
;
5765 static void do_v7m_exception_exit(CPUARMState
*env
)
5770 type
= env
->regs
[15];
5771 if (env
->v7m
.exception
!= 0)
5772 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5774 /* Switch to the target stack. */
5775 switch_v7m_sp(env
, (type
& 4) != 0);
5776 /* Pop registers. */
5777 env
->regs
[0] = v7m_pop(env
);
5778 env
->regs
[1] = v7m_pop(env
);
5779 env
->regs
[2] = v7m_pop(env
);
5780 env
->regs
[3] = v7m_pop(env
);
5781 env
->regs
[12] = v7m_pop(env
);
5782 env
->regs
[14] = v7m_pop(env
);
5783 env
->regs
[15] = v7m_pop(env
);
5784 if (env
->regs
[15] & 1) {
5785 qemu_log_mask(LOG_GUEST_ERROR
,
5786 "M profile return from interrupt with misaligned "
5787 "PC is UNPREDICTABLE\n");
5788 /* Actual hardware seems to ignore the lsbit, and there are several
5789 * RTOSes out there which incorrectly assume the r15 in the stack
5790 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5792 env
->regs
[15] &= ~1U;
5794 xpsr
= v7m_pop(env
);
5795 xpsr_write(env
, xpsr
, 0xfffffdff);
5796 /* Undo stack alignment. */
5799 /* ??? The exception return type specifies Thread/Handler mode. However
5800 this is also implied by the xPSR value. Not sure what to do
5801 if there is a mismatch. */
5802 /* ??? Likewise for mismatches between the CONTROL register and the stack
5806 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5808 ARMCPU
*cpu
= ARM_CPU(cs
);
5809 CPUARMState
*env
= &cpu
->env
;
5810 uint32_t xpsr
= xpsr_read(env
);
5814 arm_log_exception(cs
->exception_index
);
5817 if (env
->v7m
.current_sp
)
5819 if (env
->v7m
.exception
== 0)
5822 /* For exceptions we just mark as pending on the NVIC, and let that
5824 /* TODO: Need to escalate if the current priority is higher than the
5825 one we're raising. */
5826 switch (cs
->exception_index
) {
5828 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
5831 /* The PC already points to the next instruction. */
5832 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
5834 case EXCP_PREFETCH_ABORT
:
5835 case EXCP_DATA_ABORT
:
5836 /* TODO: if we implemented the MPU registers, this is where we
5837 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5839 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
5842 if (semihosting_enabled()) {
5844 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5847 qemu_log_mask(CPU_LOG_INT
,
5848 "...handling as semihosting call 0x%x\n",
5850 env
->regs
[0] = do_arm_semihosting(env
);
5854 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
5857 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
5859 case EXCP_EXCEPTION_EXIT
:
5860 do_v7m_exception_exit(env
);
5863 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5864 return; /* Never happens. Keep compiler happy. */
5867 /* Align stack pointer. */
5868 /* ??? Should only do this if Configuration Control Register
5869 STACKALIGN bit is set. */
5870 if (env
->regs
[13] & 4) {
5874 /* Switch to the handler mode. */
5875 v7m_push(env
, xpsr
);
5876 v7m_push(env
, env
->regs
[15]);
5877 v7m_push(env
, env
->regs
[14]);
5878 v7m_push(env
, env
->regs
[12]);
5879 v7m_push(env
, env
->regs
[3]);
5880 v7m_push(env
, env
->regs
[2]);
5881 v7m_push(env
, env
->regs
[1]);
5882 v7m_push(env
, env
->regs
[0]);
5883 switch_v7m_sp(env
, 0);
5885 env
->condexec_bits
= 0;
5887 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
5888 env
->regs
[15] = addr
& 0xfffffffe;
5889 env
->thumb
= addr
& 1;
5892 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5893 * register set. This is necessary when switching between AArch32 and AArch64
5896 void aarch64_sync_32_to_64(CPUARMState
*env
)
5899 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5901 /* We can blanket copy R[0:7] to X[0:7] */
5902 for (i
= 0; i
< 8; i
++) {
5903 env
->xregs
[i
] = env
->regs
[i
];
5906 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5907 * Otherwise, they come from the banked user regs.
5909 if (mode
== ARM_CPU_MODE_FIQ
) {
5910 for (i
= 8; i
< 13; i
++) {
5911 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
5914 for (i
= 8; i
< 13; i
++) {
5915 env
->xregs
[i
] = env
->regs
[i
];
5919 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5920 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5921 * from the mode banked register.
5923 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5924 env
->xregs
[13] = env
->regs
[13];
5925 env
->xregs
[14] = env
->regs
[14];
5927 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
5928 /* HYP is an exception in that it is copied from r14 */
5929 if (mode
== ARM_CPU_MODE_HYP
) {
5930 env
->xregs
[14] = env
->regs
[14];
5932 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
5936 if (mode
== ARM_CPU_MODE_HYP
) {
5937 env
->xregs
[15] = env
->regs
[13];
5939 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
5942 if (mode
== ARM_CPU_MODE_IRQ
) {
5943 env
->xregs
[16] = env
->regs
[14];
5944 env
->xregs
[17] = env
->regs
[13];
5946 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
5947 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
5950 if (mode
== ARM_CPU_MODE_SVC
) {
5951 env
->xregs
[18] = env
->regs
[14];
5952 env
->xregs
[19] = env
->regs
[13];
5954 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
5955 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
5958 if (mode
== ARM_CPU_MODE_ABT
) {
5959 env
->xregs
[20] = env
->regs
[14];
5960 env
->xregs
[21] = env
->regs
[13];
5962 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
5963 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
5966 if (mode
== ARM_CPU_MODE_UND
) {
5967 env
->xregs
[22] = env
->regs
[14];
5968 env
->xregs
[23] = env
->regs
[13];
5970 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
5971 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
5974 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5975 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5976 * FIQ bank for r8-r14.
5978 if (mode
== ARM_CPU_MODE_FIQ
) {
5979 for (i
= 24; i
< 31; i
++) {
5980 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
5983 for (i
= 24; i
< 29; i
++) {
5984 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
5986 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
5987 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
5990 env
->pc
= env
->regs
[15];
5993 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5994 * register set. This is necessary when switching between AArch32 and AArch64
5997 void aarch64_sync_64_to_32(CPUARMState
*env
)
6000 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
6002 /* We can blanket copy X[0:7] to R[0:7] */
6003 for (i
= 0; i
< 8; i
++) {
6004 env
->regs
[i
] = env
->xregs
[i
];
6007 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6008 * Otherwise, we copy x8-x12 into the banked user regs.
6010 if (mode
== ARM_CPU_MODE_FIQ
) {
6011 for (i
= 8; i
< 13; i
++) {
6012 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
6015 for (i
= 8; i
< 13; i
++) {
6016 env
->regs
[i
] = env
->xregs
[i
];
6020 /* Registers r13 & r14 depend on the current mode.
6021 * If we are in a given mode, we copy the corresponding x registers to r13
6022 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6025 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
6026 env
->regs
[13] = env
->xregs
[13];
6027 env
->regs
[14] = env
->xregs
[14];
6029 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
6031 /* HYP is an exception in that it does not have its own banked r14 but
6032 * shares the USR r14
6034 if (mode
== ARM_CPU_MODE_HYP
) {
6035 env
->regs
[14] = env
->xregs
[14];
6037 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
6041 if (mode
== ARM_CPU_MODE_HYP
) {
6042 env
->regs
[13] = env
->xregs
[15];
6044 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
6047 if (mode
== ARM_CPU_MODE_IRQ
) {
6048 env
->regs
[14] = env
->xregs
[16];
6049 env
->regs
[13] = env
->xregs
[17];
6051 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
6052 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
6055 if (mode
== ARM_CPU_MODE_SVC
) {
6056 env
->regs
[14] = env
->xregs
[18];
6057 env
->regs
[13] = env
->xregs
[19];
6059 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
6060 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
6063 if (mode
== ARM_CPU_MODE_ABT
) {
6064 env
->regs
[14] = env
->xregs
[20];
6065 env
->regs
[13] = env
->xregs
[21];
6067 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
6068 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
6071 if (mode
== ARM_CPU_MODE_UND
) {
6072 env
->regs
[14] = env
->xregs
[22];
6073 env
->regs
[13] = env
->xregs
[23];
6075 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
6076 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
6079 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6080 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6081 * FIQ bank for r8-r14.
6083 if (mode
== ARM_CPU_MODE_FIQ
) {
6084 for (i
= 24; i
< 31; i
++) {
6085 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
6088 for (i
= 24; i
< 29; i
++) {
6089 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
6091 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
6092 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
6095 env
->regs
[15] = env
->pc
;
6098 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
6100 ARMCPU
*cpu
= ARM_CPU(cs
);
6101 CPUARMState
*env
= &cpu
->env
;
6108 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6109 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
6111 case EC_BREAKPOINT_SAME_EL
:
6115 case EC_WATCHPOINT_SAME_EL
:
6121 case EC_VECTORCATCH
:
6130 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
6133 /* TODO: Vectored interrupt controller. */
6134 switch (cs
->exception_index
) {
6136 new_mode
= ARM_CPU_MODE_UND
;
6145 new_mode
= ARM_CPU_MODE_SVC
;
6148 /* The PC already points to the next instruction. */
6152 env
->exception
.fsr
= 2;
6153 /* Fall through to prefetch abort. */
6154 case EXCP_PREFETCH_ABORT
:
6155 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
6156 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
6157 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
6158 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
6159 new_mode
= ARM_CPU_MODE_ABT
;
6161 mask
= CPSR_A
| CPSR_I
;
6164 case EXCP_DATA_ABORT
:
6165 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
6166 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
6167 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
6169 (uint32_t)env
->exception
.vaddress
);
6170 new_mode
= ARM_CPU_MODE_ABT
;
6172 mask
= CPSR_A
| CPSR_I
;
6176 new_mode
= ARM_CPU_MODE_IRQ
;
6178 /* Disable IRQ and imprecise data aborts. */
6179 mask
= CPSR_A
| CPSR_I
;
6181 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
6182 /* IRQ routed to monitor mode */
6183 new_mode
= ARM_CPU_MODE_MON
;
6188 new_mode
= ARM_CPU_MODE_FIQ
;
6190 /* Disable FIQ, IRQ and imprecise data aborts. */
6191 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6192 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
6193 /* FIQ routed to monitor mode */
6194 new_mode
= ARM_CPU_MODE_MON
;
6199 new_mode
= ARM_CPU_MODE_MON
;
6201 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6205 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6206 return; /* Never happens. Keep compiler happy. */
6209 if (new_mode
== ARM_CPU_MODE_MON
) {
6210 addr
+= env
->cp15
.mvbar
;
6211 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
6212 /* High vectors. When enabled, base address cannot be remapped. */
6215 /* ARM v7 architectures provide a vector base address register to remap
6216 * the interrupt vector table.
6217 * This register is only followed in non-monitor mode, and is banked.
6218 * Note: only bits 31:5 are valid.
6220 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
6223 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
6224 env
->cp15
.scr_el3
&= ~SCR_NS
;
6227 switch_mode (env
, new_mode
);
6228 /* For exceptions taken to AArch32 we must clear the SS bit in both
6229 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6231 env
->uncached_cpsr
&= ~PSTATE_SS
;
6232 env
->spsr
= cpsr_read(env
);
6233 /* Clear IT bits. */
6234 env
->condexec_bits
= 0;
6235 /* Switch to the new mode, and to the correct instruction set. */
6236 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
6238 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6239 * and we should just guard the thumb mode on V4 */
6240 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
6241 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
6243 env
->regs
[14] = env
->regs
[15] + offset
;
6244 env
->regs
[15] = addr
;
6247 /* Handle exception entry to a target EL which is using AArch64 */
6248 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
6250 ARMCPU
*cpu
= ARM_CPU(cs
);
6251 CPUARMState
*env
= &cpu
->env
;
6252 unsigned int new_el
= env
->exception
.target_el
;
6253 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
6254 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
6256 if (arm_current_el(env
) < new_el
) {
6257 /* Entry vector offset depends on whether the implemented EL
6258 * immediately lower than the target level is using AArch32 or AArch64
6264 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
6267 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
6270 is_aa64
= is_a64(env
);
6273 g_assert_not_reached();
6281 } else if (pstate_read(env
) & PSTATE_SP
) {
6285 switch (cs
->exception_index
) {
6286 case EXCP_PREFETCH_ABORT
:
6287 case EXCP_DATA_ABORT
:
6288 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
6289 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
6290 env
->cp15
.far_el
[new_el
]);
6298 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
6309 qemu_log_mask(CPU_LOG_INT
,
6310 "...handling as semihosting call 0x%" PRIx64
"\n",
6312 env
->xregs
[0] = do_arm_semihosting(env
);
6315 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6319 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
6320 aarch64_save_sp(env
, arm_current_el(env
));
6321 env
->elr_el
[new_el
] = env
->pc
;
6323 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
6325 env
->cp15
.esr_el
[new_el
] |= 1 << 25;
6327 env
->elr_el
[new_el
] = env
->regs
[15];
6329 aarch64_sync_32_to_64(env
);
6331 env
->condexec_bits
= 0;
6333 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
6334 env
->elr_el
[new_el
]);
6336 pstate_write(env
, PSTATE_DAIF
| new_mode
);
6338 aarch64_restore_sp(env
, new_el
);
6342 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
6343 new_el
, env
->pc
, pstate_read(env
));
6346 static inline bool check_for_semihosting(CPUState
*cs
)
6348 /* Check whether this exception is a semihosting call; if so
6349 * then handle it and return true; otherwise return false.
6351 ARMCPU
*cpu
= ARM_CPU(cs
);
6352 CPUARMState
*env
= &cpu
->env
;
6355 if (cs
->exception_index
== EXCP_SEMIHOST
) {
6356 /* This is always the 64-bit semihosting exception.
6357 * The "is this usermode" and "is semihosting enabled"
6358 * checks have been done at translate time.
6360 qemu_log_mask(CPU_LOG_INT
,
6361 "...handling as semihosting call 0x%" PRIx64
"\n",
6363 env
->xregs
[0] = do_arm_semihosting(env
);
6370 /* Only intercept calls from privileged modes, to provide some
6371 * semblance of security.
6373 if (!semihosting_enabled() ||
6374 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
)) {
6378 switch (cs
->exception_index
) {
6380 /* Check for semihosting interrupt. */
6382 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
6388 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
6390 if (imm
== 0x123456) {
6396 /* See if this is a semihosting syscall. */
6398 imm
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
)
6410 qemu_log_mask(CPU_LOG_INT
,
6411 "...handling as semihosting call 0x%x\n",
6413 env
->regs
[0] = do_arm_semihosting(env
);
6418 /* Handle a CPU exception for A and R profile CPUs.
6419 * Do any appropriate logging, handle PSCI calls, and then hand off
6420 * to the AArch64-entry or AArch32-entry function depending on the
6421 * target exception level's register width.
6423 void arm_cpu_do_interrupt(CPUState
*cs
)
6425 ARMCPU
*cpu
= ARM_CPU(cs
);
6426 CPUARMState
*env
= &cpu
->env
;
6427 unsigned int new_el
= env
->exception
.target_el
;
6431 arm_log_exception(cs
->exception_index
);
6432 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
6434 if (qemu_loglevel_mask(CPU_LOG_INT
)
6435 && !excp_is_internal(cs
->exception_index
)) {
6436 qemu_log_mask(CPU_LOG_INT
, "...with ESR %x/0x%" PRIx32
"\n",
6437 env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
,
6438 env
->exception
.syndrome
);
6441 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
6442 arm_handle_psci_call(cpu
);
6443 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
6447 /* Semihosting semantics depend on the register width of the
6448 * code that caused the exception, not the target exception level,
6449 * so must be handled here.
6451 if (check_for_semihosting(cs
)) {
6455 assert(!excp_is_internal(cs
->exception_index
));
6456 if (arm_el_is_aa64(env
, new_el
)) {
6457 arm_cpu_do_interrupt_aarch64(cs
);
6459 arm_cpu_do_interrupt_aarch32(cs
);
6462 if (!kvm_enabled()) {
6463 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
6467 /* Return the exception level which controls this address translation regime */
6468 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6471 case ARMMMUIdx_S2NS
:
6472 case ARMMMUIdx_S1E2
:
6474 case ARMMMUIdx_S1E3
:
6476 case ARMMMUIdx_S1SE0
:
6477 return arm_el_is_aa64(env
, 3) ? 1 : 3;
6478 case ARMMMUIdx_S1SE1
:
6479 case ARMMMUIdx_S1NSE0
:
6480 case ARMMMUIdx_S1NSE1
:
6483 g_assert_not_reached();
6487 /* Return true if this address translation regime is secure */
6488 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6491 case ARMMMUIdx_S12NSE0
:
6492 case ARMMMUIdx_S12NSE1
:
6493 case ARMMMUIdx_S1NSE0
:
6494 case ARMMMUIdx_S1NSE1
:
6495 case ARMMMUIdx_S1E2
:
6496 case ARMMMUIdx_S2NS
:
6498 case ARMMMUIdx_S1E3
:
6499 case ARMMMUIdx_S1SE0
:
6500 case ARMMMUIdx_S1SE1
:
6503 g_assert_not_reached();
6507 /* Return the SCTLR value which controls this address translation regime */
6508 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6510 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
6513 /* Return true if the specified stage of address translation is disabled */
6514 static inline bool regime_translation_disabled(CPUARMState
*env
,
6517 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6518 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
6520 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
6523 /* Return the TCR controlling this translation regime */
6524 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6526 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6527 return &env
->cp15
.vtcr_el2
;
6529 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
6532 /* Return the TTBR associated with this translation regime */
6533 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6536 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6537 return env
->cp15
.vttbr_el2
;
6540 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
6542 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
6546 /* Return true if the translation regime is using LPAE format page tables */
6547 static inline bool regime_using_lpae_format(CPUARMState
*env
,
6550 int el
= regime_el(env
, mmu_idx
);
6551 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
6554 if (arm_feature(env
, ARM_FEATURE_LPAE
)
6555 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
6561 /* Returns true if the stage 1 translation regime is using LPAE format page
6562 * tables. Used when raising alignment exceptions, whose FSR changes depending
6563 * on whether the long or short descriptor format is in use. */
6564 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6566 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6567 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6570 return regime_using_lpae_format(env
, mmu_idx
);
6573 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6576 case ARMMMUIdx_S1SE0
:
6577 case ARMMMUIdx_S1NSE0
:
6581 case ARMMMUIdx_S12NSE0
:
6582 case ARMMMUIdx_S12NSE1
:
6583 g_assert_not_reached();
6587 /* Translate section/page access permissions to page
6588 * R/W protection flags
6591 * @mmu_idx: MMU index indicating required translation regime
6592 * @ap: The 3-bit access permissions (AP[2:0])
6593 * @domain_prot: The 2-bit domain access permissions
6595 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6596 int ap
, int domain_prot
)
6598 bool is_user
= regime_is_user(env
, mmu_idx
);
6600 if (domain_prot
== 3) {
6601 return PAGE_READ
| PAGE_WRITE
;
6606 if (arm_feature(env
, ARM_FEATURE_V7
)) {
6609 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
6611 return is_user
? 0 : PAGE_READ
;
6618 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6623 return PAGE_READ
| PAGE_WRITE
;
6626 return PAGE_READ
| PAGE_WRITE
;
6627 case 4: /* Reserved. */
6630 return is_user
? 0 : PAGE_READ
;
6634 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
6639 g_assert_not_reached();
6643 /* Translate section/page access permissions to page
6644 * R/W protection flags.
6646 * @ap: The 2-bit simple AP (AP[2:1])
6647 * @is_user: TRUE if accessing from PL0
6649 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
6653 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6655 return PAGE_READ
| PAGE_WRITE
;
6657 return is_user
? 0 : PAGE_READ
;
6661 g_assert_not_reached();
6666 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
6668 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
6671 /* Translate S2 section/page access permissions to protection flags
6674 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6675 * @xn: XN (execute-never) bit
6677 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
6693 /* Translate section/page access permissions to protection flags
6696 * @mmu_idx: MMU index indicating required translation regime
6697 * @is_aa64: TRUE if AArch64
6698 * @ap: The 2-bit simple AP (AP[2:1])
6699 * @ns: NS (non-secure) bit
6700 * @xn: XN (execute-never) bit
6701 * @pxn: PXN (privileged execute-never) bit
6703 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
6704 int ap
, int ns
, int xn
, int pxn
)
6706 bool is_user
= regime_is_user(env
, mmu_idx
);
6707 int prot_rw
, user_rw
;
6711 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
6713 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
6717 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
6720 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
6724 /* TODO have_wxn should be replaced with
6725 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6726 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6727 * compatible processors have EL2, which is required for [U]WXN.
6729 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
6732 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
6736 switch (regime_el(env
, mmu_idx
)) {
6739 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
6746 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6747 switch (regime_el(env
, mmu_idx
)) {
6751 xn
= xn
|| !(user_rw
& PAGE_READ
);
6755 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
6757 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
6758 (uwxn
&& (user_rw
& PAGE_WRITE
));
6768 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
6771 return prot_rw
| PAGE_EXEC
;
6774 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6775 uint32_t *table
, uint32_t address
)
6777 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6778 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6780 if (address
& tcr
->mask
) {
6781 if (tcr
->raw_tcr
& TTBCR_PD1
) {
6782 /* Translation table walk disabled for TTBR1 */
6785 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
6787 if (tcr
->raw_tcr
& TTBCR_PD0
) {
6788 /* Translation table walk disabled for TTBR0 */
6791 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
6793 *table
|= (address
>> 18) & 0x3ffc;
6797 /* Translate a S1 pagetable walk through S2 if needed. */
6798 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6799 hwaddr addr
, MemTxAttrs txattrs
,
6801 ARMMMUFaultInfo
*fi
)
6803 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
6804 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
6805 target_ulong s2size
;
6810 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
6811 &txattrs
, &s2prot
, &s2size
, fsr
, fi
);
6823 /* All loads done in the course of a page table walk go through here.
6824 * TODO: rather than ignoring errors from physical memory reads (which
6825 * are external aborts in ARM terminology) we should propagate this
6826 * error out so that we can turn it into a Data Abort if this walk
6827 * was being done for a CPU load/store or an address translation instruction
6828 * (but not if it was for a debug access).
6830 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6831 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6832 ARMMMUFaultInfo
*fi
)
6834 ARMCPU
*cpu
= ARM_CPU(cs
);
6835 CPUARMState
*env
= &cpu
->env
;
6836 MemTxAttrs attrs
= {};
6839 attrs
.secure
= is_secure
;
6840 as
= arm_addressspace(cs
, attrs
);
6841 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6845 return address_space_ldl(as
, addr
, attrs
, NULL
);
6848 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6849 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6850 ARMMMUFaultInfo
*fi
)
6852 ARMCPU
*cpu
= ARM_CPU(cs
);
6853 CPUARMState
*env
= &cpu
->env
;
6854 MemTxAttrs attrs
= {};
6857 attrs
.secure
= is_secure
;
6858 as
= arm_addressspace(cs
, attrs
);
6859 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6863 return address_space_ldq(as
, addr
, attrs
, NULL
);
6866 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
6867 int access_type
, ARMMMUIdx mmu_idx
,
6868 hwaddr
*phys_ptr
, int *prot
,
6869 target_ulong
*page_size
, uint32_t *fsr
,
6870 ARMMMUFaultInfo
*fi
)
6872 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6883 /* Pagetable walk. */
6884 /* Lookup l1 descriptor. */
6885 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6886 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6890 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6893 domain
= (desc
>> 5) & 0x0f;
6894 if (regime_el(env
, mmu_idx
) == 1) {
6895 dacr
= env
->cp15
.dacr_ns
;
6897 dacr
= env
->cp15
.dacr_s
;
6899 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6901 /* Section translation fault. */
6905 if (domain_prot
== 0 || domain_prot
== 2) {
6907 code
= 9; /* Section domain fault. */
6909 code
= 11; /* Page domain fault. */
6914 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6915 ap
= (desc
>> 10) & 3;
6917 *page_size
= 1024 * 1024;
6919 /* Lookup l2 entry. */
6921 /* Coarse pagetable. */
6922 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6924 /* Fine pagetable. */
6925 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
6927 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6930 case 0: /* Page translation fault. */
6933 case 1: /* 64k page. */
6934 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6935 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
6936 *page_size
= 0x10000;
6938 case 2: /* 4k page. */
6939 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6940 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
6941 *page_size
= 0x1000;
6943 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6945 /* ARMv6/XScale extended small page format */
6946 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
6947 || arm_feature(env
, ARM_FEATURE_V6
)) {
6948 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6949 *page_size
= 0x1000;
6951 /* UNPREDICTABLE in ARMv5; we choose to take a
6952 * page translation fault.
6958 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
6961 ap
= (desc
>> 4) & 3;
6964 /* Never happens, but compiler isn't smart enough to tell. */
6969 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6970 *prot
|= *prot
? PAGE_EXEC
: 0;
6971 if (!(*prot
& (1 << access_type
))) {
6972 /* Access permission fault. */
6975 *phys_ptr
= phys_addr
;
6978 *fsr
= code
| (domain
<< 4);
6982 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
6983 int access_type
, ARMMMUIdx mmu_idx
,
6984 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6985 target_ulong
*page_size
, uint32_t *fsr
,
6986 ARMMMUFaultInfo
*fi
)
6988 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
7002 /* Pagetable walk. */
7003 /* Lookup l1 descriptor. */
7004 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
7005 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7009 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7012 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
7013 /* Section translation fault, or attempt to use the encoding
7014 * which is Reserved on implementations without PXN.
7019 if ((type
== 1) || !(desc
& (1 << 18))) {
7020 /* Page or Section. */
7021 domain
= (desc
>> 5) & 0x0f;
7023 if (regime_el(env
, mmu_idx
) == 1) {
7024 dacr
= env
->cp15
.dacr_ns
;
7026 dacr
= env
->cp15
.dacr_s
;
7028 domain_prot
= (dacr
>> (domain
* 2)) & 3;
7029 if (domain_prot
== 0 || domain_prot
== 2) {
7031 code
= 9; /* Section domain fault. */
7033 code
= 11; /* Page domain fault. */
7038 if (desc
& (1 << 18)) {
7040 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
7041 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
7042 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
7043 *page_size
= 0x1000000;
7046 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
7047 *page_size
= 0x100000;
7049 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
7050 xn
= desc
& (1 << 4);
7053 ns
= extract32(desc
, 19, 1);
7055 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
7056 pxn
= (desc
>> 2) & 1;
7058 ns
= extract32(desc
, 3, 1);
7059 /* Lookup l2 entry. */
7060 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
7061 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7063 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
7065 case 0: /* Page translation fault. */
7068 case 1: /* 64k page. */
7069 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
7070 xn
= desc
& (1 << 15);
7071 *page_size
= 0x10000;
7073 case 2: case 3: /* 4k page. */
7074 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7076 *page_size
= 0x1000;
7079 /* Never happens, but compiler isn't smart enough to tell. */
7084 if (domain_prot
== 3) {
7085 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7087 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
7090 if (xn
&& access_type
== 2)
7093 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
7094 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
7095 /* The simplified model uses AP[0] as an access control bit. */
7096 if ((ap
& 1) == 0) {
7097 /* Access flag fault. */
7098 code
= (code
== 15) ? 6 : 3;
7101 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
7103 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
7108 if (!(*prot
& (1 << access_type
))) {
7109 /* Access permission fault. */
7114 /* The NS bit will (as required by the architecture) have no effect if
7115 * the CPU doesn't support TZ or this is a non-secure translation
7116 * regime, because the attribute will already be non-secure.
7118 attrs
->secure
= false;
7120 *phys_ptr
= phys_addr
;
7123 *fsr
= code
| (domain
<< 4);
7127 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7128 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7131 translation_fault
= 1,
7133 permission_fault
= 3,
7137 * check_s2_mmu_setup
7139 * @is_aa64: True if the translation regime is in AArch64 state
7140 * @startlevel: Suggested starting level
7141 * @inputsize: Bitsize of IPAs
7142 * @stride: Page-table stride (See the ARM ARM)
7144 * Returns true if the suggested S2 translation parameters are OK and
7147 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
7148 int inputsize
, int stride
)
7150 const int grainsize
= stride
+ 3;
7153 /* Negative levels are never allowed. */
7158 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
7159 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
7164 CPUARMState
*env
= &cpu
->env
;
7165 unsigned int pamax
= arm_pamax(cpu
);
7168 case 13: /* 64KB Pages. */
7169 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
7173 case 11: /* 16KB Pages. */
7174 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
7178 case 9: /* 4KB Pages. */
7179 if (level
== 0 && pamax
<= 42) {
7184 g_assert_not_reached();
7187 /* Inputsize checks. */
7188 if (inputsize
> pamax
&&
7189 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
7190 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7194 /* AArch32 only supports 4KB pages. Assert on that. */
7195 assert(stride
== 9);
7204 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
7205 int access_type
, ARMMMUIdx mmu_idx
,
7206 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
7207 target_ulong
*page_size_ptr
, uint32_t *fsr
,
7208 ARMMMUFaultInfo
*fi
)
7210 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7211 CPUState
*cs
= CPU(cpu
);
7212 /* Read an LPAE long-descriptor translation table. */
7213 MMUFaultType fault_type
= translation_fault
;
7220 hwaddr descaddr
, descmask
;
7221 uint32_t tableattrs
;
7222 target_ulong page_size
;
7225 int32_t va_size
= 32;
7228 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
7229 int ap
, ns
, xn
, pxn
;
7230 uint32_t el
= regime_el(env
, mmu_idx
);
7231 bool ttbr1_valid
= true;
7232 uint64_t descaddrmask
;
7235 * This code does not handle the different format TCR for VTCR_EL2.
7236 * This code also does not support shareability levels.
7237 * Attribute and permission bit handling should also be checked when adding
7238 * support for those page table walks.
7240 if (arm_el_is_aa64(env
, el
)) {
7243 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7244 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
7247 if (extract64(address
, 55, 1)) {
7248 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
7250 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
7255 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7259 ttbr1_valid
= false;
7262 /* There is no TTBR1 for EL2 */
7264 ttbr1_valid
= false;
7268 /* Determine whether this address is in the region controlled by
7269 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7270 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7271 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7273 if (va_size
== 64) {
7274 /* AArch64 translation. */
7275 t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
7276 t0sz
= MIN(t0sz
, 39);
7277 t0sz
= MAX(t0sz
, 16);
7278 } else if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7279 /* AArch32 stage 1 translation. */
7280 t0sz
= extract32(tcr
->raw_tcr
, 0, 3);
7282 /* AArch32 stage 2 translation. */
7283 bool sext
= extract32(tcr
->raw_tcr
, 4, 1);
7284 bool sign
= extract32(tcr
->raw_tcr
, 3, 1);
7285 t0sz
= sextract32(tcr
->raw_tcr
, 0, 4);
7287 /* If the sign-extend bit is not the same as t0sz[3], the result
7288 * is unpredictable. Flag this as a guest error. */
7290 qemu_log_mask(LOG_GUEST_ERROR
,
7291 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7294 t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
7295 if (va_size
== 64) {
7296 t1sz
= MIN(t1sz
, 39);
7297 t1sz
= MAX(t1sz
, 16);
7299 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
7300 /* there is a ttbr0 region and we are in it (high bits all zero) */
7302 } else if (ttbr1_valid
&& t1sz
&&
7303 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
7304 /* there is a ttbr1 region and we are in it (high bits all one) */
7307 /* ttbr0 region is "everything not in the ttbr1 region" */
7309 } else if (!t1sz
&& ttbr1_valid
) {
7310 /* ttbr1 region is "everything not in the ttbr0 region" */
7313 /* in the gap between the two regions, this is a Translation fault */
7314 fault_type
= translation_fault
;
7318 /* Note that QEMU ignores shareability and cacheability attributes,
7319 * so we don't need to do anything with the SH, ORGN, IRGN fields
7320 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7321 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7322 * implement any ASID-like capability so we can ignore it (instead
7323 * we will always flush the TLB any time the ASID is changed).
7325 if (ttbr_select
== 0) {
7326 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
7328 epd
= extract32(tcr
->raw_tcr
, 7, 1);
7330 inputsize
= va_size
- t0sz
;
7332 tg
= extract32(tcr
->raw_tcr
, 14, 2);
7333 if (tg
== 1) { /* 64KB pages */
7336 if (tg
== 2) { /* 16KB pages */
7340 /* We should only be here if TTBR1 is valid */
7341 assert(ttbr1_valid
);
7343 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
7344 epd
= extract32(tcr
->raw_tcr
, 23, 1);
7345 inputsize
= va_size
- t1sz
;
7347 tg
= extract32(tcr
->raw_tcr
, 30, 2);
7348 if (tg
== 3) { /* 64KB pages */
7351 if (tg
== 1) { /* 16KB pages */
7356 /* Here we should have set up all the parameters for the translation:
7357 * va_size, inputsize, ttbr, epd, stride, tbi
7361 /* Translation table walk disabled => Translation fault on TLB miss
7362 * Note: This is always 0 on 64-bit EL2 and EL3.
7367 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7368 /* The starting level depends on the virtual address size (which can
7369 * be up to 48 bits) and the translation granule size. It indicates
7370 * the number of strides (stride bits at a time) needed to
7371 * consume the bits of the input address. In the pseudocode this is:
7372 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7373 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7374 * our 'stride + 3' and 'stride' is our 'stride'.
7375 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7376 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7377 * = 4 - (inputsize - 4) / stride;
7379 level
= 4 - (inputsize
- 4) / stride
;
7381 /* For stage 2 translations the starting level is specified by the
7382 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7384 int startlevel
= extract32(tcr
->raw_tcr
, 6, 2);
7387 if (va_size
== 32 || stride
== 9) {
7388 /* AArch32 or 4KB pages */
7389 level
= 2 - startlevel
;
7391 /* 16KB or 64KB pages */
7392 level
= 3 - startlevel
;
7395 /* Check that the starting level is valid. */
7396 ok
= check_s2_mmu_setup(cpu
, va_size
== 64, level
, inputsize
, stride
);
7398 /* AArch64 reports these as level 0 faults.
7399 * AArch32 reports these as level 1 faults.
7401 level
= va_size
== 64 ? 0 : 1;
7402 fault_type
= translation_fault
;
7407 /* Clear the vaddr bits which aren't part of the within-region address,
7408 * so that we don't have to special case things when calculating the
7409 * first descriptor address.
7411 if (va_size
!= inputsize
) {
7412 address
&= (1ULL << inputsize
) - 1;
7415 descmask
= (1ULL << (stride
+ 3)) - 1;
7417 /* Now we can extract the actual base address from the TTBR */
7418 descaddr
= extract64(ttbr
, 0, 48);
7419 descaddr
&= ~((1ULL << (inputsize
- (stride
* (4 - level
)))) - 1);
7421 /* The address field in the descriptor goes up to bit 39 for ARMv7
7422 * but up to bit 47 for ARMv8.
7424 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7425 descaddrmask
= 0xfffffffff000ULL
;
7427 descaddrmask
= 0xfffffff000ULL
;
7430 /* Secure accesses start with the page table in secure memory and
7431 * can be downgraded to non-secure at any step. Non-secure accesses
7432 * remain non-secure. We implement this by just ORing in the NSTable/NS
7433 * bits at each step.
7435 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
7437 uint64_t descriptor
;
7440 descaddr
|= (address
>> (stride
* (4 - level
))) & descmask
;
7442 nstable
= extract32(tableattrs
, 4, 1);
7443 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fsr
, fi
);
7448 if (!(descriptor
& 1) ||
7449 (!(descriptor
& 2) && (level
== 3))) {
7450 /* Invalid, or the Reserved level 3 encoding */
7453 descaddr
= descriptor
& descaddrmask
;
7455 if ((descriptor
& 2) && (level
< 3)) {
7456 /* Table entry. The top five bits are attributes which may
7457 * propagate down through lower levels of the table (and
7458 * which are all arranged so that 0 means "no effect", so
7459 * we can gather them up by ORing in the bits at each level).
7461 tableattrs
|= extract64(descriptor
, 59, 5);
7465 /* Block entry at level 1 or 2, or page entry at level 3.
7466 * These are basically the same thing, although the number
7467 * of bits we pull in from the vaddr varies.
7469 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
7470 descaddr
|= (address
& (page_size
- 1));
7471 /* Extract attributes from the descriptor */
7472 attrs
= extract64(descriptor
, 2, 10)
7473 | (extract64(descriptor
, 52, 12) << 10);
7475 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7476 /* Stage 2 table descriptors do not include any attribute fields */
7479 /* Merge in attributes from table descriptors */
7480 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
7481 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
7482 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7483 * means "force PL1 access only", which means forcing AP[1] to 0.
7485 if (extract32(tableattrs
, 2, 1)) {
7488 attrs
|= nstable
<< 3; /* NS */
7491 /* Here descaddr is the final physical address, and attributes
7494 fault_type
= access_fault
;
7495 if ((attrs
& (1 << 8)) == 0) {
7500 ap
= extract32(attrs
, 4, 2);
7501 xn
= extract32(attrs
, 12, 1);
7503 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7505 *prot
= get_S2prot(env
, ap
, xn
);
7507 ns
= extract32(attrs
, 3, 1);
7508 pxn
= extract32(attrs
, 11, 1);
7509 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
7512 fault_type
= permission_fault
;
7513 if (!(*prot
& (1 << access_type
))) {
7518 /* The NS bit will (as required by the architecture) have no effect if
7519 * the CPU doesn't support TZ or this is a non-secure translation
7520 * regime, because the attribute will already be non-secure.
7522 txattrs
->secure
= false;
7524 *phys_ptr
= descaddr
;
7525 *page_size_ptr
= page_size
;
7529 /* Long-descriptor format IFSR/DFSR value */
7530 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
7531 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7532 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
7536 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
7538 int32_t address
, int *prot
)
7540 *prot
= PAGE_READ
| PAGE_WRITE
;
7542 case 0xF0000000 ... 0xFFFFFFFF:
7543 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
7547 case 0x00000000 ... 0x7FFFFFFF:
7554 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
7555 int access_type
, ARMMMUIdx mmu_idx
,
7556 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7558 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7560 bool is_user
= regime_is_user(env
, mmu_idx
);
7562 *phys_ptr
= address
;
7565 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
7566 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7567 } else { /* MPU enabled */
7568 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
7570 uint32_t base
= env
->pmsav7
.drbar
[n
];
7571 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
7575 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
7580 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
7584 rmask
= (1ull << rsize
) - 1;
7587 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
7588 "to DRSR region size, mask = %" PRIx32
,
7593 if (address
< base
|| address
> base
+ rmask
) {
7597 /* Region matched */
7599 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
7601 uint32_t srdis_mask
;
7603 rsize
-= 3; /* sub region size (power of 2) */
7604 snd
= ((address
- base
) >> rsize
) & 0x7;
7605 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
7607 srdis_mask
= srdis
? 0x3 : 0x0;
7608 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
7609 /* This will check in groups of 2, 4 and then 8, whether
7610 * the subregion bits are consistent. rsize is incremented
7611 * back up to give the region size, considering consistent
7612 * adjacent subregions as one region. Stop testing if rsize
7613 * is already big enough for an entire QEMU page.
7615 int snd_rounded
= snd
& ~(i
- 1);
7616 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
7617 snd_rounded
+ 8, i
);
7618 if (srdis_mask
^ srdis_multi
) {
7621 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
7625 if (rsize
< TARGET_PAGE_BITS
) {
7626 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
7627 "alignment of %" PRIu32
" bits. Minimum is %d\n",
7628 rsize
, TARGET_PAGE_BITS
);
7637 if (n
== -1) { /* no hits */
7638 if (cpu
->pmsav7_dregion
&&
7639 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
7640 /* background fault */
7644 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7645 } else { /* a MPU hit! */
7646 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
7648 if (is_user
) { /* User mode AP bit decoding */
7653 break; /* no access */
7655 *prot
|= PAGE_WRITE
;
7659 *prot
|= PAGE_READ
| PAGE_EXEC
;
7662 qemu_log_mask(LOG_GUEST_ERROR
,
7663 "Bad value for AP bits in DRACR %"
7666 } else { /* Priv. mode AP bits decoding */
7669 break; /* no access */
7673 *prot
|= PAGE_WRITE
;
7677 *prot
|= PAGE_READ
| PAGE_EXEC
;
7680 qemu_log_mask(LOG_GUEST_ERROR
,
7681 "Bad value for AP bits in DRACR %"
7687 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
7688 *prot
&= ~PAGE_EXEC
;
7693 *fsr
= 0x00d; /* Permission fault */
7694 return !(*prot
& (1 << access_type
));
7697 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
7698 int access_type
, ARMMMUIdx mmu_idx
,
7699 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7704 bool is_user
= regime_is_user(env
, mmu_idx
);
7706 *phys_ptr
= address
;
7707 for (n
= 7; n
>= 0; n
--) {
7708 base
= env
->cp15
.c6_region
[n
];
7709 if ((base
& 1) == 0) {
7712 mask
= 1 << ((base
>> 1) & 0x1f);
7713 /* Keep this shift separate from the above to avoid an
7714 (undefined) << 32. */
7715 mask
= (mask
<< 1) - 1;
7716 if (((base
^ address
) & ~mask
) == 0) {
7725 if (access_type
== 2) {
7726 mask
= env
->cp15
.pmsav5_insn_ap
;
7728 mask
= env
->cp15
.pmsav5_data_ap
;
7730 mask
= (mask
>> (n
* 4)) & 0xf;
7740 *prot
= PAGE_READ
| PAGE_WRITE
;
7745 *prot
|= PAGE_WRITE
;
7749 *prot
= PAGE_READ
| PAGE_WRITE
;
7762 /* Bad permission. */
7770 /* get_phys_addr - get the physical address for this virtual address
7772 * Find the physical address corresponding to the given virtual address,
7773 * by doing a translation table walk on MMU based systems or using the
7774 * MPU state on MPU based systems.
7776 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7777 * prot and page_size may not be filled in, and the populated fsr value provides
7778 * information on why the translation aborted, in the format of a
7779 * DFSR/IFSR fault register, with the following caveats:
7780 * * we honour the short vs long DFSR format differences.
7781 * * the WnR bit is never set (the caller must do this).
7782 * * for PSMAv5 based systems we don't bother to return a full FSR format
7786 * @address: virtual address to get physical address for
7787 * @access_type: 0 for read, 1 for write, 2 for execute
7788 * @mmu_idx: MMU index indicating required translation regime
7789 * @phys_ptr: set to the physical address corresponding to the virtual address
7790 * @attrs: set to the memory transaction attributes to use
7791 * @prot: set to the permissions for the page containing phys_ptr
7792 * @page_size: set to the size of the page containing phys_ptr
7793 * @fsr: set to the DFSR/IFSR value on failure
7795 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
7796 int access_type
, ARMMMUIdx mmu_idx
,
7797 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7798 target_ulong
*page_size
, uint32_t *fsr
,
7799 ARMMMUFaultInfo
*fi
)
7801 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
7802 /* Call ourselves recursively to do the stage 1 and then stage 2
7805 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
7810 ret
= get_phys_addr(env
, address
, access_type
,
7811 mmu_idx
+ ARMMMUIdx_S1NSE0
, &ipa
, attrs
,
7812 prot
, page_size
, fsr
, fi
);
7814 /* If S1 fails or S2 is disabled, return early. */
7815 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
7820 /* S1 is done. Now do S2 translation. */
7821 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
7822 phys_ptr
, attrs
, &s2_prot
,
7823 page_size
, fsr
, fi
);
7825 /* Combine the S1 and S2 perms. */
7830 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7832 mmu_idx
+= ARMMMUIdx_S1NSE0
;
7836 /* The page table entries may downgrade secure to non-secure, but
7837 * cannot upgrade an non-secure translation regime's attributes
7840 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
7841 attrs
->user
= regime_is_user(env
, mmu_idx
);
7843 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7844 * In v7 and earlier it affects all stage 1 translations.
7846 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
7847 && !arm_feature(env
, ARM_FEATURE_V8
)) {
7848 if (regime_el(env
, mmu_idx
) == 3) {
7849 address
+= env
->cp15
.fcseidr_s
;
7851 address
+= env
->cp15
.fcseidr_ns
;
7855 /* pmsav7 has special handling for when MPU is disabled so call it before
7856 * the common MMU/MPU disabled check below.
7858 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
7859 arm_feature(env
, ARM_FEATURE_V7
)) {
7860 *page_size
= TARGET_PAGE_SIZE
;
7861 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
7862 phys_ptr
, prot
, fsr
);
7865 if (regime_translation_disabled(env
, mmu_idx
)) {
7866 /* MMU/MPU disabled. */
7867 *phys_ptr
= address
;
7868 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7869 *page_size
= TARGET_PAGE_SIZE
;
7873 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
7875 *page_size
= TARGET_PAGE_SIZE
;
7876 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
7877 phys_ptr
, prot
, fsr
);
7880 if (regime_using_lpae_format(env
, mmu_idx
)) {
7881 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7882 attrs
, prot
, page_size
, fsr
, fi
);
7883 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
7884 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7885 attrs
, prot
, page_size
, fsr
, fi
);
7887 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7888 prot
, page_size
, fsr
, fi
);
7892 /* Walk the page table and (if the mapping exists) add the page
7893 * to the TLB. Return false on success, or true on failure. Populate
7894 * fsr with ARM DFSR/IFSR fault register format value on failure.
7896 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
7897 int access_type
, int mmu_idx
, uint32_t *fsr
,
7898 ARMMMUFaultInfo
*fi
)
7900 ARMCPU
*cpu
= ARM_CPU(cs
);
7901 CPUARMState
*env
= &cpu
->env
;
7903 target_ulong page_size
;
7906 MemTxAttrs attrs
= {};
7908 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
7909 &attrs
, &prot
, &page_size
, fsr
, fi
);
7911 /* Map a single [sub]page. */
7912 phys_addr
&= TARGET_PAGE_MASK
;
7913 address
&= TARGET_PAGE_MASK
;
7914 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
7915 prot
, mmu_idx
, page_size
);
7922 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
7925 ARMCPU
*cpu
= ARM_CPU(cs
);
7926 CPUARMState
*env
= &cpu
->env
;
7928 target_ulong page_size
;
7932 ARMMMUFaultInfo fi
= {};
7934 *attrs
= (MemTxAttrs
) {};
7936 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
7937 attrs
, &prot
, &page_size
, &fsr
, &fi
);
7945 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
7947 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7951 return xpsr_read(env
) & 0xf8000000;
7953 return xpsr_read(env
) & 0xf80001ff;
7955 return xpsr_read(env
) & 0xff00fc00;
7957 return xpsr_read(env
) & 0xff00fdff;
7959 return xpsr_read(env
) & 0x000001ff;
7961 return xpsr_read(env
) & 0x0700fc00;
7963 return xpsr_read(env
) & 0x0700edff;
7965 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
7967 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
7968 case 16: /* PRIMASK */
7969 return (env
->daif
& PSTATE_I
) != 0;
7970 case 17: /* BASEPRI */
7971 case 18: /* BASEPRI_MAX */
7972 return env
->v7m
.basepri
;
7973 case 19: /* FAULTMASK */
7974 return (env
->daif
& PSTATE_F
) != 0;
7975 case 20: /* CONTROL */
7976 return env
->v7m
.control
;
7978 /* ??? For debugging only. */
7979 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
7984 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
7986 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7990 xpsr_write(env
, val
, 0xf8000000);
7993 xpsr_write(env
, val
, 0xf8000000);
7996 xpsr_write(env
, val
, 0xfe00fc00);
7999 xpsr_write(env
, val
, 0xfe00fc00);
8002 /* IPSR bits are readonly. */
8005 xpsr_write(env
, val
, 0x0600fc00);
8008 xpsr_write(env
, val
, 0x0600fc00);
8011 if (env
->v7m
.current_sp
)
8012 env
->v7m
.other_sp
= val
;
8014 env
->regs
[13] = val
;
8017 if (env
->v7m
.current_sp
)
8018 env
->regs
[13] = val
;
8020 env
->v7m
.other_sp
= val
;
8022 case 16: /* PRIMASK */
8024 env
->daif
|= PSTATE_I
;
8026 env
->daif
&= ~PSTATE_I
;
8029 case 17: /* BASEPRI */
8030 env
->v7m
.basepri
= val
& 0xff;
8032 case 18: /* BASEPRI_MAX */
8034 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
8035 env
->v7m
.basepri
= val
;
8037 case 19: /* FAULTMASK */
8039 env
->daif
|= PSTATE_F
;
8041 env
->daif
&= ~PSTATE_F
;
8044 case 20: /* CONTROL */
8045 env
->v7m
.control
= val
& 3;
8046 switch_v7m_sp(env
, (val
& 2) != 0);
8049 /* ??? For debugging only. */
8050 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
8057 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
8059 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8060 * Note that we do not implement the (architecturally mandated)
8061 * alignment fault for attempts to use this on Device memory
8062 * (which matches the usual QEMU behaviour of not implementing either
8063 * alignment faults or any memory attribute handling).
8066 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8067 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
8068 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
8070 #ifndef CONFIG_USER_ONLY
8072 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8073 * the block size so we might have to do more than one TLB lookup.
8074 * We know that in fact for any v8 CPU the page size is at least 4K
8075 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8076 * 1K as an artefact of legacy v5 subpage support being present in the
8077 * same QEMU executable.
8079 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
8080 void *hostaddr
[maxidx
];
8082 unsigned mmu_idx
= cpu_mmu_index(env
, false);
8083 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
8085 for (try = 0; try < 2; try++) {
8087 for (i
= 0; i
< maxidx
; i
++) {
8088 hostaddr
[i
] = tlb_vaddr_to_host(env
,
8089 vaddr
+ TARGET_PAGE_SIZE
* i
,
8096 /* If it's all in the TLB it's fair game for just writing to;
8097 * we know we don't need to update dirty status, etc.
8099 for (i
= 0; i
< maxidx
- 1; i
++) {
8100 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
8102 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
8105 /* OK, try a store and see if we can populate the tlb. This
8106 * might cause an exception if the memory isn't writable,
8107 * in which case we will longjmp out of here. We must for
8108 * this purpose use the actual register value passed to us
8109 * so that we get the fault address right.
8111 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
8112 /* Now we can populate the other TLB entries, if any */
8113 for (i
= 0; i
< maxidx
; i
++) {
8114 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
8115 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
8116 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
8121 /* Slow path (probably attempt to do this to an I/O device or
8122 * similar, or clearing of a block of code we have translations
8123 * cached for). Just do a series of byte writes as the architecture
8124 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8125 * memset(), unmap() sequence here because:
8126 * + we'd need to account for the blocksize being larger than a page
8127 * + the direct-RAM access case is almost always going to be dealt
8128 * with in the fastpath code above, so there's no speed benefit
8129 * + we would have to deal with the map returning NULL because the
8130 * bounce buffer was in use
8132 for (i
= 0; i
< blocklen
; i
++) {
8133 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
8137 memset(g2h(vaddr
), 0, blocklen
);
8141 /* Note that signed overflow is undefined in C. The following routines are
8142 careful to use unsigned types where modulo arithmetic is required.
8143 Failure to do so _will_ break on newer gcc. */
8145 /* Signed saturating arithmetic. */
8147 /* Perform 16-bit signed saturating addition. */
8148 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
8153 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
8162 /* Perform 8-bit signed saturating addition. */
8163 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
8168 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
8177 /* Perform 16-bit signed saturating subtraction. */
8178 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
8183 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
8192 /* Perform 8-bit signed saturating subtraction. */
8193 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
8198 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
8207 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8208 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8209 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8210 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8213 #include "op_addsub.h"
8215 /* Unsigned saturating arithmetic. */
8216 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
8225 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
8233 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
8242 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
8250 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8251 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8252 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8253 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8256 #include "op_addsub.h"
8258 /* Signed modulo arithmetic. */
8259 #define SARITH16(a, b, n, op) do { \
8261 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8262 RESULT(sum, n, 16); \
8264 ge |= 3 << (n * 2); \
8267 #define SARITH8(a, b, n, op) do { \
8269 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8270 RESULT(sum, n, 8); \
8276 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8277 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8278 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8279 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8283 #include "op_addsub.h"
8285 /* Unsigned modulo arithmetic. */
8286 #define ADD16(a, b, n) do { \
8288 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8289 RESULT(sum, n, 16); \
8290 if ((sum >> 16) == 1) \
8291 ge |= 3 << (n * 2); \
8294 #define ADD8(a, b, n) do { \
8296 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8297 RESULT(sum, n, 8); \
8298 if ((sum >> 8) == 1) \
8302 #define SUB16(a, b, n) do { \
8304 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8305 RESULT(sum, n, 16); \
8306 if ((sum >> 16) == 0) \
8307 ge |= 3 << (n * 2); \
8310 #define SUB8(a, b, n) do { \
8312 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8313 RESULT(sum, n, 8); \
8314 if ((sum >> 8) == 0) \
8321 #include "op_addsub.h"
8323 /* Halved signed arithmetic. */
8324 #define ADD16(a, b, n) \
8325 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8326 #define SUB16(a, b, n) \
8327 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8328 #define ADD8(a, b, n) \
8329 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8330 #define SUB8(a, b, n) \
8331 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8334 #include "op_addsub.h"
8336 /* Halved unsigned arithmetic. */
8337 #define ADD16(a, b, n) \
8338 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8339 #define SUB16(a, b, n) \
8340 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8341 #define ADD8(a, b, n) \
8342 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8343 #define SUB8(a, b, n) \
8344 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8347 #include "op_addsub.h"
8349 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
8357 /* Unsigned sum of absolute byte differences. */
8358 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
8361 sum
= do_usad(a
, b
);
8362 sum
+= do_usad(a
>> 8, b
>> 8);
8363 sum
+= do_usad(a
>> 16, b
>>16);
8364 sum
+= do_usad(a
>> 24, b
>> 24);
8368 /* For ARMv6 SEL instruction. */
8369 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
8382 return (a
& mask
) | (b
& ~mask
);
8385 /* VFP support. We follow the convention used for VFP instructions:
8386 Single precision routines have a "s" suffix, double precision a
8389 /* Convert host exception flags to vfp form. */
8390 static inline int vfp_exceptbits_from_host(int host_bits
)
8392 int target_bits
= 0;
8394 if (host_bits
& float_flag_invalid
)
8396 if (host_bits
& float_flag_divbyzero
)
8398 if (host_bits
& float_flag_overflow
)
8400 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
8402 if (host_bits
& float_flag_inexact
)
8403 target_bits
|= 0x10;
8404 if (host_bits
& float_flag_input_denormal
)
8405 target_bits
|= 0x80;
8409 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
8414 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
8415 | (env
->vfp
.vec_len
<< 16)
8416 | (env
->vfp
.vec_stride
<< 20);
8417 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
8418 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
8419 fpscr
|= vfp_exceptbits_from_host(i
);
8423 uint32_t vfp_get_fpscr(CPUARMState
*env
)
8425 return HELPER(vfp_get_fpscr
)(env
);
8428 /* Convert vfp exception flags to target form. */
8429 static inline int vfp_exceptbits_to_host(int target_bits
)
8433 if (target_bits
& 1)
8434 host_bits
|= float_flag_invalid
;
8435 if (target_bits
& 2)
8436 host_bits
|= float_flag_divbyzero
;
8437 if (target_bits
& 4)
8438 host_bits
|= float_flag_overflow
;
8439 if (target_bits
& 8)
8440 host_bits
|= float_flag_underflow
;
8441 if (target_bits
& 0x10)
8442 host_bits
|= float_flag_inexact
;
8443 if (target_bits
& 0x80)
8444 host_bits
|= float_flag_input_denormal
;
8448 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
8453 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
8454 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
8455 env
->vfp
.vec_len
= (val
>> 16) & 7;
8456 env
->vfp
.vec_stride
= (val
>> 20) & 3;
8459 if (changed
& (3 << 22)) {
8460 i
= (val
>> 22) & 3;
8462 case FPROUNDING_TIEEVEN
:
8463 i
= float_round_nearest_even
;
8465 case FPROUNDING_POSINF
:
8468 case FPROUNDING_NEGINF
:
8469 i
= float_round_down
;
8471 case FPROUNDING_ZERO
:
8472 i
= float_round_to_zero
;
8475 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
8477 if (changed
& (1 << 24)) {
8478 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8479 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8481 if (changed
& (1 << 25))
8482 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
8484 i
= vfp_exceptbits_to_host(val
);
8485 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
8486 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
8489 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
8491 HELPER(vfp_set_fpscr
)(env
, val
);
8494 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8496 #define VFP_BINOP(name) \
8497 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8499 float_status *fpst = fpstp; \
8500 return float32_ ## name(a, b, fpst); \
8502 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8504 float_status *fpst = fpstp; \
8505 return float64_ ## name(a, b, fpst); \
8517 float32
VFP_HELPER(neg
, s
)(float32 a
)
8519 return float32_chs(a
);
8522 float64
VFP_HELPER(neg
, d
)(float64 a
)
8524 return float64_chs(a
);
8527 float32
VFP_HELPER(abs
, s
)(float32 a
)
8529 return float32_abs(a
);
8532 float64
VFP_HELPER(abs
, d
)(float64 a
)
8534 return float64_abs(a
);
8537 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
8539 return float32_sqrt(a
, &env
->vfp
.fp_status
);
8542 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
8544 return float64_sqrt(a
, &env
->vfp
.fp_status
);
8547 /* XXX: check quiet/signaling case */
8548 #define DO_VFP_cmp(p, type) \
8549 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8552 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8553 case 0: flags = 0x6; break; \
8554 case -1: flags = 0x8; break; \
8555 case 1: flags = 0x2; break; \
8556 default: case 2: flags = 0x3; break; \
8558 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8559 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8561 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8564 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8565 case 0: flags = 0x6; break; \
8566 case -1: flags = 0x8; break; \
8567 case 1: flags = 0x2; break; \
8568 default: case 2: flags = 0x3; break; \
8570 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8571 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8573 DO_VFP_cmp(s
, float32
)
8574 DO_VFP_cmp(d
, float64
)
8577 /* Integer to float and float to integer conversions */
8579 #define CONV_ITOF(name, fsz, sign) \
8580 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8582 float_status *fpst = fpstp; \
8583 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8586 #define CONV_FTOI(name, fsz, sign, round) \
8587 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8589 float_status *fpst = fpstp; \
8590 if (float##fsz##_is_any_nan(x)) { \
8591 float_raise(float_flag_invalid, fpst); \
8594 return float##fsz##_to_##sign##int32##round(x, fpst); \
8597 #define FLOAT_CONVS(name, p, fsz, sign) \
8598 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8599 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8600 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8602 FLOAT_CONVS(si
, s
, 32, )
8603 FLOAT_CONVS(si
, d
, 64, )
8604 FLOAT_CONVS(ui
, s
, 32, u
)
8605 FLOAT_CONVS(ui
, d
, 64, u
)
8611 /* floating point conversion */
8612 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
8614 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
8615 /* ARM requires that S<->D conversion of any kind of NaN generates
8616 * a quiet NaN by forcing the most significant frac bit to 1.
8618 return float64_maybe_silence_nan(r
);
8621 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
8623 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
8624 /* ARM requires that S<->D conversion of any kind of NaN generates
8625 * a quiet NaN by forcing the most significant frac bit to 1.
8627 return float32_maybe_silence_nan(r
);
8630 /* VFP3 fixed point conversion. */
8631 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8632 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8635 float_status *fpst = fpstp; \
8637 tmp = itype##_to_##float##fsz(x, fpst); \
8638 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8641 /* Notice that we want only input-denormal exception flags from the
8642 * scalbn operation: the other possible flags (overflow+inexact if
8643 * we overflow to infinity, output-denormal) aren't correct for the
8644 * complete scale-and-convert operation.
8646 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8647 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8651 float_status *fpst = fpstp; \
8652 int old_exc_flags = get_float_exception_flags(fpst); \
8654 if (float##fsz##_is_any_nan(x)) { \
8655 float_raise(float_flag_invalid, fpst); \
8658 tmp = float##fsz##_scalbn(x, shift, fpst); \
8659 old_exc_flags |= get_float_exception_flags(fpst) \
8660 & float_flag_input_denormal; \
8661 set_float_exception_flags(old_exc_flags, fpst); \
8662 return float##fsz##_to_##itype##round(tmp, fpst); \
8665 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8666 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8667 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8668 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8670 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8671 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8672 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8674 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
8675 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
8676 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
8677 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
8678 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
8679 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
8680 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
8681 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
8682 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
8683 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
8684 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
8685 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
8687 #undef VFP_CONV_FIX_FLOAT
8688 #undef VFP_CONV_FLOAT_FIX_ROUND
8690 /* Set the current fp rounding mode and return the old one.
8691 * The argument is a softfloat float_round_ value.
8693 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8695 float_status
*fp_status
= &env
->vfp
.fp_status
;
8697 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8698 set_float_rounding_mode(rmode
, fp_status
);
8703 /* Set the current fp rounding mode in the standard fp status and return
8704 * the old one. This is for NEON instructions that need to change the
8705 * rounding mode but wish to use the standard FPSCR values for everything
8706 * else. Always set the rounding mode back to the correct value after
8708 * The argument is a softfloat float_round_ value.
8710 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8712 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
8714 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8715 set_float_rounding_mode(rmode
, fp_status
);
8720 /* Half precision conversions. */
8721 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
8723 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8724 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
8726 return float32_maybe_silence_nan(r
);
8731 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
8733 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8734 float16 r
= float32_to_float16(a
, ieee
, s
);
8736 r
= float16_maybe_silence_nan(r
);
8738 return float16_val(r
);
8741 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8743 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
8746 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8748 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
8751 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8753 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
8756 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8758 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
8761 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
8763 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8764 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
8766 return float64_maybe_silence_nan(r
);
8771 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
8773 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8774 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
8776 r
= float16_maybe_silence_nan(r
);
8778 return float16_val(r
);
8781 #define float32_two make_float32(0x40000000)
8782 #define float32_three make_float32(0x40400000)
8783 #define float32_one_point_five make_float32(0x3fc00000)
8785 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8787 float_status
*s
= &env
->vfp
.standard_fp_status
;
8788 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8789 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8790 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8791 float_raise(float_flag_input_denormal
, s
);
8795 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
8798 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8800 float_status
*s
= &env
->vfp
.standard_fp_status
;
8802 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8803 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8804 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8805 float_raise(float_flag_input_denormal
, s
);
8807 return float32_one_point_five
;
8809 product
= float32_mul(a
, b
, s
);
8810 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
8815 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8816 * int->float conversions at run-time. */
8817 #define float64_256 make_float64(0x4070000000000000LL)
8818 #define float64_512 make_float64(0x4080000000000000LL)
8819 #define float32_maxnorm make_float32(0x7f7fffff)
8820 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8822 /* Reciprocal functions
8824 * The algorithm that must be used to calculate the estimate
8825 * is specified by the ARM ARM, see FPRecipEstimate()
8828 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
8830 /* These calculations mustn't set any fp exception flags,
8831 * so we use a local copy of the fp_status.
8833 float_status dummy_status
= *real_fp_status
;
8834 float_status
*s
= &dummy_status
;
8835 /* q = (int)(a * 512.0) */
8836 float64 q
= float64_mul(float64_512
, a
, s
);
8837 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8839 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8840 q
= int64_to_float64(q_int
, s
);
8841 q
= float64_add(q
, float64_half
, s
);
8842 q
= float64_div(q
, float64_512
, s
);
8843 q
= float64_div(float64_one
, q
, s
);
8845 /* s = (int)(256.0 * r + 0.5) */
8846 q
= float64_mul(q
, float64_256
, s
);
8847 q
= float64_add(q
, float64_half
, s
);
8848 q_int
= float64_to_int64_round_to_zero(q
, s
);
8850 /* return (double)s / 256.0 */
8851 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8854 /* Common wrapper to call recip_estimate */
8855 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
8857 uint64_t val64
= float64_val(num
);
8858 uint64_t frac
= extract64(val64
, 0, 52);
8859 int64_t exp
= extract64(val64
, 52, 11);
8861 float64 scaled
, estimate
;
8863 /* Generate the scaled number for the estimate function */
8865 if (extract64(frac
, 51, 1) == 0) {
8867 frac
= extract64(frac
, 0, 50) << 2;
8869 frac
= extract64(frac
, 0, 51) << 1;
8873 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8874 scaled
= make_float64((0x3feULL
<< 52)
8875 | extract64(frac
, 44, 8) << 44);
8877 estimate
= recip_estimate(scaled
, fpst
);
8879 /* Build new result */
8880 val64
= float64_val(estimate
);
8881 sbit
= 0x8000000000000000ULL
& val64
;
8883 frac
= extract64(val64
, 0, 52);
8886 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
8887 } else if (exp
== -1) {
8888 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
8892 return make_float64(sbit
| (exp
<< 52) | frac
);
8895 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
8897 switch (fpst
->float_rounding_mode
) {
8898 case float_round_nearest_even
: /* Round to Nearest */
8900 case float_round_up
: /* Round to +Inf */
8902 case float_round_down
: /* Round to -Inf */
8904 case float_round_to_zero
: /* Round to Zero */
8908 g_assert_not_reached();
8911 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
8913 float_status
*fpst
= fpstp
;
8914 float32 f32
= float32_squash_input_denormal(input
, fpst
);
8915 uint32_t f32_val
= float32_val(f32
);
8916 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
8917 int32_t f32_exp
= extract32(f32_val
, 23, 8);
8918 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
8924 if (float32_is_any_nan(f32
)) {
8926 if (float32_is_signaling_nan(f32
)) {
8927 float_raise(float_flag_invalid
, fpst
);
8928 nan
= float32_maybe_silence_nan(f32
);
8930 if (fpst
->default_nan_mode
) {
8931 nan
= float32_default_nan
;
8934 } else if (float32_is_infinity(f32
)) {
8935 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8936 } else if (float32_is_zero(f32
)) {
8937 float_raise(float_flag_divbyzero
, fpst
);
8938 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8939 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
8940 /* Abs(value) < 2.0^-128 */
8941 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8942 if (round_to_inf(fpst
, f32_sbit
)) {
8943 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8945 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
8947 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
8948 float_raise(float_flag_underflow
, fpst
);
8949 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8953 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
8954 r64
= call_recip_estimate(f64
, 253, fpst
);
8955 r64_val
= float64_val(r64
);
8956 r64_exp
= extract64(r64_val
, 52, 11);
8957 r64_frac
= extract64(r64_val
, 0, 52);
8959 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8960 return make_float32(f32_sbit
|
8961 (r64_exp
& 0xff) << 23 |
8962 extract64(r64_frac
, 29, 24));
8965 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
8967 float_status
*fpst
= fpstp
;
8968 float64 f64
= float64_squash_input_denormal(input
, fpst
);
8969 uint64_t f64_val
= float64_val(f64
);
8970 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
8971 int64_t f64_exp
= extract64(f64_val
, 52, 11);
8977 /* Deal with any special cases */
8978 if (float64_is_any_nan(f64
)) {
8980 if (float64_is_signaling_nan(f64
)) {
8981 float_raise(float_flag_invalid
, fpst
);
8982 nan
= float64_maybe_silence_nan(f64
);
8984 if (fpst
->default_nan_mode
) {
8985 nan
= float64_default_nan
;
8988 } else if (float64_is_infinity(f64
)) {
8989 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8990 } else if (float64_is_zero(f64
)) {
8991 float_raise(float_flag_divbyzero
, fpst
);
8992 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8993 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
8994 /* Abs(value) < 2.0^-1024 */
8995 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8996 if (round_to_inf(fpst
, f64_sbit
)) {
8997 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8999 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
9001 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
9002 float_raise(float_flag_underflow
, fpst
);
9003 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
9006 r64
= call_recip_estimate(f64
, 2045, fpst
);
9007 r64_val
= float64_val(r64
);
9008 r64_exp
= extract64(r64_val
, 52, 11);
9009 r64_frac
= extract64(r64_val
, 0, 52);
9011 /* result = sign : result_exp<10:0> : fraction<51:0> */
9012 return make_float64(f64_sbit
|
9013 ((r64_exp
& 0x7ff) << 52) |
9017 /* The algorithm that must be used to calculate the estimate
9018 * is specified by the ARM ARM.
9020 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
9022 /* These calculations mustn't set any fp exception flags,
9023 * so we use a local copy of the fp_status.
9025 float_status dummy_status
= *real_fp_status
;
9026 float_status
*s
= &dummy_status
;
9030 if (float64_lt(a
, float64_half
, s
)) {
9031 /* range 0.25 <= a < 0.5 */
9033 /* a in units of 1/512 rounded down */
9034 /* q0 = (int)(a * 512.0); */
9035 q
= float64_mul(float64_512
, a
, s
);
9036 q_int
= float64_to_int64_round_to_zero(q
, s
);
9038 /* reciprocal root r */
9039 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9040 q
= int64_to_float64(q_int
, s
);
9041 q
= float64_add(q
, float64_half
, s
);
9042 q
= float64_div(q
, float64_512
, s
);
9043 q
= float64_sqrt(q
, s
);
9044 q
= float64_div(float64_one
, q
, s
);
9046 /* range 0.5 <= a < 1.0 */
9048 /* a in units of 1/256 rounded down */
9049 /* q1 = (int)(a * 256.0); */
9050 q
= float64_mul(float64_256
, a
, s
);
9051 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
9053 /* reciprocal root r */
9054 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9055 q
= int64_to_float64(q_int
, s
);
9056 q
= float64_add(q
, float64_half
, s
);
9057 q
= float64_div(q
, float64_256
, s
);
9058 q
= float64_sqrt(q
, s
);
9059 q
= float64_div(float64_one
, q
, s
);
9061 /* r in units of 1/256 rounded to nearest */
9062 /* s = (int)(256.0 * r + 0.5); */
9064 q
= float64_mul(q
, float64_256
,s
);
9065 q
= float64_add(q
, float64_half
, s
);
9066 q_int
= float64_to_int64_round_to_zero(q
, s
);
9068 /* return (double)s / 256.0;*/
9069 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
9072 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
9074 float_status
*s
= fpstp
;
9075 float32 f32
= float32_squash_input_denormal(input
, s
);
9076 uint32_t val
= float32_val(f32
);
9077 uint32_t f32_sbit
= 0x80000000 & val
;
9078 int32_t f32_exp
= extract32(val
, 23, 8);
9079 uint32_t f32_frac
= extract32(val
, 0, 23);
9085 if (float32_is_any_nan(f32
)) {
9087 if (float32_is_signaling_nan(f32
)) {
9088 float_raise(float_flag_invalid
, s
);
9089 nan
= float32_maybe_silence_nan(f32
);
9091 if (s
->default_nan_mode
) {
9092 nan
= float32_default_nan
;
9095 } else if (float32_is_zero(f32
)) {
9096 float_raise(float_flag_divbyzero
, s
);
9097 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
9098 } else if (float32_is_neg(f32
)) {
9099 float_raise(float_flag_invalid
, s
);
9100 return float32_default_nan
;
9101 } else if (float32_is_infinity(f32
)) {
9102 return float32_zero
;
9105 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9106 * preserving the parity of the exponent. */
9108 f64_frac
= ((uint64_t) f32_frac
) << 29;
9110 while (extract64(f64_frac
, 51, 1) == 0) {
9111 f64_frac
= f64_frac
<< 1;
9112 f32_exp
= f32_exp
-1;
9114 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9117 if (extract64(f32_exp
, 0, 1) == 0) {
9118 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9122 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9127 result_exp
= (380 - f32_exp
) / 2;
9129 f64
= recip_sqrt_estimate(f64
, s
);
9131 val64
= float64_val(f64
);
9133 val
= ((result_exp
& 0xff) << 23)
9134 | ((val64
>> 29) & 0x7fffff);
9135 return make_float32(val
);
9138 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
9140 float_status
*s
= fpstp
;
9141 float64 f64
= float64_squash_input_denormal(input
, s
);
9142 uint64_t val
= float64_val(f64
);
9143 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
9144 int64_t f64_exp
= extract64(val
, 52, 11);
9145 uint64_t f64_frac
= extract64(val
, 0, 52);
9147 uint64_t result_frac
;
9149 if (float64_is_any_nan(f64
)) {
9151 if (float64_is_signaling_nan(f64
)) {
9152 float_raise(float_flag_invalid
, s
);
9153 nan
= float64_maybe_silence_nan(f64
);
9155 if (s
->default_nan_mode
) {
9156 nan
= float64_default_nan
;
9159 } else if (float64_is_zero(f64
)) {
9160 float_raise(float_flag_divbyzero
, s
);
9161 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9162 } else if (float64_is_neg(f64
)) {
9163 float_raise(float_flag_invalid
, s
);
9164 return float64_default_nan
;
9165 } else if (float64_is_infinity(f64
)) {
9166 return float64_zero
;
9169 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9170 * preserving the parity of the exponent. */
9173 while (extract64(f64_frac
, 51, 1) == 0) {
9174 f64_frac
= f64_frac
<< 1;
9175 f64_exp
= f64_exp
- 1;
9177 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9180 if (extract64(f64_exp
, 0, 1) == 0) {
9181 f64
= make_float64(f64_sbit
9185 f64
= make_float64(f64_sbit
9190 result_exp
= (3068 - f64_exp
) / 2;
9192 f64
= recip_sqrt_estimate(f64
, s
);
9194 result_frac
= extract64(float64_val(f64
), 0, 52);
9196 return make_float64(f64_sbit
|
9197 ((result_exp
& 0x7ff) << 52) |
9201 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
9203 float_status
*s
= fpstp
;
9206 if ((a
& 0x80000000) == 0) {
9210 f64
= make_float64((0x3feULL
<< 52)
9211 | ((int64_t)(a
& 0x7fffffff) << 21));
9213 f64
= recip_estimate(f64
, s
);
9215 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9218 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
9220 float_status
*fpst
= fpstp
;
9223 if ((a
& 0xc0000000) == 0) {
9227 if (a
& 0x80000000) {
9228 f64
= make_float64((0x3feULL
<< 52)
9229 | ((uint64_t)(a
& 0x7fffffff) << 21));
9230 } else { /* bits 31-30 == '01' */
9231 f64
= make_float64((0x3fdULL
<< 52)
9232 | ((uint64_t)(a
& 0x3fffffff) << 22));
9235 f64
= recip_sqrt_estimate(f64
, fpst
);
9237 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9240 /* VFPv4 fused multiply-accumulate */
9241 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
9243 float_status
*fpst
= fpstp
;
9244 return float32_muladd(a
, b
, c
, 0, fpst
);
9247 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
9249 float_status
*fpst
= fpstp
;
9250 return float64_muladd(a
, b
, c
, 0, fpst
);
9253 /* ARMv8 round to integral */
9254 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
9256 return float32_round_to_int(x
, fp_status
);
9259 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
9261 return float64_round_to_int(x
, fp_status
);
9264 float32
HELPER(rints
)(float32 x
, void *fp_status
)
9266 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9269 ret
= float32_round_to_int(x
, fp_status
);
9271 /* Suppress any inexact exceptions the conversion produced */
9272 if (!(old_flags
& float_flag_inexact
)) {
9273 new_flags
= get_float_exception_flags(fp_status
);
9274 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9280 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
9282 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9285 ret
= float64_round_to_int(x
, fp_status
);
9287 new_flags
= get_float_exception_flags(fp_status
);
9289 /* Suppress any inexact exceptions the conversion produced */
9290 if (!(old_flags
& float_flag_inexact
)) {
9291 new_flags
= get_float_exception_flags(fp_status
);
9292 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9298 /* Convert ARM rounding mode to softfloat */
9299 int arm_rmode_to_sf(int rmode
)
9302 case FPROUNDING_TIEAWAY
:
9303 rmode
= float_round_ties_away
;
9305 case FPROUNDING_ODD
:
9306 /* FIXME: add support for TIEAWAY and ODD */
9307 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
9309 case FPROUNDING_TIEEVEN
:
9311 rmode
= float_round_nearest_even
;
9313 case FPROUNDING_POSINF
:
9314 rmode
= float_round_up
;
9316 case FPROUNDING_NEGINF
:
9317 rmode
= float_round_down
;
9319 case FPROUNDING_ZERO
:
9320 rmode
= float_round_to_zero
;
9327 * The upper bytes of val (above the number specified by 'bytes') must have
9328 * been zeroed out by the caller.
9330 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9336 /* zlib crc32 converts the accumulator and output to one's complement. */
9337 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
9340 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9346 /* Linux crc32c converts the output to one's complement. */
9347 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;