tests/tcg/loongarch64: Add fp comparison instructions test
[qemu/rayw.git] / target / arm / debug_helper.c
blobc21739242c5ab0ad7806dafe3bf2aeb8e8613272
1 /*
2 * ARM debug helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpregs.h"
13 #include "exec/exec-all.h"
14 #include "exec/helper-proto.h"
17 /* Return the Exception Level targeted by debug exceptions. */
18 static int arm_debug_target_el(CPUARMState *env)
20 bool secure = arm_is_secure(env);
21 bool route_to_el2 = false;
23 if (arm_is_el2_enabled(env)) {
24 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
25 env->cp15.mdcr_el2 & MDCR_TDE;
28 if (route_to_el2) {
29 return 2;
30 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
31 !arm_el_is_aa64(env, 3) && secure) {
32 return 3;
33 } else {
34 return 1;
39 * Raise an exception to the debug target el.
40 * Modify syndrome to indicate when origin and target EL are the same.
42 G_NORETURN static void
43 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
45 int debug_el = arm_debug_target_el(env);
46 int cur_el = arm_current_el(env);
49 * If singlestep is targeting a lower EL than the current one, then
50 * DisasContext.ss_active must be false and we can never get here.
51 * Similarly for watchpoint and breakpoint matches.
53 assert(debug_el >= cur_el);
54 syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
55 raise_exception(env, excp, syndrome, debug_el);
58 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
59 static bool aa64_generate_debug_exceptions(CPUARMState *env)
61 int cur_el = arm_current_el(env);
62 int debug_el;
64 if (cur_el == 3) {
65 return false;
68 /* MDCR_EL3.SDD disables debug events from Secure state */
69 if (arm_is_secure_below_el3(env)
70 && extract32(env->cp15.mdcr_el3, 16, 1)) {
71 return false;
75 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
76 * while not masking the (D)ebug bit in DAIF.
78 debug_el = arm_debug_target_el(env);
80 if (cur_el == debug_el) {
81 return extract32(env->cp15.mdscr_el1, 13, 1)
82 && !(env->daif & PSTATE_D);
85 /* Otherwise the debug target needs to be a higher EL */
86 return debug_el > cur_el;
89 static bool aa32_generate_debug_exceptions(CPUARMState *env)
91 int el = arm_current_el(env);
93 if (el == 0 && arm_el_is_aa64(env, 1)) {
94 return aa64_generate_debug_exceptions(env);
97 if (arm_is_secure(env)) {
98 int spd;
100 if (el == 0 && (env->cp15.sder & 1)) {
102 * SDER.SUIDEN means debug exceptions from Secure EL0
103 * are always enabled. Otherwise they are controlled by
104 * SDCR.SPD like those from other Secure ELs.
106 return true;
109 spd = extract32(env->cp15.mdcr_el3, 14, 2);
110 switch (spd) {
111 case 1:
112 /* SPD == 0b01 is reserved, but behaves as 0b00. */
113 case 0:
115 * For 0b00 we return true if external secure invasive debug
116 * is enabled. On real hardware this is controlled by external
117 * signals to the core. QEMU always permits debug, and behaves
118 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
120 return true;
121 case 2:
122 return false;
123 case 3:
124 return true;
128 return el != 2;
132 * Return true if debugging exceptions are currently enabled.
133 * This corresponds to what in ARM ARM pseudocode would be
134 * if UsingAArch32() then
135 * return AArch32.GenerateDebugExceptions()
136 * else
137 * return AArch64.GenerateDebugExceptions()
138 * We choose to push the if() down into this function for clarity,
139 * since the pseudocode has it at all callsites except for the one in
140 * CheckSoftwareStep(), where it is elided because both branches would
141 * always return the same value.
143 bool arm_generate_debug_exceptions(CPUARMState *env)
145 if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
146 return false;
148 if (is_a64(env)) {
149 return aa64_generate_debug_exceptions(env);
150 } else {
151 return aa32_generate_debug_exceptions(env);
156 * Is single-stepping active? (Note that the "is EL_D AArch64?" check
157 * implicitly means this always returns false in pre-v8 CPUs.)
159 bool arm_singlestep_active(CPUARMState *env)
161 return extract32(env->cp15.mdscr_el1, 0, 1)
162 && arm_el_is_aa64(env, arm_debug_target_el(env))
163 && arm_generate_debug_exceptions(env);
166 /* Return true if the linked breakpoint entry lbn passes its checks */
167 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
169 CPUARMState *env = &cpu->env;
170 uint64_t bcr = env->cp15.dbgbcr[lbn];
171 int brps = arm_num_brps(cpu);
172 int ctx_cmps = arm_num_ctx_cmps(cpu);
173 int bt;
174 uint32_t contextidr;
175 uint64_t hcr_el2;
178 * Links to unimplemented or non-context aware breakpoints are
179 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
180 * as if linked to an UNKNOWN context-aware breakpoint (in which
181 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
182 * We choose the former.
184 if (lbn >= brps || lbn < (brps - ctx_cmps)) {
185 return false;
188 bcr = env->cp15.dbgbcr[lbn];
190 if (extract64(bcr, 0, 1) == 0) {
191 /* Linked breakpoint disabled : generate no events */
192 return false;
195 bt = extract64(bcr, 20, 4);
196 hcr_el2 = arm_hcr_el2_eff(env);
198 switch (bt) {
199 case 3: /* linked context ID match */
200 switch (arm_current_el(env)) {
201 default:
202 /* Context matches never fire in AArch64 EL3 */
203 return false;
204 case 2:
205 if (!(hcr_el2 & HCR_E2H)) {
206 /* Context matches never fire in EL2 without E2H enabled. */
207 return false;
209 contextidr = env->cp15.contextidr_el[2];
210 break;
211 case 1:
212 contextidr = env->cp15.contextidr_el[1];
213 break;
214 case 0:
215 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
216 contextidr = env->cp15.contextidr_el[2];
217 } else {
218 contextidr = env->cp15.contextidr_el[1];
220 break;
222 break;
224 case 7: /* linked contextidr_el1 match */
225 contextidr = env->cp15.contextidr_el[1];
226 break;
227 case 13: /* linked contextidr_el2 match */
228 contextidr = env->cp15.contextidr_el[2];
229 break;
231 case 9: /* linked VMID match (reserved if no EL2) */
232 case 11: /* linked context ID and VMID match (reserved if no EL2) */
233 case 15: /* linked full context ID match */
234 default:
236 * Links to Unlinked context breakpoints must generate no
237 * events; we choose to do the same for reserved values too.
239 return false;
243 * We match the whole register even if this is AArch32 using the
244 * short descriptor format (in which case it holds both PROCID and ASID),
245 * since we don't implement the optional v7 context ID masking.
247 return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
250 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
252 CPUARMState *env = &cpu->env;
253 uint64_t cr;
254 int pac, hmc, ssc, wt, lbn;
256 * Note that for watchpoints the check is against the CPU security
257 * state, not the S/NS attribute on the offending data access.
259 bool is_secure = arm_is_secure(env);
260 int access_el = arm_current_el(env);
262 if (is_wp) {
263 CPUWatchpoint *wp = env->cpu_watchpoint[n];
265 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
266 return false;
268 cr = env->cp15.dbgwcr[n];
269 if (wp->hitattrs.user) {
271 * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
272 * match watchpoints as if they were accesses done at EL0, even if
273 * the CPU is at EL1 or higher.
275 access_el = 0;
277 } else {
278 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
280 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
281 return false;
283 cr = env->cp15.dbgbcr[n];
286 * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
287 * enabled and that the address and access type match; for breakpoints
288 * we know the address matched; check the remaining fields, including
289 * linked breakpoints. We rely on WCR and BCR having the same layout
290 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
291 * Note that some combinations of {PAC, HMC, SSC} are reserved and
292 * must act either like some valid combination or as if the watchpoint
293 * were disabled. We choose the former, and use this together with
294 * the fact that EL3 must always be Secure and EL2 must always be
295 * Non-Secure to simplify the code slightly compared to the full
296 * table in the ARM ARM.
298 pac = FIELD_EX64(cr, DBGWCR, PAC);
299 hmc = FIELD_EX64(cr, DBGWCR, HMC);
300 ssc = FIELD_EX64(cr, DBGWCR, SSC);
302 switch (ssc) {
303 case 0:
304 break;
305 case 1:
306 case 3:
307 if (is_secure) {
308 return false;
310 break;
311 case 2:
312 if (!is_secure) {
313 return false;
315 break;
318 switch (access_el) {
319 case 3:
320 case 2:
321 if (!hmc) {
322 return false;
324 break;
325 case 1:
326 if (extract32(pac, 0, 1) == 0) {
327 return false;
329 break;
330 case 0:
331 if (extract32(pac, 1, 1) == 0) {
332 return false;
334 break;
335 default:
336 g_assert_not_reached();
339 wt = FIELD_EX64(cr, DBGWCR, WT);
340 lbn = FIELD_EX64(cr, DBGWCR, LBN);
342 if (wt && !linked_bp_matches(cpu, lbn)) {
343 return false;
346 return true;
349 static bool check_watchpoints(ARMCPU *cpu)
351 CPUARMState *env = &cpu->env;
352 int n;
355 * If watchpoints are disabled globally or we can't take debug
356 * exceptions here then watchpoint firings are ignored.
358 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
359 || !arm_generate_debug_exceptions(env)) {
360 return false;
363 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
364 if (bp_wp_matches(cpu, n, true)) {
365 return true;
368 return false;
371 bool arm_debug_check_breakpoint(CPUState *cs)
373 ARMCPU *cpu = ARM_CPU(cs);
374 CPUARMState *env = &cpu->env;
375 target_ulong pc;
376 int n;
379 * If breakpoints are disabled globally or we can't take debug
380 * exceptions here then breakpoint firings are ignored.
382 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
383 || !arm_generate_debug_exceptions(env)) {
384 return false;
388 * Single-step exceptions have priority over breakpoint exceptions.
389 * If single-step state is active-pending, suppress the bp.
391 if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
392 return false;
396 * PC alignment faults have priority over breakpoint exceptions.
398 pc = is_a64(env) ? env->pc : env->regs[15];
399 if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
400 return false;
404 * Instruction aborts have priority over breakpoint exceptions.
405 * TODO: We would need to look up the page for PC and verify that
406 * it is present and executable.
409 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
410 if (bp_wp_matches(cpu, n, false)) {
411 return true;
414 return false;
417 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
420 * Called by core code when a CPU watchpoint fires; need to check if this
421 * is also an architectural watchpoint match.
423 ARMCPU *cpu = ARM_CPU(cs);
425 return check_watchpoints(cpu);
429 * Return the FSR value for a debug exception (watchpoint, hardware
430 * breakpoint or BKPT insn) targeting the specified exception level.
432 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
434 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
435 int target_el = arm_debug_target_el(env);
436 bool using_lpae = false;
438 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
439 using_lpae = true;
440 } else {
441 if (arm_feature(env, ARM_FEATURE_LPAE) &&
442 (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
443 using_lpae = true;
447 if (using_lpae) {
448 return arm_fi_to_lfsc(&fi);
449 } else {
450 return arm_fi_to_sfsc(&fi);
454 void arm_debug_excp_handler(CPUState *cs)
457 * Called by core code when a watchpoint or breakpoint fires;
458 * need to check which one and raise the appropriate exception.
460 ARMCPU *cpu = ARM_CPU(cs);
461 CPUARMState *env = &cpu->env;
462 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
464 if (wp_hit) {
465 if (wp_hit->flags & BP_CPU) {
466 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
468 cs->watchpoint_hit = NULL;
470 env->exception.fsr = arm_debug_exception_fsr(env);
471 env->exception.vaddress = wp_hit->hitaddr;
472 raise_exception_debug(env, EXCP_DATA_ABORT,
473 syn_watchpoint(0, 0, wnr));
475 } else {
476 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
479 * (1) GDB breakpoints should be handled first.
480 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
481 * since singlestep is also done by generating a debug internal
482 * exception.
484 if (cpu_breakpoint_test(cs, pc, BP_GDB)
485 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
486 return;
489 env->exception.fsr = arm_debug_exception_fsr(env);
491 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
492 * values to the guest that it shouldn't be able to see at its
493 * exception/security level.
495 env->exception.vaddress = 0;
496 raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
501 * Raise an EXCP_BKPT with the specified syndrome register value,
502 * targeting the correct exception level for debug exceptions.
504 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
506 int debug_el = arm_debug_target_el(env);
507 int cur_el = arm_current_el(env);
509 /* FSR will only be used if the debug target EL is AArch32. */
510 env->exception.fsr = arm_debug_exception_fsr(env);
512 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
513 * values to the guest that it shouldn't be able to see at its
514 * exception/security level.
516 env->exception.vaddress = 0;
518 * Other kinds of architectural debug exception are ignored if
519 * they target an exception level below the current one (in QEMU
520 * this is checked by arm_generate_debug_exceptions()). Breakpoint
521 * instructions are special because they always generate an exception
522 * to somewhere: if they can't go to the configured debug exception
523 * level they are taken to the current exception level.
525 if (debug_el < cur_el) {
526 debug_el = cur_el;
528 raise_exception(env, EXCP_BKPT, syndrome, debug_el);
531 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
533 raise_exception_debug(env, EXCP_UDEF, syndrome);
537 * Check for traps to "powerdown debug" registers, which are controlled
538 * by MDCR.TDOSA
540 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
541 bool isread)
543 int el = arm_current_el(env);
544 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
545 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
546 (arm_hcr_el2_eff(env) & HCR_TGE);
548 if (el < 2 && mdcr_el2_tdosa) {
549 return CP_ACCESS_TRAP_EL2;
551 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
552 return CP_ACCESS_TRAP_EL3;
554 return CP_ACCESS_OK;
558 * Check for traps to "debug ROM" registers, which are controlled
559 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
561 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
562 bool isread)
564 int el = arm_current_el(env);
565 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
566 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
567 (arm_hcr_el2_eff(env) & HCR_TGE);
569 if (el < 2 && mdcr_el2_tdra) {
570 return CP_ACCESS_TRAP_EL2;
572 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
573 return CP_ACCESS_TRAP_EL3;
575 return CP_ACCESS_OK;
579 * Check for traps to general debug registers, which are controlled
580 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
582 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
583 bool isread)
585 int el = arm_current_el(env);
586 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
587 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
588 (arm_hcr_el2_eff(env) & HCR_TGE);
590 if (el < 2 && mdcr_el2_tda) {
591 return CP_ACCESS_TRAP_EL2;
593 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
594 return CP_ACCESS_TRAP_EL3;
596 return CP_ACCESS_OK;
599 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
600 uint64_t value)
603 * Writes to OSLAR_EL1 may update the OS lock status, which can be
604 * read via a bit in OSLSR_EL1.
606 int oslock;
608 if (ri->state == ARM_CP_STATE_AA32) {
609 oslock = (value == 0xC5ACCE55);
610 } else {
611 oslock = value & 1;
614 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
617 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
620 ARMCPU *cpu = env_archcpu(env);
622 * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
623 * implemented this is RAZ/WI.
625 if(arm_feature(env, ARM_FEATURE_AARCH64)
626 ? cpu_isar_feature(aa64_doublelock, cpu)
627 : cpu_isar_feature(aa32_doublelock, cpu)) {
628 env->cp15.osdlr_el1 = value & 1;
632 static const ARMCPRegInfo debug_cp_reginfo[] = {
634 * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
635 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
636 * unlike DBGDRAR it is never accessible from EL0.
637 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
638 * accessor.
640 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
641 .access = PL0_R, .accessfn = access_tdra,
642 .type = ARM_CP_CONST, .resetvalue = 0 },
643 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
644 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
645 .access = PL1_R, .accessfn = access_tdra,
646 .type = ARM_CP_CONST, .resetvalue = 0 },
647 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
648 .access = PL0_R, .accessfn = access_tdra,
649 .type = ARM_CP_CONST, .resetvalue = 0 },
650 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
651 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
652 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
653 .access = PL1_RW, .accessfn = access_tda,
654 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
655 .resetvalue = 0 },
657 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
658 * Debug Communication Channel is not implemented.
660 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
661 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
662 .access = PL0_R, .accessfn = access_tda,
663 .type = ARM_CP_CONST, .resetvalue = 0 },
665 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
666 * it is unlikely a guest will care.
667 * We don't implement the configurable EL0 access.
669 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
670 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
671 .type = ARM_CP_ALIAS,
672 .access = PL1_R, .accessfn = access_tda,
673 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
674 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
675 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
676 .access = PL1_W, .type = ARM_CP_NO_RAW,
677 .accessfn = access_tdosa,
678 .writefn = oslar_write },
679 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
680 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
681 .access = PL1_R, .resetvalue = 10,
682 .accessfn = access_tdosa,
683 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
684 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
685 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
686 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
687 .access = PL1_RW, .accessfn = access_tdosa,
688 .writefn = osdlr_write,
689 .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
691 * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
692 * implement vector catch debug events yet.
694 { .name = "DBGVCR",
695 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
696 .access = PL1_RW, .accessfn = access_tda,
697 .type = ARM_CP_NOP },
699 * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
700 * to save and restore a 32-bit guest's DBGVCR)
702 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
703 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
704 .access = PL2_RW, .accessfn = access_tda,
705 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
707 * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
708 * Channel but Linux may try to access this register. The 32-bit
709 * alias is DBGDCCINT.
711 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
712 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
713 .access = PL1_RW, .accessfn = access_tda,
714 .type = ARM_CP_NOP },
717 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
718 /* 64 bit access versions of the (dummy) debug registers */
719 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
720 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
721 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
722 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
725 void hw_watchpoint_update(ARMCPU *cpu, int n)
727 CPUARMState *env = &cpu->env;
728 vaddr len = 0;
729 vaddr wvr = env->cp15.dbgwvr[n];
730 uint64_t wcr = env->cp15.dbgwcr[n];
731 int mask;
732 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
734 if (env->cpu_watchpoint[n]) {
735 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
736 env->cpu_watchpoint[n] = NULL;
739 if (!FIELD_EX64(wcr, DBGWCR, E)) {
740 /* E bit clear : watchpoint disabled */
741 return;
744 switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
745 case 0:
746 /* LSC 00 is reserved and must behave as if the wp is disabled */
747 return;
748 case 1:
749 flags |= BP_MEM_READ;
750 break;
751 case 2:
752 flags |= BP_MEM_WRITE;
753 break;
754 case 3:
755 flags |= BP_MEM_ACCESS;
756 break;
760 * Attempts to use both MASK and BAS fields simultaneously are
761 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
762 * thus generating a watchpoint for every byte in the masked region.
764 mask = FIELD_EX64(wcr, DBGWCR, MASK);
765 if (mask == 1 || mask == 2) {
767 * Reserved values of MASK; we must act as if the mask value was
768 * some non-reserved value, or as if the watchpoint were disabled.
769 * We choose the latter.
771 return;
772 } else if (mask) {
773 /* Watchpoint covers an aligned area up to 2GB in size */
774 len = 1ULL << mask;
776 * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
777 * whether the watchpoint fires when the unmasked bits match; we opt
778 * to generate the exceptions.
780 wvr &= ~(len - 1);
781 } else {
782 /* Watchpoint covers bytes defined by the byte address select bits */
783 int bas = FIELD_EX64(wcr, DBGWCR, BAS);
784 int basstart;
786 if (extract64(wvr, 2, 1)) {
788 * Deprecated case of an only 4-aligned address. BAS[7:4] are
789 * ignored, and BAS[3:0] define which bytes to watch.
791 bas &= 0xf;
794 if (bas == 0) {
795 /* This must act as if the watchpoint is disabled */
796 return;
800 * The BAS bits are supposed to be programmed to indicate a contiguous
801 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
802 * we fire for each byte in the word/doubleword addressed by the WVR.
803 * We choose to ignore any non-zero bits after the first range of 1s.
805 basstart = ctz32(bas);
806 len = cto32(bas >> basstart);
807 wvr += basstart;
810 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
811 &env->cpu_watchpoint[n]);
814 void hw_watchpoint_update_all(ARMCPU *cpu)
816 int i;
817 CPUARMState *env = &cpu->env;
820 * Completely clear out existing QEMU watchpoints and our array, to
821 * avoid possible stale entries following migration load.
823 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
824 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
826 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
827 hw_watchpoint_update(cpu, i);
831 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
832 uint64_t value)
834 ARMCPU *cpu = env_archcpu(env);
835 int i = ri->crm;
838 * Bits [1:0] are RES0.
840 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
841 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
842 * they contain the value written. It is CONSTRAINED UNPREDICTABLE
843 * whether the RESS bits are ignored when comparing an address.
845 * Therefore we are allowed to compare the entire register, which lets
846 * us avoid considering whether or not FEAT_LVA is actually enabled.
848 value &= ~3ULL;
850 raw_write(env, ri, value);
851 hw_watchpoint_update(cpu, i);
854 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
855 uint64_t value)
857 ARMCPU *cpu = env_archcpu(env);
858 int i = ri->crm;
860 raw_write(env, ri, value);
861 hw_watchpoint_update(cpu, i);
864 void hw_breakpoint_update(ARMCPU *cpu, int n)
866 CPUARMState *env = &cpu->env;
867 uint64_t bvr = env->cp15.dbgbvr[n];
868 uint64_t bcr = env->cp15.dbgbcr[n];
869 vaddr addr;
870 int bt;
871 int flags = BP_CPU;
873 if (env->cpu_breakpoint[n]) {
874 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
875 env->cpu_breakpoint[n] = NULL;
878 if (!extract64(bcr, 0, 1)) {
879 /* E bit clear : watchpoint disabled */
880 return;
883 bt = extract64(bcr, 20, 4);
885 switch (bt) {
886 case 4: /* unlinked address mismatch (reserved if AArch64) */
887 case 5: /* linked address mismatch (reserved if AArch64) */
888 qemu_log_mask(LOG_UNIMP,
889 "arm: address mismatch breakpoint types not implemented\n");
890 return;
891 case 0: /* unlinked address match */
892 case 1: /* linked address match */
895 * Bits [1:0] are RES0.
897 * It is IMPLEMENTATION DEFINED whether bits [63:49]
898 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
899 * of the VA field ([48] or [52] for FEAT_LVA), or whether the
900 * value is read as written. It is CONSTRAINED UNPREDICTABLE
901 * whether the RESS bits are ignored when comparing an address.
902 * Therefore we are allowed to compare the entire register, which
903 * lets us avoid considering whether FEAT_LVA is actually enabled.
905 * The BAS field is used to allow setting breakpoints on 16-bit
906 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
907 * a bp will fire if the addresses covered by the bp and the addresses
908 * covered by the insn overlap but the insn doesn't start at the
909 * start of the bp address range. We choose to require the insn and
910 * the bp to have the same address. The constraints on writing to
911 * BAS enforced in dbgbcr_write mean we have only four cases:
912 * 0b0000 => no breakpoint
913 * 0b0011 => breakpoint on addr
914 * 0b1100 => breakpoint on addr + 2
915 * 0b1111 => breakpoint on addr
916 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
918 int bas = extract64(bcr, 5, 4);
919 addr = bvr & ~3ULL;
920 if (bas == 0) {
921 return;
923 if (bas == 0xc) {
924 addr += 2;
926 break;
928 case 2: /* unlinked context ID match */
929 case 8: /* unlinked VMID match (reserved if no EL2) */
930 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
931 qemu_log_mask(LOG_UNIMP,
932 "arm: unlinked context breakpoint types not implemented\n");
933 return;
934 case 9: /* linked VMID match (reserved if no EL2) */
935 case 11: /* linked context ID and VMID match (reserved if no EL2) */
936 case 3: /* linked context ID match */
937 default:
939 * We must generate no events for Linked context matches (unless
940 * they are linked to by some other bp/wp, which is handled in
941 * updates for the linking bp/wp). We choose to also generate no events
942 * for reserved values.
944 return;
947 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
950 void hw_breakpoint_update_all(ARMCPU *cpu)
952 int i;
953 CPUARMState *env = &cpu->env;
956 * Completely clear out existing QEMU breakpoints and our array, to
957 * avoid possible stale entries following migration load.
959 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
960 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
962 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
963 hw_breakpoint_update(cpu, i);
967 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
968 uint64_t value)
970 ARMCPU *cpu = env_archcpu(env);
971 int i = ri->crm;
973 raw_write(env, ri, value);
974 hw_breakpoint_update(cpu, i);
977 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
978 uint64_t value)
980 ARMCPU *cpu = env_archcpu(env);
981 int i = ri->crm;
984 * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
985 * copy of BAS[0].
987 value = deposit64(value, 6, 1, extract64(value, 5, 1));
988 value = deposit64(value, 8, 1, extract64(value, 7, 1));
990 raw_write(env, ri, value);
991 hw_breakpoint_update(cpu, i);
994 void define_debug_regs(ARMCPU *cpu)
997 * Define v7 and v8 architectural debug registers.
998 * These are just dummy implementations for now.
1000 int i;
1001 int wrps, brps, ctx_cmps;
1004 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1005 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
1006 * the register must not exist for this cpu.
1008 if (cpu->isar.dbgdidr != 0) {
1009 ARMCPRegInfo dbgdidr = {
1010 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1011 .opc1 = 0, .opc2 = 0,
1012 .access = PL0_R, .accessfn = access_tda,
1013 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1015 define_one_arm_cp_reg(cpu, &dbgdidr);
1019 * DBGDEVID is present in the v7 debug architecture if
1020 * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1021 * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1022 * from v7.1 of the debug architecture. Because no fields have yet
1023 * been defined in DBGDEVID2 (and quite possibly none will ever
1024 * be) we don't define an ARMISARegisters field for it.
1025 * These registers exist only if EL1 can use AArch32, but that
1026 * happens naturally because they are only PL1 accessible anyway.
1028 if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1029 ARMCPRegInfo dbgdevid = {
1030 .name = "DBGDEVID",
1031 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1032 .access = PL1_R, .accessfn = access_tda,
1033 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1035 define_one_arm_cp_reg(cpu, &dbgdevid);
1037 if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1038 ARMCPRegInfo dbgdevid12[] = {
1040 .name = "DBGDEVID1",
1041 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1042 .access = PL1_R, .accessfn = access_tda,
1043 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1044 }, {
1045 .name = "DBGDEVID2",
1046 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1047 .access = PL1_R, .accessfn = access_tda,
1048 .type = ARM_CP_CONST, .resetvalue = 0,
1051 define_arm_cp_regs(cpu, dbgdevid12);
1054 brps = arm_num_brps(cpu);
1055 wrps = arm_num_wrps(cpu);
1056 ctx_cmps = arm_num_ctx_cmps(cpu);
1058 assert(ctx_cmps <= brps);
1060 define_arm_cp_regs(cpu, debug_cp_reginfo);
1062 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1063 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1066 for (i = 0; i < brps; i++) {
1067 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1068 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1069 ARMCPRegInfo dbgregs[] = {
1070 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1071 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1072 .access = PL1_RW, .accessfn = access_tda,
1073 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1074 .writefn = dbgbvr_write, .raw_writefn = raw_write
1076 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1077 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1078 .access = PL1_RW, .accessfn = access_tda,
1079 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1080 .writefn = dbgbcr_write, .raw_writefn = raw_write
1083 define_arm_cp_regs(cpu, dbgregs);
1084 g_free(dbgbvr_el1_name);
1085 g_free(dbgbcr_el1_name);
1088 for (i = 0; i < wrps; i++) {
1089 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1090 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1091 ARMCPRegInfo dbgregs[] = {
1092 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1093 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1094 .access = PL1_RW, .accessfn = access_tda,
1095 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1096 .writefn = dbgwvr_write, .raw_writefn = raw_write
1098 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1099 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1100 .access = PL1_RW, .accessfn = access_tda,
1101 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1102 .writefn = dbgwcr_write, .raw_writefn = raw_write
1105 define_arm_cp_regs(cpu, dbgregs);
1106 g_free(dbgwvr_el1_name);
1107 g_free(dbgwcr_el1_name);
1111 #if !defined(CONFIG_USER_ONLY)
1113 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1115 ARMCPU *cpu = ARM_CPU(cs);
1116 CPUARMState *env = &cpu->env;
1119 * In BE32 system mode, target memory is stored byteswapped (on a
1120 * little-endian host system), and by the time we reach here (via an
1121 * opcode helper) the addresses of subword accesses have been adjusted
1122 * to account for that, which means that watchpoints will not match.
1123 * Undo the adjustment here.
1125 if (arm_sctlr_b(env)) {
1126 if (len == 1) {
1127 addr ^= 3;
1128 } else if (len == 2) {
1129 addr ^= 2;
1133 return addr;
1136 #endif