2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "exec/helper-proto.h"
22 #include "sysemu/kvm.h"
24 #include "mmu-hash64.h"
30 # define LOG_MMU(...) qemu_log(__VA_ARGS__)
31 # define LOG_MMU_STATE(cpu) log_cpu_state((cpu), 0)
33 # define LOG_MMU(...) do { } while (0)
34 # define LOG_MMU_STATE(cpu) do { } while (0)
38 # define LOG_SLB(...) qemu_log(__VA_ARGS__)
40 # define LOG_SLB(...) do { } while (0)
44 * Used to indicate whether we have allocated htab in the
47 bool kvmppc_kern_htab
;
52 static ppc_slb_t
*slb_lookup(CPUPPCState
*env
, target_ulong eaddr
)
54 uint64_t esid_256M
, esid_1T
;
57 LOG_SLB("%s: eaddr " TARGET_FMT_lx
"\n", __func__
, eaddr
);
59 esid_256M
= (eaddr
& SEGMENT_MASK_256M
) | SLB_ESID_V
;
60 esid_1T
= (eaddr
& SEGMENT_MASK_1T
) | SLB_ESID_V
;
62 for (n
= 0; n
< env
->slb_nr
; n
++) {
63 ppc_slb_t
*slb
= &env
->slb
[n
];
65 LOG_SLB("%s: slot %d %016" PRIx64
" %016"
66 PRIx64
"\n", __func__
, n
, slb
->esid
, slb
->vsid
);
67 /* We check for 1T matches on all MMUs here - if the MMU
68 * doesn't have 1T segment support, we will have prevented 1T
69 * entries from being inserted in the slbmte code. */
70 if (((slb
->esid
== esid_256M
) &&
71 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_256M
))
72 || ((slb
->esid
== esid_1T
) &&
73 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_1T
))) {
81 void dump_slb(FILE *f
, fprintf_function cpu_fprintf
, CPUPPCState
*env
)
86 cpu_synchronize_state(CPU(ppc_env_get_cpu(env
)));
88 cpu_fprintf(f
, "SLB\tESID\t\t\tVSID\n");
89 for (i
= 0; i
< env
->slb_nr
; i
++) {
90 slbe
= env
->slb
[i
].esid
;
91 slbv
= env
->slb
[i
].vsid
;
92 if (slbe
== 0 && slbv
== 0) {
95 cpu_fprintf(f
, "%d\t0x%016" PRIx64
"\t0x%016" PRIx64
"\n",
100 void helper_slbia(CPUPPCState
*env
)
102 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
103 int n
, do_invalidate
;
106 /* XXX: Warning: slbia never invalidates the first segment */
107 for (n
= 1; n
< env
->slb_nr
; n
++) {
108 ppc_slb_t
*slb
= &env
->slb
[n
];
110 if (slb
->esid
& SLB_ESID_V
) {
111 slb
->esid
&= ~SLB_ESID_V
;
112 /* XXX: given the fact that segment size is 256 MB or 1TB,
113 * and we still don't have a tlb_flush_mask(env, n, mask)
114 * in QEMU, we just invalidate all TLBs
120 tlb_flush(CPU(cpu
), 1);
124 void helper_slbie(CPUPPCState
*env
, target_ulong addr
)
126 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
129 slb
= slb_lookup(env
, addr
);
134 if (slb
->esid
& SLB_ESID_V
) {
135 slb
->esid
&= ~SLB_ESID_V
;
137 /* XXX: given the fact that segment size is 256 MB or 1TB,
138 * and we still don't have a tlb_flush_mask(env, n, mask)
139 * in QEMU, we just invalidate all TLBs
141 tlb_flush(CPU(cpu
), 1);
145 int ppc_store_slb(CPUPPCState
*env
, target_ulong rb
, target_ulong rs
)
147 int slot
= rb
& 0xfff;
148 ppc_slb_t
*slb
= &env
->slb
[slot
];
150 if (rb
& (0x1000 - env
->slb_nr
)) {
151 return -1; /* Reserved bits set or slot too high */
153 if (rs
& (SLB_VSID_B
& ~SLB_VSID_B_1T
)) {
154 return -1; /* Bad segment size */
156 if ((rs
& SLB_VSID_B
) && !(env
->mmu_model
& POWERPC_MMU_1TSEG
)) {
157 return -1; /* 1T segment on MMU that doesn't support it */
160 /* Mask out the slot number as we store the entry */
161 slb
->esid
= rb
& (SLB_ESID_ESID
| SLB_ESID_V
);
164 LOG_SLB("%s: %d " TARGET_FMT_lx
" - " TARGET_FMT_lx
" => %016" PRIx64
165 " %016" PRIx64
"\n", __func__
, slot
, rb
, rs
,
166 slb
->esid
, slb
->vsid
);
171 static int ppc_load_slb_esid(CPUPPCState
*env
, target_ulong rb
,
174 int slot
= rb
& 0xfff;
175 ppc_slb_t
*slb
= &env
->slb
[slot
];
177 if (slot
>= env
->slb_nr
) {
185 static int ppc_load_slb_vsid(CPUPPCState
*env
, target_ulong rb
,
188 int slot
= rb
& 0xfff;
189 ppc_slb_t
*slb
= &env
->slb
[slot
];
191 if (slot
>= env
->slb_nr
) {
199 void helper_store_slb(CPUPPCState
*env
, target_ulong rb
, target_ulong rs
)
201 if (ppc_store_slb(env
, rb
, rs
) < 0) {
202 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
207 target_ulong
helper_load_slb_esid(CPUPPCState
*env
, target_ulong rb
)
211 if (ppc_load_slb_esid(env
, rb
, &rt
) < 0) {
212 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
218 target_ulong
helper_load_slb_vsid(CPUPPCState
*env
, target_ulong rb
)
222 if (ppc_load_slb_vsid(env
, rb
, &rt
) < 0) {
223 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
230 * 64-bit hash table MMU handling
233 static int ppc_hash64_pte_prot(CPUPPCState
*env
,
234 ppc_slb_t
*slb
, ppc_hash_pte64_t pte
)
237 /* Some pp bit combinations have undefined behaviour, so default
238 * to no access in those cases */
241 key
= !!(msr_pr
? (slb
->vsid
& SLB_VSID_KP
)
242 : (slb
->vsid
& SLB_VSID_KS
));
243 pp
= (pte
.pte1
& HPTE64_R_PP
) | ((pte
.pte1
& HPTE64_R_PP0
) >> 61);
250 prot
= PAGE_READ
| PAGE_WRITE
;
271 prot
= PAGE_READ
| PAGE_WRITE
;
276 /* No execute if either noexec or guarded bits set */
277 if (!(pte
.pte1
& HPTE64_R_N
) || (pte
.pte1
& HPTE64_R_G
)
278 || (slb
->vsid
& SLB_VSID_N
)) {
285 static int ppc_hash64_amr_prot(CPUPPCState
*env
, ppc_hash_pte64_t pte
)
288 int prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
291 /* Only recent MMUs implement Virtual Page Class Key Protection */
292 if (!(env
->mmu_model
& POWERPC_MMU_AMR
)) {
296 key
= HPTE64_R_KEY(pte
.pte1
);
297 amrbits
= (env
->spr
[SPR_AMR
] >> 2*(31 - key
)) & 0x3;
299 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
300 /* env->spr[SPR_AMR]); */
303 * A store is permitted if the AMR bit is 0. Remove write
304 * protection if it is set.
310 * A load is permitted if the AMR bit is 0. Remove read
311 * protection if it is set.
320 uint64_t ppc_hash64_start_access(PowerPCCPU
*cpu
, target_ulong pte_index
)
325 pte_offset
= pte_index
* HASH_PTE_SIZE_64
;
326 if (kvmppc_kern_htab
) {
328 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
330 token
= kvmppc_hash64_read_pteg(cpu
, pte_index
);
335 * pteg read failed, even though we have allocated htab via
341 * HTAB is controlled by QEMU. Just point to the internally
344 if (cpu
->env
.external_htab
) {
345 token
= (uint64_t)(uintptr_t) cpu
->env
.external_htab
+ pte_offset
;
346 } else if (cpu
->env
.htab_base
) {
347 token
= cpu
->env
.htab_base
+ pte_offset
;
352 void ppc_hash64_stop_access(uint64_t token
)
354 if (kvmppc_kern_htab
) {
355 return kvmppc_hash64_free_pteg(token
);
359 static hwaddr
ppc_hash64_pteg_search(CPUPPCState
*env
, hwaddr hash
,
360 bool secondary
, target_ulong ptem
,
361 ppc_hash_pte64_t
*pte
)
365 target_ulong pte0
, pte1
;
366 target_ulong pte_index
;
368 pte_index
= (hash
& env
->htab_mask
) * HPTES_PER_GROUP
;
369 token
= ppc_hash64_start_access(ppc_env_get_cpu(env
), pte_index
);
373 for (i
= 0; i
< HPTES_PER_GROUP
; i
++) {
374 pte0
= ppc_hash64_load_hpte0(env
, token
, i
);
375 pte1
= ppc_hash64_load_hpte1(env
, token
, i
);
377 if ((pte0
& HPTE64_V_VALID
)
378 && (secondary
== !!(pte0
& HPTE64_V_SECONDARY
))
379 && HPTE64_V_COMPARE(pte0
, ptem
)) {
382 ppc_hash64_stop_access(token
);
383 return (pte_index
+ i
) * HASH_PTE_SIZE_64
;
386 ppc_hash64_stop_access(token
);
388 * We didn't find a valid entry.
393 static hwaddr
ppc_hash64_htab_lookup(CPUPPCState
*env
,
394 ppc_slb_t
*slb
, target_ulong eaddr
,
395 ppc_hash_pte64_t
*pte
)
399 uint64_t vsid
, epnshift
, epnmask
, epn
, ptem
;
401 /* Page size according to the SLB, which we use to generate the
402 * EPN for hash table lookup.. When we implement more recent MMU
403 * extensions this might be different from the actual page size
404 * encoded in the PTE */
405 epnshift
= (slb
->vsid
& SLB_VSID_L
)
406 ? TARGET_PAGE_BITS_16M
: TARGET_PAGE_BITS
;
407 epnmask
= ~((1ULL << epnshift
) - 1);
409 if (slb
->vsid
& SLB_VSID_B
) {
411 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT_1T
;
412 epn
= (eaddr
& ~SEGMENT_MASK_1T
) & epnmask
;
413 hash
= vsid
^ (vsid
<< 25) ^ (epn
>> epnshift
);
416 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT
;
417 epn
= (eaddr
& ~SEGMENT_MASK_256M
) & epnmask
;
418 hash
= vsid
^ (epn
>> epnshift
);
420 ptem
= (slb
->vsid
& SLB_VSID_PTEM
) | ((epn
>> 16) & HPTE64_V_AVPN
);
422 /* Page address translation */
423 LOG_MMU("htab_base " TARGET_FMT_plx
" htab_mask " TARGET_FMT_plx
424 " hash " TARGET_FMT_plx
"\n",
425 env
->htab_base
, env
->htab_mask
, hash
);
427 /* Primary PTEG lookup */
428 LOG_MMU("0 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
429 " vsid=" TARGET_FMT_lx
" ptem=" TARGET_FMT_lx
430 " hash=" TARGET_FMT_plx
"\n",
431 env
->htab_base
, env
->htab_mask
, vsid
, ptem
, hash
);
432 pte_offset
= ppc_hash64_pteg_search(env
, hash
, 0, ptem
, pte
);
434 if (pte_offset
== -1) {
435 /* Secondary PTEG lookup */
436 LOG_MMU("1 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
437 " vsid=" TARGET_FMT_lx
" api=" TARGET_FMT_lx
438 " hash=" TARGET_FMT_plx
"\n", env
->htab_base
,
439 env
->htab_mask
, vsid
, ptem
, ~hash
);
441 pte_offset
= ppc_hash64_pteg_search(env
, ~hash
, 1, ptem
, pte
);
447 static hwaddr
ppc_hash64_pte_raddr(ppc_slb_t
*slb
, ppc_hash_pte64_t pte
,
450 hwaddr rpn
= pte
.pte1
& HPTE64_R_RPN
;
451 /* FIXME: Add support for SLLP extended page sizes */
452 int target_page_bits
= (slb
->vsid
& SLB_VSID_L
)
453 ? TARGET_PAGE_BITS_16M
: TARGET_PAGE_BITS
;
454 hwaddr mask
= (1ULL << target_page_bits
) - 1;
456 return (rpn
& ~mask
) | (eaddr
& mask
);
459 int ppc_hash64_handle_mmu_fault(PowerPCCPU
*cpu
, target_ulong eaddr
,
460 int rwx
, int mmu_idx
)
462 CPUState
*cs
= CPU(cpu
);
463 CPUPPCState
*env
= &cpu
->env
;
466 ppc_hash_pte64_t pte
;
467 int pp_prot
, amr_prot
, prot
;
469 const int need_prot
[] = {PAGE_READ
, PAGE_WRITE
, PAGE_EXEC
};
472 assert((rwx
== 0) || (rwx
== 1) || (rwx
== 2));
474 /* 1. Handle real mode accesses */
475 if (((rwx
== 2) && (msr_ir
== 0)) || ((rwx
!= 2) && (msr_dr
== 0))) {
476 /* Translation is off */
477 /* In real mode the top 4 effective address bits are ignored */
478 raddr
= eaddr
& 0x0FFFFFFFFFFFFFFFULL
;
479 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
480 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
, mmu_idx
,
485 /* 2. Translation is on, so look up the SLB */
486 slb
= slb_lookup(env
, eaddr
);
490 cs
->exception_index
= POWERPC_EXCP_ISEG
;
493 cs
->exception_index
= POWERPC_EXCP_DSEG
;
495 env
->spr
[SPR_DAR
] = eaddr
;
500 /* 3. Check for segment level no-execute violation */
501 if ((rwx
== 2) && (slb
->vsid
& SLB_VSID_N
)) {
502 cs
->exception_index
= POWERPC_EXCP_ISI
;
503 env
->error_code
= 0x10000000;
507 /* 4. Locate the PTE in the hash table */
508 pte_offset
= ppc_hash64_htab_lookup(env
, slb
, eaddr
, &pte
);
509 if (pte_offset
== -1) {
511 cs
->exception_index
= POWERPC_EXCP_ISI
;
512 env
->error_code
= 0x40000000;
514 cs
->exception_index
= POWERPC_EXCP_DSI
;
516 env
->spr
[SPR_DAR
] = eaddr
;
518 env
->spr
[SPR_DSISR
] = 0x42000000;
520 env
->spr
[SPR_DSISR
] = 0x40000000;
525 LOG_MMU("found PTE at offset %08" HWADDR_PRIx
"\n", pte_offset
);
527 /* 5. Check access permissions */
529 pp_prot
= ppc_hash64_pte_prot(env
, slb
, pte
);
530 amr_prot
= ppc_hash64_amr_prot(env
, pte
);
531 prot
= pp_prot
& amr_prot
;
533 if ((need_prot
[rwx
] & ~prot
) != 0) {
534 /* Access right violation */
535 LOG_MMU("PTE access rejected\n");
537 cs
->exception_index
= POWERPC_EXCP_ISI
;
538 env
->error_code
= 0x08000000;
540 target_ulong dsisr
= 0;
542 cs
->exception_index
= POWERPC_EXCP_DSI
;
544 env
->spr
[SPR_DAR
] = eaddr
;
545 if (need_prot
[rwx
] & ~pp_prot
) {
551 if (need_prot
[rwx
] & ~amr_prot
) {
554 env
->spr
[SPR_DSISR
] = dsisr
;
559 LOG_MMU("PTE access granted !\n");
561 /* 6. Update PTE referenced and changed bits if necessary */
563 new_pte1
= pte
.pte1
| HPTE64_R_R
; /* set referenced bit */
565 new_pte1
|= HPTE64_R_C
; /* set changed (dirty) bit */
567 /* Treat the page as read-only for now, so that a later write
568 * will pass through this function again to set the C bit */
572 if (new_pte1
!= pte
.pte1
) {
573 ppc_hash64_store_hpte(env
, pte_offset
/ HASH_PTE_SIZE_64
,
577 /* 7. Determine the real address from the PTE */
579 raddr
= ppc_hash64_pte_raddr(slb
, pte
, eaddr
);
581 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
582 prot
, mmu_idx
, TARGET_PAGE_SIZE
);
587 hwaddr
ppc_hash64_get_phys_page_debug(CPUPPCState
*env
, target_ulong addr
)
591 ppc_hash_pte64_t pte
;
594 /* In real mode the top 4 effective address bits are ignored */
595 return addr
& 0x0FFFFFFFFFFFFFFFULL
;
598 slb
= slb_lookup(env
, addr
);
603 pte_offset
= ppc_hash64_htab_lookup(env
, slb
, addr
, &pte
);
604 if (pte_offset
== -1) {
608 return ppc_hash64_pte_raddr(slb
, pte
, addr
) & TARGET_PAGE_MASK
;
611 void ppc_hash64_store_hpte(CPUPPCState
*env
,
612 target_ulong pte_index
,
613 target_ulong pte0
, target_ulong pte1
)
615 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
617 if (kvmppc_kern_htab
) {
618 return kvmppc_hash64_write_pte(env
, pte_index
, pte0
, pte1
);
621 pte_index
*= HASH_PTE_SIZE_64
;
622 if (env
->external_htab
) {
623 stq_p(env
->external_htab
+ pte_index
, pte0
);
624 stq_p(env
->external_htab
+ pte_index
+ HASH_PTE_SIZE_64
/2, pte1
);
626 stq_phys(cs
->as
, env
->htab_base
+ pte_index
, pte0
);
627 stq_phys(cs
->as
, env
->htab_base
+ pte_index
+ HASH_PTE_SIZE_64
/2, pte1
);