2 * sigaltstack coroutine initialization code
4 * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws>
5 * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Copyright (C) 2012 Alex Barcelo <abarcelo@ac.upc.edu>
7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8 ** Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25 #ifdef _FORTIFY_SOURCE
26 #undef _FORTIFY_SOURCE
33 #include "qemu-common.h"
34 #include "block/coroutine_int.h"
37 /* Maximum free pool size prevents holding too many freed coroutines */
41 /** Free list to speed up creation */
42 static QSLIST_HEAD(, Coroutine
) pool
= QSLIST_HEAD_INITIALIZER(pool
);
43 static unsigned int pool_size
;
52 * Per-thread coroutine bookkeeping
55 /** Currently executing coroutine */
58 /** The default coroutine */
59 CoroutineUContext leader
;
61 /** Information for the signal handler (trampoline) */
63 volatile sig_atomic_t tr_called
;
65 } CoroutineThreadState
;
67 static pthread_key_t thread_state_key
;
69 static CoroutineThreadState
*coroutine_get_thread_state(void)
71 CoroutineThreadState
*s
= pthread_getspecific(thread_state_key
);
74 s
= g_malloc0(sizeof(*s
));
75 s
->current
= &s
->leader
.base
;
76 pthread_setspecific(thread_state_key
, s
);
81 static void qemu_coroutine_thread_cleanup(void *opaque
)
83 CoroutineThreadState
*s
= opaque
;
88 static void __attribute__((destructor
)) coroutine_cleanup(void)
93 QSLIST_FOREACH_SAFE(co
, &pool
, pool_next
, tmp
) {
94 g_free(DO_UPCAST(CoroutineUContext
, base
, co
)->stack
);
99 static void __attribute__((constructor
)) coroutine_init(void)
103 ret
= pthread_key_create(&thread_state_key
, qemu_coroutine_thread_cleanup
);
105 fprintf(stderr
, "unable to create leader key: %s\n", strerror(errno
));
111 * This is what starts the coroutine, is called from the trampoline
112 * (from the signal handler when it is not signal handling, read ahead
113 * for more information).
115 static void coroutine_bootstrap(CoroutineUContext
*self
, Coroutine
*co
)
117 /* Initialize longjmp environment and switch back the caller */
118 if (!setjmp(self
->env
)) {
119 longjmp(*(jmp_buf *)co
->entry_arg
, 1);
123 co
->entry(co
->entry_arg
);
124 qemu_coroutine_switch(co
, co
->caller
, COROUTINE_TERMINATE
);
129 * This is used as the signal handler. This is called with the brand new stack
130 * (thanks to sigaltstack). We have to return, given that this is a signal
131 * handler and the sigmask and some other things are changed.
133 static void coroutine_trampoline(int signal
)
135 CoroutineUContext
*self
;
137 CoroutineThreadState
*coTS
;
139 /* Get the thread specific information */
140 coTS
= coroutine_get_thread_state();
141 self
= coTS
->tr_handler
;
146 * Here we have to do a bit of a ping pong between the caller, given that
147 * this is a signal handler and we have to do a return "soon". Then the
148 * caller can reestablish everything and do a longjmp here again.
150 if (!setjmp(coTS
->tr_reenter
)) {
155 * Ok, the caller has longjmp'ed back to us, so now prepare
156 * us for the real machine state switching. We have to jump
157 * into another function here to get a new stack context for
158 * the auto variables (which have to be auto-variables
159 * because the start of the thread happens later). Else with
160 * PIC (i.e. Position Independent Code which is used when PTH
161 * is built as a shared library) most platforms would
162 * horrible core dump as experience showed.
164 coroutine_bootstrap(self
, co
);
167 static Coroutine
*coroutine_new(void)
169 const size_t stack_size
= 1 << 20;
170 CoroutineUContext
*co
;
171 CoroutineThreadState
*coTS
;
173 struct sigaction osa
;
180 /* The way to manipulate stack is with the sigaltstack function. We
181 * prepare a stack, with it delivering a signal to ourselves and then
182 * put setjmp/longjmp where needed.
183 * This has been done keeping coroutine-ucontext as a model and with the
184 * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
185 * of the coroutines and see pth_mctx.c (from the pth project) for the
186 * sigaltstack way of manipulating stacks.
189 co
= g_malloc0(sizeof(*co
));
190 co
->stack
= g_malloc(stack_size
);
191 co
->base
.entry_arg
= &old_env
; /* stash away our jmp_buf */
193 coTS
= coroutine_get_thread_state();
194 coTS
->tr_handler
= co
;
197 * Preserve the SIGUSR2 signal state, block SIGUSR2,
198 * and establish our signal handler. The signal will
199 * later transfer control onto the signal stack.
202 sigaddset(&sigs
, SIGUSR2
);
203 pthread_sigmask(SIG_BLOCK
, &sigs
, &osigs
);
204 sa
.sa_handler
= coroutine_trampoline
;
205 sigfillset(&sa
.sa_mask
);
206 sa
.sa_flags
= SA_ONSTACK
;
207 if (sigaction(SIGUSR2
, &sa
, &osa
) != 0) {
214 ss
.ss_sp
= co
->stack
;
215 ss
.ss_size
= stack_size
;
217 if (sigaltstack(&ss
, &oss
) < 0) {
222 * Now transfer control onto the signal stack and set it up.
223 * It will return immediately via "return" after the setjmp()
224 * was performed. Be careful here with race conditions. The
225 * signal can be delivered the first time sigsuspend() is
229 pthread_kill(pthread_self(), SIGUSR2
);
231 sigdelset(&sigs
, SIGUSR2
);
232 while (!coTS
->tr_called
) {
237 * Inform the system that we are back off the signal stack by
238 * removing the alternative signal stack. Be careful here: It
239 * first has to be disabled, before it can be removed.
241 sigaltstack(NULL
, &ss
);
242 ss
.ss_flags
= SS_DISABLE
;
243 if (sigaltstack(&ss
, NULL
) < 0) {
246 sigaltstack(NULL
, &ss
);
247 if (!(oss
.ss_flags
& SS_DISABLE
)) {
248 sigaltstack(&oss
, NULL
);
252 * Restore the old SIGUSR2 signal handler and mask
254 sigaction(SIGUSR2
, &osa
, NULL
);
255 pthread_sigmask(SIG_SETMASK
, &osigs
, NULL
);
258 * Now enter the trampoline again, but this time not as a signal
259 * handler. Instead we jump into it directly. The functionally
260 * redundant ping-pong pointer arithmetic is necessary to avoid
261 * type-conversion warnings related to the `volatile' qualifier and
262 * the fact that `jmp_buf' usually is an array type.
264 if (!setjmp(old_env
)) {
265 longjmp(coTS
->tr_reenter
, 1);
269 * Ok, we returned again, so now we're finished
275 Coroutine
*qemu_coroutine_new(void)
279 co
= QSLIST_FIRST(&pool
);
281 QSLIST_REMOVE_HEAD(&pool
, pool_next
);
284 co
= coroutine_new();
289 void qemu_coroutine_delete(Coroutine
*co_
)
291 CoroutineUContext
*co
= DO_UPCAST(CoroutineUContext
, base
, co_
);
293 if (pool_size
< POOL_MAX_SIZE
) {
294 QSLIST_INSERT_HEAD(&pool
, &co
->base
, pool_next
);
295 co
->base
.caller
= NULL
;
304 CoroutineAction
qemu_coroutine_switch(Coroutine
*from_
, Coroutine
*to_
,
305 CoroutineAction action
)
307 CoroutineUContext
*from
= DO_UPCAST(CoroutineUContext
, base
, from_
);
308 CoroutineUContext
*to
= DO_UPCAST(CoroutineUContext
, base
, to_
);
309 CoroutineThreadState
*s
= coroutine_get_thread_state();
314 ret
= setjmp(from
->env
);
316 longjmp(to
->env
, action
);
321 Coroutine
*qemu_coroutine_self(void)
323 CoroutineThreadState
*s
= coroutine_get_thread_state();
328 bool qemu_in_coroutine(void)
330 CoroutineThreadState
*s
= pthread_getspecific(thread_state_key
);
332 return s
&& s
->current
->caller
;