4 * Generate helpers used by TCG for qemu_ld/st ops and code load
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/timer.h"
25 #include "exec/address-spaces.h"
26 #include "exec/memory.h"
28 #define DATA_SIZE (1 << SHIFT)
33 #define SDATA_TYPE int64_t
34 #define DATA_TYPE uint64_t
38 #define SDATA_TYPE int32_t
39 #define DATA_TYPE uint32_t
43 #define SDATA_TYPE int16_t
44 #define DATA_TYPE uint16_t
48 #define SDATA_TYPE int8_t
49 #define DATA_TYPE uint8_t
51 #error unsupported data size
55 /* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61 # define WORD_TYPE DATA_TYPE
62 # define USUFFIX SUFFIX
64 # define WORD_TYPE tcg_target_ulong
65 # define USUFFIX glue(u, SUFFIX)
66 # define SSUFFIX glue(s, SUFFIX)
69 #ifdef SOFTMMU_CODE_ACCESS
70 #define READ_ACCESS_TYPE MMU_INST_FETCH
71 #define ADDR_READ addr_code
73 #define READ_ACCESS_TYPE MMU_DATA_LOAD
74 #define ADDR_READ addr_read
78 # define BSWAP(X) bswap64(X)
80 # define BSWAP(X) bswap32(X)
82 # define BSWAP(X) bswap16(X)
87 #ifdef TARGET_WORDS_BIGENDIAN
88 # define TGT_BE(X) (X)
89 # define TGT_LE(X) BSWAP(X)
91 # define TGT_BE(X) BSWAP(X)
92 # define TGT_LE(X) (X)
96 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97 # define helper_be_ld_name helper_le_ld_name
98 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99 # define helper_be_lds_name helper_le_lds_name
100 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101 # define helper_be_st_name helper_le_st_name
103 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
111 #ifdef TARGET_WORDS_BIGENDIAN
112 # define helper_te_ld_name helper_be_ld_name
113 # define helper_te_st_name helper_be_st_name
115 # define helper_te_ld_name helper_le_ld_name
116 # define helper_te_st_name helper_le_st_name
119 /* macro to check the victim tlb */
120 #define VICTIM_TLB_HIT(ty) \
122 /* we are about to do a page table walk. our last hope is the \
123 * victim tlb. try to refill from the victim tlb before walking the \
126 CPUIOTLBEntry tmpiotlb; \
127 CPUTLBEntry tmptlb; \
128 for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \
129 if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
130 /* found entry in victim tlb, swap tlb and iotlb */ \
131 tmptlb = env->tlb_table[mmu_idx][index]; \
132 env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
133 env->tlb_v_table[mmu_idx][vidx] = tmptlb; \
134 tmpiotlb = env->iotlb[mmu_idx][index]; \
135 env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \
136 env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \
140 /* return true when there is a vtlb hit, i.e. vidx >=0 */ \
144 #ifndef SOFTMMU_CODE_ACCESS
145 static inline DATA_TYPE
glue(io_read
, SUFFIX
)(CPUArchState
*env
,
146 CPUIOTLBEntry
*iotlbentry
,
151 CPUState
*cpu
= ENV_GET_CPU(env
);
152 hwaddr physaddr
= iotlbentry
->addr
;
153 MemoryRegion
*mr
= iotlb_to_region(cpu
, physaddr
);
155 physaddr
= (physaddr
& TARGET_PAGE_MASK
) + addr
;
156 cpu
->mem_io_pc
= retaddr
;
157 if (mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !cpu_can_do_io(cpu
)) {
158 cpu_io_recompile(cpu
, retaddr
);
161 cpu
->mem_io_vaddr
= addr
;
162 memory_region_dispatch_read(mr
, physaddr
, &val
, 1 << SHIFT
,
168 #ifdef SOFTMMU_CODE_ACCESS
169 static __attribute__((unused
))
171 WORD_TYPE
helper_le_ld_name(CPUArchState
*env
, target_ulong addr
,
172 TCGMemOpIdx oi
, uintptr_t retaddr
)
174 unsigned mmu_idx
= get_mmuidx(oi
);
175 int index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
176 target_ulong tlb_addr
= env
->tlb_table
[mmu_idx
][index
].ADDR_READ
;
180 /* Adjust the given return address. */
181 retaddr
-= GETPC_ADJ
;
183 /* If the TLB entry is for a different page, reload and try again. */
184 if ((addr
& TARGET_PAGE_MASK
)
185 != (tlb_addr
& (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
186 if ((addr
& (DATA_SIZE
- 1)) != 0
187 && (get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
188 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
191 if (!VICTIM_TLB_HIT(ADDR_READ
)) {
192 tlb_fill(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
195 tlb_addr
= env
->tlb_table
[mmu_idx
][index
].ADDR_READ
;
198 /* Handle an IO access. */
199 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
200 CPUIOTLBEntry
*iotlbentry
;
201 if ((addr
& (DATA_SIZE
- 1)) != 0) {
202 goto do_unaligned_access
;
204 iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
206 /* ??? Note that the io helpers always read data in the target
207 byte ordering. We should push the LE/BE request down into io. */
208 res
= glue(io_read
, SUFFIX
)(env
, iotlbentry
, addr
, retaddr
);
213 /* Handle slow unaligned access (it spans two pages or IO). */
215 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
216 >= TARGET_PAGE_SIZE
)) {
217 target_ulong addr1
, addr2
;
218 DATA_TYPE res1
, res2
;
221 if ((get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
222 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
225 addr1
= addr
& ~(DATA_SIZE
- 1);
226 addr2
= addr1
+ DATA_SIZE
;
227 /* Note the adjustment at the beginning of the function.
228 Undo that for the recursion. */
229 res1
= helper_le_ld_name(env
, addr1
, oi
, retaddr
+ GETPC_ADJ
);
230 res2
= helper_le_ld_name(env
, addr2
, oi
, retaddr
+ GETPC_ADJ
);
231 shift
= (addr
& (DATA_SIZE
- 1)) * 8;
233 /* Little-endian combine. */
234 res
= (res1
>> shift
) | (res2
<< ((DATA_SIZE
* 8) - shift
));
238 /* Handle aligned access or unaligned access in the same page. */
239 if ((addr
& (DATA_SIZE
- 1)) != 0
240 && (get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
241 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
245 haddr
= addr
+ env
->tlb_table
[mmu_idx
][index
].addend
;
247 res
= glue(glue(ld
, LSUFFIX
), _p
)((uint8_t *)haddr
);
249 res
= glue(glue(ld
, LSUFFIX
), _le_p
)((uint8_t *)haddr
);
255 #ifdef SOFTMMU_CODE_ACCESS
256 static __attribute__((unused
))
258 WORD_TYPE
helper_be_ld_name(CPUArchState
*env
, target_ulong addr
,
259 TCGMemOpIdx oi
, uintptr_t retaddr
)
261 unsigned mmu_idx
= get_mmuidx(oi
);
262 int index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
263 target_ulong tlb_addr
= env
->tlb_table
[mmu_idx
][index
].ADDR_READ
;
267 /* Adjust the given return address. */
268 retaddr
-= GETPC_ADJ
;
270 /* If the TLB entry is for a different page, reload and try again. */
271 if ((addr
& TARGET_PAGE_MASK
)
272 != (tlb_addr
& (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
273 if ((addr
& (DATA_SIZE
- 1)) != 0
274 && (get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
275 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
278 if (!VICTIM_TLB_HIT(ADDR_READ
)) {
279 tlb_fill(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
282 tlb_addr
= env
->tlb_table
[mmu_idx
][index
].ADDR_READ
;
285 /* Handle an IO access. */
286 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
287 CPUIOTLBEntry
*iotlbentry
;
288 if ((addr
& (DATA_SIZE
- 1)) != 0) {
289 goto do_unaligned_access
;
291 iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
293 /* ??? Note that the io helpers always read data in the target
294 byte ordering. We should push the LE/BE request down into io. */
295 res
= glue(io_read
, SUFFIX
)(env
, iotlbentry
, addr
, retaddr
);
300 /* Handle slow unaligned access (it spans two pages or IO). */
302 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
303 >= TARGET_PAGE_SIZE
)) {
304 target_ulong addr1
, addr2
;
305 DATA_TYPE res1
, res2
;
308 if ((get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
309 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
312 addr1
= addr
& ~(DATA_SIZE
- 1);
313 addr2
= addr1
+ DATA_SIZE
;
314 /* Note the adjustment at the beginning of the function.
315 Undo that for the recursion. */
316 res1
= helper_be_ld_name(env
, addr1
, oi
, retaddr
+ GETPC_ADJ
);
317 res2
= helper_be_ld_name(env
, addr2
, oi
, retaddr
+ GETPC_ADJ
);
318 shift
= (addr
& (DATA_SIZE
- 1)) * 8;
320 /* Big-endian combine. */
321 res
= (res1
<< shift
) | (res2
>> ((DATA_SIZE
* 8) - shift
));
325 /* Handle aligned access or unaligned access in the same page. */
326 if ((addr
& (DATA_SIZE
- 1)) != 0
327 && (get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
328 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
332 haddr
= addr
+ env
->tlb_table
[mmu_idx
][index
].addend
;
333 res
= glue(glue(ld
, LSUFFIX
), _be_p
)((uint8_t *)haddr
);
336 #endif /* DATA_SIZE > 1 */
339 glue(glue(helper_ld
, SUFFIX
), MMUSUFFIX
)(CPUArchState
*env
, target_ulong addr
,
342 TCGMemOpIdx oi
= make_memop_idx(SHIFT
, mmu_idx
);
343 return helper_te_ld_name (env
, addr
, oi
, GETRA());
346 #ifndef SOFTMMU_CODE_ACCESS
348 /* Provide signed versions of the load routines as well. We can of course
349 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
350 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
351 WORD_TYPE
helper_le_lds_name(CPUArchState
*env
, target_ulong addr
,
352 TCGMemOpIdx oi
, uintptr_t retaddr
)
354 return (SDATA_TYPE
)helper_le_ld_name(env
, addr
, oi
, retaddr
);
358 WORD_TYPE
helper_be_lds_name(CPUArchState
*env
, target_ulong addr
,
359 TCGMemOpIdx oi
, uintptr_t retaddr
)
361 return (SDATA_TYPE
)helper_be_ld_name(env
, addr
, oi
, retaddr
);
366 static inline void glue(io_write
, SUFFIX
)(CPUArchState
*env
,
367 CPUIOTLBEntry
*iotlbentry
,
372 CPUState
*cpu
= ENV_GET_CPU(env
);
373 hwaddr physaddr
= iotlbentry
->addr
;
374 MemoryRegion
*mr
= iotlb_to_region(cpu
, physaddr
);
376 physaddr
= (physaddr
& TARGET_PAGE_MASK
) + addr
;
377 if (mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !cpu_can_do_io(cpu
)) {
378 cpu_io_recompile(cpu
, retaddr
);
381 cpu
->mem_io_vaddr
= addr
;
382 cpu
->mem_io_pc
= retaddr
;
383 memory_region_dispatch_write(mr
, physaddr
, val
, 1 << SHIFT
,
387 void helper_le_st_name(CPUArchState
*env
, target_ulong addr
, DATA_TYPE val
,
388 TCGMemOpIdx oi
, uintptr_t retaddr
)
390 unsigned mmu_idx
= get_mmuidx(oi
);
391 int index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
392 target_ulong tlb_addr
= env
->tlb_table
[mmu_idx
][index
].addr_write
;
395 /* Adjust the given return address. */
396 retaddr
-= GETPC_ADJ
;
398 /* If the TLB entry is for a different page, reload and try again. */
399 if ((addr
& TARGET_PAGE_MASK
)
400 != (tlb_addr
& (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
401 if ((addr
& (DATA_SIZE
- 1)) != 0
402 && (get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
403 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
406 if (!VICTIM_TLB_HIT(addr_write
)) {
407 tlb_fill(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
, mmu_idx
, retaddr
);
409 tlb_addr
= env
->tlb_table
[mmu_idx
][index
].addr_write
;
412 /* Handle an IO access. */
413 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
414 CPUIOTLBEntry
*iotlbentry
;
415 if ((addr
& (DATA_SIZE
- 1)) != 0) {
416 goto do_unaligned_access
;
418 iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
420 /* ??? Note that the io helpers always read data in the target
421 byte ordering. We should push the LE/BE request down into io. */
423 glue(io_write
, SUFFIX
)(env
, iotlbentry
, val
, addr
, retaddr
);
427 /* Handle slow unaligned access (it spans two pages or IO). */
429 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
430 >= TARGET_PAGE_SIZE
)) {
433 if ((get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
434 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
437 /* XXX: not efficient, but simple */
438 /* Note: relies on the fact that tlb_fill() does not remove the
439 * previous page from the TLB cache. */
440 for (i
= DATA_SIZE
- 1; i
>= 0; i
--) {
441 /* Little-endian extract. */
442 uint8_t val8
= val
>> (i
* 8);
443 /* Note the adjustment at the beginning of the function.
444 Undo that for the recursion. */
445 glue(helper_ret_stb
, MMUSUFFIX
)(env
, addr
+ i
, val8
,
446 oi
, retaddr
+ GETPC_ADJ
);
451 /* Handle aligned access or unaligned access in the same page. */
452 if ((addr
& (DATA_SIZE
- 1)) != 0
453 && (get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
454 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
458 haddr
= addr
+ env
->tlb_table
[mmu_idx
][index
].addend
;
460 glue(glue(st
, SUFFIX
), _p
)((uint8_t *)haddr
, val
);
462 glue(glue(st
, SUFFIX
), _le_p
)((uint8_t *)haddr
, val
);
467 void helper_be_st_name(CPUArchState
*env
, target_ulong addr
, DATA_TYPE val
,
468 TCGMemOpIdx oi
, uintptr_t retaddr
)
470 unsigned mmu_idx
= get_mmuidx(oi
);
471 int index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
472 target_ulong tlb_addr
= env
->tlb_table
[mmu_idx
][index
].addr_write
;
475 /* Adjust the given return address. */
476 retaddr
-= GETPC_ADJ
;
478 /* If the TLB entry is for a different page, reload and try again. */
479 if ((addr
& TARGET_PAGE_MASK
)
480 != (tlb_addr
& (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
481 if ((addr
& (DATA_SIZE
- 1)) != 0
482 && (get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
483 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
486 if (!VICTIM_TLB_HIT(addr_write
)) {
487 tlb_fill(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
, mmu_idx
, retaddr
);
489 tlb_addr
= env
->tlb_table
[mmu_idx
][index
].addr_write
;
492 /* Handle an IO access. */
493 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
494 CPUIOTLBEntry
*iotlbentry
;
495 if ((addr
& (DATA_SIZE
- 1)) != 0) {
496 goto do_unaligned_access
;
498 iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
500 /* ??? Note that the io helpers always read data in the target
501 byte ordering. We should push the LE/BE request down into io. */
503 glue(io_write
, SUFFIX
)(env
, iotlbentry
, val
, addr
, retaddr
);
507 /* Handle slow unaligned access (it spans two pages or IO). */
509 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
510 >= TARGET_PAGE_SIZE
)) {
513 if ((get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
514 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
517 /* XXX: not efficient, but simple */
518 /* Note: relies on the fact that tlb_fill() does not remove the
519 * previous page from the TLB cache. */
520 for (i
= DATA_SIZE
- 1; i
>= 0; i
--) {
521 /* Big-endian extract. */
522 uint8_t val8
= val
>> (((DATA_SIZE
- 1) * 8) - (i
* 8));
523 /* Note the adjustment at the beginning of the function.
524 Undo that for the recursion. */
525 glue(helper_ret_stb
, MMUSUFFIX
)(env
, addr
+ i
, val8
,
526 oi
, retaddr
+ GETPC_ADJ
);
531 /* Handle aligned access or unaligned access in the same page. */
532 if ((addr
& (DATA_SIZE
- 1)) != 0
533 && (get_memop(oi
) & MO_AMASK
) == MO_ALIGN
) {
534 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
538 haddr
= addr
+ env
->tlb_table
[mmu_idx
][index
].addend
;
539 glue(glue(st
, SUFFIX
), _be_p
)((uint8_t *)haddr
, val
);
541 #endif /* DATA_SIZE > 1 */
544 glue(glue(helper_st
, SUFFIX
), MMUSUFFIX
)(CPUArchState
*env
, target_ulong addr
,
545 DATA_TYPE val
, int mmu_idx
)
547 TCGMemOpIdx oi
= make_memop_idx(SHIFT
, mmu_idx
);
548 helper_te_st_name(env
, addr
, val
, oi
, GETRA());
551 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
553 #undef READ_ACCESS_TYPE
569 #undef helper_le_ld_name
570 #undef helper_be_ld_name
571 #undef helper_le_lds_name
572 #undef helper_be_lds_name
573 #undef helper_le_st_name
574 #undef helper_be_st_name
575 #undef helper_te_ld_name
576 #undef helper_te_st_name