cpu: Introduce CPUClass::gdb_{read,write}_register()
[qemu/rayw.git] / migration-rdma.c
blobd044830ed8e1e19c23c762b1bc52acaa5e7618b6
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
30 #define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55 do { } while (0)
56 #endif
59 * Print and error on both the Monitor and the Log file.
61 #define ERROR(errp, fmt, ...) \
62 do { \
63 fprintf(stderr, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66 } \
67 } while (0)
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
83 #define RDMA_SEND_INCREMENT 32768
86 * Maximum size infiniband SEND message
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
91 #define RDMA_CONTROL_VERSION_CURRENT 1
93 * Capabilities for negotiation.
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
103 #define CHECK_ERROR_STATE() \
104 do { \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
108 " to abort!\n"); \
109 rdma->error_reported = 1; \
111 return rdma->error_state; \
113 } while (0);
116 * A work request ID is 64-bits and we split up these bits
117 * into 3 parts:
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
144 enum {
145 RDMA_WRID_NONE = 0,
146 RDMA_WRID_RDMA_WRITE = 1,
147 RDMA_WRID_SEND_CONTROL = 2000,
148 RDMA_WRID_RECV_CONTROL = 4000,
151 const char *wrid_desc[] = {
152 [RDMA_WRID_NONE] = "NONE",
153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
163 * We could use more WRs, but we have enough for now.
165 enum {
166 RDMA_WRID_READY = 0,
167 RDMA_WRID_DATA,
168 RDMA_WRID_CONTROL,
169 RDMA_WRID_MAX,
173 * SEND/RECV IB Control Messages.
175 enum {
176 RDMA_CONTROL_NONE = 0,
177 RDMA_CONTROL_ERROR,
178 RDMA_CONTROL_READY, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
190 const char *control_desc[] = {
191 [RDMA_CONTROL_NONE] = "NONE",
192 [RDMA_CONTROL_ERROR] = "ERROR",
193 [RDMA_CONTROL_READY] = "READY",
194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
209 typedef struct {
210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211 struct ibv_mr *control_mr; /* registration metadata */
212 size_t control_len; /* length of the message */
213 uint8_t *control_curr; /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
217 * Negotiate RDMA capabilities during connection-setup time.
219 typedef struct {
220 uint32_t version;
221 uint32_t flags;
222 } RDMACapabilities;
224 static void caps_to_network(RDMACapabilities *cap)
226 cap->version = htonl(cap->version);
227 cap->flags = htonl(cap->flags);
230 static void network_to_caps(RDMACapabilities *cap)
232 cap->version = ntohl(cap->version);
233 cap->flags = ntohl(cap->flags);
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
243 typedef struct RDMALocalBlock {
244 uint8_t *local_host_addr; /* local virtual address */
245 uint64_t remote_host_addr; /* remote virtual address */
246 uint64_t offset;
247 uint64_t length;
248 struct ibv_mr **pmr; /* MRs for chunk-level registration */
249 struct ibv_mr *mr; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
252 int index; /* which block are we */
253 bool is_ram_block;
254 int nb_chunks;
255 unsigned long *transit_bitmap;
256 unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267 uint64_t remote_host_addr;
268 uint64_t offset;
269 uint64_t length;
270 uint32_t remote_rkey;
271 uint32_t padding;
272 } RDMARemoteBlock;
274 static uint64_t htonll(uint64_t v)
276 union { uint32_t lv[2]; uint64_t llv; } u;
277 u.lv[0] = htonl(v >> 32);
278 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279 return u.llv;
282 static uint64_t ntohll(uint64_t v) {
283 union { uint32_t lv[2]; uint64_t llv; } u;
284 u.llv = v;
285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
288 static void remote_block_to_network(RDMARemoteBlock *rb)
290 rb->remote_host_addr = htonll(rb->remote_host_addr);
291 rb->offset = htonll(rb->offset);
292 rb->length = htonll(rb->length);
293 rb->remote_rkey = htonl(rb->remote_rkey);
296 static void network_to_remote_block(RDMARemoteBlock *rb)
298 rb->remote_host_addr = ntohll(rb->remote_host_addr);
299 rb->offset = ntohll(rb->offset);
300 rb->length = ntohll(rb->length);
301 rb->remote_rkey = ntohl(rb->remote_rkey);
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
309 typedef struct RDMALocalBlocks {
310 int nb_blocks;
311 bool init; /* main memory init complete */
312 RDMALocalBlock *block;
313 } RDMALocalBlocks;
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
321 typedef struct RDMAContext {
322 char *host;
323 int port;
325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX + 1];
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
334 int control_ready_expected;
336 /* number of outstanding writes */
337 int nb_sent;
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr;
342 uint64_t current_length;
343 /* index of ram block the current buffer belongs to */
344 int current_index;
345 /* index of the chunk in the current ram block */
346 int current_chunk;
348 bool pin_all;
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
357 struct rdma_cm_id *cm_id; /* connection manager ID */
358 struct rdma_cm_id *listen_id;
360 struct ibv_context *verbs;
361 struct rdma_event_channel *channel;
362 struct ibv_qp *qp; /* queue pair */
363 struct ibv_comp_channel *comp_channel; /* completion channel */
364 struct ibv_pd *pd; /* protection domain */
365 struct ibv_cq *cq; /* completion queue */
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
372 int error_state;
373 int error_reported;
376 * Description of ram blocks used throughout the code.
378 RDMALocalBlocks local_ram_blocks;
379 RDMARemoteBlock *block;
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
386 int migration_started_on_destination;
388 int total_registrations;
389 int total_writes;
391 int unregister_current, unregister_next;
392 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
394 GHashTable *blockmap;
395 } RDMAContext;
398 * Interface to the rest of the migration call stack.
400 typedef struct QEMUFileRDMA {
401 RDMAContext *rdma;
402 size_t len;
403 void *file;
404 } QEMUFileRDMA;
407 * Main structure for IB Send/Recv control messages.
408 * This gets prepended at the beginning of every Send/Recv.
410 typedef struct QEMU_PACKED {
411 uint32_t len; /* Total length of data portion */
412 uint32_t type; /* which control command to perform */
413 uint32_t repeat; /* number of commands in data portion of same type */
414 uint32_t padding;
415 } RDMAControlHeader;
417 static void control_to_network(RDMAControlHeader *control)
419 control->type = htonl(control->type);
420 control->len = htonl(control->len);
421 control->repeat = htonl(control->repeat);
424 static void network_to_control(RDMAControlHeader *control)
426 control->type = ntohl(control->type);
427 control->len = ntohl(control->len);
428 control->repeat = ntohl(control->repeat);
432 * Register a single Chunk.
433 * Information sent by the source VM to inform the dest
434 * to register an single chunk of memory before we can perform
435 * the actual RDMA operation.
437 typedef struct QEMU_PACKED {
438 union QEMU_PACKED {
439 uint64_t current_addr; /* offset into the ramblock of the chunk */
440 uint64_t chunk; /* chunk to lookup if unregistering */
441 } key;
442 uint32_t current_index; /* which ramblock the chunk belongs to */
443 uint32_t padding;
444 uint64_t chunks; /* how many sequential chunks to register */
445 } RDMARegister;
447 static void register_to_network(RDMARegister *reg)
449 reg->key.current_addr = htonll(reg->key.current_addr);
450 reg->current_index = htonl(reg->current_index);
451 reg->chunks = htonll(reg->chunks);
454 static void network_to_register(RDMARegister *reg)
456 reg->key.current_addr = ntohll(reg->key.current_addr);
457 reg->current_index = ntohl(reg->current_index);
458 reg->chunks = ntohll(reg->chunks);
461 typedef struct QEMU_PACKED {
462 uint32_t value; /* if zero, we will madvise() */
463 uint32_t block_idx; /* which ram block index */
464 uint64_t offset; /* where in the remote ramblock this chunk */
465 uint64_t length; /* length of the chunk */
466 } RDMACompress;
468 static void compress_to_network(RDMACompress *comp)
470 comp->value = htonl(comp->value);
471 comp->block_idx = htonl(comp->block_idx);
472 comp->offset = htonll(comp->offset);
473 comp->length = htonll(comp->length);
476 static void network_to_compress(RDMACompress *comp)
478 comp->value = ntohl(comp->value);
479 comp->block_idx = ntohl(comp->block_idx);
480 comp->offset = ntohll(comp->offset);
481 comp->length = ntohll(comp->length);
485 * The result of the dest's memory registration produces an "rkey"
486 * which the source VM must reference in order to perform
487 * the RDMA operation.
489 typedef struct QEMU_PACKED {
490 uint32_t rkey;
491 uint32_t padding;
492 uint64_t host_addr;
493 } RDMARegisterResult;
495 static void result_to_network(RDMARegisterResult *result)
497 result->rkey = htonl(result->rkey);
498 result->host_addr = htonll(result->host_addr);
501 static void network_to_result(RDMARegisterResult *result)
503 result->rkey = ntohl(result->rkey);
504 result->host_addr = ntohll(result->host_addr);
507 const char *print_wrid(int wrid);
508 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
509 uint8_t *data, RDMAControlHeader *resp,
510 int *resp_idx,
511 int (*callback)(RDMAContext *rdma));
513 static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
515 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
518 static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
519 uint64_t i)
521 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
522 + (i << RDMA_REG_CHUNK_SHIFT));
525 static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
527 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
528 (1UL << RDMA_REG_CHUNK_SHIFT);
530 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
531 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
534 return result;
537 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
538 ram_addr_t block_offset, uint64_t length)
540 RDMALocalBlocks *local = &rdma->local_ram_blocks;
541 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
542 (void *) block_offset);
543 RDMALocalBlock *old = local->block;
545 assert(block == NULL);
547 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
549 if (local->nb_blocks) {
550 int x;
552 for (x = 0; x < local->nb_blocks; x++) {
553 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
554 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
555 &local->block[x]);
557 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
558 g_free(old);
561 block = &local->block[local->nb_blocks];
563 block->local_host_addr = host_addr;
564 block->offset = block_offset;
565 block->length = length;
566 block->index = local->nb_blocks;
567 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
568 block->transit_bitmap = bitmap_new(block->nb_chunks);
569 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
570 block->unregister_bitmap = bitmap_new(block->nb_chunks);
571 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
572 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
574 block->is_ram_block = local->init ? false : true;
576 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
578 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
579 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
580 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
581 block->length, (uint64_t) (block->local_host_addr + block->length),
582 BITS_TO_LONGS(block->nb_chunks) *
583 sizeof(unsigned long) * 8, block->nb_chunks);
585 local->nb_blocks++;
587 return 0;
591 * Memory regions need to be registered with the device and queue pairs setup
592 * in advanced before the migration starts. This tells us where the RAM blocks
593 * are so that we can register them individually.
595 static void qemu_rdma_init_one_block(void *host_addr,
596 ram_addr_t block_offset, ram_addr_t length, void *opaque)
598 __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
602 * Identify the RAMBlocks and their quantity. They will be references to
603 * identify chunk boundaries inside each RAMBlock and also be referenced
604 * during dynamic page registration.
606 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
608 RDMALocalBlocks *local = &rdma->local_ram_blocks;
610 assert(rdma->blockmap == NULL);
611 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
612 memset(local, 0, sizeof *local);
613 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
614 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
615 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
616 rdma->local_ram_blocks.nb_blocks);
617 local->init = true;
618 return 0;
621 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
623 RDMALocalBlocks *local = &rdma->local_ram_blocks;
624 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
625 (void *) block_offset);
626 RDMALocalBlock *old = local->block;
627 int x;
629 assert(block);
631 if (block->pmr) {
632 int j;
634 for (j = 0; j < block->nb_chunks; j++) {
635 if (!block->pmr[j]) {
636 continue;
638 ibv_dereg_mr(block->pmr[j]);
639 rdma->total_registrations--;
641 g_free(block->pmr);
642 block->pmr = NULL;
645 if (block->mr) {
646 ibv_dereg_mr(block->mr);
647 rdma->total_registrations--;
648 block->mr = NULL;
651 g_free(block->transit_bitmap);
652 block->transit_bitmap = NULL;
654 g_free(block->unregister_bitmap);
655 block->unregister_bitmap = NULL;
657 g_free(block->remote_keys);
658 block->remote_keys = NULL;
660 for (x = 0; x < local->nb_blocks; x++) {
661 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
664 if (local->nb_blocks > 1) {
666 local->block = g_malloc0(sizeof(RDMALocalBlock) *
667 (local->nb_blocks - 1));
669 if (block->index) {
670 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
673 if (block->index < (local->nb_blocks - 1)) {
674 memcpy(local->block + block->index, old + (block->index + 1),
675 sizeof(RDMALocalBlock) *
676 (local->nb_blocks - (block->index + 1)));
678 } else {
679 assert(block == local->block);
680 local->block = NULL;
683 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
684 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
685 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
686 block->length, (uint64_t) (block->local_host_addr + block->length),
687 BITS_TO_LONGS(block->nb_chunks) *
688 sizeof(unsigned long) * 8, block->nb_chunks);
690 g_free(old);
692 local->nb_blocks--;
694 if (local->nb_blocks) {
695 for (x = 0; x < local->nb_blocks; x++) {
696 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
697 &local->block[x]);
701 return 0;
705 * Put in the log file which RDMA device was opened and the details
706 * associated with that device.
708 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
710 printf("%s RDMA Device opened: kernel name %s "
711 "uverbs device name %s, "
712 "infiniband_verbs class device path %s,"
713 " infiniband class device path %s\n",
714 who,
715 verbs->device->name,
716 verbs->device->dev_name,
717 verbs->device->dev_path,
718 verbs->device->ibdev_path);
722 * Put in the log file the RDMA gid addressing information,
723 * useful for folks who have trouble understanding the
724 * RDMA device hierarchy in the kernel.
726 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
728 char sgid[33];
729 char dgid[33];
730 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
731 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
732 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
736 * Figure out which RDMA device corresponds to the requested IP hostname
737 * Also create the initial connection manager identifiers for opening
738 * the connection.
740 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
742 int ret;
743 struct addrinfo *res;
744 char port_str[16];
745 struct rdma_cm_event *cm_event;
746 char ip[40] = "unknown";
748 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
749 ERROR(errp, "RDMA hostname has not been set\n");
750 return -1;
753 /* create CM channel */
754 rdma->channel = rdma_create_event_channel();
755 if (!rdma->channel) {
756 ERROR(errp, "could not create CM channel\n");
757 return -1;
760 /* create CM id */
761 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
762 if (ret) {
763 ERROR(errp, "could not create channel id\n");
764 goto err_resolve_create_id;
767 snprintf(port_str, 16, "%d", rdma->port);
768 port_str[15] = '\0';
770 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
771 if (ret < 0) {
772 ERROR(errp, "could not getaddrinfo address %s\n", rdma->host);
773 goto err_resolve_get_addr;
776 inet_ntop(AF_INET, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
777 ip, sizeof ip);
778 DPRINTF("%s => %s\n", rdma->host, ip);
780 /* resolve the first address */
781 ret = rdma_resolve_addr(rdma->cm_id, NULL, res->ai_addr,
782 RDMA_RESOLVE_TIMEOUT_MS);
783 if (ret) {
784 ERROR(errp, "could not resolve address %s\n", rdma->host);
785 goto err_resolve_get_addr;
788 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
790 ret = rdma_get_cm_event(rdma->channel, &cm_event);
791 if (ret) {
792 ERROR(errp, "could not perform event_addr_resolved\n");
793 goto err_resolve_get_addr;
796 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
797 ERROR(errp, "result not equal to event_addr_resolved %s\n",
798 rdma_event_str(cm_event->event));
799 perror("rdma_resolve_addr");
800 goto err_resolve_get_addr;
802 rdma_ack_cm_event(cm_event);
804 /* resolve route */
805 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
806 if (ret) {
807 ERROR(errp, "could not resolve rdma route\n");
808 goto err_resolve_get_addr;
811 ret = rdma_get_cm_event(rdma->channel, &cm_event);
812 if (ret) {
813 ERROR(errp, "could not perform event_route_resolved\n");
814 goto err_resolve_get_addr;
816 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
817 ERROR(errp, "result not equal to event_route_resolved: %s\n",
818 rdma_event_str(cm_event->event));
819 rdma_ack_cm_event(cm_event);
820 goto err_resolve_get_addr;
822 rdma_ack_cm_event(cm_event);
823 rdma->verbs = rdma->cm_id->verbs;
824 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
825 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
826 return 0;
828 err_resolve_get_addr:
829 rdma_destroy_id(rdma->cm_id);
830 rdma->cm_id = NULL;
831 err_resolve_create_id:
832 rdma_destroy_event_channel(rdma->channel);
833 rdma->channel = NULL;
835 return -1;
839 * Create protection domain and completion queues
841 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
843 /* allocate pd */
844 rdma->pd = ibv_alloc_pd(rdma->verbs);
845 if (!rdma->pd) {
846 fprintf(stderr, "failed to allocate protection domain\n");
847 return -1;
850 /* create completion channel */
851 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
852 if (!rdma->comp_channel) {
853 fprintf(stderr, "failed to allocate completion channel\n");
854 goto err_alloc_pd_cq;
858 * Completion queue can be filled by both read and write work requests,
859 * so must reflect the sum of both possible queue sizes.
861 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
862 NULL, rdma->comp_channel, 0);
863 if (!rdma->cq) {
864 fprintf(stderr, "failed to allocate completion queue\n");
865 goto err_alloc_pd_cq;
868 return 0;
870 err_alloc_pd_cq:
871 if (rdma->pd) {
872 ibv_dealloc_pd(rdma->pd);
874 if (rdma->comp_channel) {
875 ibv_destroy_comp_channel(rdma->comp_channel);
877 rdma->pd = NULL;
878 rdma->comp_channel = NULL;
879 return -1;
884 * Create queue pairs.
886 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
888 struct ibv_qp_init_attr attr = { 0 };
889 int ret;
891 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
892 attr.cap.max_recv_wr = 3;
893 attr.cap.max_send_sge = 1;
894 attr.cap.max_recv_sge = 1;
895 attr.send_cq = rdma->cq;
896 attr.recv_cq = rdma->cq;
897 attr.qp_type = IBV_QPT_RC;
899 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
900 if (ret) {
901 return -1;
904 rdma->qp = rdma->cm_id->qp;
905 return 0;
908 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
910 int i;
911 RDMALocalBlocks *local = &rdma->local_ram_blocks;
913 for (i = 0; i < local->nb_blocks; i++) {
914 local->block[i].mr =
915 ibv_reg_mr(rdma->pd,
916 local->block[i].local_host_addr,
917 local->block[i].length,
918 IBV_ACCESS_LOCAL_WRITE |
919 IBV_ACCESS_REMOTE_WRITE
921 if (!local->block[i].mr) {
922 perror("Failed to register local dest ram block!\n");
923 break;
925 rdma->total_registrations++;
928 if (i >= local->nb_blocks) {
929 return 0;
932 for (i--; i >= 0; i--) {
933 ibv_dereg_mr(local->block[i].mr);
934 rdma->total_registrations--;
937 return -1;
942 * Find the ram block that corresponds to the page requested to be
943 * transmitted by QEMU.
945 * Once the block is found, also identify which 'chunk' within that
946 * block that the page belongs to.
948 * This search cannot fail or the migration will fail.
950 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
951 uint64_t block_offset,
952 uint64_t offset,
953 uint64_t length,
954 uint64_t *block_index,
955 uint64_t *chunk_index)
957 uint64_t current_addr = block_offset + offset;
958 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
959 (void *) block_offset);
960 assert(block);
961 assert(current_addr >= block->offset);
962 assert((current_addr + length) <= (block->offset + block->length));
964 *block_index = block->index;
965 *chunk_index = ram_chunk_index(block->local_host_addr,
966 block->local_host_addr + (current_addr - block->offset));
968 return 0;
972 * Register a chunk with IB. If the chunk was already registered
973 * previously, then skip.
975 * Also return the keys associated with the registration needed
976 * to perform the actual RDMA operation.
978 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
979 RDMALocalBlock *block, uint8_t *host_addr,
980 uint32_t *lkey, uint32_t *rkey, int chunk,
981 uint8_t *chunk_start, uint8_t *chunk_end)
983 if (block->mr) {
984 if (lkey) {
985 *lkey = block->mr->lkey;
987 if (rkey) {
988 *rkey = block->mr->rkey;
990 return 0;
993 /* allocate memory to store chunk MRs */
994 if (!block->pmr) {
995 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
996 if (!block->pmr) {
997 return -1;
1002 * If 'rkey', then we're the destination, so grant access to the source.
1004 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1006 if (!block->pmr[chunk]) {
1007 uint64_t len = chunk_end - chunk_start;
1009 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1010 len, chunk_start);
1012 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1013 chunk_start, len,
1014 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1015 IBV_ACCESS_REMOTE_WRITE) : 0));
1017 if (!block->pmr[chunk]) {
1018 perror("Failed to register chunk!");
1019 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1020 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1021 " local %" PRIu64 " registrations: %d\n",
1022 block->index, chunk, (uint64_t) chunk_start,
1023 (uint64_t) chunk_end, (uint64_t) host_addr,
1024 (uint64_t) block->local_host_addr,
1025 rdma->total_registrations);
1026 return -1;
1028 rdma->total_registrations++;
1031 if (lkey) {
1032 *lkey = block->pmr[chunk]->lkey;
1034 if (rkey) {
1035 *rkey = block->pmr[chunk]->rkey;
1037 return 0;
1041 * Register (at connection time) the memory used for control
1042 * channel messages.
1044 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1046 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1047 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1048 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1049 if (rdma->wr_data[idx].control_mr) {
1050 rdma->total_registrations++;
1051 return 0;
1053 fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1054 return -1;
1057 const char *print_wrid(int wrid)
1059 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1060 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1062 return wrid_desc[wrid];
1066 * RDMA requires memory registration (mlock/pinning), but this is not good for
1067 * overcommitment.
1069 * In preparation for the future where LRU information or workload-specific
1070 * writable writable working set memory access behavior is available to QEMU
1071 * it would be nice to have in place the ability to UN-register/UN-pin
1072 * particular memory regions from the RDMA hardware when it is determine that
1073 * those regions of memory will likely not be accessed again in the near future.
1075 * While we do not yet have such information right now, the following
1076 * compile-time option allows us to perform a non-optimized version of this
1077 * behavior.
1079 * By uncommenting this option, you will cause *all* RDMA transfers to be
1080 * unregistered immediately after the transfer completes on both sides of the
1081 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1083 * This will have a terrible impact on migration performance, so until future
1084 * workload information or LRU information is available, do not attempt to use
1085 * this feature except for basic testing.
1087 //#define RDMA_UNREGISTRATION_EXAMPLE
1090 * Perform a non-optimized memory unregistration after every transfer
1091 * for demonsration purposes, only if pin-all is not requested.
1093 * Potential optimizations:
1094 * 1. Start a new thread to run this function continuously
1095 - for bit clearing
1096 - and for receipt of unregister messages
1097 * 2. Use an LRU.
1098 * 3. Use workload hints.
1100 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1102 while (rdma->unregistrations[rdma->unregister_current]) {
1103 int ret;
1104 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1105 uint64_t chunk =
1106 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1107 uint64_t index =
1108 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1109 RDMALocalBlock *block =
1110 &(rdma->local_ram_blocks.block[index]);
1111 RDMARegister reg = { .current_index = index };
1112 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1114 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1115 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1116 .repeat = 1,
1119 DDPRINTF("Processing unregister for chunk: %" PRIu64
1120 " at position %d\n", chunk, rdma->unregister_current);
1122 rdma->unregistrations[rdma->unregister_current] = 0;
1123 rdma->unregister_current++;
1125 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1126 rdma->unregister_current = 0;
1131 * Unregistration is speculative (because migration is single-threaded
1132 * and we cannot break the protocol's inifinband message ordering).
1133 * Thus, if the memory is currently being used for transmission,
1134 * then abort the attempt to unregister and try again
1135 * later the next time a completion is received for this memory.
1137 clear_bit(chunk, block->unregister_bitmap);
1139 if (test_bit(chunk, block->transit_bitmap)) {
1140 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1141 continue;
1144 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1146 ret = ibv_dereg_mr(block->pmr[chunk]);
1147 block->pmr[chunk] = NULL;
1148 block->remote_keys[chunk] = 0;
1150 if (ret != 0) {
1151 perror("unregistration chunk failed");
1152 return -ret;
1154 rdma->total_registrations--;
1156 reg.key.chunk = chunk;
1157 register_to_network(&reg);
1158 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1159 &resp, NULL, NULL);
1160 if (ret < 0) {
1161 return ret;
1164 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1167 return 0;
1170 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1171 uint64_t chunk)
1173 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1175 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1176 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1178 return result;
1182 * Set bit for unregistration in the next iteration.
1183 * We cannot transmit right here, but will unpin later.
1185 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1186 uint64_t chunk, uint64_t wr_id)
1188 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1189 fprintf(stderr, "rdma migration: queue is full!\n");
1190 } else {
1191 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1193 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1194 DDPRINTF("Appending unregister chunk %" PRIu64
1195 " at position %d\n", chunk, rdma->unregister_next);
1197 rdma->unregistrations[rdma->unregister_next++] =
1198 qemu_rdma_make_wrid(wr_id, index, chunk);
1200 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1201 rdma->unregister_next = 0;
1203 } else {
1204 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1205 chunk);
1211 * Consult the connection manager to see a work request
1212 * (of any kind) has completed.
1213 * Return the work request ID that completed.
1215 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out)
1217 int ret;
1218 struct ibv_wc wc;
1219 uint64_t wr_id;
1221 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1223 if (!ret) {
1224 *wr_id_out = RDMA_WRID_NONE;
1225 return 0;
1228 if (ret < 0) {
1229 fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1230 return ret;
1233 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1235 if (wc.status != IBV_WC_SUCCESS) {
1236 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1237 wc.status, ibv_wc_status_str(wc.status));
1238 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1240 return -1;
1243 if (rdma->control_ready_expected &&
1244 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1245 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1246 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1247 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1248 rdma->control_ready_expected = 0;
1251 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1252 uint64_t chunk =
1253 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1254 uint64_t index =
1255 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1256 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1258 DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1259 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1260 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1261 block->local_host_addr, (void *)block->remote_host_addr);
1263 clear_bit(chunk, block->transit_bitmap);
1265 if (rdma->nb_sent > 0) {
1266 rdma->nb_sent--;
1269 if (!rdma->pin_all) {
1271 * FYI: If one wanted to signal a specific chunk to be unregistered
1272 * using LRU or workload-specific information, this is the function
1273 * you would call to do so. That chunk would then get asynchronously
1274 * unregistered later.
1276 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1277 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1278 #endif
1280 } else {
1281 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1282 print_wrid(wr_id), wr_id, rdma->nb_sent);
1285 *wr_id_out = wc.wr_id;
1287 return 0;
1291 * Block until the next work request has completed.
1293 * First poll to see if a work request has already completed,
1294 * otherwise block.
1296 * If we encounter completed work requests for IDs other than
1297 * the one we're interested in, then that's generally an error.
1299 * The only exception is actual RDMA Write completions. These
1300 * completions only need to be recorded, but do not actually
1301 * need further processing.
1303 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested)
1305 int num_cq_events = 0, ret = 0;
1306 struct ibv_cq *cq;
1307 void *cq_ctx;
1308 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1310 if (ibv_req_notify_cq(rdma->cq, 0)) {
1311 return -1;
1313 /* poll cq first */
1314 while (wr_id != wrid_requested) {
1315 ret = qemu_rdma_poll(rdma, &wr_id_in);
1316 if (ret < 0) {
1317 return ret;
1320 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1322 if (wr_id == RDMA_WRID_NONE) {
1323 break;
1325 if (wr_id != wrid_requested) {
1326 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1327 print_wrid(wrid_requested),
1328 wrid_requested, print_wrid(wr_id), wr_id);
1332 if (wr_id == wrid_requested) {
1333 return 0;
1336 while (1) {
1338 * Coroutine doesn't start until process_incoming_migration()
1339 * so don't yield unless we know we're running inside of a coroutine.
1341 if (rdma->migration_started_on_destination) {
1342 yield_until_fd_readable(rdma->comp_channel->fd);
1345 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1346 perror("ibv_get_cq_event");
1347 goto err_block_for_wrid;
1350 num_cq_events++;
1352 if (ibv_req_notify_cq(cq, 0)) {
1353 goto err_block_for_wrid;
1356 while (wr_id != wrid_requested) {
1357 ret = qemu_rdma_poll(rdma, &wr_id_in);
1358 if (ret < 0) {
1359 goto err_block_for_wrid;
1362 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1364 if (wr_id == RDMA_WRID_NONE) {
1365 break;
1367 if (wr_id != wrid_requested) {
1368 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1369 print_wrid(wrid_requested), wrid_requested,
1370 print_wrid(wr_id), wr_id);
1374 if (wr_id == wrid_requested) {
1375 goto success_block_for_wrid;
1379 success_block_for_wrid:
1380 if (num_cq_events) {
1381 ibv_ack_cq_events(cq, num_cq_events);
1383 return 0;
1385 err_block_for_wrid:
1386 if (num_cq_events) {
1387 ibv_ack_cq_events(cq, num_cq_events);
1389 return ret;
1393 * Post a SEND message work request for the control channel
1394 * containing some data and block until the post completes.
1396 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1397 RDMAControlHeader *head)
1399 int ret = 0;
1400 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_MAX];
1401 struct ibv_send_wr *bad_wr;
1402 struct ibv_sge sge = {
1403 .addr = (uint64_t)(wr->control),
1404 .length = head->len + sizeof(RDMAControlHeader),
1405 .lkey = wr->control_mr->lkey,
1407 struct ibv_send_wr send_wr = {
1408 .wr_id = RDMA_WRID_SEND_CONTROL,
1409 .opcode = IBV_WR_SEND,
1410 .send_flags = IBV_SEND_SIGNALED,
1411 .sg_list = &sge,
1412 .num_sge = 1,
1415 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1418 * We don't actually need to do a memcpy() in here if we used
1419 * the "sge" properly, but since we're only sending control messages
1420 * (not RAM in a performance-critical path), then its OK for now.
1422 * The copy makes the RDMAControlHeader simpler to manipulate
1423 * for the time being.
1425 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1426 control_to_network((void *) wr->control);
1428 if (buf) {
1429 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1433 if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1434 return -1;
1437 if (ret < 0) {
1438 fprintf(stderr, "Failed to use post IB SEND for control!\n");
1439 return ret;
1442 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL);
1443 if (ret < 0) {
1444 fprintf(stderr, "rdma migration: send polling control error!\n");
1447 return ret;
1451 * Post a RECV work request in anticipation of some future receipt
1452 * of data on the control channel.
1454 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1456 struct ibv_recv_wr *bad_wr;
1457 struct ibv_sge sge = {
1458 .addr = (uint64_t)(rdma->wr_data[idx].control),
1459 .length = RDMA_CONTROL_MAX_BUFFER,
1460 .lkey = rdma->wr_data[idx].control_mr->lkey,
1463 struct ibv_recv_wr recv_wr = {
1464 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1465 .sg_list = &sge,
1466 .num_sge = 1,
1470 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1471 return -1;
1474 return 0;
1478 * Block and wait for a RECV control channel message to arrive.
1480 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1481 RDMAControlHeader *head, int expecting, int idx)
1483 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx);
1485 if (ret < 0) {
1486 fprintf(stderr, "rdma migration: recv polling control error!\n");
1487 return ret;
1490 network_to_control((void *) rdma->wr_data[idx].control);
1491 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1493 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1495 if (expecting == RDMA_CONTROL_NONE) {
1496 DDDPRINTF("Surprise: got %s (%d)\n",
1497 control_desc[head->type], head->type);
1498 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1499 fprintf(stderr, "Was expecting a %s (%d) control message"
1500 ", but got: %s (%d), length: %d\n",
1501 control_desc[expecting], expecting,
1502 control_desc[head->type], head->type, head->len);
1503 return -EIO;
1506 return 0;
1510 * When a RECV work request has completed, the work request's
1511 * buffer is pointed at the header.
1513 * This will advance the pointer to the data portion
1514 * of the control message of the work request's buffer that
1515 * was populated after the work request finished.
1517 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1518 RDMAControlHeader *head)
1520 rdma->wr_data[idx].control_len = head->len;
1521 rdma->wr_data[idx].control_curr =
1522 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1526 * This is an 'atomic' high-level operation to deliver a single, unified
1527 * control-channel message.
1529 * Additionally, if the user is expecting some kind of reply to this message,
1530 * they can request a 'resp' response message be filled in by posting an
1531 * additional work request on behalf of the user and waiting for an additional
1532 * completion.
1534 * The extra (optional) response is used during registration to us from having
1535 * to perform an *additional* exchange of message just to provide a response by
1536 * instead piggy-backing on the acknowledgement.
1538 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1539 uint8_t *data, RDMAControlHeader *resp,
1540 int *resp_idx,
1541 int (*callback)(RDMAContext *rdma))
1543 int ret = 0;
1546 * Wait until the dest is ready before attempting to deliver the message
1547 * by waiting for a READY message.
1549 if (rdma->control_ready_expected) {
1550 RDMAControlHeader resp;
1551 ret = qemu_rdma_exchange_get_response(rdma,
1552 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1553 if (ret < 0) {
1554 return ret;
1559 * If the user is expecting a response, post a WR in anticipation of it.
1561 if (resp) {
1562 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1563 if (ret) {
1564 fprintf(stderr, "rdma migration: error posting"
1565 " extra control recv for anticipated result!");
1566 return ret;
1571 * Post a WR to replace the one we just consumed for the READY message.
1573 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1574 if (ret) {
1575 fprintf(stderr, "rdma migration: error posting first control recv!");
1576 return ret;
1580 * Deliver the control message that was requested.
1582 ret = qemu_rdma_post_send_control(rdma, data, head);
1584 if (ret < 0) {
1585 fprintf(stderr, "Failed to send control buffer!\n");
1586 return ret;
1590 * If we're expecting a response, block and wait for it.
1592 if (resp) {
1593 if (callback) {
1594 DDPRINTF("Issuing callback before receiving response...\n");
1595 ret = callback(rdma);
1596 if (ret < 0) {
1597 return ret;
1601 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1602 ret = qemu_rdma_exchange_get_response(rdma, resp,
1603 resp->type, RDMA_WRID_DATA);
1605 if (ret < 0) {
1606 return ret;
1609 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1610 if (resp_idx) {
1611 *resp_idx = RDMA_WRID_DATA;
1613 DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1616 rdma->control_ready_expected = 1;
1618 return 0;
1622 * This is an 'atomic' high-level operation to receive a single, unified
1623 * control-channel message.
1625 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1626 int expecting)
1628 RDMAControlHeader ready = {
1629 .len = 0,
1630 .type = RDMA_CONTROL_READY,
1631 .repeat = 1,
1633 int ret;
1636 * Inform the source that we're ready to receive a message.
1638 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1640 if (ret < 0) {
1641 fprintf(stderr, "Failed to send control buffer!\n");
1642 return ret;
1646 * Block and wait for the message.
1648 ret = qemu_rdma_exchange_get_response(rdma, head,
1649 expecting, RDMA_WRID_READY);
1651 if (ret < 0) {
1652 return ret;
1655 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1658 * Post a new RECV work request to replace the one we just consumed.
1660 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1661 if (ret) {
1662 fprintf(stderr, "rdma migration: error posting second control recv!");
1663 return ret;
1666 return 0;
1670 * Write an actual chunk of memory using RDMA.
1672 * If we're using dynamic registration on the dest-side, we have to
1673 * send a registration command first.
1675 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1676 int current_index, uint64_t current_addr,
1677 uint64_t length)
1679 struct ibv_sge sge;
1680 struct ibv_send_wr send_wr = { 0 };
1681 struct ibv_send_wr *bad_wr;
1682 int reg_result_idx, ret, count = 0;
1683 uint64_t chunk, chunks;
1684 uint8_t *chunk_start, *chunk_end;
1685 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1686 RDMARegister reg;
1687 RDMARegisterResult *reg_result;
1688 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1689 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1690 .type = RDMA_CONTROL_REGISTER_REQUEST,
1691 .repeat = 1,
1694 retry:
1695 sge.addr = (uint64_t)(block->local_host_addr +
1696 (current_addr - block->offset));
1697 sge.length = length;
1699 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1700 chunk_start = ram_chunk_start(block, chunk);
1702 if (block->is_ram_block) {
1703 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1705 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1706 chunks--;
1708 } else {
1709 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1711 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1712 chunks--;
1716 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1717 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1719 chunk_end = ram_chunk_end(block, chunk + chunks);
1721 if (!rdma->pin_all) {
1722 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1723 qemu_rdma_unregister_waiting(rdma);
1724 #endif
1727 while (test_bit(chunk, block->transit_bitmap)) {
1728 (void)count;
1729 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1730 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1731 count++, current_index, chunk,
1732 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1734 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1736 if (ret < 0) {
1737 fprintf(stderr, "Failed to Wait for previous write to complete "
1738 "block %d chunk %" PRIu64
1739 " current %" PRIu64 " len %" PRIu64 " %d\n",
1740 current_index, chunk, sge.addr, length, rdma->nb_sent);
1741 return ret;
1745 if (!rdma->pin_all || !block->is_ram_block) {
1746 if (!block->remote_keys[chunk]) {
1748 * This chunk has not yet been registered, so first check to see
1749 * if the entire chunk is zero. If so, tell the other size to
1750 * memset() + madvise() the entire chunk without RDMA.
1753 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1754 && buffer_find_nonzero_offset((void *)sge.addr,
1755 length) == length) {
1756 RDMACompress comp = {
1757 .offset = current_addr,
1758 .value = 0,
1759 .block_idx = current_index,
1760 .length = length,
1763 head.len = sizeof(comp);
1764 head.type = RDMA_CONTROL_COMPRESS;
1766 DDPRINTF("Entire chunk is zero, sending compress: %"
1767 PRIu64 " for %d "
1768 "bytes, index: %d, offset: %" PRId64 "...\n",
1769 chunk, sge.length, current_index, current_addr);
1771 compress_to_network(&comp);
1772 ret = qemu_rdma_exchange_send(rdma, &head,
1773 (uint8_t *) &comp, NULL, NULL, NULL);
1775 if (ret < 0) {
1776 return -EIO;
1779 acct_update_position(f, sge.length, true);
1781 return 1;
1785 * Otherwise, tell other side to register.
1787 reg.current_index = current_index;
1788 if (block->is_ram_block) {
1789 reg.key.current_addr = current_addr;
1790 } else {
1791 reg.key.chunk = chunk;
1793 reg.chunks = chunks;
1795 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1796 "bytes, index: %d, offset: %" PRId64 "...\n",
1797 chunk, sge.length, current_index, current_addr);
1799 register_to_network(&reg);
1800 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1801 &resp, &reg_result_idx, NULL);
1802 if (ret < 0) {
1803 return ret;
1806 /* try to overlap this single registration with the one we sent. */
1807 if (qemu_rdma_register_and_get_keys(rdma, block,
1808 (uint8_t *) sge.addr,
1809 &sge.lkey, NULL, chunk,
1810 chunk_start, chunk_end)) {
1811 fprintf(stderr, "cannot get lkey!\n");
1812 return -EINVAL;
1815 reg_result = (RDMARegisterResult *)
1816 rdma->wr_data[reg_result_idx].control_curr;
1818 network_to_result(reg_result);
1820 DDPRINTF("Received registration result:"
1821 " my key: %x their key %x, chunk %" PRIu64 "\n",
1822 block->remote_keys[chunk], reg_result->rkey, chunk);
1824 block->remote_keys[chunk] = reg_result->rkey;
1825 block->remote_host_addr = reg_result->host_addr;
1826 } else {
1827 /* already registered before */
1828 if (qemu_rdma_register_and_get_keys(rdma, block,
1829 (uint8_t *)sge.addr,
1830 &sge.lkey, NULL, chunk,
1831 chunk_start, chunk_end)) {
1832 fprintf(stderr, "cannot get lkey!\n");
1833 return -EINVAL;
1837 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1838 } else {
1839 send_wr.wr.rdma.rkey = block->remote_rkey;
1841 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
1842 &sge.lkey, NULL, chunk,
1843 chunk_start, chunk_end)) {
1844 fprintf(stderr, "cannot get lkey!\n");
1845 return -EINVAL;
1850 * Encode the ram block index and chunk within this wrid.
1851 * We will use this information at the time of completion
1852 * to figure out which bitmap to check against and then which
1853 * chunk in the bitmap to look for.
1855 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1856 current_index, chunk);
1858 send_wr.opcode = IBV_WR_RDMA_WRITE;
1859 send_wr.send_flags = IBV_SEND_SIGNALED;
1860 send_wr.sg_list = &sge;
1861 send_wr.num_sge = 1;
1862 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1863 (current_addr - block->offset);
1865 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
1866 " remote: %lx, bytes %" PRIu32 "\n",
1867 chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1868 sge.length);
1871 * ibv_post_send() does not return negative error numbers,
1872 * per the specification they are positive - no idea why.
1874 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1876 if (ret == ENOMEM) {
1877 DDPRINTF("send queue is full. wait a little....\n");
1878 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1879 if (ret < 0) {
1880 fprintf(stderr, "rdma migration: failed to make "
1881 "room in full send queue! %d\n", ret);
1882 return ret;
1885 goto retry;
1887 } else if (ret > 0) {
1888 perror("rdma migration: post rdma write failed");
1889 return -ret;
1892 set_bit(chunk, block->transit_bitmap);
1893 acct_update_position(f, sge.length, false);
1894 rdma->total_writes++;
1896 return 0;
1900 * Push out any unwritten RDMA operations.
1902 * We support sending out multiple chunks at the same time.
1903 * Not all of them need to get signaled in the completion queue.
1905 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
1907 int ret;
1909 if (!rdma->current_length) {
1910 return 0;
1913 ret = qemu_rdma_write_one(f, rdma,
1914 rdma->current_index, rdma->current_addr, rdma->current_length);
1916 if (ret < 0) {
1917 return ret;
1920 if (ret == 0) {
1921 rdma->nb_sent++;
1922 DDDPRINTF("sent total: %d\n", rdma->nb_sent);
1925 rdma->current_length = 0;
1926 rdma->current_addr = 0;
1928 return 0;
1931 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
1932 uint64_t offset, uint64_t len)
1934 RDMALocalBlock *block =
1935 &(rdma->local_ram_blocks.block[rdma->current_index]);
1936 uint8_t *host_addr = block->local_host_addr + (offset - block->offset);
1937 uint8_t *chunk_end = ram_chunk_end(block, rdma->current_chunk);
1939 if (rdma->current_length == 0) {
1940 return 0;
1944 * Only merge into chunk sequentially.
1946 if (offset != (rdma->current_addr + rdma->current_length)) {
1947 return 0;
1950 if (rdma->current_index < 0) {
1951 return 0;
1954 if (offset < block->offset) {
1955 return 0;
1958 if ((offset + len) > (block->offset + block->length)) {
1959 return 0;
1962 if (rdma->current_chunk < 0) {
1963 return 0;
1966 if ((host_addr + len) > chunk_end) {
1967 return 0;
1970 return 1;
1974 * We're not actually writing here, but doing three things:
1976 * 1. Identify the chunk the buffer belongs to.
1977 * 2. If the chunk is full or the buffer doesn't belong to the current
1978 * chunk, then start a new chunk and flush() the old chunk.
1979 * 3. To keep the hardware busy, we also group chunks into batches
1980 * and only require that a batch gets acknowledged in the completion
1981 * qeueue instead of each individual chunk.
1983 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
1984 uint64_t block_offset, uint64_t offset,
1985 uint64_t len)
1987 uint64_t current_addr = block_offset + offset;
1988 uint64_t index = rdma->current_index;
1989 uint64_t chunk = rdma->current_chunk;
1990 int ret;
1992 /* If we cannot merge it, we flush the current buffer first. */
1993 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
1994 ret = qemu_rdma_write_flush(f, rdma);
1995 if (ret) {
1996 return ret;
1998 rdma->current_length = 0;
1999 rdma->current_addr = current_addr;
2001 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2002 offset, len, &index, &chunk);
2003 if (ret) {
2004 fprintf(stderr, "ram block search failed\n");
2005 return ret;
2007 rdma->current_index = index;
2008 rdma->current_chunk = chunk;
2011 /* merge it */
2012 rdma->current_length += len;
2014 /* flush it if buffer is too large */
2015 if (rdma->current_length >= RDMA_MERGE_MAX) {
2016 return qemu_rdma_write_flush(f, rdma);
2019 return 0;
2022 static void qemu_rdma_cleanup(RDMAContext *rdma)
2024 struct rdma_cm_event *cm_event;
2025 int ret, idx;
2027 if (rdma->cm_id) {
2028 if (rdma->error_state) {
2029 RDMAControlHeader head = { .len = 0,
2030 .type = RDMA_CONTROL_ERROR,
2031 .repeat = 1,
2033 fprintf(stderr, "Early error. Sending error.\n");
2034 qemu_rdma_post_send_control(rdma, NULL, &head);
2037 ret = rdma_disconnect(rdma->cm_id);
2038 if (!ret) {
2039 DDPRINTF("waiting for disconnect\n");
2040 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2041 if (!ret) {
2042 rdma_ack_cm_event(cm_event);
2045 DDPRINTF("Disconnected.\n");
2046 rdma->cm_id = NULL;
2049 g_free(rdma->block);
2050 rdma->block = NULL;
2052 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2053 if (rdma->wr_data[idx].control_mr) {
2054 rdma->total_registrations--;
2055 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2057 rdma->wr_data[idx].control_mr = NULL;
2060 if (rdma->local_ram_blocks.block) {
2061 while (rdma->local_ram_blocks.nb_blocks) {
2062 __qemu_rdma_delete_block(rdma,
2063 rdma->local_ram_blocks.block->offset);
2067 if (rdma->qp) {
2068 ibv_destroy_qp(rdma->qp);
2069 rdma->qp = NULL;
2071 if (rdma->cq) {
2072 ibv_destroy_cq(rdma->cq);
2073 rdma->cq = NULL;
2075 if (rdma->comp_channel) {
2076 ibv_destroy_comp_channel(rdma->comp_channel);
2077 rdma->comp_channel = NULL;
2079 if (rdma->pd) {
2080 ibv_dealloc_pd(rdma->pd);
2081 rdma->pd = NULL;
2083 if (rdma->listen_id) {
2084 rdma_destroy_id(rdma->listen_id);
2085 rdma->listen_id = NULL;
2087 if (rdma->cm_id) {
2088 rdma_destroy_id(rdma->cm_id);
2089 rdma->cm_id = NULL;
2091 if (rdma->channel) {
2092 rdma_destroy_event_channel(rdma->channel);
2093 rdma->channel = NULL;
2098 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2100 int ret, idx;
2101 Error *local_err = NULL, **temp = &local_err;
2104 * Will be validated against destination's actual capabilities
2105 * after the connect() completes.
2107 rdma->pin_all = pin_all;
2109 ret = qemu_rdma_resolve_host(rdma, temp);
2110 if (ret) {
2111 goto err_rdma_source_init;
2114 ret = qemu_rdma_alloc_pd_cq(rdma);
2115 if (ret) {
2116 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2117 " limits may be too low. Please check $ ulimit -a # and "
2118 "search for 'ulimit -l' in the output\n");
2119 goto err_rdma_source_init;
2122 ret = qemu_rdma_alloc_qp(rdma);
2123 if (ret) {
2124 ERROR(temp, "rdma migration: error allocating qp!\n");
2125 goto err_rdma_source_init;
2128 ret = qemu_rdma_init_ram_blocks(rdma);
2129 if (ret) {
2130 ERROR(temp, "rdma migration: error initializing ram blocks!\n");
2131 goto err_rdma_source_init;
2134 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2135 ret = qemu_rdma_reg_control(rdma, idx);
2136 if (ret) {
2137 ERROR(temp, "rdma migration: error registering %d control!\n",
2138 idx);
2139 goto err_rdma_source_init;
2143 return 0;
2145 err_rdma_source_init:
2146 error_propagate(errp, local_err);
2147 qemu_rdma_cleanup(rdma);
2148 return -1;
2151 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2153 RDMACapabilities cap = {
2154 .version = RDMA_CONTROL_VERSION_CURRENT,
2155 .flags = 0,
2157 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2158 .retry_count = 5,
2159 .private_data = &cap,
2160 .private_data_len = sizeof(cap),
2162 struct rdma_cm_event *cm_event;
2163 int ret;
2166 * Only negotiate the capability with destination if the user
2167 * on the source first requested the capability.
2169 if (rdma->pin_all) {
2170 DPRINTF("Server pin-all memory requested.\n");
2171 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2174 caps_to_network(&cap);
2176 ret = rdma_connect(rdma->cm_id, &conn_param);
2177 if (ret) {
2178 perror("rdma_connect");
2179 ERROR(errp, "connecting to destination!\n");
2180 rdma_destroy_id(rdma->cm_id);
2181 rdma->cm_id = NULL;
2182 goto err_rdma_source_connect;
2185 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2186 if (ret) {
2187 perror("rdma_get_cm_event after rdma_connect");
2188 ERROR(errp, "connecting to destination!\n");
2189 rdma_ack_cm_event(cm_event);
2190 rdma_destroy_id(rdma->cm_id);
2191 rdma->cm_id = NULL;
2192 goto err_rdma_source_connect;
2195 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2196 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2197 ERROR(errp, "connecting to destination!\n");
2198 rdma_ack_cm_event(cm_event);
2199 rdma_destroy_id(rdma->cm_id);
2200 rdma->cm_id = NULL;
2201 goto err_rdma_source_connect;
2204 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2205 network_to_caps(&cap);
2208 * Verify that the *requested* capabilities are supported by the destination
2209 * and disable them otherwise.
2211 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2212 ERROR(errp, "Server cannot support pinning all memory. "
2213 "Will register memory dynamically.\n");
2214 rdma->pin_all = false;
2217 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2219 rdma_ack_cm_event(cm_event);
2221 ret = qemu_rdma_post_recv_control(rdma, 0);
2222 if (ret) {
2223 ERROR(errp, "posting second control recv!\n");
2224 goto err_rdma_source_connect;
2227 rdma->control_ready_expected = 1;
2228 rdma->nb_sent = 0;
2229 return 0;
2231 err_rdma_source_connect:
2232 qemu_rdma_cleanup(rdma);
2233 return -1;
2236 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2238 int ret = -EINVAL, idx;
2239 struct sockaddr_in sin;
2240 struct rdma_cm_id *listen_id;
2241 char ip[40] = "unknown";
2243 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2244 rdma->wr_data[idx].control_len = 0;
2245 rdma->wr_data[idx].control_curr = NULL;
2248 if (rdma->host == NULL) {
2249 ERROR(errp, "RDMA host is not set!\n");
2250 rdma->error_state = -EINVAL;
2251 return -1;
2253 /* create CM channel */
2254 rdma->channel = rdma_create_event_channel();
2255 if (!rdma->channel) {
2256 ERROR(errp, "could not create rdma event channel\n");
2257 rdma->error_state = -EINVAL;
2258 return -1;
2261 /* create CM id */
2262 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2263 if (ret) {
2264 ERROR(errp, "could not create cm_id!\n");
2265 goto err_dest_init_create_listen_id;
2268 memset(&sin, 0, sizeof(sin));
2269 sin.sin_family = AF_INET;
2270 sin.sin_port = htons(rdma->port);
2272 if (rdma->host && strcmp("", rdma->host)) {
2273 struct hostent *dest_addr;
2274 dest_addr = gethostbyname(rdma->host);
2275 if (!dest_addr) {
2276 ERROR(errp, "migration could not gethostbyname!\n");
2277 ret = -EINVAL;
2278 goto err_dest_init_bind_addr;
2280 memcpy(&sin.sin_addr.s_addr, dest_addr->h_addr,
2281 dest_addr->h_length);
2282 inet_ntop(AF_INET, dest_addr->h_addr, ip, sizeof ip);
2283 } else {
2284 sin.sin_addr.s_addr = INADDR_ANY;
2287 DPRINTF("%s => %s\n", rdma->host, ip);
2289 ret = rdma_bind_addr(listen_id, (struct sockaddr *)&sin);
2290 if (ret) {
2291 ERROR(errp, "Error: could not rdma_bind_addr!\n");
2292 goto err_dest_init_bind_addr;
2295 rdma->listen_id = listen_id;
2296 qemu_rdma_dump_gid("dest_init", listen_id);
2297 return 0;
2299 err_dest_init_bind_addr:
2300 rdma_destroy_id(listen_id);
2301 err_dest_init_create_listen_id:
2302 rdma_destroy_event_channel(rdma->channel);
2303 rdma->channel = NULL;
2304 rdma->error_state = ret;
2305 return ret;
2309 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2311 RDMAContext *rdma = NULL;
2312 InetSocketAddress *addr;
2314 if (host_port) {
2315 rdma = g_malloc0(sizeof(RDMAContext));
2316 memset(rdma, 0, sizeof(RDMAContext));
2317 rdma->current_index = -1;
2318 rdma->current_chunk = -1;
2320 addr = inet_parse(host_port, NULL);
2321 if (addr != NULL) {
2322 rdma->port = atoi(addr->port);
2323 rdma->host = g_strdup(addr->host);
2324 } else {
2325 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2326 g_free(rdma);
2327 return NULL;
2331 return rdma;
2335 * QEMUFile interface to the control channel.
2336 * SEND messages for control only.
2337 * pc.ram is handled with regular RDMA messages.
2339 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2340 int64_t pos, int size)
2342 QEMUFileRDMA *r = opaque;
2343 QEMUFile *f = r->file;
2344 RDMAContext *rdma = r->rdma;
2345 size_t remaining = size;
2346 uint8_t * data = (void *) buf;
2347 int ret;
2349 CHECK_ERROR_STATE();
2352 * Push out any writes that
2353 * we're queued up for pc.ram.
2355 ret = qemu_rdma_write_flush(f, rdma);
2356 if (ret < 0) {
2357 rdma->error_state = ret;
2358 return ret;
2361 while (remaining) {
2362 RDMAControlHeader head;
2364 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2365 remaining -= r->len;
2367 head.len = r->len;
2368 head.type = RDMA_CONTROL_QEMU_FILE;
2370 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2372 if (ret < 0) {
2373 rdma->error_state = ret;
2374 return ret;
2377 data += r->len;
2380 return size;
2383 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2384 int size, int idx)
2386 size_t len = 0;
2388 if (rdma->wr_data[idx].control_len) {
2389 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2390 rdma->wr_data[idx].control_len, size);
2392 len = MIN(size, rdma->wr_data[idx].control_len);
2393 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2394 rdma->wr_data[idx].control_curr += len;
2395 rdma->wr_data[idx].control_len -= len;
2398 return len;
2402 * QEMUFile interface to the control channel.
2403 * RDMA links don't use bytestreams, so we have to
2404 * return bytes to QEMUFile opportunistically.
2406 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2407 int64_t pos, int size)
2409 QEMUFileRDMA *r = opaque;
2410 RDMAContext *rdma = r->rdma;
2411 RDMAControlHeader head;
2412 int ret = 0;
2414 CHECK_ERROR_STATE();
2417 * First, we hold on to the last SEND message we
2418 * were given and dish out the bytes until we run
2419 * out of bytes.
2421 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2422 if (r->len) {
2423 return r->len;
2427 * Once we run out, we block and wait for another
2428 * SEND message to arrive.
2430 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2432 if (ret < 0) {
2433 rdma->error_state = ret;
2434 return ret;
2438 * SEND was received with new bytes, now try again.
2440 return qemu_rdma_fill(r->rdma, buf, size, 0);
2444 * Block until all the outstanding chunks have been delivered by the hardware.
2446 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2448 int ret;
2450 if (qemu_rdma_write_flush(f, rdma) < 0) {
2451 return -EIO;
2454 while (rdma->nb_sent) {
2455 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
2456 if (ret < 0) {
2457 fprintf(stderr, "rdma migration: complete polling error!\n");
2458 return -EIO;
2462 qemu_rdma_unregister_waiting(rdma);
2464 return 0;
2467 static int qemu_rdma_close(void *opaque)
2469 DPRINTF("Shutting down connection.\n");
2470 QEMUFileRDMA *r = opaque;
2471 if (r->rdma) {
2472 qemu_rdma_cleanup(r->rdma);
2473 g_free(r->rdma);
2475 g_free(r);
2476 return 0;
2480 * Parameters:
2481 * @offset == 0 :
2482 * This means that 'block_offset' is a full virtual address that does not
2483 * belong to a RAMBlock of the virtual machine and instead
2484 * represents a private malloc'd memory area that the caller wishes to
2485 * transfer.
2487 * @offset != 0 :
2488 * Offset is an offset to be added to block_offset and used
2489 * to also lookup the corresponding RAMBlock.
2491 * @size > 0 :
2492 * Initiate an transfer this size.
2494 * @size == 0 :
2495 * A 'hint' or 'advice' that means that we wish to speculatively
2496 * and asynchronously unregister this memory. In this case, there is no
2497 * gaurantee that the unregister will actually happen, for example,
2498 * if the memory is being actively transmitted. Additionally, the memory
2499 * may be re-registered at any future time if a write within the same
2500 * chunk was requested again, even if you attempted to unregister it
2501 * here.
2503 * @size < 0 : TODO, not yet supported
2504 * Unregister the memory NOW. This means that the caller does not
2505 * expect there to be any future RDMA transfers and we just want to clean
2506 * things up. This is used in case the upper layer owns the memory and
2507 * cannot wait for qemu_fclose() to occur.
2509 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2510 * sent. Usually, this will not be more than a few bytes of
2511 * the protocol because most transfers are sent asynchronously.
2513 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2514 ram_addr_t block_offset, ram_addr_t offset,
2515 size_t size, int *bytes_sent)
2517 QEMUFileRDMA *rfile = opaque;
2518 RDMAContext *rdma = rfile->rdma;
2519 int ret;
2521 CHECK_ERROR_STATE();
2523 qemu_fflush(f);
2525 if (size > 0) {
2527 * Add this page to the current 'chunk'. If the chunk
2528 * is full, or the page doen't belong to the current chunk,
2529 * an actual RDMA write will occur and a new chunk will be formed.
2531 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2532 if (ret < 0) {
2533 fprintf(stderr, "rdma migration: write error! %d\n", ret);
2534 goto err;
2538 * We always return 1 bytes because the RDMA
2539 * protocol is completely asynchronous. We do not yet know
2540 * whether an identified chunk is zero or not because we're
2541 * waiting for other pages to potentially be merged with
2542 * the current chunk. So, we have to call qemu_update_position()
2543 * later on when the actual write occurs.
2545 if (bytes_sent) {
2546 *bytes_sent = 1;
2548 } else {
2549 uint64_t index, chunk;
2551 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2552 if (size < 0) {
2553 ret = qemu_rdma_drain_cq(f, rdma);
2554 if (ret < 0) {
2555 fprintf(stderr, "rdma: failed to synchronously drain"
2556 " completion queue before unregistration.\n");
2557 goto err;
2562 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2563 offset, size, &index, &chunk);
2565 if (ret) {
2566 fprintf(stderr, "ram block search failed\n");
2567 goto err;
2570 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2573 * TODO: Synchronous, gauranteed unregistration (should not occur during
2574 * fast-path). Otherwise, unregisters will process on the next call to
2575 * qemu_rdma_drain_cq()
2576 if (size < 0) {
2577 qemu_rdma_unregister_waiting(rdma);
2583 * Drain the Completion Queue if possible, but do not block,
2584 * just poll.
2586 * If nothing to poll, the end of the iteration will do this
2587 * again to make sure we don't overflow the request queue.
2589 while (1) {
2590 uint64_t wr_id, wr_id_in;
2591 int ret = qemu_rdma_poll(rdma, &wr_id_in);
2592 if (ret < 0) {
2593 fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2594 goto err;
2597 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2599 if (wr_id == RDMA_WRID_NONE) {
2600 break;
2604 return RAM_SAVE_CONTROL_DELAYED;
2605 err:
2606 rdma->error_state = ret;
2607 return ret;
2610 static int qemu_rdma_accept(RDMAContext *rdma)
2612 RDMACapabilities cap;
2613 struct rdma_conn_param conn_param = {
2614 .responder_resources = 2,
2615 .private_data = &cap,
2616 .private_data_len = sizeof(cap),
2618 struct rdma_cm_event *cm_event;
2619 struct ibv_context *verbs;
2620 int ret = -EINVAL;
2621 int idx;
2623 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2624 if (ret) {
2625 goto err_rdma_dest_wait;
2628 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2629 rdma_ack_cm_event(cm_event);
2630 goto err_rdma_dest_wait;
2633 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2635 network_to_caps(&cap);
2637 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2638 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2639 cap.version);
2640 rdma_ack_cm_event(cm_event);
2641 goto err_rdma_dest_wait;
2645 * Respond with only the capabilities this version of QEMU knows about.
2647 cap.flags &= known_capabilities;
2650 * Enable the ones that we do know about.
2651 * Add other checks here as new ones are introduced.
2653 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2654 rdma->pin_all = true;
2657 rdma->cm_id = cm_event->id;
2658 verbs = cm_event->id->verbs;
2660 rdma_ack_cm_event(cm_event);
2662 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2664 caps_to_network(&cap);
2666 DPRINTF("verbs context after listen: %p\n", verbs);
2668 if (!rdma->verbs) {
2669 rdma->verbs = verbs;
2670 } else if (rdma->verbs != verbs) {
2671 fprintf(stderr, "ibv context not matching %p, %p!\n",
2672 rdma->verbs, verbs);
2673 goto err_rdma_dest_wait;
2676 qemu_rdma_dump_id("dest_init", verbs);
2678 ret = qemu_rdma_alloc_pd_cq(rdma);
2679 if (ret) {
2680 fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2681 goto err_rdma_dest_wait;
2684 ret = qemu_rdma_alloc_qp(rdma);
2685 if (ret) {
2686 fprintf(stderr, "rdma migration: error allocating qp!\n");
2687 goto err_rdma_dest_wait;
2690 ret = qemu_rdma_init_ram_blocks(rdma);
2691 if (ret) {
2692 fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2693 goto err_rdma_dest_wait;
2696 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2697 ret = qemu_rdma_reg_control(rdma, idx);
2698 if (ret) {
2699 fprintf(stderr, "rdma: error registering %d control!\n", idx);
2700 goto err_rdma_dest_wait;
2704 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2706 ret = rdma_accept(rdma->cm_id, &conn_param);
2707 if (ret) {
2708 fprintf(stderr, "rdma_accept returns %d!\n", ret);
2709 goto err_rdma_dest_wait;
2712 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2713 if (ret) {
2714 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2715 goto err_rdma_dest_wait;
2718 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2719 fprintf(stderr, "rdma_accept not event established!\n");
2720 rdma_ack_cm_event(cm_event);
2721 goto err_rdma_dest_wait;
2724 rdma_ack_cm_event(cm_event);
2726 ret = qemu_rdma_post_recv_control(rdma, 0);
2727 if (ret) {
2728 fprintf(stderr, "rdma migration: error posting second control recv!\n");
2729 goto err_rdma_dest_wait;
2732 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2734 return 0;
2736 err_rdma_dest_wait:
2737 rdma->error_state = ret;
2738 qemu_rdma_cleanup(rdma);
2739 return ret;
2743 * During each iteration of the migration, we listen for instructions
2744 * by the source VM to perform dynamic page registrations before they
2745 * can perform RDMA operations.
2747 * We respond with the 'rkey'.
2749 * Keep doing this until the source tells us to stop.
2751 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2752 uint64_t flags)
2754 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2755 .type = RDMA_CONTROL_REGISTER_RESULT,
2756 .repeat = 0,
2758 RDMAControlHeader unreg_resp = { .len = 0,
2759 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2760 .repeat = 0,
2762 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2763 .repeat = 1 };
2764 QEMUFileRDMA *rfile = opaque;
2765 RDMAContext *rdma = rfile->rdma;
2766 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2767 RDMAControlHeader head;
2768 RDMARegister *reg, *registers;
2769 RDMACompress *comp;
2770 RDMARegisterResult *reg_result;
2771 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2772 RDMALocalBlock *block;
2773 void *host_addr;
2774 int ret = 0;
2775 int idx = 0;
2776 int count = 0;
2777 int i = 0;
2779 CHECK_ERROR_STATE();
2781 do {
2782 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2784 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2786 if (ret < 0) {
2787 break;
2790 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2791 fprintf(stderr, "rdma: Too many requests in this message (%d)."
2792 "Bailing.\n", head.repeat);
2793 ret = -EIO;
2794 break;
2797 switch (head.type) {
2798 case RDMA_CONTROL_COMPRESS:
2799 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2800 network_to_compress(comp);
2802 DDPRINTF("Zapping zero chunk: %" PRId64
2803 " bytes, index %d, offset %" PRId64 "\n",
2804 comp->length, comp->block_idx, comp->offset);
2805 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2807 host_addr = block->local_host_addr +
2808 (comp->offset - block->offset);
2810 ram_handle_compressed(host_addr, comp->value, comp->length);
2811 break;
2813 case RDMA_CONTROL_REGISTER_FINISHED:
2814 DDDPRINTF("Current registrations complete.\n");
2815 goto out;
2817 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2818 DPRINTF("Initial setup info requested.\n");
2820 if (rdma->pin_all) {
2821 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2822 if (ret) {
2823 fprintf(stderr, "rdma migration: error dest "
2824 "registering ram blocks!\n");
2825 goto out;
2830 * Dest uses this to prepare to transmit the RAMBlock descriptions
2831 * to the source VM after connection setup.
2832 * Both sides use the "remote" structure to communicate and update
2833 * their "local" descriptions with what was sent.
2835 for (i = 0; i < local->nb_blocks; i++) {
2836 rdma->block[i].remote_host_addr =
2837 (uint64_t)(local->block[i].local_host_addr);
2839 if (rdma->pin_all) {
2840 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2843 rdma->block[i].offset = local->block[i].offset;
2844 rdma->block[i].length = local->block[i].length;
2846 remote_block_to_network(&rdma->block[i]);
2849 blocks.len = rdma->local_ram_blocks.nb_blocks
2850 * sizeof(RDMARemoteBlock);
2853 ret = qemu_rdma_post_send_control(rdma,
2854 (uint8_t *) rdma->block, &blocks);
2856 if (ret < 0) {
2857 fprintf(stderr, "rdma migration: error sending remote info!\n");
2858 goto out;
2861 break;
2862 case RDMA_CONTROL_REGISTER_REQUEST:
2863 DDPRINTF("There are %d registration requests\n", head.repeat);
2865 reg_resp.repeat = head.repeat;
2866 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2868 for (count = 0; count < head.repeat; count++) {
2869 uint64_t chunk;
2870 uint8_t *chunk_start, *chunk_end;
2872 reg = &registers[count];
2873 network_to_register(reg);
2875 reg_result = &results[count];
2877 DDPRINTF("Registration request (%d): index %d, current_addr %"
2878 PRIu64 " chunks: %" PRIu64 "\n", count,
2879 reg->current_index, reg->key.current_addr, reg->chunks);
2881 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2882 if (block->is_ram_block) {
2883 host_addr = (block->local_host_addr +
2884 (reg->key.current_addr - block->offset));
2885 chunk = ram_chunk_index(block->local_host_addr,
2886 (uint8_t *) host_addr);
2887 } else {
2888 chunk = reg->key.chunk;
2889 host_addr = block->local_host_addr +
2890 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
2892 chunk_start = ram_chunk_start(block, chunk);
2893 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
2894 if (qemu_rdma_register_and_get_keys(rdma, block,
2895 (uint8_t *)host_addr, NULL, &reg_result->rkey,
2896 chunk, chunk_start, chunk_end)) {
2897 fprintf(stderr, "cannot get rkey!\n");
2898 ret = -EINVAL;
2899 goto out;
2902 reg_result->host_addr = (uint64_t) block->local_host_addr;
2904 DDPRINTF("Registered rkey for this request: %x\n",
2905 reg_result->rkey);
2907 result_to_network(reg_result);
2910 ret = qemu_rdma_post_send_control(rdma,
2911 (uint8_t *) results, &reg_resp);
2913 if (ret < 0) {
2914 fprintf(stderr, "Failed to send control buffer!\n");
2915 goto out;
2917 break;
2918 case RDMA_CONTROL_UNREGISTER_REQUEST:
2919 DDPRINTF("There are %d unregistration requests\n", head.repeat);
2920 unreg_resp.repeat = head.repeat;
2921 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2923 for (count = 0; count < head.repeat; count++) {
2924 reg = &registers[count];
2925 network_to_register(reg);
2927 DDPRINTF("Unregistration request (%d): "
2928 " index %d, chunk %" PRIu64 "\n",
2929 count, reg->current_index, reg->key.chunk);
2931 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2933 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
2934 block->pmr[reg->key.chunk] = NULL;
2936 if (ret != 0) {
2937 perror("rdma unregistration chunk failed");
2938 ret = -ret;
2939 goto out;
2942 rdma->total_registrations--;
2944 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
2945 reg->key.chunk);
2948 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
2950 if (ret < 0) {
2951 fprintf(stderr, "Failed to send control buffer!\n");
2952 goto out;
2954 break;
2955 case RDMA_CONTROL_REGISTER_RESULT:
2956 fprintf(stderr, "Invalid RESULT message at dest.\n");
2957 ret = -EIO;
2958 goto out;
2959 default:
2960 fprintf(stderr, "Unknown control message %s\n",
2961 control_desc[head.type]);
2962 ret = -EIO;
2963 goto out;
2965 } while (1);
2966 out:
2967 if (ret < 0) {
2968 rdma->error_state = ret;
2970 return ret;
2973 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
2974 uint64_t flags)
2976 QEMUFileRDMA *rfile = opaque;
2977 RDMAContext *rdma = rfile->rdma;
2979 CHECK_ERROR_STATE();
2981 DDDPRINTF("start section: %" PRIu64 "\n", flags);
2982 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
2983 qemu_fflush(f);
2985 return 0;
2989 * Inform dest that dynamic registrations are done for now.
2990 * First, flush writes, if any.
2992 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
2993 uint64_t flags)
2995 Error *local_err = NULL, **errp = &local_err;
2996 QEMUFileRDMA *rfile = opaque;
2997 RDMAContext *rdma = rfile->rdma;
2998 RDMAControlHeader head = { .len = 0, .repeat = 1 };
2999 int ret = 0;
3001 CHECK_ERROR_STATE();
3003 qemu_fflush(f);
3004 ret = qemu_rdma_drain_cq(f, rdma);
3006 if (ret < 0) {
3007 goto err;
3010 if (flags == RAM_CONTROL_SETUP) {
3011 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3012 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3013 int reg_result_idx, i, j, nb_remote_blocks;
3015 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3016 DPRINTF("Sending registration setup for ram blocks...\n");
3019 * Make sure that we parallelize the pinning on both sides.
3020 * For very large guests, doing this serially takes a really
3021 * long time, so we have to 'interleave' the pinning locally
3022 * with the control messages by performing the pinning on this
3023 * side before we receive the control response from the other
3024 * side that the pinning has completed.
3026 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3027 &reg_result_idx, rdma->pin_all ?
3028 qemu_rdma_reg_whole_ram_blocks : NULL);
3029 if (ret < 0) {
3030 ERROR(errp, "receiving remote info!\n");
3031 return ret;
3034 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3035 memcpy(rdma->block,
3036 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3038 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3041 * The protocol uses two different sets of rkeys (mutually exclusive):
3042 * 1. One key to represent the virtual address of the entire ram block.
3043 * (dynamic chunk registration disabled - pin everything with one rkey.)
3044 * 2. One to represent individual chunks within a ram block.
3045 * (dynamic chunk registration enabled - pin individual chunks.)
3047 * Once the capability is successfully negotiated, the destination transmits
3048 * the keys to use (or sends them later) including the virtual addresses
3049 * and then propagates the remote ram block descriptions to his local copy.
3052 if (local->nb_blocks != nb_remote_blocks) {
3053 ERROR(errp, "ram blocks mismatch #1! "
3054 "Your QEMU command line parameters are probably "
3055 "not identical on both the source and destination.\n");
3056 return -EINVAL;
3059 for (i = 0; i < nb_remote_blocks; i++) {
3060 network_to_remote_block(&rdma->block[i]);
3062 /* search local ram blocks */
3063 for (j = 0; j < local->nb_blocks; j++) {
3064 if (rdma->block[i].offset != local->block[j].offset) {
3065 continue;
3068 if (rdma->block[i].length != local->block[j].length) {
3069 ERROR(errp, "ram blocks mismatch #2! "
3070 "Your QEMU command line parameters are probably "
3071 "not identical on both the source and destination.\n");
3072 return -EINVAL;
3074 local->block[j].remote_host_addr =
3075 rdma->block[i].remote_host_addr;
3076 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3077 break;
3080 if (j >= local->nb_blocks) {
3081 ERROR(errp, "ram blocks mismatch #3! "
3082 "Your QEMU command line parameters are probably "
3083 "not identical on both the source and destination.\n");
3084 return -EINVAL;
3089 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3091 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3092 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3094 if (ret < 0) {
3095 goto err;
3098 return 0;
3099 err:
3100 rdma->error_state = ret;
3101 return ret;
3104 static int qemu_rdma_get_fd(void *opaque)
3106 QEMUFileRDMA *rfile = opaque;
3107 RDMAContext *rdma = rfile->rdma;
3109 return rdma->comp_channel->fd;
3112 const QEMUFileOps rdma_read_ops = {
3113 .get_buffer = qemu_rdma_get_buffer,
3114 .get_fd = qemu_rdma_get_fd,
3115 .close = qemu_rdma_close,
3116 .hook_ram_load = qemu_rdma_registration_handle,
3119 const QEMUFileOps rdma_write_ops = {
3120 .put_buffer = qemu_rdma_put_buffer,
3121 .close = qemu_rdma_close,
3122 .before_ram_iterate = qemu_rdma_registration_start,
3123 .after_ram_iterate = qemu_rdma_registration_stop,
3124 .save_page = qemu_rdma_save_page,
3127 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3129 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3131 if (qemu_file_mode_is_not_valid(mode)) {
3132 return NULL;
3135 r->rdma = rdma;
3137 if (mode[0] == 'w') {
3138 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3139 } else {
3140 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3143 return r->file;
3146 static void rdma_accept_incoming_migration(void *opaque)
3148 RDMAContext *rdma = opaque;
3149 int ret;
3150 QEMUFile *f;
3151 Error *local_err = NULL, **errp = &local_err;
3153 DPRINTF("Accepting rdma connection...\n");
3154 ret = qemu_rdma_accept(rdma);
3156 if (ret) {
3157 ERROR(errp, "RDMA Migration initialization failed!\n");
3158 return;
3161 DPRINTF("Accepted migration\n");
3163 f = qemu_fopen_rdma(rdma, "rb");
3164 if (f == NULL) {
3165 ERROR(errp, "could not qemu_fopen_rdma!\n");
3166 qemu_rdma_cleanup(rdma);
3167 return;
3170 rdma->migration_started_on_destination = 1;
3171 process_incoming_migration(f);
3174 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3176 int ret;
3177 RDMAContext *rdma;
3178 Error *local_err = NULL;
3180 DPRINTF("Starting RDMA-based incoming migration\n");
3181 rdma = qemu_rdma_data_init(host_port, &local_err);
3183 if (rdma == NULL) {
3184 goto err;
3187 ret = qemu_rdma_dest_init(rdma, &local_err);
3189 if (ret) {
3190 goto err;
3193 DPRINTF("qemu_rdma_dest_init success\n");
3195 ret = rdma_listen(rdma->listen_id, 5);
3197 if (ret) {
3198 ERROR(errp, "listening on socket!\n");
3199 goto err;
3202 DPRINTF("rdma_listen success\n");
3204 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3205 rdma_accept_incoming_migration, NULL,
3206 (void *)(intptr_t) rdma);
3207 return;
3208 err:
3209 error_propagate(errp, local_err);
3210 g_free(rdma);
3213 void rdma_start_outgoing_migration(void *opaque,
3214 const char *host_port, Error **errp)
3216 MigrationState *s = opaque;
3217 Error *local_err = NULL, **temp = &local_err;
3218 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3219 int ret = 0;
3221 if (rdma == NULL) {
3222 ERROR(temp, "Failed to initialize RDMA data structures! %d\n", ret);
3223 goto err;
3226 ret = qemu_rdma_source_init(rdma, &local_err,
3227 s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3229 if (ret) {
3230 goto err;
3233 DPRINTF("qemu_rdma_source_init success\n");
3234 ret = qemu_rdma_connect(rdma, &local_err);
3236 if (ret) {
3237 goto err;
3240 DPRINTF("qemu_rdma_source_connect success\n");
3242 s->file = qemu_fopen_rdma(rdma, "wb");
3243 migrate_fd_connect(s);
3244 return;
3245 err:
3246 error_propagate(errp, local_err);
3247 g_free(rdma);
3248 migrate_fd_error(s);