2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
23 #include <sys/types.h>
24 #include <sys/socket.h>
26 #include <arpa/inet.h>
28 #include <rdma/rdma_cma.h>
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
38 #define DPRINTF(fmt, ...) \
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
46 #define DDPRINTF(fmt, ...) \
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
54 #define DDDPRINTF(fmt, ...) \
59 * Print and error on both the Monitor and the Log file.
61 #define ERROR(errp, fmt, ...) \
63 fprintf(stderr, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
83 #define RDMA_SEND_INCREMENT 32768
86 * Maximum size infiniband SEND message
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
91 #define RDMA_CONTROL_VERSION_CURRENT 1
93 * Capabilities for negotiation.
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
101 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
103 #define CHECK_ERROR_STATE() \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
109 rdma->error_reported = 1; \
111 return rdma->error_state; \
116 * A work request ID is 64-bits and we split up these bits
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
146 RDMA_WRID_RDMA_WRITE
= 1,
147 RDMA_WRID_SEND_CONTROL
= 2000,
148 RDMA_WRID_RECV_CONTROL
= 4000,
151 const char *wrid_desc
[] = {
152 [RDMA_WRID_NONE
] = "NONE",
153 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
163 * We could use more WRs, but we have enough for now.
173 * SEND/RECV IB Control Messages.
176 RDMA_CONTROL_NONE
= 0,
178 RDMA_CONTROL_READY
, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
190 const char *control_desc
[] = {
191 [RDMA_CONTROL_NONE
] = "NONE",
192 [RDMA_CONTROL_ERROR
] = "ERROR",
193 [RDMA_CONTROL_READY
] = "READY",
194 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
210 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
211 struct ibv_mr
*control_mr
; /* registration metadata */
212 size_t control_len
; /* length of the message */
213 uint8_t *control_curr
; /* start of unconsumed bytes */
214 } RDMAWorkRequestData
;
217 * Negotiate RDMA capabilities during connection-setup time.
224 static void caps_to_network(RDMACapabilities
*cap
)
226 cap
->version
= htonl(cap
->version
);
227 cap
->flags
= htonl(cap
->flags
);
230 static void network_to_caps(RDMACapabilities
*cap
)
232 cap
->version
= ntohl(cap
->version
);
233 cap
->flags
= ntohl(cap
->flags
);
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
243 typedef struct RDMALocalBlock
{
244 uint8_t *local_host_addr
; /* local virtual address */
245 uint64_t remote_host_addr
; /* remote virtual address */
248 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
249 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
252 int index
; /* which block are we */
255 unsigned long *transit_bitmap
;
256 unsigned long *unregister_bitmap
;
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
266 typedef struct QEMU_PACKED RDMARemoteBlock
{
267 uint64_t remote_host_addr
;
270 uint32_t remote_rkey
;
274 static uint64_t htonll(uint64_t v
)
276 union { uint32_t lv
[2]; uint64_t llv
; } u
;
277 u
.lv
[0] = htonl(v
>> 32);
278 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
282 static uint64_t ntohll(uint64_t v
) {
283 union { uint32_t lv
[2]; uint64_t llv
; } u
;
285 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
288 static void remote_block_to_network(RDMARemoteBlock
*rb
)
290 rb
->remote_host_addr
= htonll(rb
->remote_host_addr
);
291 rb
->offset
= htonll(rb
->offset
);
292 rb
->length
= htonll(rb
->length
);
293 rb
->remote_rkey
= htonl(rb
->remote_rkey
);
296 static void network_to_remote_block(RDMARemoteBlock
*rb
)
298 rb
->remote_host_addr
= ntohll(rb
->remote_host_addr
);
299 rb
->offset
= ntohll(rb
->offset
);
300 rb
->length
= ntohll(rb
->length
);
301 rb
->remote_rkey
= ntohl(rb
->remote_rkey
);
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
309 typedef struct RDMALocalBlocks
{
311 bool init
; /* main memory init complete */
312 RDMALocalBlock
*block
;
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
321 typedef struct RDMAContext
{
325 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
+ 1];
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
334 int control_ready_expected
;
336 /* number of outstanding writes */
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr
;
342 uint64_t current_length
;
343 /* index of ram block the current buffer belongs to */
345 /* index of the chunk in the current ram block */
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
357 struct rdma_cm_id
*cm_id
; /* connection manager ID */
358 struct rdma_cm_id
*listen_id
;
360 struct ibv_context
*verbs
;
361 struct rdma_event_channel
*channel
;
362 struct ibv_qp
*qp
; /* queue pair */
363 struct ibv_comp_channel
*comp_channel
; /* completion channel */
364 struct ibv_pd
*pd
; /* protection domain */
365 struct ibv_cq
*cq
; /* completion queue */
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
376 * Description of ram blocks used throughout the code.
378 RDMALocalBlocks local_ram_blocks
;
379 RDMARemoteBlock
*block
;
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
386 int migration_started_on_destination
;
388 int total_registrations
;
391 int unregister_current
, unregister_next
;
392 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
394 GHashTable
*blockmap
;
398 * Interface to the rest of the migration call stack.
400 typedef struct QEMUFileRDMA
{
407 * Main structure for IB Send/Recv control messages.
408 * This gets prepended at the beginning of every Send/Recv.
410 typedef struct QEMU_PACKED
{
411 uint32_t len
; /* Total length of data portion */
412 uint32_t type
; /* which control command to perform */
413 uint32_t repeat
; /* number of commands in data portion of same type */
417 static void control_to_network(RDMAControlHeader
*control
)
419 control
->type
= htonl(control
->type
);
420 control
->len
= htonl(control
->len
);
421 control
->repeat
= htonl(control
->repeat
);
424 static void network_to_control(RDMAControlHeader
*control
)
426 control
->type
= ntohl(control
->type
);
427 control
->len
= ntohl(control
->len
);
428 control
->repeat
= ntohl(control
->repeat
);
432 * Register a single Chunk.
433 * Information sent by the source VM to inform the dest
434 * to register an single chunk of memory before we can perform
435 * the actual RDMA operation.
437 typedef struct QEMU_PACKED
{
439 uint64_t current_addr
; /* offset into the ramblock of the chunk */
440 uint64_t chunk
; /* chunk to lookup if unregistering */
442 uint32_t current_index
; /* which ramblock the chunk belongs to */
444 uint64_t chunks
; /* how many sequential chunks to register */
447 static void register_to_network(RDMARegister
*reg
)
449 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
450 reg
->current_index
= htonl(reg
->current_index
);
451 reg
->chunks
= htonll(reg
->chunks
);
454 static void network_to_register(RDMARegister
*reg
)
456 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
457 reg
->current_index
= ntohl(reg
->current_index
);
458 reg
->chunks
= ntohll(reg
->chunks
);
461 typedef struct QEMU_PACKED
{
462 uint32_t value
; /* if zero, we will madvise() */
463 uint32_t block_idx
; /* which ram block index */
464 uint64_t offset
; /* where in the remote ramblock this chunk */
465 uint64_t length
; /* length of the chunk */
468 static void compress_to_network(RDMACompress
*comp
)
470 comp
->value
= htonl(comp
->value
);
471 comp
->block_idx
= htonl(comp
->block_idx
);
472 comp
->offset
= htonll(comp
->offset
);
473 comp
->length
= htonll(comp
->length
);
476 static void network_to_compress(RDMACompress
*comp
)
478 comp
->value
= ntohl(comp
->value
);
479 comp
->block_idx
= ntohl(comp
->block_idx
);
480 comp
->offset
= ntohll(comp
->offset
);
481 comp
->length
= ntohll(comp
->length
);
485 * The result of the dest's memory registration produces an "rkey"
486 * which the source VM must reference in order to perform
487 * the RDMA operation.
489 typedef struct QEMU_PACKED
{
493 } RDMARegisterResult
;
495 static void result_to_network(RDMARegisterResult
*result
)
497 result
->rkey
= htonl(result
->rkey
);
498 result
->host_addr
= htonll(result
->host_addr
);
501 static void network_to_result(RDMARegisterResult
*result
)
503 result
->rkey
= ntohl(result
->rkey
);
504 result
->host_addr
= ntohll(result
->host_addr
);
507 const char *print_wrid(int wrid
);
508 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
509 uint8_t *data
, RDMAControlHeader
*resp
,
511 int (*callback
)(RDMAContext
*rdma
));
513 static inline uint64_t ram_chunk_index(uint8_t *start
, uint8_t *host
)
515 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
518 static inline uint8_t *ram_chunk_start(RDMALocalBlock
*rdma_ram_block
,
521 return (uint8_t *) (((uintptr_t) rdma_ram_block
->local_host_addr
)
522 + (i
<< RDMA_REG_CHUNK_SHIFT
));
525 static inline uint8_t *ram_chunk_end(RDMALocalBlock
*rdma_ram_block
, uint64_t i
)
527 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
528 (1UL << RDMA_REG_CHUNK_SHIFT
);
530 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
531 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
537 static int __qemu_rdma_add_block(RDMAContext
*rdma
, void *host_addr
,
538 ram_addr_t block_offset
, uint64_t length
)
540 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
541 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
542 (void *) block_offset
);
543 RDMALocalBlock
*old
= local
->block
;
545 assert(block
== NULL
);
547 local
->block
= g_malloc0(sizeof(RDMALocalBlock
) * (local
->nb_blocks
+ 1));
549 if (local
->nb_blocks
) {
552 for (x
= 0; x
< local
->nb_blocks
; x
++) {
553 g_hash_table_remove(rdma
->blockmap
, (void *)old
[x
].offset
);
554 g_hash_table_insert(rdma
->blockmap
, (void *)old
[x
].offset
,
557 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
561 block
= &local
->block
[local
->nb_blocks
];
563 block
->local_host_addr
= host_addr
;
564 block
->offset
= block_offset
;
565 block
->length
= length
;
566 block
->index
= local
->nb_blocks
;
567 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
568 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
569 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
570 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
571 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
572 block
->remote_keys
= g_malloc0(block
->nb_chunks
* sizeof(uint32_t));
574 block
->is_ram_block
= local
->init
? false : true;
576 g_hash_table_insert(rdma
->blockmap
, (void *) block_offset
, block
);
578 DDPRINTF("Added Block: %d, addr: %" PRIu64
", offset: %" PRIu64
579 " length: %" PRIu64
" end: %" PRIu64
" bits %" PRIu64
" chunks %d\n",
580 local
->nb_blocks
, (uint64_t) block
->local_host_addr
, block
->offset
,
581 block
->length
, (uint64_t) (block
->local_host_addr
+ block
->length
),
582 BITS_TO_LONGS(block
->nb_chunks
) *
583 sizeof(unsigned long) * 8, block
->nb_chunks
);
591 * Memory regions need to be registered with the device and queue pairs setup
592 * in advanced before the migration starts. This tells us where the RAM blocks
593 * are so that we can register them individually.
595 static void qemu_rdma_init_one_block(void *host_addr
,
596 ram_addr_t block_offset
, ram_addr_t length
, void *opaque
)
598 __qemu_rdma_add_block(opaque
, host_addr
, block_offset
, length
);
602 * Identify the RAMBlocks and their quantity. They will be references to
603 * identify chunk boundaries inside each RAMBlock and also be referenced
604 * during dynamic page registration.
606 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
608 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
610 assert(rdma
->blockmap
== NULL
);
611 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
612 memset(local
, 0, sizeof *local
);
613 qemu_ram_foreach_block(qemu_rdma_init_one_block
, rdma
);
614 DPRINTF("Allocated %d local ram block structures\n", local
->nb_blocks
);
615 rdma
->block
= (RDMARemoteBlock
*) g_malloc0(sizeof(RDMARemoteBlock
) *
616 rdma
->local_ram_blocks
.nb_blocks
);
621 static int __qemu_rdma_delete_block(RDMAContext
*rdma
, ram_addr_t block_offset
)
623 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
624 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
625 (void *) block_offset
);
626 RDMALocalBlock
*old
= local
->block
;
634 for (j
= 0; j
< block
->nb_chunks
; j
++) {
635 if (!block
->pmr
[j
]) {
638 ibv_dereg_mr(block
->pmr
[j
]);
639 rdma
->total_registrations
--;
646 ibv_dereg_mr(block
->mr
);
647 rdma
->total_registrations
--;
651 g_free(block
->transit_bitmap
);
652 block
->transit_bitmap
= NULL
;
654 g_free(block
->unregister_bitmap
);
655 block
->unregister_bitmap
= NULL
;
657 g_free(block
->remote_keys
);
658 block
->remote_keys
= NULL
;
660 for (x
= 0; x
< local
->nb_blocks
; x
++) {
661 g_hash_table_remove(rdma
->blockmap
, (void *)old
[x
].offset
);
664 if (local
->nb_blocks
> 1) {
666 local
->block
= g_malloc0(sizeof(RDMALocalBlock
) *
667 (local
->nb_blocks
- 1));
670 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
673 if (block
->index
< (local
->nb_blocks
- 1)) {
674 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
675 sizeof(RDMALocalBlock
) *
676 (local
->nb_blocks
- (block
->index
+ 1)));
679 assert(block
== local
->block
);
683 DDPRINTF("Deleted Block: %d, addr: %" PRIu64
", offset: %" PRIu64
684 " length: %" PRIu64
" end: %" PRIu64
" bits %" PRIu64
" chunks %d\n",
685 local
->nb_blocks
, (uint64_t) block
->local_host_addr
, block
->offset
,
686 block
->length
, (uint64_t) (block
->local_host_addr
+ block
->length
),
687 BITS_TO_LONGS(block
->nb_chunks
) *
688 sizeof(unsigned long) * 8, block
->nb_chunks
);
694 if (local
->nb_blocks
) {
695 for (x
= 0; x
< local
->nb_blocks
; x
++) {
696 g_hash_table_insert(rdma
->blockmap
, (void *)local
->block
[x
].offset
,
705 * Put in the log file which RDMA device was opened and the details
706 * associated with that device.
708 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
710 printf("%s RDMA Device opened: kernel name %s "
711 "uverbs device name %s, "
712 "infiniband_verbs class device path %s,"
713 " infiniband class device path %s\n",
716 verbs
->device
->dev_name
,
717 verbs
->device
->dev_path
,
718 verbs
->device
->ibdev_path
);
722 * Put in the log file the RDMA gid addressing information,
723 * useful for folks who have trouble understanding the
724 * RDMA device hierarchy in the kernel.
726 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
730 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
731 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
732 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who
, sgid
, dgid
);
736 * Figure out which RDMA device corresponds to the requested IP hostname
737 * Also create the initial connection manager identifiers for opening
740 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
743 struct addrinfo
*res
;
745 struct rdma_cm_event
*cm_event
;
746 char ip
[40] = "unknown";
748 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
749 ERROR(errp
, "RDMA hostname has not been set\n");
753 /* create CM channel */
754 rdma
->channel
= rdma_create_event_channel();
755 if (!rdma
->channel
) {
756 ERROR(errp
, "could not create CM channel\n");
761 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
763 ERROR(errp
, "could not create channel id\n");
764 goto err_resolve_create_id
;
767 snprintf(port_str
, 16, "%d", rdma
->port
);
770 ret
= getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
772 ERROR(errp
, "could not getaddrinfo address %s\n", rdma
->host
);
773 goto err_resolve_get_addr
;
776 inet_ntop(AF_INET
, &((struct sockaddr_in
*) res
->ai_addr
)->sin_addr
,
778 DPRINTF("%s => %s\n", rdma
->host
, ip
);
780 /* resolve the first address */
781 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, res
->ai_addr
,
782 RDMA_RESOLVE_TIMEOUT_MS
);
784 ERROR(errp
, "could not resolve address %s\n", rdma
->host
);
785 goto err_resolve_get_addr
;
788 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
790 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
792 ERROR(errp
, "could not perform event_addr_resolved\n");
793 goto err_resolve_get_addr
;
796 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
797 ERROR(errp
, "result not equal to event_addr_resolved %s\n",
798 rdma_event_str(cm_event
->event
));
799 perror("rdma_resolve_addr");
800 goto err_resolve_get_addr
;
802 rdma_ack_cm_event(cm_event
);
805 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
807 ERROR(errp
, "could not resolve rdma route\n");
808 goto err_resolve_get_addr
;
811 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
813 ERROR(errp
, "could not perform event_route_resolved\n");
814 goto err_resolve_get_addr
;
816 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
817 ERROR(errp
, "result not equal to event_route_resolved: %s\n",
818 rdma_event_str(cm_event
->event
));
819 rdma_ack_cm_event(cm_event
);
820 goto err_resolve_get_addr
;
822 rdma_ack_cm_event(cm_event
);
823 rdma
->verbs
= rdma
->cm_id
->verbs
;
824 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
825 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
828 err_resolve_get_addr
:
829 rdma_destroy_id(rdma
->cm_id
);
831 err_resolve_create_id
:
832 rdma_destroy_event_channel(rdma
->channel
);
833 rdma
->channel
= NULL
;
839 * Create protection domain and completion queues
841 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
844 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
846 fprintf(stderr
, "failed to allocate protection domain\n");
850 /* create completion channel */
851 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
852 if (!rdma
->comp_channel
) {
853 fprintf(stderr
, "failed to allocate completion channel\n");
854 goto err_alloc_pd_cq
;
858 * Completion queue can be filled by both read and write work requests,
859 * so must reflect the sum of both possible queue sizes.
861 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
862 NULL
, rdma
->comp_channel
, 0);
864 fprintf(stderr
, "failed to allocate completion queue\n");
865 goto err_alloc_pd_cq
;
872 ibv_dealloc_pd(rdma
->pd
);
874 if (rdma
->comp_channel
) {
875 ibv_destroy_comp_channel(rdma
->comp_channel
);
878 rdma
->comp_channel
= NULL
;
884 * Create queue pairs.
886 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
888 struct ibv_qp_init_attr attr
= { 0 };
891 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
892 attr
.cap
.max_recv_wr
= 3;
893 attr
.cap
.max_send_sge
= 1;
894 attr
.cap
.max_recv_sge
= 1;
895 attr
.send_cq
= rdma
->cq
;
896 attr
.recv_cq
= rdma
->cq
;
897 attr
.qp_type
= IBV_QPT_RC
;
899 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
904 rdma
->qp
= rdma
->cm_id
->qp
;
908 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
911 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
913 for (i
= 0; i
< local
->nb_blocks
; i
++) {
916 local
->block
[i
].local_host_addr
,
917 local
->block
[i
].length
,
918 IBV_ACCESS_LOCAL_WRITE
|
919 IBV_ACCESS_REMOTE_WRITE
921 if (!local
->block
[i
].mr
) {
922 perror("Failed to register local dest ram block!\n");
925 rdma
->total_registrations
++;
928 if (i
>= local
->nb_blocks
) {
932 for (i
--; i
>= 0; i
--) {
933 ibv_dereg_mr(local
->block
[i
].mr
);
934 rdma
->total_registrations
--;
942 * Find the ram block that corresponds to the page requested to be
943 * transmitted by QEMU.
945 * Once the block is found, also identify which 'chunk' within that
946 * block that the page belongs to.
948 * This search cannot fail or the migration will fail.
950 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
951 uint64_t block_offset
,
954 uint64_t *block_index
,
955 uint64_t *chunk_index
)
957 uint64_t current_addr
= block_offset
+ offset
;
958 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
959 (void *) block_offset
);
961 assert(current_addr
>= block
->offset
);
962 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
964 *block_index
= block
->index
;
965 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
966 block
->local_host_addr
+ (current_addr
- block
->offset
));
972 * Register a chunk with IB. If the chunk was already registered
973 * previously, then skip.
975 * Also return the keys associated with the registration needed
976 * to perform the actual RDMA operation.
978 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
979 RDMALocalBlock
*block
, uint8_t *host_addr
,
980 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
981 uint8_t *chunk_start
, uint8_t *chunk_end
)
985 *lkey
= block
->mr
->lkey
;
988 *rkey
= block
->mr
->rkey
;
993 /* allocate memory to store chunk MRs */
995 block
->pmr
= g_malloc0(block
->nb_chunks
* sizeof(struct ibv_mr
*));
1002 * If 'rkey', then we're the destination, so grant access to the source.
1004 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1006 if (!block
->pmr
[chunk
]) {
1007 uint64_t len
= chunk_end
- chunk_start
;
1009 DDPRINTF("Registering %" PRIu64
" bytes @ %p\n",
1012 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1014 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1015 IBV_ACCESS_REMOTE_WRITE
) : 0));
1017 if (!block
->pmr
[chunk
]) {
1018 perror("Failed to register chunk!");
1019 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1020 " start %" PRIu64
" end %" PRIu64
" host %" PRIu64
1021 " local %" PRIu64
" registrations: %d\n",
1022 block
->index
, chunk
, (uint64_t) chunk_start
,
1023 (uint64_t) chunk_end
, (uint64_t) host_addr
,
1024 (uint64_t) block
->local_host_addr
,
1025 rdma
->total_registrations
);
1028 rdma
->total_registrations
++;
1032 *lkey
= block
->pmr
[chunk
]->lkey
;
1035 *rkey
= block
->pmr
[chunk
]->rkey
;
1041 * Register (at connection time) the memory used for control
1044 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1046 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1047 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1048 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1049 if (rdma
->wr_data
[idx
].control_mr
) {
1050 rdma
->total_registrations
++;
1053 fprintf(stderr
, "qemu_rdma_reg_control failed!\n");
1057 const char *print_wrid(int wrid
)
1059 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1060 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1062 return wrid_desc
[wrid
];
1066 * RDMA requires memory registration (mlock/pinning), but this is not good for
1069 * In preparation for the future where LRU information or workload-specific
1070 * writable writable working set memory access behavior is available to QEMU
1071 * it would be nice to have in place the ability to UN-register/UN-pin
1072 * particular memory regions from the RDMA hardware when it is determine that
1073 * those regions of memory will likely not be accessed again in the near future.
1075 * While we do not yet have such information right now, the following
1076 * compile-time option allows us to perform a non-optimized version of this
1079 * By uncommenting this option, you will cause *all* RDMA transfers to be
1080 * unregistered immediately after the transfer completes on both sides of the
1081 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1083 * This will have a terrible impact on migration performance, so until future
1084 * workload information or LRU information is available, do not attempt to use
1085 * this feature except for basic testing.
1087 //#define RDMA_UNREGISTRATION_EXAMPLE
1090 * Perform a non-optimized memory unregistration after every transfer
1091 * for demonsration purposes, only if pin-all is not requested.
1093 * Potential optimizations:
1094 * 1. Start a new thread to run this function continuously
1096 - and for receipt of unregister messages
1098 * 3. Use workload hints.
1100 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1102 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1104 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1106 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1108 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1109 RDMALocalBlock
*block
=
1110 &(rdma
->local_ram_blocks
.block
[index
]);
1111 RDMARegister reg
= { .current_index
= index
};
1112 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1114 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1115 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1119 DDPRINTF("Processing unregister for chunk: %" PRIu64
1120 " at position %d\n", chunk
, rdma
->unregister_current
);
1122 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1123 rdma
->unregister_current
++;
1125 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1126 rdma
->unregister_current
= 0;
1131 * Unregistration is speculative (because migration is single-threaded
1132 * and we cannot break the protocol's inifinband message ordering).
1133 * Thus, if the memory is currently being used for transmission,
1134 * then abort the attempt to unregister and try again
1135 * later the next time a completion is received for this memory.
1137 clear_bit(chunk
, block
->unregister_bitmap
);
1139 if (test_bit(chunk
, block
->transit_bitmap
)) {
1140 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64
"\n", chunk
);
1144 DDPRINTF("Sending unregister for chunk: %" PRIu64
"\n", chunk
);
1146 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1147 block
->pmr
[chunk
] = NULL
;
1148 block
->remote_keys
[chunk
] = 0;
1151 perror("unregistration chunk failed");
1154 rdma
->total_registrations
--;
1156 reg
.key
.chunk
= chunk
;
1157 register_to_network(®
);
1158 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1164 DDPRINTF("Unregister for chunk: %" PRIu64
" complete.\n", chunk
);
1170 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1173 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1175 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1176 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1182 * Set bit for unregistration in the next iteration.
1183 * We cannot transmit right here, but will unpin later.
1185 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1186 uint64_t chunk
, uint64_t wr_id
)
1188 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1189 fprintf(stderr
, "rdma migration: queue is full!\n");
1191 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1193 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1194 DDPRINTF("Appending unregister chunk %" PRIu64
1195 " at position %d\n", chunk
, rdma
->unregister_next
);
1197 rdma
->unregistrations
[rdma
->unregister_next
++] =
1198 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1200 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1201 rdma
->unregister_next
= 0;
1204 DDPRINTF("Unregister chunk %" PRIu64
" already in queue.\n",
1211 * Consult the connection manager to see a work request
1212 * (of any kind) has completed.
1213 * Return the work request ID that completed.
1215 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
)
1221 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1224 *wr_id_out
= RDMA_WRID_NONE
;
1229 fprintf(stderr
, "ibv_poll_cq return %d!\n", ret
);
1233 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1235 if (wc
.status
!= IBV_WC_SUCCESS
) {
1236 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1237 wc
.status
, ibv_wc_status_str(wc
.status
));
1238 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1243 if (rdma
->control_ready_expected
&&
1244 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1245 DDDPRINTF("completion %s #%" PRId64
" received (%" PRId64
")"
1246 " left %d\n", wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1247 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1248 rdma
->control_ready_expected
= 0;
1251 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1253 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1255 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1256 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1258 DDDPRINTF("completions %s (%" PRId64
") left %d, "
1259 "block %" PRIu64
", chunk: %" PRIu64
" %p %p\n",
1260 print_wrid(wr_id
), wr_id
, rdma
->nb_sent
, index
, chunk
,
1261 block
->local_host_addr
, (void *)block
->remote_host_addr
);
1263 clear_bit(chunk
, block
->transit_bitmap
);
1265 if (rdma
->nb_sent
> 0) {
1269 if (!rdma
->pin_all
) {
1271 * FYI: If one wanted to signal a specific chunk to be unregistered
1272 * using LRU or workload-specific information, this is the function
1273 * you would call to do so. That chunk would then get asynchronously
1274 * unregistered later.
1276 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1277 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1281 DDDPRINTF("other completion %s (%" PRId64
") received left %d\n",
1282 print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1285 *wr_id_out
= wc
.wr_id
;
1291 * Block until the next work request has completed.
1293 * First poll to see if a work request has already completed,
1296 * If we encounter completed work requests for IDs other than
1297 * the one we're interested in, then that's generally an error.
1299 * The only exception is actual RDMA Write completions. These
1300 * completions only need to be recorded, but do not actually
1301 * need further processing.
1303 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
)
1305 int num_cq_events
= 0, ret
= 0;
1308 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1310 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1314 while (wr_id
!= wrid_requested
) {
1315 ret
= qemu_rdma_poll(rdma
, &wr_id_in
);
1320 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1322 if (wr_id
== RDMA_WRID_NONE
) {
1325 if (wr_id
!= wrid_requested
) {
1326 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64
")\n",
1327 print_wrid(wrid_requested
),
1328 wrid_requested
, print_wrid(wr_id
), wr_id
);
1332 if (wr_id
== wrid_requested
) {
1338 * Coroutine doesn't start until process_incoming_migration()
1339 * so don't yield unless we know we're running inside of a coroutine.
1341 if (rdma
->migration_started_on_destination
) {
1342 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1345 if (ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
)) {
1346 perror("ibv_get_cq_event");
1347 goto err_block_for_wrid
;
1352 if (ibv_req_notify_cq(cq
, 0)) {
1353 goto err_block_for_wrid
;
1356 while (wr_id
!= wrid_requested
) {
1357 ret
= qemu_rdma_poll(rdma
, &wr_id_in
);
1359 goto err_block_for_wrid
;
1362 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1364 if (wr_id
== RDMA_WRID_NONE
) {
1367 if (wr_id
!= wrid_requested
) {
1368 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64
")\n",
1369 print_wrid(wrid_requested
), wrid_requested
,
1370 print_wrid(wr_id
), wr_id
);
1374 if (wr_id
== wrid_requested
) {
1375 goto success_block_for_wrid
;
1379 success_block_for_wrid
:
1380 if (num_cq_events
) {
1381 ibv_ack_cq_events(cq
, num_cq_events
);
1386 if (num_cq_events
) {
1387 ibv_ack_cq_events(cq
, num_cq_events
);
1393 * Post a SEND message work request for the control channel
1394 * containing some data and block until the post completes.
1396 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1397 RDMAControlHeader
*head
)
1400 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_MAX
];
1401 struct ibv_send_wr
*bad_wr
;
1402 struct ibv_sge sge
= {
1403 .addr
= (uint64_t)(wr
->control
),
1404 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1405 .lkey
= wr
->control_mr
->lkey
,
1407 struct ibv_send_wr send_wr
= {
1408 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1409 .opcode
= IBV_WR_SEND
,
1410 .send_flags
= IBV_SEND_SIGNALED
,
1415 DDDPRINTF("CONTROL: sending %s..\n", control_desc
[head
->type
]);
1418 * We don't actually need to do a memcpy() in here if we used
1419 * the "sge" properly, but since we're only sending control messages
1420 * (not RAM in a performance-critical path), then its OK for now.
1422 * The copy makes the RDMAControlHeader simpler to manipulate
1423 * for the time being.
1425 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1426 control_to_network((void *) wr
->control
);
1429 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1433 if (ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
)) {
1438 fprintf(stderr
, "Failed to use post IB SEND for control!\n");
1442 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
);
1444 fprintf(stderr
, "rdma migration: send polling control error!\n");
1451 * Post a RECV work request in anticipation of some future receipt
1452 * of data on the control channel.
1454 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1456 struct ibv_recv_wr
*bad_wr
;
1457 struct ibv_sge sge
= {
1458 .addr
= (uint64_t)(rdma
->wr_data
[idx
].control
),
1459 .length
= RDMA_CONTROL_MAX_BUFFER
,
1460 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1463 struct ibv_recv_wr recv_wr
= {
1464 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1470 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1478 * Block and wait for a RECV control channel message to arrive.
1480 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1481 RDMAControlHeader
*head
, int expecting
, int idx
)
1483 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
);
1486 fprintf(stderr
, "rdma migration: recv polling control error!\n");
1490 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1491 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1493 DDDPRINTF("CONTROL: %s receiving...\n", control_desc
[expecting
]);
1495 if (expecting
== RDMA_CONTROL_NONE
) {
1496 DDDPRINTF("Surprise: got %s (%d)\n",
1497 control_desc
[head
->type
], head
->type
);
1498 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1499 fprintf(stderr
, "Was expecting a %s (%d) control message"
1500 ", but got: %s (%d), length: %d\n",
1501 control_desc
[expecting
], expecting
,
1502 control_desc
[head
->type
], head
->type
, head
->len
);
1510 * When a RECV work request has completed, the work request's
1511 * buffer is pointed at the header.
1513 * This will advance the pointer to the data portion
1514 * of the control message of the work request's buffer that
1515 * was populated after the work request finished.
1517 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1518 RDMAControlHeader
*head
)
1520 rdma
->wr_data
[idx
].control_len
= head
->len
;
1521 rdma
->wr_data
[idx
].control_curr
=
1522 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1526 * This is an 'atomic' high-level operation to deliver a single, unified
1527 * control-channel message.
1529 * Additionally, if the user is expecting some kind of reply to this message,
1530 * they can request a 'resp' response message be filled in by posting an
1531 * additional work request on behalf of the user and waiting for an additional
1534 * The extra (optional) response is used during registration to us from having
1535 * to perform an *additional* exchange of message just to provide a response by
1536 * instead piggy-backing on the acknowledgement.
1538 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1539 uint8_t *data
, RDMAControlHeader
*resp
,
1541 int (*callback
)(RDMAContext
*rdma
))
1546 * Wait until the dest is ready before attempting to deliver the message
1547 * by waiting for a READY message.
1549 if (rdma
->control_ready_expected
) {
1550 RDMAControlHeader resp
;
1551 ret
= qemu_rdma_exchange_get_response(rdma
,
1552 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1559 * If the user is expecting a response, post a WR in anticipation of it.
1562 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1564 fprintf(stderr
, "rdma migration: error posting"
1565 " extra control recv for anticipated result!");
1571 * Post a WR to replace the one we just consumed for the READY message.
1573 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1575 fprintf(stderr
, "rdma migration: error posting first control recv!");
1580 * Deliver the control message that was requested.
1582 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1585 fprintf(stderr
, "Failed to send control buffer!\n");
1590 * If we're expecting a response, block and wait for it.
1594 DDPRINTF("Issuing callback before receiving response...\n");
1595 ret
= callback(rdma
);
1601 DDPRINTF("Waiting for response %s\n", control_desc
[resp
->type
]);
1602 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1603 resp
->type
, RDMA_WRID_DATA
);
1609 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1611 *resp_idx
= RDMA_WRID_DATA
;
1613 DDPRINTF("Response %s received.\n", control_desc
[resp
->type
]);
1616 rdma
->control_ready_expected
= 1;
1622 * This is an 'atomic' high-level operation to receive a single, unified
1623 * control-channel message.
1625 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1628 RDMAControlHeader ready
= {
1630 .type
= RDMA_CONTROL_READY
,
1636 * Inform the source that we're ready to receive a message.
1638 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1641 fprintf(stderr
, "Failed to send control buffer!\n");
1646 * Block and wait for the message.
1648 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1649 expecting
, RDMA_WRID_READY
);
1655 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1658 * Post a new RECV work request to replace the one we just consumed.
1660 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1662 fprintf(stderr
, "rdma migration: error posting second control recv!");
1670 * Write an actual chunk of memory using RDMA.
1672 * If we're using dynamic registration on the dest-side, we have to
1673 * send a registration command first.
1675 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1676 int current_index
, uint64_t current_addr
,
1680 struct ibv_send_wr send_wr
= { 0 };
1681 struct ibv_send_wr
*bad_wr
;
1682 int reg_result_idx
, ret
, count
= 0;
1683 uint64_t chunk
, chunks
;
1684 uint8_t *chunk_start
, *chunk_end
;
1685 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1687 RDMARegisterResult
*reg_result
;
1688 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1689 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1690 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1695 sge
.addr
= (uint64_t)(block
->local_host_addr
+
1696 (current_addr
- block
->offset
));
1697 sge
.length
= length
;
1699 chunk
= ram_chunk_index(block
->local_host_addr
, (uint8_t *) sge
.addr
);
1700 chunk_start
= ram_chunk_start(block
, chunk
);
1702 if (block
->is_ram_block
) {
1703 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1705 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1709 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1711 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1716 DDPRINTF("Writing %" PRIu64
" chunks, (%" PRIu64
" MB)\n",
1717 chunks
+ 1, (chunks
+ 1) * (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
1719 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
1721 if (!rdma
->pin_all
) {
1722 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1723 qemu_rdma_unregister_waiting(rdma
);
1727 while (test_bit(chunk
, block
->transit_bitmap
)) {
1729 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1730 " current %" PRIu64
" len %" PRIu64
" %d %d\n",
1731 count
++, current_index
, chunk
,
1732 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
1734 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
);
1737 fprintf(stderr
, "Failed to Wait for previous write to complete "
1738 "block %d chunk %" PRIu64
1739 " current %" PRIu64
" len %" PRIu64
" %d\n",
1740 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
1745 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
1746 if (!block
->remote_keys
[chunk
]) {
1748 * This chunk has not yet been registered, so first check to see
1749 * if the entire chunk is zero. If so, tell the other size to
1750 * memset() + madvise() the entire chunk without RDMA.
1753 if (can_use_buffer_find_nonzero_offset((void *)sge
.addr
, length
)
1754 && buffer_find_nonzero_offset((void *)sge
.addr
,
1755 length
) == length
) {
1756 RDMACompress comp
= {
1757 .offset
= current_addr
,
1759 .block_idx
= current_index
,
1763 head
.len
= sizeof(comp
);
1764 head
.type
= RDMA_CONTROL_COMPRESS
;
1766 DDPRINTF("Entire chunk is zero, sending compress: %"
1768 "bytes, index: %d, offset: %" PRId64
"...\n",
1769 chunk
, sge
.length
, current_index
, current_addr
);
1771 compress_to_network(&comp
);
1772 ret
= qemu_rdma_exchange_send(rdma
, &head
,
1773 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
1779 acct_update_position(f
, sge
.length
, true);
1785 * Otherwise, tell other side to register.
1787 reg
.current_index
= current_index
;
1788 if (block
->is_ram_block
) {
1789 reg
.key
.current_addr
= current_addr
;
1791 reg
.key
.chunk
= chunk
;
1793 reg
.chunks
= chunks
;
1795 DDPRINTF("Sending registration request chunk %" PRIu64
" for %d "
1796 "bytes, index: %d, offset: %" PRId64
"...\n",
1797 chunk
, sge
.length
, current_index
, current_addr
);
1799 register_to_network(®
);
1800 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1801 &resp
, ®_result_idx
, NULL
);
1806 /* try to overlap this single registration with the one we sent. */
1807 if (qemu_rdma_register_and_get_keys(rdma
, block
,
1808 (uint8_t *) sge
.addr
,
1809 &sge
.lkey
, NULL
, chunk
,
1810 chunk_start
, chunk_end
)) {
1811 fprintf(stderr
, "cannot get lkey!\n");
1815 reg_result
= (RDMARegisterResult
*)
1816 rdma
->wr_data
[reg_result_idx
].control_curr
;
1818 network_to_result(reg_result
);
1820 DDPRINTF("Received registration result:"
1821 " my key: %x their key %x, chunk %" PRIu64
"\n",
1822 block
->remote_keys
[chunk
], reg_result
->rkey
, chunk
);
1824 block
->remote_keys
[chunk
] = reg_result
->rkey
;
1825 block
->remote_host_addr
= reg_result
->host_addr
;
1827 /* already registered before */
1828 if (qemu_rdma_register_and_get_keys(rdma
, block
,
1829 (uint8_t *)sge
.addr
,
1830 &sge
.lkey
, NULL
, chunk
,
1831 chunk_start
, chunk_end
)) {
1832 fprintf(stderr
, "cannot get lkey!\n");
1837 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
1839 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
1841 if (qemu_rdma_register_and_get_keys(rdma
, block
, (uint8_t *)sge
.addr
,
1842 &sge
.lkey
, NULL
, chunk
,
1843 chunk_start
, chunk_end
)) {
1844 fprintf(stderr
, "cannot get lkey!\n");
1850 * Encode the ram block index and chunk within this wrid.
1851 * We will use this information at the time of completion
1852 * to figure out which bitmap to check against and then which
1853 * chunk in the bitmap to look for.
1855 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
1856 current_index
, chunk
);
1858 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
1859 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
1860 send_wr
.sg_list
= &sge
;
1861 send_wr
.num_sge
= 1;
1862 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
1863 (current_addr
- block
->offset
);
1865 DDDPRINTF("Posting chunk: %" PRIu64
", addr: %lx"
1866 " remote: %lx, bytes %" PRIu32
"\n",
1867 chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
1871 * ibv_post_send() does not return negative error numbers,
1872 * per the specification they are positive - no idea why.
1874 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1876 if (ret
== ENOMEM
) {
1877 DDPRINTF("send queue is full. wait a little....\n");
1878 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
);
1880 fprintf(stderr
, "rdma migration: failed to make "
1881 "room in full send queue! %d\n", ret
);
1887 } else if (ret
> 0) {
1888 perror("rdma migration: post rdma write failed");
1892 set_bit(chunk
, block
->transit_bitmap
);
1893 acct_update_position(f
, sge
.length
, false);
1894 rdma
->total_writes
++;
1900 * Push out any unwritten RDMA operations.
1902 * We support sending out multiple chunks at the same time.
1903 * Not all of them need to get signaled in the completion queue.
1905 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
1909 if (!rdma
->current_length
) {
1913 ret
= qemu_rdma_write_one(f
, rdma
,
1914 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
1922 DDDPRINTF("sent total: %d\n", rdma
->nb_sent
);
1925 rdma
->current_length
= 0;
1926 rdma
->current_addr
= 0;
1931 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
1932 uint64_t offset
, uint64_t len
)
1934 RDMALocalBlock
*block
=
1935 &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
1936 uint8_t *host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
1937 uint8_t *chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
1939 if (rdma
->current_length
== 0) {
1944 * Only merge into chunk sequentially.
1946 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
1950 if (rdma
->current_index
< 0) {
1954 if (offset
< block
->offset
) {
1958 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
1962 if (rdma
->current_chunk
< 0) {
1966 if ((host_addr
+ len
) > chunk_end
) {
1974 * We're not actually writing here, but doing three things:
1976 * 1. Identify the chunk the buffer belongs to.
1977 * 2. If the chunk is full or the buffer doesn't belong to the current
1978 * chunk, then start a new chunk and flush() the old chunk.
1979 * 3. To keep the hardware busy, we also group chunks into batches
1980 * and only require that a batch gets acknowledged in the completion
1981 * qeueue instead of each individual chunk.
1983 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
1984 uint64_t block_offset
, uint64_t offset
,
1987 uint64_t current_addr
= block_offset
+ offset
;
1988 uint64_t index
= rdma
->current_index
;
1989 uint64_t chunk
= rdma
->current_chunk
;
1992 /* If we cannot merge it, we flush the current buffer first. */
1993 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
1994 ret
= qemu_rdma_write_flush(f
, rdma
);
1998 rdma
->current_length
= 0;
1999 rdma
->current_addr
= current_addr
;
2001 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2002 offset
, len
, &index
, &chunk
);
2004 fprintf(stderr
, "ram block search failed\n");
2007 rdma
->current_index
= index
;
2008 rdma
->current_chunk
= chunk
;
2012 rdma
->current_length
+= len
;
2014 /* flush it if buffer is too large */
2015 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2016 return qemu_rdma_write_flush(f
, rdma
);
2022 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2024 struct rdma_cm_event
*cm_event
;
2028 if (rdma
->error_state
) {
2029 RDMAControlHeader head
= { .len
= 0,
2030 .type
= RDMA_CONTROL_ERROR
,
2033 fprintf(stderr
, "Early error. Sending error.\n");
2034 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2037 ret
= rdma_disconnect(rdma
->cm_id
);
2039 DDPRINTF("waiting for disconnect\n");
2040 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2042 rdma_ack_cm_event(cm_event
);
2045 DDPRINTF("Disconnected.\n");
2049 g_free(rdma
->block
);
2052 for (idx
= 0; idx
<= RDMA_WRID_MAX
; idx
++) {
2053 if (rdma
->wr_data
[idx
].control_mr
) {
2054 rdma
->total_registrations
--;
2055 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2057 rdma
->wr_data
[idx
].control_mr
= NULL
;
2060 if (rdma
->local_ram_blocks
.block
) {
2061 while (rdma
->local_ram_blocks
.nb_blocks
) {
2062 __qemu_rdma_delete_block(rdma
,
2063 rdma
->local_ram_blocks
.block
->offset
);
2068 ibv_destroy_qp(rdma
->qp
);
2072 ibv_destroy_cq(rdma
->cq
);
2075 if (rdma
->comp_channel
) {
2076 ibv_destroy_comp_channel(rdma
->comp_channel
);
2077 rdma
->comp_channel
= NULL
;
2080 ibv_dealloc_pd(rdma
->pd
);
2083 if (rdma
->listen_id
) {
2084 rdma_destroy_id(rdma
->listen_id
);
2085 rdma
->listen_id
= NULL
;
2088 rdma_destroy_id(rdma
->cm_id
);
2091 if (rdma
->channel
) {
2092 rdma_destroy_event_channel(rdma
->channel
);
2093 rdma
->channel
= NULL
;
2098 static int qemu_rdma_source_init(RDMAContext
*rdma
, Error
**errp
, bool pin_all
)
2101 Error
*local_err
= NULL
, **temp
= &local_err
;
2104 * Will be validated against destination's actual capabilities
2105 * after the connect() completes.
2107 rdma
->pin_all
= pin_all
;
2109 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2111 goto err_rdma_source_init
;
2114 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2116 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2117 " limits may be too low. Please check $ ulimit -a # and "
2118 "search for 'ulimit -l' in the output\n");
2119 goto err_rdma_source_init
;
2122 ret
= qemu_rdma_alloc_qp(rdma
);
2124 ERROR(temp
, "rdma migration: error allocating qp!\n");
2125 goto err_rdma_source_init
;
2128 ret
= qemu_rdma_init_ram_blocks(rdma
);
2130 ERROR(temp
, "rdma migration: error initializing ram blocks!\n");
2131 goto err_rdma_source_init
;
2134 for (idx
= 0; idx
<= RDMA_WRID_MAX
; idx
++) {
2135 ret
= qemu_rdma_reg_control(rdma
, idx
);
2137 ERROR(temp
, "rdma migration: error registering %d control!\n",
2139 goto err_rdma_source_init
;
2145 err_rdma_source_init
:
2146 error_propagate(errp
, local_err
);
2147 qemu_rdma_cleanup(rdma
);
2151 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
)
2153 RDMACapabilities cap
= {
2154 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2157 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2159 .private_data
= &cap
,
2160 .private_data_len
= sizeof(cap
),
2162 struct rdma_cm_event
*cm_event
;
2166 * Only negotiate the capability with destination if the user
2167 * on the source first requested the capability.
2169 if (rdma
->pin_all
) {
2170 DPRINTF("Server pin-all memory requested.\n");
2171 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2174 caps_to_network(&cap
);
2176 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2178 perror("rdma_connect");
2179 ERROR(errp
, "connecting to destination!\n");
2180 rdma_destroy_id(rdma
->cm_id
);
2182 goto err_rdma_source_connect
;
2185 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2187 perror("rdma_get_cm_event after rdma_connect");
2188 ERROR(errp
, "connecting to destination!\n");
2189 rdma_ack_cm_event(cm_event
);
2190 rdma_destroy_id(rdma
->cm_id
);
2192 goto err_rdma_source_connect
;
2195 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2196 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2197 ERROR(errp
, "connecting to destination!\n");
2198 rdma_ack_cm_event(cm_event
);
2199 rdma_destroy_id(rdma
->cm_id
);
2201 goto err_rdma_source_connect
;
2204 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2205 network_to_caps(&cap
);
2208 * Verify that the *requested* capabilities are supported by the destination
2209 * and disable them otherwise.
2211 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2212 ERROR(errp
, "Server cannot support pinning all memory. "
2213 "Will register memory dynamically.\n");
2214 rdma
->pin_all
= false;
2217 DPRINTF("Pin all memory: %s\n", rdma
->pin_all
? "enabled" : "disabled");
2219 rdma_ack_cm_event(cm_event
);
2221 ret
= qemu_rdma_post_recv_control(rdma
, 0);
2223 ERROR(errp
, "posting second control recv!\n");
2224 goto err_rdma_source_connect
;
2227 rdma
->control_ready_expected
= 1;
2231 err_rdma_source_connect
:
2232 qemu_rdma_cleanup(rdma
);
2236 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2238 int ret
= -EINVAL
, idx
;
2239 struct sockaddr_in sin
;
2240 struct rdma_cm_id
*listen_id
;
2241 char ip
[40] = "unknown";
2243 for (idx
= 0; idx
<= RDMA_WRID_MAX
; idx
++) {
2244 rdma
->wr_data
[idx
].control_len
= 0;
2245 rdma
->wr_data
[idx
].control_curr
= NULL
;
2248 if (rdma
->host
== NULL
) {
2249 ERROR(errp
, "RDMA host is not set!\n");
2250 rdma
->error_state
= -EINVAL
;
2253 /* create CM channel */
2254 rdma
->channel
= rdma_create_event_channel();
2255 if (!rdma
->channel
) {
2256 ERROR(errp
, "could not create rdma event channel\n");
2257 rdma
->error_state
= -EINVAL
;
2262 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2264 ERROR(errp
, "could not create cm_id!\n");
2265 goto err_dest_init_create_listen_id
;
2268 memset(&sin
, 0, sizeof(sin
));
2269 sin
.sin_family
= AF_INET
;
2270 sin
.sin_port
= htons(rdma
->port
);
2272 if (rdma
->host
&& strcmp("", rdma
->host
)) {
2273 struct hostent
*dest_addr
;
2274 dest_addr
= gethostbyname(rdma
->host
);
2276 ERROR(errp
, "migration could not gethostbyname!\n");
2278 goto err_dest_init_bind_addr
;
2280 memcpy(&sin
.sin_addr
.s_addr
, dest_addr
->h_addr
,
2281 dest_addr
->h_length
);
2282 inet_ntop(AF_INET
, dest_addr
->h_addr
, ip
, sizeof ip
);
2284 sin
.sin_addr
.s_addr
= INADDR_ANY
;
2287 DPRINTF("%s => %s\n", rdma
->host
, ip
);
2289 ret
= rdma_bind_addr(listen_id
, (struct sockaddr
*)&sin
);
2291 ERROR(errp
, "Error: could not rdma_bind_addr!\n");
2292 goto err_dest_init_bind_addr
;
2295 rdma
->listen_id
= listen_id
;
2296 qemu_rdma_dump_gid("dest_init", listen_id
);
2299 err_dest_init_bind_addr
:
2300 rdma_destroy_id(listen_id
);
2301 err_dest_init_create_listen_id
:
2302 rdma_destroy_event_channel(rdma
->channel
);
2303 rdma
->channel
= NULL
;
2304 rdma
->error_state
= ret
;
2309 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2311 RDMAContext
*rdma
= NULL
;
2312 InetSocketAddress
*addr
;
2315 rdma
= g_malloc0(sizeof(RDMAContext
));
2316 memset(rdma
, 0, sizeof(RDMAContext
));
2317 rdma
->current_index
= -1;
2318 rdma
->current_chunk
= -1;
2320 addr
= inet_parse(host_port
, NULL
);
2322 rdma
->port
= atoi(addr
->port
);
2323 rdma
->host
= g_strdup(addr
->host
);
2325 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2335 * QEMUFile interface to the control channel.
2336 * SEND messages for control only.
2337 * pc.ram is handled with regular RDMA messages.
2339 static int qemu_rdma_put_buffer(void *opaque
, const uint8_t *buf
,
2340 int64_t pos
, int size
)
2342 QEMUFileRDMA
*r
= opaque
;
2343 QEMUFile
*f
= r
->file
;
2344 RDMAContext
*rdma
= r
->rdma
;
2345 size_t remaining
= size
;
2346 uint8_t * data
= (void *) buf
;
2349 CHECK_ERROR_STATE();
2352 * Push out any writes that
2353 * we're queued up for pc.ram.
2355 ret
= qemu_rdma_write_flush(f
, rdma
);
2357 rdma
->error_state
= ret
;
2362 RDMAControlHeader head
;
2364 r
->len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2365 remaining
-= r
->len
;
2368 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2370 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2373 rdma
->error_state
= ret
;
2383 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2388 if (rdma
->wr_data
[idx
].control_len
) {
2389 DDDPRINTF("RDMA %" PRId64
" of %d bytes already in buffer\n",
2390 rdma
->wr_data
[idx
].control_len
, size
);
2392 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2393 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2394 rdma
->wr_data
[idx
].control_curr
+= len
;
2395 rdma
->wr_data
[idx
].control_len
-= len
;
2402 * QEMUFile interface to the control channel.
2403 * RDMA links don't use bytestreams, so we have to
2404 * return bytes to QEMUFile opportunistically.
2406 static int qemu_rdma_get_buffer(void *opaque
, uint8_t *buf
,
2407 int64_t pos
, int size
)
2409 QEMUFileRDMA
*r
= opaque
;
2410 RDMAContext
*rdma
= r
->rdma
;
2411 RDMAControlHeader head
;
2414 CHECK_ERROR_STATE();
2417 * First, we hold on to the last SEND message we
2418 * were given and dish out the bytes until we run
2421 r
->len
= qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2427 * Once we run out, we block and wait for another
2428 * SEND message to arrive.
2430 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2433 rdma
->error_state
= ret
;
2438 * SEND was received with new bytes, now try again.
2440 return qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2444 * Block until all the outstanding chunks have been delivered by the hardware.
2446 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2450 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2454 while (rdma
->nb_sent
) {
2455 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
);
2457 fprintf(stderr
, "rdma migration: complete polling error!\n");
2462 qemu_rdma_unregister_waiting(rdma
);
2467 static int qemu_rdma_close(void *opaque
)
2469 DPRINTF("Shutting down connection.\n");
2470 QEMUFileRDMA
*r
= opaque
;
2472 qemu_rdma_cleanup(r
->rdma
);
2482 * This means that 'block_offset' is a full virtual address that does not
2483 * belong to a RAMBlock of the virtual machine and instead
2484 * represents a private malloc'd memory area that the caller wishes to
2488 * Offset is an offset to be added to block_offset and used
2489 * to also lookup the corresponding RAMBlock.
2492 * Initiate an transfer this size.
2495 * A 'hint' or 'advice' that means that we wish to speculatively
2496 * and asynchronously unregister this memory. In this case, there is no
2497 * gaurantee that the unregister will actually happen, for example,
2498 * if the memory is being actively transmitted. Additionally, the memory
2499 * may be re-registered at any future time if a write within the same
2500 * chunk was requested again, even if you attempted to unregister it
2503 * @size < 0 : TODO, not yet supported
2504 * Unregister the memory NOW. This means that the caller does not
2505 * expect there to be any future RDMA transfers and we just want to clean
2506 * things up. This is used in case the upper layer owns the memory and
2507 * cannot wait for qemu_fclose() to occur.
2509 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2510 * sent. Usually, this will not be more than a few bytes of
2511 * the protocol because most transfers are sent asynchronously.
2513 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
2514 ram_addr_t block_offset
, ram_addr_t offset
,
2515 size_t size
, int *bytes_sent
)
2517 QEMUFileRDMA
*rfile
= opaque
;
2518 RDMAContext
*rdma
= rfile
->rdma
;
2521 CHECK_ERROR_STATE();
2527 * Add this page to the current 'chunk'. If the chunk
2528 * is full, or the page doen't belong to the current chunk,
2529 * an actual RDMA write will occur and a new chunk will be formed.
2531 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
2533 fprintf(stderr
, "rdma migration: write error! %d\n", ret
);
2538 * We always return 1 bytes because the RDMA
2539 * protocol is completely asynchronous. We do not yet know
2540 * whether an identified chunk is zero or not because we're
2541 * waiting for other pages to potentially be merged with
2542 * the current chunk. So, we have to call qemu_update_position()
2543 * later on when the actual write occurs.
2549 uint64_t index
, chunk
;
2551 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2553 ret = qemu_rdma_drain_cq(f, rdma);
2555 fprintf(stderr, "rdma: failed to synchronously drain"
2556 " completion queue before unregistration.\n");
2562 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2563 offset
, size
, &index
, &chunk
);
2566 fprintf(stderr
, "ram block search failed\n");
2570 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
2573 * TODO: Synchronous, gauranteed unregistration (should not occur during
2574 * fast-path). Otherwise, unregisters will process on the next call to
2575 * qemu_rdma_drain_cq()
2577 qemu_rdma_unregister_waiting(rdma);
2583 * Drain the Completion Queue if possible, but do not block,
2586 * If nothing to poll, the end of the iteration will do this
2587 * again to make sure we don't overflow the request queue.
2590 uint64_t wr_id
, wr_id_in
;
2591 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
);
2593 fprintf(stderr
, "rdma migration: polling error! %d\n", ret
);
2597 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
2599 if (wr_id
== RDMA_WRID_NONE
) {
2604 return RAM_SAVE_CONTROL_DELAYED
;
2606 rdma
->error_state
= ret
;
2610 static int qemu_rdma_accept(RDMAContext
*rdma
)
2612 RDMACapabilities cap
;
2613 struct rdma_conn_param conn_param
= {
2614 .responder_resources
= 2,
2615 .private_data
= &cap
,
2616 .private_data_len
= sizeof(cap
),
2618 struct rdma_cm_event
*cm_event
;
2619 struct ibv_context
*verbs
;
2623 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2625 goto err_rdma_dest_wait
;
2628 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
2629 rdma_ack_cm_event(cm_event
);
2630 goto err_rdma_dest_wait
;
2633 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2635 network_to_caps(&cap
);
2637 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
2638 fprintf(stderr
, "Unknown source RDMA version: %d, bailing...\n",
2640 rdma_ack_cm_event(cm_event
);
2641 goto err_rdma_dest_wait
;
2645 * Respond with only the capabilities this version of QEMU knows about.
2647 cap
.flags
&= known_capabilities
;
2650 * Enable the ones that we do know about.
2651 * Add other checks here as new ones are introduced.
2653 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
2654 rdma
->pin_all
= true;
2657 rdma
->cm_id
= cm_event
->id
;
2658 verbs
= cm_event
->id
->verbs
;
2660 rdma_ack_cm_event(cm_event
);
2662 DPRINTF("Memory pin all: %s\n", rdma
->pin_all
? "enabled" : "disabled");
2664 caps_to_network(&cap
);
2666 DPRINTF("verbs context after listen: %p\n", verbs
);
2669 rdma
->verbs
= verbs
;
2670 } else if (rdma
->verbs
!= verbs
) {
2671 fprintf(stderr
, "ibv context not matching %p, %p!\n",
2672 rdma
->verbs
, verbs
);
2673 goto err_rdma_dest_wait
;
2676 qemu_rdma_dump_id("dest_init", verbs
);
2678 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2680 fprintf(stderr
, "rdma migration: error allocating pd and cq!\n");
2681 goto err_rdma_dest_wait
;
2684 ret
= qemu_rdma_alloc_qp(rdma
);
2686 fprintf(stderr
, "rdma migration: error allocating qp!\n");
2687 goto err_rdma_dest_wait
;
2690 ret
= qemu_rdma_init_ram_blocks(rdma
);
2692 fprintf(stderr
, "rdma migration: error initializing ram blocks!\n");
2693 goto err_rdma_dest_wait
;
2696 for (idx
= 0; idx
<= RDMA_WRID_MAX
; idx
++) {
2697 ret
= qemu_rdma_reg_control(rdma
, idx
);
2699 fprintf(stderr
, "rdma: error registering %d control!\n", idx
);
2700 goto err_rdma_dest_wait
;
2704 qemu_set_fd_handler2(rdma
->channel
->fd
, NULL
, NULL
, NULL
, NULL
);
2706 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
2708 fprintf(stderr
, "rdma_accept returns %d!\n", ret
);
2709 goto err_rdma_dest_wait
;
2712 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2714 fprintf(stderr
, "rdma_accept get_cm_event failed %d!\n", ret
);
2715 goto err_rdma_dest_wait
;
2718 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2719 fprintf(stderr
, "rdma_accept not event established!\n");
2720 rdma_ack_cm_event(cm_event
);
2721 goto err_rdma_dest_wait
;
2724 rdma_ack_cm_event(cm_event
);
2726 ret
= qemu_rdma_post_recv_control(rdma
, 0);
2728 fprintf(stderr
, "rdma migration: error posting second control recv!\n");
2729 goto err_rdma_dest_wait
;
2732 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
2737 rdma
->error_state
= ret
;
2738 qemu_rdma_cleanup(rdma
);
2743 * During each iteration of the migration, we listen for instructions
2744 * by the source VM to perform dynamic page registrations before they
2745 * can perform RDMA operations.
2747 * We respond with the 'rkey'.
2749 * Keep doing this until the source tells us to stop.
2751 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
,
2754 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
2755 .type
= RDMA_CONTROL_REGISTER_RESULT
,
2758 RDMAControlHeader unreg_resp
= { .len
= 0,
2759 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
2762 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
2764 QEMUFileRDMA
*rfile
= opaque
;
2765 RDMAContext
*rdma
= rfile
->rdma
;
2766 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
2767 RDMAControlHeader head
;
2768 RDMARegister
*reg
, *registers
;
2770 RDMARegisterResult
*reg_result
;
2771 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
2772 RDMALocalBlock
*block
;
2779 CHECK_ERROR_STATE();
2782 DDDPRINTF("Waiting for next request %" PRIu64
"...\n", flags
);
2784 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
2790 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
2791 fprintf(stderr
, "rdma: Too many requests in this message (%d)."
2792 "Bailing.\n", head
.repeat
);
2797 switch (head
.type
) {
2798 case RDMA_CONTROL_COMPRESS
:
2799 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
2800 network_to_compress(comp
);
2802 DDPRINTF("Zapping zero chunk: %" PRId64
2803 " bytes, index %d, offset %" PRId64
"\n",
2804 comp
->length
, comp
->block_idx
, comp
->offset
);
2805 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
2807 host_addr
= block
->local_host_addr
+
2808 (comp
->offset
- block
->offset
);
2810 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
2813 case RDMA_CONTROL_REGISTER_FINISHED
:
2814 DDDPRINTF("Current registrations complete.\n");
2817 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
2818 DPRINTF("Initial setup info requested.\n");
2820 if (rdma
->pin_all
) {
2821 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
2823 fprintf(stderr
, "rdma migration: error dest "
2824 "registering ram blocks!\n");
2830 * Dest uses this to prepare to transmit the RAMBlock descriptions
2831 * to the source VM after connection setup.
2832 * Both sides use the "remote" structure to communicate and update
2833 * their "local" descriptions with what was sent.
2835 for (i
= 0; i
< local
->nb_blocks
; i
++) {
2836 rdma
->block
[i
].remote_host_addr
=
2837 (uint64_t)(local
->block
[i
].local_host_addr
);
2839 if (rdma
->pin_all
) {
2840 rdma
->block
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
2843 rdma
->block
[i
].offset
= local
->block
[i
].offset
;
2844 rdma
->block
[i
].length
= local
->block
[i
].length
;
2846 remote_block_to_network(&rdma
->block
[i
]);
2849 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
2850 * sizeof(RDMARemoteBlock
);
2853 ret
= qemu_rdma_post_send_control(rdma
,
2854 (uint8_t *) rdma
->block
, &blocks
);
2857 fprintf(stderr
, "rdma migration: error sending remote info!\n");
2862 case RDMA_CONTROL_REGISTER_REQUEST
:
2863 DDPRINTF("There are %d registration requests\n", head
.repeat
);
2865 reg_resp
.repeat
= head
.repeat
;
2866 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
2868 for (count
= 0; count
< head
.repeat
; count
++) {
2870 uint8_t *chunk_start
, *chunk_end
;
2872 reg
= ®isters
[count
];
2873 network_to_register(reg
);
2875 reg_result
= &results
[count
];
2877 DDPRINTF("Registration request (%d): index %d, current_addr %"
2878 PRIu64
" chunks: %" PRIu64
"\n", count
,
2879 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
2881 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
2882 if (block
->is_ram_block
) {
2883 host_addr
= (block
->local_host_addr
+
2884 (reg
->key
.current_addr
- block
->offset
));
2885 chunk
= ram_chunk_index(block
->local_host_addr
,
2886 (uint8_t *) host_addr
);
2888 chunk
= reg
->key
.chunk
;
2889 host_addr
= block
->local_host_addr
+
2890 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
2892 chunk_start
= ram_chunk_start(block
, chunk
);
2893 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
2894 if (qemu_rdma_register_and_get_keys(rdma
, block
,
2895 (uint8_t *)host_addr
, NULL
, ®_result
->rkey
,
2896 chunk
, chunk_start
, chunk_end
)) {
2897 fprintf(stderr
, "cannot get rkey!\n");
2902 reg_result
->host_addr
= (uint64_t) block
->local_host_addr
;
2904 DDPRINTF("Registered rkey for this request: %x\n",
2907 result_to_network(reg_result
);
2910 ret
= qemu_rdma_post_send_control(rdma
,
2911 (uint8_t *) results
, ®_resp
);
2914 fprintf(stderr
, "Failed to send control buffer!\n");
2918 case RDMA_CONTROL_UNREGISTER_REQUEST
:
2919 DDPRINTF("There are %d unregistration requests\n", head
.repeat
);
2920 unreg_resp
.repeat
= head
.repeat
;
2921 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
2923 for (count
= 0; count
< head
.repeat
; count
++) {
2924 reg
= ®isters
[count
];
2925 network_to_register(reg
);
2927 DDPRINTF("Unregistration request (%d): "
2928 " index %d, chunk %" PRIu64
"\n",
2929 count
, reg
->current_index
, reg
->key
.chunk
);
2931 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
2933 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
2934 block
->pmr
[reg
->key
.chunk
] = NULL
;
2937 perror("rdma unregistration chunk failed");
2942 rdma
->total_registrations
--;
2944 DDPRINTF("Unregistered chunk %" PRIu64
" successfully.\n",
2948 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
2951 fprintf(stderr
, "Failed to send control buffer!\n");
2955 case RDMA_CONTROL_REGISTER_RESULT
:
2956 fprintf(stderr
, "Invalid RESULT message at dest.\n");
2960 fprintf(stderr
, "Unknown control message %s\n",
2961 control_desc
[head
.type
]);
2968 rdma
->error_state
= ret
;
2973 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
2976 QEMUFileRDMA
*rfile
= opaque
;
2977 RDMAContext
*rdma
= rfile
->rdma
;
2979 CHECK_ERROR_STATE();
2981 DDDPRINTF("start section: %" PRIu64
"\n", flags
);
2982 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
2989 * Inform dest that dynamic registrations are done for now.
2990 * First, flush writes, if any.
2992 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
2995 Error
*local_err
= NULL
, **errp
= &local_err
;
2996 QEMUFileRDMA
*rfile
= opaque
;
2997 RDMAContext
*rdma
= rfile
->rdma
;
2998 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3001 CHECK_ERROR_STATE();
3004 ret
= qemu_rdma_drain_cq(f
, rdma
);
3010 if (flags
== RAM_CONTROL_SETUP
) {
3011 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3012 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3013 int reg_result_idx
, i
, j
, nb_remote_blocks
;
3015 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3016 DPRINTF("Sending registration setup for ram blocks...\n");
3019 * Make sure that we parallelize the pinning on both sides.
3020 * For very large guests, doing this serially takes a really
3021 * long time, so we have to 'interleave' the pinning locally
3022 * with the control messages by performing the pinning on this
3023 * side before we receive the control response from the other
3024 * side that the pinning has completed.
3026 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3027 ®_result_idx
, rdma
->pin_all
?
3028 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3030 ERROR(errp
, "receiving remote info!\n");
3034 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3036 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3038 nb_remote_blocks
= resp
.len
/ sizeof(RDMARemoteBlock
);
3041 * The protocol uses two different sets of rkeys (mutually exclusive):
3042 * 1. One key to represent the virtual address of the entire ram block.
3043 * (dynamic chunk registration disabled - pin everything with one rkey.)
3044 * 2. One to represent individual chunks within a ram block.
3045 * (dynamic chunk registration enabled - pin individual chunks.)
3047 * Once the capability is successfully negotiated, the destination transmits
3048 * the keys to use (or sends them later) including the virtual addresses
3049 * and then propagates the remote ram block descriptions to his local copy.
3052 if (local
->nb_blocks
!= nb_remote_blocks
) {
3053 ERROR(errp
, "ram blocks mismatch #1! "
3054 "Your QEMU command line parameters are probably "
3055 "not identical on both the source and destination.\n");
3059 for (i
= 0; i
< nb_remote_blocks
; i
++) {
3060 network_to_remote_block(&rdma
->block
[i
]);
3062 /* search local ram blocks */
3063 for (j
= 0; j
< local
->nb_blocks
; j
++) {
3064 if (rdma
->block
[i
].offset
!= local
->block
[j
].offset
) {
3068 if (rdma
->block
[i
].length
!= local
->block
[j
].length
) {
3069 ERROR(errp
, "ram blocks mismatch #2! "
3070 "Your QEMU command line parameters are probably "
3071 "not identical on both the source and destination.\n");
3074 local
->block
[j
].remote_host_addr
=
3075 rdma
->block
[i
].remote_host_addr
;
3076 local
->block
[j
].remote_rkey
= rdma
->block
[i
].remote_rkey
;
3080 if (j
>= local
->nb_blocks
) {
3081 ERROR(errp
, "ram blocks mismatch #3! "
3082 "Your QEMU command line parameters are probably "
3083 "not identical on both the source and destination.\n");
3089 DDDPRINTF("Sending registration finish %" PRIu64
"...\n", flags
);
3091 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3092 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3100 rdma
->error_state
= ret
;
3104 static int qemu_rdma_get_fd(void *opaque
)
3106 QEMUFileRDMA
*rfile
= opaque
;
3107 RDMAContext
*rdma
= rfile
->rdma
;
3109 return rdma
->comp_channel
->fd
;
3112 const QEMUFileOps rdma_read_ops
= {
3113 .get_buffer
= qemu_rdma_get_buffer
,
3114 .get_fd
= qemu_rdma_get_fd
,
3115 .close
= qemu_rdma_close
,
3116 .hook_ram_load
= qemu_rdma_registration_handle
,
3119 const QEMUFileOps rdma_write_ops
= {
3120 .put_buffer
= qemu_rdma_put_buffer
,
3121 .close
= qemu_rdma_close
,
3122 .before_ram_iterate
= qemu_rdma_registration_start
,
3123 .after_ram_iterate
= qemu_rdma_registration_stop
,
3124 .save_page
= qemu_rdma_save_page
,
3127 static void *qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
3129 QEMUFileRDMA
*r
= g_malloc0(sizeof(QEMUFileRDMA
));
3131 if (qemu_file_mode_is_not_valid(mode
)) {
3137 if (mode
[0] == 'w') {
3138 r
->file
= qemu_fopen_ops(r
, &rdma_write_ops
);
3140 r
->file
= qemu_fopen_ops(r
, &rdma_read_ops
);
3146 static void rdma_accept_incoming_migration(void *opaque
)
3148 RDMAContext
*rdma
= opaque
;
3151 Error
*local_err
= NULL
, **errp
= &local_err
;
3153 DPRINTF("Accepting rdma connection...\n");
3154 ret
= qemu_rdma_accept(rdma
);
3157 ERROR(errp
, "RDMA Migration initialization failed!\n");
3161 DPRINTF("Accepted migration\n");
3163 f
= qemu_fopen_rdma(rdma
, "rb");
3165 ERROR(errp
, "could not qemu_fopen_rdma!\n");
3166 qemu_rdma_cleanup(rdma
);
3170 rdma
->migration_started_on_destination
= 1;
3171 process_incoming_migration(f
);
3174 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
3178 Error
*local_err
= NULL
;
3180 DPRINTF("Starting RDMA-based incoming migration\n");
3181 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3187 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
3193 DPRINTF("qemu_rdma_dest_init success\n");
3195 ret
= rdma_listen(rdma
->listen_id
, 5);
3198 ERROR(errp
, "listening on socket!\n");
3202 DPRINTF("rdma_listen success\n");
3204 qemu_set_fd_handler2(rdma
->channel
->fd
, NULL
,
3205 rdma_accept_incoming_migration
, NULL
,
3206 (void *)(intptr_t) rdma
);
3209 error_propagate(errp
, local_err
);
3213 void rdma_start_outgoing_migration(void *opaque
,
3214 const char *host_port
, Error
**errp
)
3216 MigrationState
*s
= opaque
;
3217 Error
*local_err
= NULL
, **temp
= &local_err
;
3218 RDMAContext
*rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3222 ERROR(temp
, "Failed to initialize RDMA data structures! %d\n", ret
);
3226 ret
= qemu_rdma_source_init(rdma
, &local_err
,
3227 s
->enabled_capabilities
[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL
]);
3233 DPRINTF("qemu_rdma_source_init success\n");
3234 ret
= qemu_rdma_connect(rdma
, &local_err
);
3240 DPRINTF("qemu_rdma_source_connect success\n");
3242 s
->file
= qemu_fopen_rdma(rdma
, "wb");
3243 migrate_fd_connect(s
);
3246 error_propagate(errp
, local_err
);
3248 migrate_fd_error(s
);