4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
32 #include <sys/types.h>
38 #include <sys/mount.h>
40 #include <sys/fsuid.h>
41 #include <sys/personality.h>
42 #include <sys/prctl.h>
43 #include <sys/resource.h>
46 #include <linux/capability.h>
50 int __clone2(int (*fn
)(void *), void *child_stack_base
,
51 size_t stack_size
, int flags
, void *arg
, ...);
53 #include <sys/socket.h>
57 #include <sys/times.h>
60 #include <sys/statfs.h>
62 #include <sys/sysinfo.h>
63 //#include <sys/user.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 #include <linux/wireless.h>
67 #include <linux/icmp.h>
68 #include "qemu-common.h"
70 #include <sys/timerfd.h>
76 #include <sys/eventfd.h>
79 #include <sys/epoll.h>
82 #include "qemu/xattr.h"
84 #ifdef CONFIG_SENDFILE
85 #include <sys/sendfile.h>
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
106 #include <linux/fb.h>
107 #include <linux/vt.h>
108 #include <linux/dm-ioctl.h>
109 #include <linux/reboot.h>
110 #include <linux/route.h>
111 #include <linux/filter.h>
112 #include <linux/blkpg.h>
113 #include "linux_loop.h"
118 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \
119 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)
123 //#include <linux/msdos_fs.h>
124 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
125 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
136 #define _syscall0(type,name) \
137 static type name (void) \
139 return syscall(__NR_##name); \
142 #define _syscall1(type,name,type1,arg1) \
143 static type name (type1 arg1) \
145 return syscall(__NR_##name, arg1); \
148 #define _syscall2(type,name,type1,arg1,type2,arg2) \
149 static type name (type1 arg1,type2 arg2) \
151 return syscall(__NR_##name, arg1, arg2); \
154 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
155 static type name (type1 arg1,type2 arg2,type3 arg3) \
157 return syscall(__NR_##name, arg1, arg2, arg3); \
160 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
161 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
163 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
166 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
168 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
170 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
174 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
175 type5,arg5,type6,arg6) \
176 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
179 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
183 #define __NR_sys_uname __NR_uname
184 #define __NR_sys_getcwd1 __NR_getcwd
185 #define __NR_sys_getdents __NR_getdents
186 #define __NR_sys_getdents64 __NR_getdents64
187 #define __NR_sys_getpriority __NR_getpriority
188 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
189 #define __NR_sys_syslog __NR_syslog
190 #define __NR_sys_tgkill __NR_tgkill
191 #define __NR_sys_tkill __NR_tkill
192 #define __NR_sys_futex __NR_futex
193 #define __NR_sys_inotify_init __NR_inotify_init
194 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
195 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
197 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
199 #define __NR__llseek __NR_lseek
202 /* Newer kernel ports have llseek() instead of _llseek() */
203 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
204 #define TARGET_NR__llseek TARGET_NR_llseek
208 _syscall0(int, gettid
)
210 /* This is a replacement for the host gettid() and must return a host
212 static int gettid(void) {
217 _syscall3(int, sys_getdents
, uint
, fd
, struct linux_dirent
*, dirp
, uint
, count
);
219 #if !defined(__NR_getdents) || \
220 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
221 _syscall3(int, sys_getdents64
, uint
, fd
, struct linux_dirent64
*, dirp
, uint
, count
);
223 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
224 _syscall5(int, _llseek
, uint
, fd
, ulong
, hi
, ulong
, lo
,
225 loff_t
*, res
, uint
, wh
);
227 _syscall3(int,sys_rt_sigqueueinfo
,int,pid
,int,sig
,siginfo_t
*,uinfo
)
228 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
229 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
230 _syscall3(int,sys_tgkill
,int,tgid
,int,pid
,int,sig
)
232 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
233 _syscall2(int,sys_tkill
,int,tid
,int,sig
)
235 #ifdef __NR_exit_group
236 _syscall1(int,exit_group
,int,error_code
)
238 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
239 _syscall1(int,set_tid_address
,int *,tidptr
)
241 #if defined(TARGET_NR_futex) && defined(__NR_futex)
242 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
243 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
245 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
246 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
247 unsigned long *, user_mask_ptr
);
248 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
249 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
250 unsigned long *, user_mask_ptr
);
251 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
253 _syscall2(int, capget
, struct __user_cap_header_struct
*, header
,
254 struct __user_cap_data_struct
*, data
);
255 _syscall2(int, capset
, struct __user_cap_header_struct
*, header
,
256 struct __user_cap_data_struct
*, data
);
257 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
258 _syscall2(int, ioprio_get
, int, which
, int, who
)
260 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
261 _syscall3(int, ioprio_set
, int, which
, int, who
, int, ioprio
)
264 static bitmask_transtbl fcntl_flags_tbl
[] = {
265 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
266 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
267 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
268 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
269 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
270 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
271 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
272 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
273 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
274 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
275 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
276 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
277 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
278 #if defined(O_DIRECT)
279 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
281 #if defined(O_NOATIME)
282 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
284 #if defined(O_CLOEXEC)
285 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
288 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
290 /* Don't terminate the list prematurely on 64-bit host+guest. */
291 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
292 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
297 static int sys_getcwd1(char *buf
, size_t size
)
299 if (getcwd(buf
, size
) == NULL
) {
300 /* getcwd() sets errno */
303 return strlen(buf
)+1;
306 static int sys_openat(int dirfd
, const char *pathname
, int flags
, mode_t mode
)
309 * open(2) has extra parameter 'mode' when called with
312 if ((flags
& O_CREAT
) != 0) {
313 return (openat(dirfd
, pathname
, flags
, mode
));
315 return (openat(dirfd
, pathname
, flags
));
318 #ifdef TARGET_NR_utimensat
319 #ifdef CONFIG_UTIMENSAT
320 static int sys_utimensat(int dirfd
, const char *pathname
,
321 const struct timespec times
[2], int flags
)
323 if (pathname
== NULL
)
324 return futimens(dirfd
, times
);
326 return utimensat(dirfd
, pathname
, times
, flags
);
328 #elif defined(__NR_utimensat)
329 #define __NR_sys_utimensat __NR_utimensat
330 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
331 const struct timespec
*,tsp
,int,flags
)
333 static int sys_utimensat(int dirfd
, const char *pathname
,
334 const struct timespec times
[2], int flags
)
340 #endif /* TARGET_NR_utimensat */
342 #ifdef CONFIG_INOTIFY
343 #include <sys/inotify.h>
345 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
346 static int sys_inotify_init(void)
348 return (inotify_init());
351 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
352 static int sys_inotify_add_watch(int fd
,const char *pathname
, int32_t mask
)
354 return (inotify_add_watch(fd
, pathname
, mask
));
357 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
358 static int sys_inotify_rm_watch(int fd
, int32_t wd
)
360 return (inotify_rm_watch(fd
, wd
));
363 #ifdef CONFIG_INOTIFY1
364 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
365 static int sys_inotify_init1(int flags
)
367 return (inotify_init1(flags
));
372 /* Userspace can usually survive runtime without inotify */
373 #undef TARGET_NR_inotify_init
374 #undef TARGET_NR_inotify_init1
375 #undef TARGET_NR_inotify_add_watch
376 #undef TARGET_NR_inotify_rm_watch
377 #endif /* CONFIG_INOTIFY */
379 #if defined(TARGET_NR_ppoll)
381 # define __NR_ppoll -1
383 #define __NR_sys_ppoll __NR_ppoll
384 _syscall5(int, sys_ppoll
, struct pollfd
*, fds
, nfds_t
, nfds
,
385 struct timespec
*, timeout
, const sigset_t
*, sigmask
,
389 #if defined(TARGET_NR_pselect6)
390 #ifndef __NR_pselect6
391 # define __NR_pselect6 -1
393 #define __NR_sys_pselect6 __NR_pselect6
394 _syscall6(int, sys_pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
,
395 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
);
398 #if defined(TARGET_NR_prlimit64)
399 #ifndef __NR_prlimit64
400 # define __NR_prlimit64 -1
402 #define __NR_sys_prlimit64 __NR_prlimit64
403 /* The glibc rlimit structure may not be that used by the underlying syscall */
404 struct host_rlimit64
{
408 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
409 const struct host_rlimit64
*, new_limit
,
410 struct host_rlimit64
*, old_limit
)
414 #if defined(TARGET_NR_timer_create)
415 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
416 static timer_t g_posix_timers
[32] = { 0, } ;
418 static inline int next_free_host_timer(void)
421 /* FIXME: Does finding the next free slot require a lock? */
422 for (k
= 0; k
< ARRAY_SIZE(g_posix_timers
); k
++) {
423 if (g_posix_timers
[k
] == 0) {
424 g_posix_timers
[k
] = (timer_t
) 1;
432 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
434 static inline int regpairs_aligned(void *cpu_env
) {
435 return ((((CPUARMState
*)cpu_env
)->eabi
) == 1) ;
437 #elif defined(TARGET_MIPS)
438 static inline int regpairs_aligned(void *cpu_env
) { return 1; }
439 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
440 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
441 * of registers which translates to the same as ARM/MIPS, because we start with
443 static inline int regpairs_aligned(void *cpu_env
) { return 1; }
445 static inline int regpairs_aligned(void *cpu_env
) { return 0; }
448 #define ERRNO_TABLE_SIZE 1200
450 /* target_to_host_errno_table[] is initialized from
451 * host_to_target_errno_table[] in syscall_init(). */
452 static uint16_t target_to_host_errno_table
[ERRNO_TABLE_SIZE
] = {
456 * This list is the union of errno values overridden in asm-<arch>/errno.h
457 * minus the errnos that are not actually generic to all archs.
459 static uint16_t host_to_target_errno_table
[ERRNO_TABLE_SIZE
] = {
460 [EIDRM
] = TARGET_EIDRM
,
461 [ECHRNG
] = TARGET_ECHRNG
,
462 [EL2NSYNC
] = TARGET_EL2NSYNC
,
463 [EL3HLT
] = TARGET_EL3HLT
,
464 [EL3RST
] = TARGET_EL3RST
,
465 [ELNRNG
] = TARGET_ELNRNG
,
466 [EUNATCH
] = TARGET_EUNATCH
,
467 [ENOCSI
] = TARGET_ENOCSI
,
468 [EL2HLT
] = TARGET_EL2HLT
,
469 [EDEADLK
] = TARGET_EDEADLK
,
470 [ENOLCK
] = TARGET_ENOLCK
,
471 [EBADE
] = TARGET_EBADE
,
472 [EBADR
] = TARGET_EBADR
,
473 [EXFULL
] = TARGET_EXFULL
,
474 [ENOANO
] = TARGET_ENOANO
,
475 [EBADRQC
] = TARGET_EBADRQC
,
476 [EBADSLT
] = TARGET_EBADSLT
,
477 [EBFONT
] = TARGET_EBFONT
,
478 [ENOSTR
] = TARGET_ENOSTR
,
479 [ENODATA
] = TARGET_ENODATA
,
480 [ETIME
] = TARGET_ETIME
,
481 [ENOSR
] = TARGET_ENOSR
,
482 [ENONET
] = TARGET_ENONET
,
483 [ENOPKG
] = TARGET_ENOPKG
,
484 [EREMOTE
] = TARGET_EREMOTE
,
485 [ENOLINK
] = TARGET_ENOLINK
,
486 [EADV
] = TARGET_EADV
,
487 [ESRMNT
] = TARGET_ESRMNT
,
488 [ECOMM
] = TARGET_ECOMM
,
489 [EPROTO
] = TARGET_EPROTO
,
490 [EDOTDOT
] = TARGET_EDOTDOT
,
491 [EMULTIHOP
] = TARGET_EMULTIHOP
,
492 [EBADMSG
] = TARGET_EBADMSG
,
493 [ENAMETOOLONG
] = TARGET_ENAMETOOLONG
,
494 [EOVERFLOW
] = TARGET_EOVERFLOW
,
495 [ENOTUNIQ
] = TARGET_ENOTUNIQ
,
496 [EBADFD
] = TARGET_EBADFD
,
497 [EREMCHG
] = TARGET_EREMCHG
,
498 [ELIBACC
] = TARGET_ELIBACC
,
499 [ELIBBAD
] = TARGET_ELIBBAD
,
500 [ELIBSCN
] = TARGET_ELIBSCN
,
501 [ELIBMAX
] = TARGET_ELIBMAX
,
502 [ELIBEXEC
] = TARGET_ELIBEXEC
,
503 [EILSEQ
] = TARGET_EILSEQ
,
504 [ENOSYS
] = TARGET_ENOSYS
,
505 [ELOOP
] = TARGET_ELOOP
,
506 [ERESTART
] = TARGET_ERESTART
,
507 [ESTRPIPE
] = TARGET_ESTRPIPE
,
508 [ENOTEMPTY
] = TARGET_ENOTEMPTY
,
509 [EUSERS
] = TARGET_EUSERS
,
510 [ENOTSOCK
] = TARGET_ENOTSOCK
,
511 [EDESTADDRREQ
] = TARGET_EDESTADDRREQ
,
512 [EMSGSIZE
] = TARGET_EMSGSIZE
,
513 [EPROTOTYPE
] = TARGET_EPROTOTYPE
,
514 [ENOPROTOOPT
] = TARGET_ENOPROTOOPT
,
515 [EPROTONOSUPPORT
] = TARGET_EPROTONOSUPPORT
,
516 [ESOCKTNOSUPPORT
] = TARGET_ESOCKTNOSUPPORT
,
517 [EOPNOTSUPP
] = TARGET_EOPNOTSUPP
,
518 [EPFNOSUPPORT
] = TARGET_EPFNOSUPPORT
,
519 [EAFNOSUPPORT
] = TARGET_EAFNOSUPPORT
,
520 [EADDRINUSE
] = TARGET_EADDRINUSE
,
521 [EADDRNOTAVAIL
] = TARGET_EADDRNOTAVAIL
,
522 [ENETDOWN
] = TARGET_ENETDOWN
,
523 [ENETUNREACH
] = TARGET_ENETUNREACH
,
524 [ENETRESET
] = TARGET_ENETRESET
,
525 [ECONNABORTED
] = TARGET_ECONNABORTED
,
526 [ECONNRESET
] = TARGET_ECONNRESET
,
527 [ENOBUFS
] = TARGET_ENOBUFS
,
528 [EISCONN
] = TARGET_EISCONN
,
529 [ENOTCONN
] = TARGET_ENOTCONN
,
530 [EUCLEAN
] = TARGET_EUCLEAN
,
531 [ENOTNAM
] = TARGET_ENOTNAM
,
532 [ENAVAIL
] = TARGET_ENAVAIL
,
533 [EISNAM
] = TARGET_EISNAM
,
534 [EREMOTEIO
] = TARGET_EREMOTEIO
,
535 [ESHUTDOWN
] = TARGET_ESHUTDOWN
,
536 [ETOOMANYREFS
] = TARGET_ETOOMANYREFS
,
537 [ETIMEDOUT
] = TARGET_ETIMEDOUT
,
538 [ECONNREFUSED
] = TARGET_ECONNREFUSED
,
539 [EHOSTDOWN
] = TARGET_EHOSTDOWN
,
540 [EHOSTUNREACH
] = TARGET_EHOSTUNREACH
,
541 [EALREADY
] = TARGET_EALREADY
,
542 [EINPROGRESS
] = TARGET_EINPROGRESS
,
543 [ESTALE
] = TARGET_ESTALE
,
544 [ECANCELED
] = TARGET_ECANCELED
,
545 [ENOMEDIUM
] = TARGET_ENOMEDIUM
,
546 [EMEDIUMTYPE
] = TARGET_EMEDIUMTYPE
,
548 [ENOKEY
] = TARGET_ENOKEY
,
551 [EKEYEXPIRED
] = TARGET_EKEYEXPIRED
,
554 [EKEYREVOKED
] = TARGET_EKEYREVOKED
,
557 [EKEYREJECTED
] = TARGET_EKEYREJECTED
,
560 [EOWNERDEAD
] = TARGET_EOWNERDEAD
,
562 #ifdef ENOTRECOVERABLE
563 [ENOTRECOVERABLE
] = TARGET_ENOTRECOVERABLE
,
567 static inline int host_to_target_errno(int err
)
569 if(host_to_target_errno_table
[err
])
570 return host_to_target_errno_table
[err
];
574 static inline int target_to_host_errno(int err
)
576 if (target_to_host_errno_table
[err
])
577 return target_to_host_errno_table
[err
];
581 static inline abi_long
get_errno(abi_long ret
)
584 return -host_to_target_errno(errno
);
589 static inline int is_error(abi_long ret
)
591 return (abi_ulong
)ret
>= (abi_ulong
)(-4096);
594 char *target_strerror(int err
)
596 if ((err
>= ERRNO_TABLE_SIZE
) || (err
< 0)) {
599 return strerror(target_to_host_errno(err
));
602 static inline int host_to_target_sock_type(int host_type
)
606 switch (host_type
& 0xf /* SOCK_TYPE_MASK */) {
608 target_type
= TARGET_SOCK_DGRAM
;
611 target_type
= TARGET_SOCK_STREAM
;
614 target_type
= host_type
& 0xf /* SOCK_TYPE_MASK */;
618 #if defined(SOCK_CLOEXEC)
619 if (host_type
& SOCK_CLOEXEC
) {
620 target_type
|= TARGET_SOCK_CLOEXEC
;
624 #if defined(SOCK_NONBLOCK)
625 if (host_type
& SOCK_NONBLOCK
) {
626 target_type
|= TARGET_SOCK_NONBLOCK
;
633 static abi_ulong target_brk
;
634 static abi_ulong target_original_brk
;
635 static abi_ulong brk_page
;
637 void target_set_brk(abi_ulong new_brk
)
639 target_original_brk
= target_brk
= HOST_PAGE_ALIGN(new_brk
);
640 brk_page
= HOST_PAGE_ALIGN(target_brk
);
643 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
644 #define DEBUGF_BRK(message, args...)
646 /* do_brk() must return target values and target errnos. */
647 abi_long
do_brk(abi_ulong new_brk
)
649 abi_long mapped_addr
;
652 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx
") -> ", new_brk
);
655 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (!new_brk)\n", target_brk
);
658 if (new_brk
< target_original_brk
) {
659 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk < target_original_brk)\n",
664 /* If the new brk is less than the highest page reserved to the
665 * target heap allocation, set it and we're almost done... */
666 if (new_brk
<= brk_page
) {
667 /* Heap contents are initialized to zero, as for anonymous
669 if (new_brk
> target_brk
) {
670 memset(g2h(target_brk
), 0, new_brk
- target_brk
);
672 target_brk
= new_brk
;
673 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk <= brk_page)\n", target_brk
);
677 /* We need to allocate more memory after the brk... Note that
678 * we don't use MAP_FIXED because that will map over the top of
679 * any existing mapping (like the one with the host libc or qemu
680 * itself); instead we treat "mapped but at wrong address" as
681 * a failure and unmap again.
683 new_alloc_size
= HOST_PAGE_ALIGN(new_brk
- brk_page
);
684 mapped_addr
= get_errno(target_mmap(brk_page
, new_alloc_size
,
685 PROT_READ
|PROT_WRITE
,
686 MAP_ANON
|MAP_PRIVATE
, 0, 0));
688 if (mapped_addr
== brk_page
) {
689 /* Heap contents are initialized to zero, as for anonymous
690 * mapped pages. Technically the new pages are already
691 * initialized to zero since they *are* anonymous mapped
692 * pages, however we have to take care with the contents that
693 * come from the remaining part of the previous page: it may
694 * contains garbage data due to a previous heap usage (grown
696 memset(g2h(target_brk
), 0, brk_page
- target_brk
);
698 target_brk
= new_brk
;
699 brk_page
= HOST_PAGE_ALIGN(target_brk
);
700 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr == brk_page)\n",
703 } else if (mapped_addr
!= -1) {
704 /* Mapped but at wrong address, meaning there wasn't actually
705 * enough space for this brk.
707 target_munmap(mapped_addr
, new_alloc_size
);
709 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr != -1)\n", target_brk
);
712 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (otherwise)\n", target_brk
);
715 #if defined(TARGET_ALPHA)
716 /* We (partially) emulate OSF/1 on Alpha, which requires we
717 return a proper errno, not an unchanged brk value. */
718 return -TARGET_ENOMEM
;
720 /* For everything else, return the previous break. */
724 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
725 abi_ulong target_fds_addr
,
729 abi_ulong b
, *target_fds
;
731 nw
= (n
+ TARGET_ABI_BITS
- 1) / TARGET_ABI_BITS
;
732 if (!(target_fds
= lock_user(VERIFY_READ
,
734 sizeof(abi_ulong
) * nw
,
736 return -TARGET_EFAULT
;
740 for (i
= 0; i
< nw
; i
++) {
741 /* grab the abi_ulong */
742 __get_user(b
, &target_fds
[i
]);
743 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
744 /* check the bit inside the abi_ulong */
751 unlock_user(target_fds
, target_fds_addr
, 0);
756 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
757 abi_ulong target_fds_addr
,
760 if (target_fds_addr
) {
761 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
762 return -TARGET_EFAULT
;
770 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
776 abi_ulong
*target_fds
;
778 nw
= (n
+ TARGET_ABI_BITS
- 1) / TARGET_ABI_BITS
;
779 if (!(target_fds
= lock_user(VERIFY_WRITE
,
781 sizeof(abi_ulong
) * nw
,
783 return -TARGET_EFAULT
;
786 for (i
= 0; i
< nw
; i
++) {
788 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
789 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
792 __put_user(v
, &target_fds
[i
]);
795 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
800 #if defined(__alpha__)
806 static inline abi_long
host_to_target_clock_t(long ticks
)
808 #if HOST_HZ == TARGET_HZ
811 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
815 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
816 const struct rusage
*rusage
)
818 struct target_rusage
*target_rusage
;
820 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
821 return -TARGET_EFAULT
;
822 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
823 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
824 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
825 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
826 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
827 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
828 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
829 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
830 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
831 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
832 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
833 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
834 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
835 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
836 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
837 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
838 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
839 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
840 unlock_user_struct(target_rusage
, target_addr
, 1);
845 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
847 abi_ulong target_rlim_swap
;
850 target_rlim_swap
= tswapal(target_rlim
);
851 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
852 return RLIM_INFINITY
;
854 result
= target_rlim_swap
;
855 if (target_rlim_swap
!= (rlim_t
)result
)
856 return RLIM_INFINITY
;
861 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
863 abi_ulong target_rlim_swap
;
866 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
867 target_rlim_swap
= TARGET_RLIM_INFINITY
;
869 target_rlim_swap
= rlim
;
870 result
= tswapal(target_rlim_swap
);
875 static inline int target_to_host_resource(int code
)
878 case TARGET_RLIMIT_AS
:
880 case TARGET_RLIMIT_CORE
:
882 case TARGET_RLIMIT_CPU
:
884 case TARGET_RLIMIT_DATA
:
886 case TARGET_RLIMIT_FSIZE
:
888 case TARGET_RLIMIT_LOCKS
:
890 case TARGET_RLIMIT_MEMLOCK
:
891 return RLIMIT_MEMLOCK
;
892 case TARGET_RLIMIT_MSGQUEUE
:
893 return RLIMIT_MSGQUEUE
;
894 case TARGET_RLIMIT_NICE
:
896 case TARGET_RLIMIT_NOFILE
:
897 return RLIMIT_NOFILE
;
898 case TARGET_RLIMIT_NPROC
:
900 case TARGET_RLIMIT_RSS
:
902 case TARGET_RLIMIT_RTPRIO
:
903 return RLIMIT_RTPRIO
;
904 case TARGET_RLIMIT_SIGPENDING
:
905 return RLIMIT_SIGPENDING
;
906 case TARGET_RLIMIT_STACK
:
913 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
914 abi_ulong target_tv_addr
)
916 struct target_timeval
*target_tv
;
918 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1))
919 return -TARGET_EFAULT
;
921 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
922 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
924 unlock_user_struct(target_tv
, target_tv_addr
, 0);
929 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
930 const struct timeval
*tv
)
932 struct target_timeval
*target_tv
;
934 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0))
935 return -TARGET_EFAULT
;
937 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
938 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
940 unlock_user_struct(target_tv
, target_tv_addr
, 1);
945 static inline abi_long
copy_from_user_timezone(struct timezone
*tz
,
946 abi_ulong target_tz_addr
)
948 struct target_timezone
*target_tz
;
950 if (!lock_user_struct(VERIFY_READ
, target_tz
, target_tz_addr
, 1)) {
951 return -TARGET_EFAULT
;
954 __get_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
955 __get_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
957 unlock_user_struct(target_tz
, target_tz_addr
, 0);
962 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
965 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
966 abi_ulong target_mq_attr_addr
)
968 struct target_mq_attr
*target_mq_attr
;
970 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
971 target_mq_attr_addr
, 1))
972 return -TARGET_EFAULT
;
974 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
975 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
976 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
977 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
979 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
984 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
985 const struct mq_attr
*attr
)
987 struct target_mq_attr
*target_mq_attr
;
989 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
990 target_mq_attr_addr
, 0))
991 return -TARGET_EFAULT
;
993 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
994 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
995 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
996 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
998 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
1004 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1005 /* do_select() must return target values and target errnos. */
1006 static abi_long
do_select(int n
,
1007 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
1008 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
1010 fd_set rfds
, wfds
, efds
;
1011 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1012 struct timeval tv
, *tv_ptr
;
1015 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1019 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1023 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1028 if (target_tv_addr
) {
1029 if (copy_from_user_timeval(&tv
, target_tv_addr
))
1030 return -TARGET_EFAULT
;
1036 ret
= get_errno(select(n
, rfds_ptr
, wfds_ptr
, efds_ptr
, tv_ptr
));
1038 if (!is_error(ret
)) {
1039 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
1040 return -TARGET_EFAULT
;
1041 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
1042 return -TARGET_EFAULT
;
1043 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
1044 return -TARGET_EFAULT
;
1046 if (target_tv_addr
&& copy_to_user_timeval(target_tv_addr
, &tv
))
1047 return -TARGET_EFAULT
;
1054 static abi_long
do_pipe2(int host_pipe
[], int flags
)
1057 return pipe2(host_pipe
, flags
);
1063 static abi_long
do_pipe(void *cpu_env
, abi_ulong pipedes
,
1064 int flags
, int is_pipe2
)
1068 ret
= flags
? do_pipe2(host_pipe
, flags
) : pipe(host_pipe
);
1071 return get_errno(ret
);
1073 /* Several targets have special calling conventions for the original
1074 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1076 #if defined(TARGET_ALPHA)
1077 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = host_pipe
[1];
1078 return host_pipe
[0];
1079 #elif defined(TARGET_MIPS)
1080 ((CPUMIPSState
*)cpu_env
)->active_tc
.gpr
[3] = host_pipe
[1];
1081 return host_pipe
[0];
1082 #elif defined(TARGET_SH4)
1083 ((CPUSH4State
*)cpu_env
)->gregs
[1] = host_pipe
[1];
1084 return host_pipe
[0];
1085 #elif defined(TARGET_SPARC)
1086 ((CPUSPARCState
*)cpu_env
)->regwptr
[1] = host_pipe
[1];
1087 return host_pipe
[0];
1091 if (put_user_s32(host_pipe
[0], pipedes
)
1092 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(host_pipe
[0])))
1093 return -TARGET_EFAULT
;
1094 return get_errno(ret
);
1097 static inline abi_long
target_to_host_ip_mreq(struct ip_mreqn
*mreqn
,
1098 abi_ulong target_addr
,
1101 struct target_ip_mreqn
*target_smreqn
;
1103 target_smreqn
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1105 return -TARGET_EFAULT
;
1106 mreqn
->imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
1107 mreqn
->imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
1108 if (len
== sizeof(struct target_ip_mreqn
))
1109 mreqn
->imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
1110 unlock_user(target_smreqn
, target_addr
, 0);
1115 static inline abi_long
target_to_host_sockaddr(struct sockaddr
*addr
,
1116 abi_ulong target_addr
,
1119 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1120 sa_family_t sa_family
;
1121 struct target_sockaddr
*target_saddr
;
1123 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1125 return -TARGET_EFAULT
;
1127 sa_family
= tswap16(target_saddr
->sa_family
);
1129 /* Oops. The caller might send a incomplete sun_path; sun_path
1130 * must be terminated by \0 (see the manual page), but
1131 * unfortunately it is quite common to specify sockaddr_un
1132 * length as "strlen(x->sun_path)" while it should be
1133 * "strlen(...) + 1". We'll fix that here if needed.
1134 * Linux kernel has a similar feature.
1137 if (sa_family
== AF_UNIX
) {
1138 if (len
< unix_maxlen
&& len
> 0) {
1139 char *cp
= (char*)target_saddr
;
1141 if ( cp
[len
-1] && !cp
[len
] )
1144 if (len
> unix_maxlen
)
1148 memcpy(addr
, target_saddr
, len
);
1149 addr
->sa_family
= sa_family
;
1150 if (sa_family
== AF_PACKET
) {
1151 struct target_sockaddr_ll
*lladdr
;
1153 lladdr
= (struct target_sockaddr_ll
*)addr
;
1154 lladdr
->sll_ifindex
= tswap32(lladdr
->sll_ifindex
);
1155 lladdr
->sll_hatype
= tswap16(lladdr
->sll_hatype
);
1157 unlock_user(target_saddr
, target_addr
, 0);
1162 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1163 struct sockaddr
*addr
,
1166 struct target_sockaddr
*target_saddr
;
1168 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1170 return -TARGET_EFAULT
;
1171 memcpy(target_saddr
, addr
, len
);
1172 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1173 unlock_user(target_saddr
, target_addr
, len
);
1178 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1179 struct target_msghdr
*target_msgh
)
1181 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1182 abi_long msg_controllen
;
1183 abi_ulong target_cmsg_addr
;
1184 struct target_cmsghdr
*target_cmsg
;
1185 socklen_t space
= 0;
1187 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1188 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1190 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1191 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1193 return -TARGET_EFAULT
;
1195 while (cmsg
&& target_cmsg
) {
1196 void *data
= CMSG_DATA(cmsg
);
1197 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1199 int len
= tswapal(target_cmsg
->cmsg_len
)
1200 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr
));
1202 space
+= CMSG_SPACE(len
);
1203 if (space
> msgh
->msg_controllen
) {
1204 space
-= CMSG_SPACE(len
);
1205 gemu_log("Host cmsg overflow\n");
1209 if (tswap32(target_cmsg
->cmsg_level
) == TARGET_SOL_SOCKET
) {
1210 cmsg
->cmsg_level
= SOL_SOCKET
;
1212 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1214 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1215 cmsg
->cmsg_len
= CMSG_LEN(len
);
1217 if (cmsg
->cmsg_level
!= SOL_SOCKET
|| cmsg
->cmsg_type
!= SCM_RIGHTS
) {
1218 gemu_log("Unsupported ancillary data: %d/%d\n", cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1219 memcpy(data
, target_data
, len
);
1221 int *fd
= (int *)data
;
1222 int *target_fd
= (int *)target_data
;
1223 int i
, numfds
= len
/ sizeof(int);
1225 for (i
= 0; i
< numfds
; i
++)
1226 fd
[i
] = tswap32(target_fd
[i
]);
1229 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1230 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
);
1232 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1234 msgh
->msg_controllen
= space
;
1238 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1239 struct msghdr
*msgh
)
1241 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1242 abi_long msg_controllen
;
1243 abi_ulong target_cmsg_addr
;
1244 struct target_cmsghdr
*target_cmsg
;
1245 socklen_t space
= 0;
1247 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1248 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1250 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1251 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1253 return -TARGET_EFAULT
;
1255 while (cmsg
&& target_cmsg
) {
1256 void *data
= CMSG_DATA(cmsg
);
1257 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1259 int len
= cmsg
->cmsg_len
- CMSG_ALIGN(sizeof (struct cmsghdr
));
1261 space
+= TARGET_CMSG_SPACE(len
);
1262 if (space
> msg_controllen
) {
1263 space
-= TARGET_CMSG_SPACE(len
);
1264 gemu_log("Target cmsg overflow\n");
1268 if (cmsg
->cmsg_level
== SOL_SOCKET
) {
1269 target_cmsg
->cmsg_level
= tswap32(TARGET_SOL_SOCKET
);
1271 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1273 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1274 target_cmsg
->cmsg_len
= tswapal(TARGET_CMSG_LEN(len
));
1276 switch (cmsg
->cmsg_level
) {
1278 switch (cmsg
->cmsg_type
) {
1281 int *fd
= (int *)data
;
1282 int *target_fd
= (int *)target_data
;
1283 int i
, numfds
= len
/ sizeof(int);
1285 for (i
= 0; i
< numfds
; i
++)
1286 target_fd
[i
] = tswap32(fd
[i
]);
1291 struct timeval
*tv
= (struct timeval
*)data
;
1292 struct target_timeval
*target_tv
=
1293 (struct target_timeval
*)target_data
;
1295 if (len
!= sizeof(struct timeval
))
1298 /* copy struct timeval to target */
1299 target_tv
->tv_sec
= tswapal(tv
->tv_sec
);
1300 target_tv
->tv_usec
= tswapal(tv
->tv_usec
);
1303 case SCM_CREDENTIALS
:
1305 struct ucred
*cred
= (struct ucred
*)data
;
1306 struct target_ucred
*target_cred
=
1307 (struct target_ucred
*)target_data
;
1309 __put_user(cred
->pid
, &target_cred
->pid
);
1310 __put_user(cred
->uid
, &target_cred
->uid
);
1311 __put_user(cred
->gid
, &target_cred
->gid
);
1321 gemu_log("Unsupported ancillary data: %d/%d\n",
1322 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1323 memcpy(target_data
, data
, len
);
1326 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1327 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
);
1329 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
1331 target_msgh
->msg_controllen
= tswapal(space
);
1335 /* do_setsockopt() Must return target values and target errnos. */
1336 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
1337 abi_ulong optval_addr
, socklen_t optlen
)
1341 struct ip_mreqn
*ip_mreq
;
1342 struct ip_mreq_source
*ip_mreq_source
;
1346 /* TCP options all take an 'int' value. */
1347 if (optlen
< sizeof(uint32_t))
1348 return -TARGET_EINVAL
;
1350 if (get_user_u32(val
, optval_addr
))
1351 return -TARGET_EFAULT
;
1352 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
1359 case IP_ROUTER_ALERT
:
1363 case IP_MTU_DISCOVER
:
1369 case IP_MULTICAST_TTL
:
1370 case IP_MULTICAST_LOOP
:
1372 if (optlen
>= sizeof(uint32_t)) {
1373 if (get_user_u32(val
, optval_addr
))
1374 return -TARGET_EFAULT
;
1375 } else if (optlen
>= 1) {
1376 if (get_user_u8(val
, optval_addr
))
1377 return -TARGET_EFAULT
;
1379 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
1381 case IP_ADD_MEMBERSHIP
:
1382 case IP_DROP_MEMBERSHIP
:
1383 if (optlen
< sizeof (struct target_ip_mreq
) ||
1384 optlen
> sizeof (struct target_ip_mreqn
))
1385 return -TARGET_EINVAL
;
1387 ip_mreq
= (struct ip_mreqn
*) alloca(optlen
);
1388 target_to_host_ip_mreq(ip_mreq
, optval_addr
, optlen
);
1389 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq
, optlen
));
1392 case IP_BLOCK_SOURCE
:
1393 case IP_UNBLOCK_SOURCE
:
1394 case IP_ADD_SOURCE_MEMBERSHIP
:
1395 case IP_DROP_SOURCE_MEMBERSHIP
:
1396 if (optlen
!= sizeof (struct target_ip_mreq_source
))
1397 return -TARGET_EINVAL
;
1399 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
1400 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
1401 unlock_user (ip_mreq_source
, optval_addr
, 0);
1410 case IPV6_MTU_DISCOVER
:
1413 case IPV6_RECVPKTINFO
:
1415 if (optlen
< sizeof(uint32_t)) {
1416 return -TARGET_EINVAL
;
1418 if (get_user_u32(val
, optval_addr
)) {
1419 return -TARGET_EFAULT
;
1421 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
1422 &val
, sizeof(val
)));
1431 /* struct icmp_filter takes an u32 value */
1432 if (optlen
< sizeof(uint32_t)) {
1433 return -TARGET_EINVAL
;
1436 if (get_user_u32(val
, optval_addr
)) {
1437 return -TARGET_EFAULT
;
1439 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
1440 &val
, sizeof(val
)));
1447 case TARGET_SOL_SOCKET
:
1449 case TARGET_SO_RCVTIMEO
:
1453 optname
= SO_RCVTIMEO
;
1456 if (optlen
!= sizeof(struct target_timeval
)) {
1457 return -TARGET_EINVAL
;
1460 if (copy_from_user_timeval(&tv
, optval_addr
)) {
1461 return -TARGET_EFAULT
;
1464 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
1468 case TARGET_SO_SNDTIMEO
:
1469 optname
= SO_SNDTIMEO
;
1471 case TARGET_SO_ATTACH_FILTER
:
1473 struct target_sock_fprog
*tfprog
;
1474 struct target_sock_filter
*tfilter
;
1475 struct sock_fprog fprog
;
1476 struct sock_filter
*filter
;
1479 if (optlen
!= sizeof(*tfprog
)) {
1480 return -TARGET_EINVAL
;
1482 if (!lock_user_struct(VERIFY_READ
, tfprog
, optval_addr
, 0)) {
1483 return -TARGET_EFAULT
;
1485 if (!lock_user_struct(VERIFY_READ
, tfilter
,
1486 tswapal(tfprog
->filter
), 0)) {
1487 unlock_user_struct(tfprog
, optval_addr
, 1);
1488 return -TARGET_EFAULT
;
1491 fprog
.len
= tswap16(tfprog
->len
);
1492 filter
= malloc(fprog
.len
* sizeof(*filter
));
1493 if (filter
== NULL
) {
1494 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
1495 unlock_user_struct(tfprog
, optval_addr
, 1);
1496 return -TARGET_ENOMEM
;
1498 for (i
= 0; i
< fprog
.len
; i
++) {
1499 filter
[i
].code
= tswap16(tfilter
[i
].code
);
1500 filter
[i
].jt
= tfilter
[i
].jt
;
1501 filter
[i
].jf
= tfilter
[i
].jf
;
1502 filter
[i
].k
= tswap32(tfilter
[i
].k
);
1504 fprog
.filter
= filter
;
1506 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
1507 SO_ATTACH_FILTER
, &fprog
, sizeof(fprog
)));
1510 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
1511 unlock_user_struct(tfprog
, optval_addr
, 1);
1514 case TARGET_SO_BINDTODEVICE
:
1516 char *dev_ifname
, *addr_ifname
;
1518 if (optlen
> IFNAMSIZ
- 1) {
1519 optlen
= IFNAMSIZ
- 1;
1521 dev_ifname
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
1523 return -TARGET_EFAULT
;
1525 optname
= SO_BINDTODEVICE
;
1526 addr_ifname
= alloca(IFNAMSIZ
);
1527 memcpy(addr_ifname
, dev_ifname
, optlen
);
1528 addr_ifname
[optlen
] = 0;
1529 ret
= get_errno(setsockopt(sockfd
, level
, optname
, addr_ifname
, optlen
));
1530 unlock_user (dev_ifname
, optval_addr
, 0);
1533 /* Options with 'int' argument. */
1534 case TARGET_SO_DEBUG
:
1537 case TARGET_SO_REUSEADDR
:
1538 optname
= SO_REUSEADDR
;
1540 case TARGET_SO_TYPE
:
1543 case TARGET_SO_ERROR
:
1546 case TARGET_SO_DONTROUTE
:
1547 optname
= SO_DONTROUTE
;
1549 case TARGET_SO_BROADCAST
:
1550 optname
= SO_BROADCAST
;
1552 case TARGET_SO_SNDBUF
:
1553 optname
= SO_SNDBUF
;
1555 case TARGET_SO_SNDBUFFORCE
:
1556 optname
= SO_SNDBUFFORCE
;
1558 case TARGET_SO_RCVBUF
:
1559 optname
= SO_RCVBUF
;
1561 case TARGET_SO_RCVBUFFORCE
:
1562 optname
= SO_RCVBUFFORCE
;
1564 case TARGET_SO_KEEPALIVE
:
1565 optname
= SO_KEEPALIVE
;
1567 case TARGET_SO_OOBINLINE
:
1568 optname
= SO_OOBINLINE
;
1570 case TARGET_SO_NO_CHECK
:
1571 optname
= SO_NO_CHECK
;
1573 case TARGET_SO_PRIORITY
:
1574 optname
= SO_PRIORITY
;
1577 case TARGET_SO_BSDCOMPAT
:
1578 optname
= SO_BSDCOMPAT
;
1581 case TARGET_SO_PASSCRED
:
1582 optname
= SO_PASSCRED
;
1584 case TARGET_SO_PASSSEC
:
1585 optname
= SO_PASSSEC
;
1587 case TARGET_SO_TIMESTAMP
:
1588 optname
= SO_TIMESTAMP
;
1590 case TARGET_SO_RCVLOWAT
:
1591 optname
= SO_RCVLOWAT
;
1597 if (optlen
< sizeof(uint32_t))
1598 return -TARGET_EINVAL
;
1600 if (get_user_u32(val
, optval_addr
))
1601 return -TARGET_EFAULT
;
1602 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
1606 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level
, optname
);
1607 ret
= -TARGET_ENOPROTOOPT
;
1612 /* do_getsockopt() Must return target values and target errnos. */
1613 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
1614 abi_ulong optval_addr
, abi_ulong optlen
)
1621 case TARGET_SOL_SOCKET
:
1624 /* These don't just return a single integer */
1625 case TARGET_SO_LINGER
:
1626 case TARGET_SO_RCVTIMEO
:
1627 case TARGET_SO_SNDTIMEO
:
1628 case TARGET_SO_PEERNAME
:
1630 case TARGET_SO_PEERCRED
: {
1633 struct target_ucred
*tcr
;
1635 if (get_user_u32(len
, optlen
)) {
1636 return -TARGET_EFAULT
;
1639 return -TARGET_EINVAL
;
1643 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
1651 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
1652 return -TARGET_EFAULT
;
1654 __put_user(cr
.pid
, &tcr
->pid
);
1655 __put_user(cr
.uid
, &tcr
->uid
);
1656 __put_user(cr
.gid
, &tcr
->gid
);
1657 unlock_user_struct(tcr
, optval_addr
, 1);
1658 if (put_user_u32(len
, optlen
)) {
1659 return -TARGET_EFAULT
;
1663 /* Options with 'int' argument. */
1664 case TARGET_SO_DEBUG
:
1667 case TARGET_SO_REUSEADDR
:
1668 optname
= SO_REUSEADDR
;
1670 case TARGET_SO_TYPE
:
1673 case TARGET_SO_ERROR
:
1676 case TARGET_SO_DONTROUTE
:
1677 optname
= SO_DONTROUTE
;
1679 case TARGET_SO_BROADCAST
:
1680 optname
= SO_BROADCAST
;
1682 case TARGET_SO_SNDBUF
:
1683 optname
= SO_SNDBUF
;
1685 case TARGET_SO_RCVBUF
:
1686 optname
= SO_RCVBUF
;
1688 case TARGET_SO_KEEPALIVE
:
1689 optname
= SO_KEEPALIVE
;
1691 case TARGET_SO_OOBINLINE
:
1692 optname
= SO_OOBINLINE
;
1694 case TARGET_SO_NO_CHECK
:
1695 optname
= SO_NO_CHECK
;
1697 case TARGET_SO_PRIORITY
:
1698 optname
= SO_PRIORITY
;
1701 case TARGET_SO_BSDCOMPAT
:
1702 optname
= SO_BSDCOMPAT
;
1705 case TARGET_SO_PASSCRED
:
1706 optname
= SO_PASSCRED
;
1708 case TARGET_SO_TIMESTAMP
:
1709 optname
= SO_TIMESTAMP
;
1711 case TARGET_SO_RCVLOWAT
:
1712 optname
= SO_RCVLOWAT
;
1714 case TARGET_SO_ACCEPTCONN
:
1715 optname
= SO_ACCEPTCONN
;
1722 /* TCP options all take an 'int' value. */
1724 if (get_user_u32(len
, optlen
))
1725 return -TARGET_EFAULT
;
1727 return -TARGET_EINVAL
;
1729 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
1732 if (optname
== SO_TYPE
) {
1733 val
= host_to_target_sock_type(val
);
1738 if (put_user_u32(val
, optval_addr
))
1739 return -TARGET_EFAULT
;
1741 if (put_user_u8(val
, optval_addr
))
1742 return -TARGET_EFAULT
;
1744 if (put_user_u32(len
, optlen
))
1745 return -TARGET_EFAULT
;
1752 case IP_ROUTER_ALERT
:
1756 case IP_MTU_DISCOVER
:
1762 case IP_MULTICAST_TTL
:
1763 case IP_MULTICAST_LOOP
:
1764 if (get_user_u32(len
, optlen
))
1765 return -TARGET_EFAULT
;
1767 return -TARGET_EINVAL
;
1769 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
1772 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
1774 if (put_user_u32(len
, optlen
)
1775 || put_user_u8(val
, optval_addr
))
1776 return -TARGET_EFAULT
;
1778 if (len
> sizeof(int))
1780 if (put_user_u32(len
, optlen
)
1781 || put_user_u32(val
, optval_addr
))
1782 return -TARGET_EFAULT
;
1786 ret
= -TARGET_ENOPROTOOPT
;
1792 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
1794 ret
= -TARGET_EOPNOTSUPP
;
1800 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
1801 int count
, int copy
)
1803 struct target_iovec
*target_vec
;
1805 abi_ulong total_len
, max_len
;
1808 bool bad_address
= false;
1814 if (count
< 0 || count
> IOV_MAX
) {
1819 vec
= calloc(count
, sizeof(struct iovec
));
1825 target_vec
= lock_user(VERIFY_READ
, target_addr
,
1826 count
* sizeof(struct target_iovec
), 1);
1827 if (target_vec
== NULL
) {
1832 /* ??? If host page size > target page size, this will result in a
1833 value larger than what we can actually support. */
1834 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
1837 for (i
= 0; i
< count
; i
++) {
1838 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
1839 abi_long len
= tswapal(target_vec
[i
].iov_len
);
1844 } else if (len
== 0) {
1845 /* Zero length pointer is ignored. */
1846 vec
[i
].iov_base
= 0;
1848 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
1849 /* If the first buffer pointer is bad, this is a fault. But
1850 * subsequent bad buffers will result in a partial write; this
1851 * is realized by filling the vector with null pointers and
1853 if (!vec
[i
].iov_base
) {
1864 if (len
> max_len
- total_len
) {
1865 len
= max_len
- total_len
;
1868 vec
[i
].iov_len
= len
;
1872 unlock_user(target_vec
, target_addr
, 0);
1876 unlock_user(target_vec
, target_addr
, 0);
1883 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
1884 int count
, int copy
)
1886 struct target_iovec
*target_vec
;
1889 target_vec
= lock_user(VERIFY_READ
, target_addr
,
1890 count
* sizeof(struct target_iovec
), 1);
1892 for (i
= 0; i
< count
; i
++) {
1893 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
1894 abi_long len
= tswapal(target_vec
[i
].iov_base
);
1898 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
1900 unlock_user(target_vec
, target_addr
, 0);
1906 static inline int target_to_host_sock_type(int *type
)
1909 int target_type
= *type
;
1911 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
1912 case TARGET_SOCK_DGRAM
:
1913 host_type
= SOCK_DGRAM
;
1915 case TARGET_SOCK_STREAM
:
1916 host_type
= SOCK_STREAM
;
1919 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
1922 if (target_type
& TARGET_SOCK_CLOEXEC
) {
1923 #if defined(SOCK_CLOEXEC)
1924 host_type
|= SOCK_CLOEXEC
;
1926 return -TARGET_EINVAL
;
1929 if (target_type
& TARGET_SOCK_NONBLOCK
) {
1930 #if defined(SOCK_NONBLOCK)
1931 host_type
|= SOCK_NONBLOCK
;
1932 #elif !defined(O_NONBLOCK)
1933 return -TARGET_EINVAL
;
1940 /* Try to emulate socket type flags after socket creation. */
1941 static int sock_flags_fixup(int fd
, int target_type
)
1943 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
1944 if (target_type
& TARGET_SOCK_NONBLOCK
) {
1945 int flags
= fcntl(fd
, F_GETFL
);
1946 if (fcntl(fd
, F_SETFL
, O_NONBLOCK
| flags
) == -1) {
1948 return -TARGET_EINVAL
;
1955 /* do_socket() Must return target values and target errnos. */
1956 static abi_long
do_socket(int domain
, int type
, int protocol
)
1958 int target_type
= type
;
1961 ret
= target_to_host_sock_type(&type
);
1966 if (domain
== PF_NETLINK
)
1967 return -TARGET_EAFNOSUPPORT
;
1968 ret
= get_errno(socket(domain
, type
, protocol
));
1970 ret
= sock_flags_fixup(ret
, target_type
);
1975 /* do_bind() Must return target values and target errnos. */
1976 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
1982 if ((int)addrlen
< 0) {
1983 return -TARGET_EINVAL
;
1986 addr
= alloca(addrlen
+1);
1988 ret
= target_to_host_sockaddr(addr
, target_addr
, addrlen
);
1992 return get_errno(bind(sockfd
, addr
, addrlen
));
1995 /* do_connect() Must return target values and target errnos. */
1996 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
2002 if ((int)addrlen
< 0) {
2003 return -TARGET_EINVAL
;
2006 addr
= alloca(addrlen
+1);
2008 ret
= target_to_host_sockaddr(addr
, target_addr
, addrlen
);
2012 return get_errno(connect(sockfd
, addr
, addrlen
));
2015 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
2016 static abi_long
do_sendrecvmsg_locked(int fd
, struct target_msghdr
*msgp
,
2017 int flags
, int send
)
2023 abi_ulong target_vec
;
2025 if (msgp
->msg_name
) {
2026 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
2027 msg
.msg_name
= alloca(msg
.msg_namelen
+1);
2028 ret
= target_to_host_sockaddr(msg
.msg_name
, tswapal(msgp
->msg_name
),
2034 msg
.msg_name
= NULL
;
2035 msg
.msg_namelen
= 0;
2037 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
2038 msg
.msg_control
= alloca(msg
.msg_controllen
);
2039 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
2041 count
= tswapal(msgp
->msg_iovlen
);
2042 target_vec
= tswapal(msgp
->msg_iov
);
2043 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
2044 target_vec
, count
, send
);
2046 ret
= -host_to_target_errno(errno
);
2049 msg
.msg_iovlen
= count
;
2053 ret
= target_to_host_cmsg(&msg
, msgp
);
2055 ret
= get_errno(sendmsg(fd
, &msg
, flags
));
2057 ret
= get_errno(recvmsg(fd
, &msg
, flags
));
2058 if (!is_error(ret
)) {
2060 ret
= host_to_target_cmsg(msgp
, &msg
);
2061 if (!is_error(ret
)) {
2062 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
2063 if (msg
.msg_name
!= NULL
) {
2064 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
2065 msg
.msg_name
, msg
.msg_namelen
);
2077 unlock_iovec(vec
, target_vec
, count
, !send
);
2082 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
2083 int flags
, int send
)
2086 struct target_msghdr
*msgp
;
2088 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
2092 return -TARGET_EFAULT
;
2094 ret
= do_sendrecvmsg_locked(fd
, msgp
, flags
, send
);
2095 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
2099 #ifdef TARGET_NR_sendmmsg
2100 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
2101 * so it might not have this *mmsg-specific flag either.
2103 #ifndef MSG_WAITFORONE
2104 #define MSG_WAITFORONE 0x10000
2107 static abi_long
do_sendrecvmmsg(int fd
, abi_ulong target_msgvec
,
2108 unsigned int vlen
, unsigned int flags
,
2111 struct target_mmsghdr
*mmsgp
;
2115 if (vlen
> UIO_MAXIOV
) {
2119 mmsgp
= lock_user(VERIFY_WRITE
, target_msgvec
, sizeof(*mmsgp
) * vlen
, 1);
2121 return -TARGET_EFAULT
;
2124 for (i
= 0; i
< vlen
; i
++) {
2125 ret
= do_sendrecvmsg_locked(fd
, &mmsgp
[i
].msg_hdr
, flags
, send
);
2126 if (is_error(ret
)) {
2129 mmsgp
[i
].msg_len
= tswap32(ret
);
2130 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2131 if (flags
& MSG_WAITFORONE
) {
2132 flags
|= MSG_DONTWAIT
;
2136 unlock_user(mmsgp
, target_msgvec
, sizeof(*mmsgp
) * i
);
2138 /* Return number of datagrams sent if we sent any at all;
2139 * otherwise return the error.
2148 /* If we don't have a system accept4() then just call accept.
2149 * The callsites to do_accept4() will ensure that they don't
2150 * pass a non-zero flags argument in this config.
2152 #ifndef CONFIG_ACCEPT4
2153 static inline int accept4(int sockfd
, struct sockaddr
*addr
,
2154 socklen_t
*addrlen
, int flags
)
2157 return accept(sockfd
, addr
, addrlen
);
2161 /* do_accept4() Must return target values and target errnos. */
2162 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
2163 abi_ulong target_addrlen_addr
, int flags
)
2170 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
2172 if (target_addr
== 0) {
2173 return get_errno(accept4(fd
, NULL
, NULL
, host_flags
));
2176 /* linux returns EINVAL if addrlen pointer is invalid */
2177 if (get_user_u32(addrlen
, target_addrlen_addr
))
2178 return -TARGET_EINVAL
;
2180 if ((int)addrlen
< 0) {
2181 return -TARGET_EINVAL
;
2184 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
2185 return -TARGET_EINVAL
;
2187 addr
= alloca(addrlen
);
2189 ret
= get_errno(accept4(fd
, addr
, &addrlen
, host_flags
));
2190 if (!is_error(ret
)) {
2191 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
2192 if (put_user_u32(addrlen
, target_addrlen_addr
))
2193 ret
= -TARGET_EFAULT
;
2198 /* do_getpeername() Must return target values and target errnos. */
2199 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
2200 abi_ulong target_addrlen_addr
)
2206 if (get_user_u32(addrlen
, target_addrlen_addr
))
2207 return -TARGET_EFAULT
;
2209 if ((int)addrlen
< 0) {
2210 return -TARGET_EINVAL
;
2213 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
2214 return -TARGET_EFAULT
;
2216 addr
= alloca(addrlen
);
2218 ret
= get_errno(getpeername(fd
, addr
, &addrlen
));
2219 if (!is_error(ret
)) {
2220 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
2221 if (put_user_u32(addrlen
, target_addrlen_addr
))
2222 ret
= -TARGET_EFAULT
;
2227 /* do_getsockname() Must return target values and target errnos. */
2228 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
2229 abi_ulong target_addrlen_addr
)
2235 if (get_user_u32(addrlen
, target_addrlen_addr
))
2236 return -TARGET_EFAULT
;
2238 if ((int)addrlen
< 0) {
2239 return -TARGET_EINVAL
;
2242 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
2243 return -TARGET_EFAULT
;
2245 addr
= alloca(addrlen
);
2247 ret
= get_errno(getsockname(fd
, addr
, &addrlen
));
2248 if (!is_error(ret
)) {
2249 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
2250 if (put_user_u32(addrlen
, target_addrlen_addr
))
2251 ret
= -TARGET_EFAULT
;
2256 /* do_socketpair() Must return target values and target errnos. */
2257 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
2258 abi_ulong target_tab_addr
)
2263 target_to_host_sock_type(&type
);
2265 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
2266 if (!is_error(ret
)) {
2267 if (put_user_s32(tab
[0], target_tab_addr
)
2268 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
2269 ret
= -TARGET_EFAULT
;
2274 /* do_sendto() Must return target values and target errnos. */
2275 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
2276 abi_ulong target_addr
, socklen_t addrlen
)
2282 if ((int)addrlen
< 0) {
2283 return -TARGET_EINVAL
;
2286 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
2288 return -TARGET_EFAULT
;
2290 addr
= alloca(addrlen
+1);
2291 ret
= target_to_host_sockaddr(addr
, target_addr
, addrlen
);
2293 unlock_user(host_msg
, msg
, 0);
2296 ret
= get_errno(sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
2298 ret
= get_errno(send(fd
, host_msg
, len
, flags
));
2300 unlock_user(host_msg
, msg
, 0);
2304 /* do_recvfrom() Must return target values and target errnos. */
2305 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
2306 abi_ulong target_addr
,
2307 abi_ulong target_addrlen
)
2314 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
2316 return -TARGET_EFAULT
;
2318 if (get_user_u32(addrlen
, target_addrlen
)) {
2319 ret
= -TARGET_EFAULT
;
2322 if ((int)addrlen
< 0) {
2323 ret
= -TARGET_EINVAL
;
2326 addr
= alloca(addrlen
);
2327 ret
= get_errno(recvfrom(fd
, host_msg
, len
, flags
, addr
, &addrlen
));
2329 addr
= NULL
; /* To keep compiler quiet. */
2330 ret
= get_errno(qemu_recv(fd
, host_msg
, len
, flags
));
2332 if (!is_error(ret
)) {
2334 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
2335 if (put_user_u32(addrlen
, target_addrlen
)) {
2336 ret
= -TARGET_EFAULT
;
2340 unlock_user(host_msg
, msg
, len
);
2343 unlock_user(host_msg
, msg
, 0);
2348 #ifdef TARGET_NR_socketcall
2349 /* do_socketcall() Must return target values and target errnos. */
2350 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
2352 static const unsigned ac
[] = { /* number of arguments per call */
2353 [SOCKOP_socket
] = 3, /* domain, type, protocol */
2354 [SOCKOP_bind
] = 3, /* sockfd, addr, addrlen */
2355 [SOCKOP_connect
] = 3, /* sockfd, addr, addrlen */
2356 [SOCKOP_listen
] = 2, /* sockfd, backlog */
2357 [SOCKOP_accept
] = 3, /* sockfd, addr, addrlen */
2358 [SOCKOP_accept4
] = 4, /* sockfd, addr, addrlen, flags */
2359 [SOCKOP_getsockname
] = 3, /* sockfd, addr, addrlen */
2360 [SOCKOP_getpeername
] = 3, /* sockfd, addr, addrlen */
2361 [SOCKOP_socketpair
] = 4, /* domain, type, protocol, tab */
2362 [SOCKOP_send
] = 4, /* sockfd, msg, len, flags */
2363 [SOCKOP_recv
] = 4, /* sockfd, msg, len, flags */
2364 [SOCKOP_sendto
] = 6, /* sockfd, msg, len, flags, addr, addrlen */
2365 [SOCKOP_recvfrom
] = 6, /* sockfd, msg, len, flags, addr, addrlen */
2366 [SOCKOP_shutdown
] = 2, /* sockfd, how */
2367 [SOCKOP_sendmsg
] = 3, /* sockfd, msg, flags */
2368 [SOCKOP_recvmsg
] = 3, /* sockfd, msg, flags */
2369 [SOCKOP_setsockopt
] = 5, /* sockfd, level, optname, optval, optlen */
2370 [SOCKOP_getsockopt
] = 5, /* sockfd, level, optname, optval, optlen */
2372 abi_long a
[6]; /* max 6 args */
2374 /* first, collect the arguments in a[] according to ac[] */
2375 if (num
>= 0 && num
< ARRAY_SIZE(ac
)) {
2377 assert(ARRAY_SIZE(a
) >= ac
[num
]); /* ensure we have space for args */
2378 for (i
= 0; i
< ac
[num
]; ++i
) {
2379 if (get_user_ual(a
[i
], vptr
+ i
* sizeof(abi_long
)) != 0) {
2380 return -TARGET_EFAULT
;
2385 /* now when we have the args, actually handle the call */
2387 case SOCKOP_socket
: /* domain, type, protocol */
2388 return do_socket(a
[0], a
[1], a
[2]);
2389 case SOCKOP_bind
: /* sockfd, addr, addrlen */
2390 return do_bind(a
[0], a
[1], a
[2]);
2391 case SOCKOP_connect
: /* sockfd, addr, addrlen */
2392 return do_connect(a
[0], a
[1], a
[2]);
2393 case SOCKOP_listen
: /* sockfd, backlog */
2394 return get_errno(listen(a
[0], a
[1]));
2395 case SOCKOP_accept
: /* sockfd, addr, addrlen */
2396 return do_accept4(a
[0], a
[1], a
[2], 0);
2397 case SOCKOP_accept4
: /* sockfd, addr, addrlen, flags */
2398 return do_accept4(a
[0], a
[1], a
[2], a
[3]);
2399 case SOCKOP_getsockname
: /* sockfd, addr, addrlen */
2400 return do_getsockname(a
[0], a
[1], a
[2]);
2401 case SOCKOP_getpeername
: /* sockfd, addr, addrlen */
2402 return do_getpeername(a
[0], a
[1], a
[2]);
2403 case SOCKOP_socketpair
: /* domain, type, protocol, tab */
2404 return do_socketpair(a
[0], a
[1], a
[2], a
[3]);
2405 case SOCKOP_send
: /* sockfd, msg, len, flags */
2406 return do_sendto(a
[0], a
[1], a
[2], a
[3], 0, 0);
2407 case SOCKOP_recv
: /* sockfd, msg, len, flags */
2408 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], 0, 0);
2409 case SOCKOP_sendto
: /* sockfd, msg, len, flags, addr, addrlen */
2410 return do_sendto(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
2411 case SOCKOP_recvfrom
: /* sockfd, msg, len, flags, addr, addrlen */
2412 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
2413 case SOCKOP_shutdown
: /* sockfd, how */
2414 return get_errno(shutdown(a
[0], a
[1]));
2415 case SOCKOP_sendmsg
: /* sockfd, msg, flags */
2416 return do_sendrecvmsg(a
[0], a
[1], a
[2], 1);
2417 case SOCKOP_recvmsg
: /* sockfd, msg, flags */
2418 return do_sendrecvmsg(a
[0], a
[1], a
[2], 0);
2419 case SOCKOP_setsockopt
: /* sockfd, level, optname, optval, optlen */
2420 return do_setsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
2421 case SOCKOP_getsockopt
: /* sockfd, level, optname, optval, optlen */
2422 return do_getsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
2424 gemu_log("Unsupported socketcall: %d\n", num
);
2425 return -TARGET_ENOSYS
;
2430 #define N_SHM_REGIONS 32
2432 static struct shm_region
{
2435 } shm_regions
[N_SHM_REGIONS
];
2437 struct target_semid_ds
2439 struct target_ipc_perm sem_perm
;
2440 abi_ulong sem_otime
;
2441 #if !defined(TARGET_PPC64)
2442 abi_ulong __unused1
;
2444 abi_ulong sem_ctime
;
2445 #if !defined(TARGET_PPC64)
2446 abi_ulong __unused2
;
2448 abi_ulong sem_nsems
;
2449 abi_ulong __unused3
;
2450 abi_ulong __unused4
;
2453 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
2454 abi_ulong target_addr
)
2456 struct target_ipc_perm
*target_ip
;
2457 struct target_semid_ds
*target_sd
;
2459 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
2460 return -TARGET_EFAULT
;
2461 target_ip
= &(target_sd
->sem_perm
);
2462 host_ip
->__key
= tswap32(target_ip
->__key
);
2463 host_ip
->uid
= tswap32(target_ip
->uid
);
2464 host_ip
->gid
= tswap32(target_ip
->gid
);
2465 host_ip
->cuid
= tswap32(target_ip
->cuid
);
2466 host_ip
->cgid
= tswap32(target_ip
->cgid
);
2467 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
2468 host_ip
->mode
= tswap32(target_ip
->mode
);
2470 host_ip
->mode
= tswap16(target_ip
->mode
);
2472 #if defined(TARGET_PPC)
2473 host_ip
->__seq
= tswap32(target_ip
->__seq
);
2475 host_ip
->__seq
= tswap16(target_ip
->__seq
);
2477 unlock_user_struct(target_sd
, target_addr
, 0);
2481 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
2482 struct ipc_perm
*host_ip
)
2484 struct target_ipc_perm
*target_ip
;
2485 struct target_semid_ds
*target_sd
;
2487 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
2488 return -TARGET_EFAULT
;
2489 target_ip
= &(target_sd
->sem_perm
);
2490 target_ip
->__key
= tswap32(host_ip
->__key
);
2491 target_ip
->uid
= tswap32(host_ip
->uid
);
2492 target_ip
->gid
= tswap32(host_ip
->gid
);
2493 target_ip
->cuid
= tswap32(host_ip
->cuid
);
2494 target_ip
->cgid
= tswap32(host_ip
->cgid
);
2495 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
2496 target_ip
->mode
= tswap32(host_ip
->mode
);
2498 target_ip
->mode
= tswap16(host_ip
->mode
);
2500 #if defined(TARGET_PPC)
2501 target_ip
->__seq
= tswap32(host_ip
->__seq
);
2503 target_ip
->__seq
= tswap16(host_ip
->__seq
);
2505 unlock_user_struct(target_sd
, target_addr
, 1);
2509 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
2510 abi_ulong target_addr
)
2512 struct target_semid_ds
*target_sd
;
2514 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
2515 return -TARGET_EFAULT
;
2516 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
2517 return -TARGET_EFAULT
;
2518 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
2519 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
2520 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
2521 unlock_user_struct(target_sd
, target_addr
, 0);
2525 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
2526 struct semid_ds
*host_sd
)
2528 struct target_semid_ds
*target_sd
;
2530 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
2531 return -TARGET_EFAULT
;
2532 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
2533 return -TARGET_EFAULT
;
2534 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
2535 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
2536 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
2537 unlock_user_struct(target_sd
, target_addr
, 1);
2541 struct target_seminfo
{
2554 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
2555 struct seminfo
*host_seminfo
)
2557 struct target_seminfo
*target_seminfo
;
2558 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
2559 return -TARGET_EFAULT
;
2560 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
2561 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
2562 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
2563 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
2564 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
2565 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
2566 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
2567 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
2568 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
2569 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
2570 unlock_user_struct(target_seminfo
, target_addr
, 1);
2576 struct semid_ds
*buf
;
2577 unsigned short *array
;
2578 struct seminfo
*__buf
;
2581 union target_semun
{
2588 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
2589 abi_ulong target_addr
)
2592 unsigned short *array
;
2594 struct semid_ds semid_ds
;
2597 semun
.buf
= &semid_ds
;
2599 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
2601 return get_errno(ret
);
2603 nsems
= semid_ds
.sem_nsems
;
2605 *host_array
= malloc(nsems
*sizeof(unsigned short));
2607 return -TARGET_ENOMEM
;
2609 array
= lock_user(VERIFY_READ
, target_addr
,
2610 nsems
*sizeof(unsigned short), 1);
2613 return -TARGET_EFAULT
;
2616 for(i
=0; i
<nsems
; i
++) {
2617 __get_user((*host_array
)[i
], &array
[i
]);
2619 unlock_user(array
, target_addr
, 0);
2624 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
2625 unsigned short **host_array
)
2628 unsigned short *array
;
2630 struct semid_ds semid_ds
;
2633 semun
.buf
= &semid_ds
;
2635 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
2637 return get_errno(ret
);
2639 nsems
= semid_ds
.sem_nsems
;
2641 array
= lock_user(VERIFY_WRITE
, target_addr
,
2642 nsems
*sizeof(unsigned short), 0);
2644 return -TARGET_EFAULT
;
2646 for(i
=0; i
<nsems
; i
++) {
2647 __put_user((*host_array
)[i
], &array
[i
]);
2650 unlock_user(array
, target_addr
, 1);
2655 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
2656 union target_semun target_su
)
2659 struct semid_ds dsarg
;
2660 unsigned short *array
= NULL
;
2661 struct seminfo seminfo
;
2662 abi_long ret
= -TARGET_EINVAL
;
2669 /* In 64 bit cross-endian situations, we will erroneously pick up
2670 * the wrong half of the union for the "val" element. To rectify
2671 * this, the entire 8-byte structure is byteswapped, followed by
2672 * a swap of the 4 byte val field. In other cases, the data is
2673 * already in proper host byte order. */
2674 if (sizeof(target_su
.val
) != (sizeof(target_su
.buf
))) {
2675 target_su
.buf
= tswapal(target_su
.buf
);
2676 arg
.val
= tswap32(target_su
.val
);
2678 arg
.val
= target_su
.val
;
2680 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2684 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
2688 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2689 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
2696 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
2700 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2701 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
2707 arg
.__buf
= &seminfo
;
2708 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
2709 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
2717 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
2724 struct target_sembuf
{
2725 unsigned short sem_num
;
2730 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
2731 abi_ulong target_addr
,
2734 struct target_sembuf
*target_sembuf
;
2737 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
2738 nsops
*sizeof(struct target_sembuf
), 1);
2740 return -TARGET_EFAULT
;
2742 for(i
=0; i
<nsops
; i
++) {
2743 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
2744 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
2745 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
2748 unlock_user(target_sembuf
, target_addr
, 0);
2753 static inline abi_long
do_semop(int semid
, abi_long ptr
, unsigned nsops
)
2755 struct sembuf sops
[nsops
];
2757 if (target_to_host_sembuf(sops
, ptr
, nsops
))
2758 return -TARGET_EFAULT
;
2760 return get_errno(semop(semid
, sops
, nsops
));
2763 struct target_msqid_ds
2765 struct target_ipc_perm msg_perm
;
2766 abi_ulong msg_stime
;
2767 #if TARGET_ABI_BITS == 32
2768 abi_ulong __unused1
;
2770 abi_ulong msg_rtime
;
2771 #if TARGET_ABI_BITS == 32
2772 abi_ulong __unused2
;
2774 abi_ulong msg_ctime
;
2775 #if TARGET_ABI_BITS == 32
2776 abi_ulong __unused3
;
2778 abi_ulong __msg_cbytes
;
2780 abi_ulong msg_qbytes
;
2781 abi_ulong msg_lspid
;
2782 abi_ulong msg_lrpid
;
2783 abi_ulong __unused4
;
2784 abi_ulong __unused5
;
2787 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
2788 abi_ulong target_addr
)
2790 struct target_msqid_ds
*target_md
;
2792 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
2793 return -TARGET_EFAULT
;
2794 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
2795 return -TARGET_EFAULT
;
2796 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
2797 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
2798 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
2799 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
2800 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
2801 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
2802 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
2803 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
2804 unlock_user_struct(target_md
, target_addr
, 0);
2808 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
2809 struct msqid_ds
*host_md
)
2811 struct target_msqid_ds
*target_md
;
2813 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
2814 return -TARGET_EFAULT
;
2815 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
2816 return -TARGET_EFAULT
;
2817 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
2818 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
2819 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
2820 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
2821 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
2822 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
2823 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
2824 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
2825 unlock_user_struct(target_md
, target_addr
, 1);
2829 struct target_msginfo
{
2837 unsigned short int msgseg
;
2840 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
2841 struct msginfo
*host_msginfo
)
2843 struct target_msginfo
*target_msginfo
;
2844 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
2845 return -TARGET_EFAULT
;
2846 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
2847 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
2848 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
2849 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
2850 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
2851 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
2852 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
2853 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
2854 unlock_user_struct(target_msginfo
, target_addr
, 1);
2858 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
2860 struct msqid_ds dsarg
;
2861 struct msginfo msginfo
;
2862 abi_long ret
= -TARGET_EINVAL
;
2870 if (target_to_host_msqid_ds(&dsarg
,ptr
))
2871 return -TARGET_EFAULT
;
2872 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
2873 if (host_to_target_msqid_ds(ptr
,&dsarg
))
2874 return -TARGET_EFAULT
;
2877 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
2881 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
2882 if (host_to_target_msginfo(ptr
, &msginfo
))
2883 return -TARGET_EFAULT
;
2890 struct target_msgbuf
{
2895 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
2896 ssize_t msgsz
, int msgflg
)
2898 struct target_msgbuf
*target_mb
;
2899 struct msgbuf
*host_mb
;
2903 return -TARGET_EINVAL
;
2906 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
2907 return -TARGET_EFAULT
;
2908 host_mb
= malloc(msgsz
+sizeof(long));
2910 unlock_user_struct(target_mb
, msgp
, 0);
2911 return -TARGET_ENOMEM
;
2913 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
2914 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
2915 ret
= get_errno(msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
2917 unlock_user_struct(target_mb
, msgp
, 0);
2922 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
2923 unsigned int msgsz
, abi_long msgtyp
,
2926 struct target_msgbuf
*target_mb
;
2928 struct msgbuf
*host_mb
;
2931 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
2932 return -TARGET_EFAULT
;
2934 host_mb
= g_malloc(msgsz
+sizeof(long));
2935 ret
= get_errno(msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
2938 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
2939 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
2940 if (!target_mtext
) {
2941 ret
= -TARGET_EFAULT
;
2944 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
2945 unlock_user(target_mtext
, target_mtext_addr
, ret
);
2948 target_mb
->mtype
= tswapal(host_mb
->mtype
);
2952 unlock_user_struct(target_mb
, msgp
, 1);
2957 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
2958 abi_ulong target_addr
)
2960 struct target_shmid_ds
*target_sd
;
2962 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
2963 return -TARGET_EFAULT
;
2964 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
2965 return -TARGET_EFAULT
;
2966 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
2967 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
2968 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
2969 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
2970 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
2971 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
2972 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
2973 unlock_user_struct(target_sd
, target_addr
, 0);
2977 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
2978 struct shmid_ds
*host_sd
)
2980 struct target_shmid_ds
*target_sd
;
2982 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
2983 return -TARGET_EFAULT
;
2984 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
2985 return -TARGET_EFAULT
;
2986 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
2987 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
2988 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
2989 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
2990 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
2991 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
2992 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
2993 unlock_user_struct(target_sd
, target_addr
, 1);
2997 struct target_shminfo
{
3005 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
3006 struct shminfo
*host_shminfo
)
3008 struct target_shminfo
*target_shminfo
;
3009 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
3010 return -TARGET_EFAULT
;
3011 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
3012 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
3013 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
3014 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
3015 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
3016 unlock_user_struct(target_shminfo
, target_addr
, 1);
3020 struct target_shm_info
{
3025 abi_ulong swap_attempts
;
3026 abi_ulong swap_successes
;
3029 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
3030 struct shm_info
*host_shm_info
)
3032 struct target_shm_info
*target_shm_info
;
3033 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
3034 return -TARGET_EFAULT
;
3035 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
3036 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
3037 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
3038 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
3039 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
3040 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
3041 unlock_user_struct(target_shm_info
, target_addr
, 1);
3045 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
3047 struct shmid_ds dsarg
;
3048 struct shminfo shminfo
;
3049 struct shm_info shm_info
;
3050 abi_long ret
= -TARGET_EINVAL
;
3058 if (target_to_host_shmid_ds(&dsarg
, buf
))
3059 return -TARGET_EFAULT
;
3060 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
3061 if (host_to_target_shmid_ds(buf
, &dsarg
))
3062 return -TARGET_EFAULT
;
3065 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
3066 if (host_to_target_shminfo(buf
, &shminfo
))
3067 return -TARGET_EFAULT
;
3070 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
3071 if (host_to_target_shm_info(buf
, &shm_info
))
3072 return -TARGET_EFAULT
;
3077 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
3084 static inline abi_ulong
do_shmat(int shmid
, abi_ulong shmaddr
, int shmflg
)
3088 struct shmid_ds shm_info
;
3091 /* find out the length of the shared memory segment */
3092 ret
= get_errno(shmctl(shmid
, IPC_STAT
, &shm_info
));
3093 if (is_error(ret
)) {
3094 /* can't get length, bail out */
3101 host_raddr
= shmat(shmid
, (void *)g2h(shmaddr
), shmflg
);
3103 abi_ulong mmap_start
;
3105 mmap_start
= mmap_find_vma(0, shm_info
.shm_segsz
);
3107 if (mmap_start
== -1) {
3109 host_raddr
= (void *)-1;
3111 host_raddr
= shmat(shmid
, g2h(mmap_start
), shmflg
| SHM_REMAP
);
3114 if (host_raddr
== (void *)-1) {
3116 return get_errno((long)host_raddr
);
3118 raddr
=h2g((unsigned long)host_raddr
);
3120 page_set_flags(raddr
, raddr
+ shm_info
.shm_segsz
,
3121 PAGE_VALID
| PAGE_READ
|
3122 ((shmflg
& SHM_RDONLY
)? 0 : PAGE_WRITE
));
3124 for (i
= 0; i
< N_SHM_REGIONS
; i
++) {
3125 if (shm_regions
[i
].start
== 0) {
3126 shm_regions
[i
].start
= raddr
;
3127 shm_regions
[i
].size
= shm_info
.shm_segsz
;
3137 static inline abi_long
do_shmdt(abi_ulong shmaddr
)
3141 for (i
= 0; i
< N_SHM_REGIONS
; ++i
) {
3142 if (shm_regions
[i
].start
== shmaddr
) {
3143 shm_regions
[i
].start
= 0;
3144 page_set_flags(shmaddr
, shmaddr
+ shm_regions
[i
].size
, 0);
3149 return get_errno(shmdt(g2h(shmaddr
)));
3152 #ifdef TARGET_NR_ipc
3153 /* ??? This only works with linear mappings. */
3154 /* do_ipc() must return target values and target errnos. */
3155 static abi_long
do_ipc(unsigned int call
, abi_long first
,
3156 abi_long second
, abi_long third
,
3157 abi_long ptr
, abi_long fifth
)
3162 version
= call
>> 16;
3167 ret
= do_semop(first
, ptr
, second
);
3171 ret
= get_errno(semget(first
, second
, third
));
3174 case IPCOP_semctl
: {
3175 /* The semun argument to semctl is passed by value, so dereference the
3178 get_user_ual(atptr
, ptr
);
3179 ret
= do_semctl(first
, second
, third
,
3180 (union target_semun
) atptr
);
3185 ret
= get_errno(msgget(first
, second
));
3189 ret
= do_msgsnd(first
, ptr
, second
, third
);
3193 ret
= do_msgctl(first
, second
, ptr
);
3200 struct target_ipc_kludge
{
3205 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
3206 ret
= -TARGET_EFAULT
;
3210 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
3212 unlock_user_struct(tmp
, ptr
, 0);
3216 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
3225 raddr
= do_shmat(first
, ptr
, second
);
3226 if (is_error(raddr
))
3227 return get_errno(raddr
);
3228 if (put_user_ual(raddr
, third
))
3229 return -TARGET_EFAULT
;
3233 ret
= -TARGET_EINVAL
;
3238 ret
= do_shmdt(ptr
);
3242 /* IPC_* flag values are the same on all linux platforms */
3243 ret
= get_errno(shmget(first
, second
, third
));
3246 /* IPC_* and SHM_* command values are the same on all linux platforms */
3248 ret
= do_shmctl(first
, second
, ptr
);
3251 gemu_log("Unsupported ipc call: %d (version %d)\n", call
, version
);
3252 ret
= -TARGET_ENOSYS
;
3259 /* kernel structure types definitions */
3261 #define STRUCT(name, ...) STRUCT_ ## name,
3262 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
3264 #include "syscall_types.h"
3267 #undef STRUCT_SPECIAL
3269 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
3270 #define STRUCT_SPECIAL(name)
3271 #include "syscall_types.h"
3273 #undef STRUCT_SPECIAL
3275 typedef struct IOCTLEntry IOCTLEntry
;
3277 typedef abi_long
do_ioctl_fn(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3278 int fd
, abi_long cmd
, abi_long arg
);
3281 unsigned int target_cmd
;
3282 unsigned int host_cmd
;
3285 do_ioctl_fn
*do_ioctl
;
3286 const argtype arg_type
[5];
3289 #define IOC_R 0x0001
3290 #define IOC_W 0x0002
3291 #define IOC_RW (IOC_R | IOC_W)
3293 #define MAX_STRUCT_SIZE 4096
3295 #ifdef CONFIG_FIEMAP
3296 /* So fiemap access checks don't overflow on 32 bit systems.
3297 * This is very slightly smaller than the limit imposed by
3298 * the underlying kernel.
3300 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
3301 / sizeof(struct fiemap_extent))
3303 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3304 int fd
, abi_long cmd
, abi_long arg
)
3306 /* The parameter for this ioctl is a struct fiemap followed
3307 * by an array of struct fiemap_extent whose size is set
3308 * in fiemap->fm_extent_count. The array is filled in by the
3311 int target_size_in
, target_size_out
;
3313 const argtype
*arg_type
= ie
->arg_type
;
3314 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
3317 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
3321 assert(arg_type
[0] == TYPE_PTR
);
3322 assert(ie
->access
== IOC_RW
);
3324 target_size_in
= thunk_type_size(arg_type
, 0);
3325 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
3327 return -TARGET_EFAULT
;
3329 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3330 unlock_user(argptr
, arg
, 0);
3331 fm
= (struct fiemap
*)buf_temp
;
3332 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
3333 return -TARGET_EINVAL
;
3336 outbufsz
= sizeof (*fm
) +
3337 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
3339 if (outbufsz
> MAX_STRUCT_SIZE
) {
3340 /* We can't fit all the extents into the fixed size buffer.
3341 * Allocate one that is large enough and use it instead.
3343 fm
= malloc(outbufsz
);
3345 return -TARGET_ENOMEM
;
3347 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
3350 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, fm
));
3351 if (!is_error(ret
)) {
3352 target_size_out
= target_size_in
;
3353 /* An extent_count of 0 means we were only counting the extents
3354 * so there are no structs to copy
3356 if (fm
->fm_extent_count
!= 0) {
3357 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
3359 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
3361 ret
= -TARGET_EFAULT
;
3363 /* Convert the struct fiemap */
3364 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
3365 if (fm
->fm_extent_count
!= 0) {
3366 p
= argptr
+ target_size_in
;
3367 /* ...and then all the struct fiemap_extents */
3368 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
3369 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
3374 unlock_user(argptr
, arg
, target_size_out
);
3384 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3385 int fd
, abi_long cmd
, abi_long arg
)
3387 const argtype
*arg_type
= ie
->arg_type
;
3391 struct ifconf
*host_ifconf
;
3393 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
3394 int target_ifreq_size
;
3399 abi_long target_ifc_buf
;
3403 assert(arg_type
[0] == TYPE_PTR
);
3404 assert(ie
->access
== IOC_RW
);
3407 target_size
= thunk_type_size(arg_type
, 0);
3409 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3411 return -TARGET_EFAULT
;
3412 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3413 unlock_user(argptr
, arg
, 0);
3415 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
3416 target_ifc_len
= host_ifconf
->ifc_len
;
3417 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
3419 target_ifreq_size
= thunk_type_size(ifreq_arg_type
, 0);
3420 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
3421 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
3423 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
3424 if (outbufsz
> MAX_STRUCT_SIZE
) {
3425 /* We can't fit all the extents into the fixed size buffer.
3426 * Allocate one that is large enough and use it instead.
3428 host_ifconf
= malloc(outbufsz
);
3430 return -TARGET_ENOMEM
;
3432 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
3435 host_ifc_buf
= (char*)host_ifconf
+ sizeof(*host_ifconf
);
3437 host_ifconf
->ifc_len
= host_ifc_len
;
3438 host_ifconf
->ifc_buf
= host_ifc_buf
;
3440 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, host_ifconf
));
3441 if (!is_error(ret
)) {
3442 /* convert host ifc_len to target ifc_len */
3444 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
3445 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
3446 host_ifconf
->ifc_len
= target_ifc_len
;
3448 /* restore target ifc_buf */
3450 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
3452 /* copy struct ifconf to target user */
3454 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3456 return -TARGET_EFAULT
;
3457 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
3458 unlock_user(argptr
, arg
, target_size
);
3460 /* copy ifreq[] to target user */
3462 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
3463 for (i
= 0; i
< nb_ifreq
; i
++) {
3464 thunk_convert(argptr
+ i
* target_ifreq_size
,
3465 host_ifc_buf
+ i
* sizeof(struct ifreq
),
3466 ifreq_arg_type
, THUNK_TARGET
);
3468 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
3478 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
3479 abi_long cmd
, abi_long arg
)
3482 struct dm_ioctl
*host_dm
;
3483 abi_long guest_data
;
3484 uint32_t guest_data_size
;
3486 const argtype
*arg_type
= ie
->arg_type
;
3488 void *big_buf
= NULL
;
3492 target_size
= thunk_type_size(arg_type
, 0);
3493 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3495 ret
= -TARGET_EFAULT
;
3498 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3499 unlock_user(argptr
, arg
, 0);
3501 /* buf_temp is too small, so fetch things into a bigger buffer */
3502 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
3503 memcpy(big_buf
, buf_temp
, target_size
);
3507 guest_data
= arg
+ host_dm
->data_start
;
3508 if ((guest_data
- arg
) < 0) {
3512 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
3513 host_data
= (char*)host_dm
+ host_dm
->data_start
;
3515 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
3516 switch (ie
->host_cmd
) {
3518 case DM_LIST_DEVICES
:
3521 case DM_DEV_SUSPEND
:
3524 case DM_TABLE_STATUS
:
3525 case DM_TABLE_CLEAR
:
3527 case DM_LIST_VERSIONS
:
3531 case DM_DEV_SET_GEOMETRY
:
3532 /* data contains only strings */
3533 memcpy(host_data
, argptr
, guest_data_size
);
3536 memcpy(host_data
, argptr
, guest_data_size
);
3537 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
3541 void *gspec
= argptr
;
3542 void *cur_data
= host_data
;
3543 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
3544 int spec_size
= thunk_type_size(arg_type
, 0);
3547 for (i
= 0; i
< host_dm
->target_count
; i
++) {
3548 struct dm_target_spec
*spec
= cur_data
;
3552 thunk_convert(spec
, gspec
, arg_type
, THUNK_HOST
);
3553 slen
= strlen((char*)gspec
+ spec_size
) + 1;
3555 spec
->next
= sizeof(*spec
) + slen
;
3556 strcpy((char*)&spec
[1], gspec
+ spec_size
);
3558 cur_data
+= spec
->next
;
3563 ret
= -TARGET_EINVAL
;
3566 unlock_user(argptr
, guest_data
, 0);
3568 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3569 if (!is_error(ret
)) {
3570 guest_data
= arg
+ host_dm
->data_start
;
3571 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
3572 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
3573 switch (ie
->host_cmd
) {
3578 case DM_DEV_SUSPEND
:
3581 case DM_TABLE_CLEAR
:
3583 case DM_DEV_SET_GEOMETRY
:
3584 /* no return data */
3586 case DM_LIST_DEVICES
:
3588 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
3589 uint32_t remaining_data
= guest_data_size
;
3590 void *cur_data
= argptr
;
3591 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
3592 int nl_size
= 12; /* can't use thunk_size due to alignment */
3595 uint32_t next
= nl
->next
;
3597 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
3599 if (remaining_data
< nl
->next
) {
3600 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
3603 thunk_convert(cur_data
, nl
, arg_type
, THUNK_TARGET
);
3604 strcpy(cur_data
+ nl_size
, nl
->name
);
3605 cur_data
+= nl
->next
;
3606 remaining_data
-= nl
->next
;
3610 nl
= (void*)nl
+ next
;
3615 case DM_TABLE_STATUS
:
3617 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
3618 void *cur_data
= argptr
;
3619 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
3620 int spec_size
= thunk_type_size(arg_type
, 0);
3623 for (i
= 0; i
< host_dm
->target_count
; i
++) {
3624 uint32_t next
= spec
->next
;
3625 int slen
= strlen((char*)&spec
[1]) + 1;
3626 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
3627 if (guest_data_size
< spec
->next
) {
3628 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
3631 thunk_convert(cur_data
, spec
, arg_type
, THUNK_TARGET
);
3632 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
3633 cur_data
= argptr
+ spec
->next
;
3634 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
3640 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
3641 int count
= *(uint32_t*)hdata
;
3642 uint64_t *hdev
= hdata
+ 8;
3643 uint64_t *gdev
= argptr
+ 8;
3646 *(uint32_t*)argptr
= tswap32(count
);
3647 for (i
= 0; i
< count
; i
++) {
3648 *gdev
= tswap64(*hdev
);
3654 case DM_LIST_VERSIONS
:
3656 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
3657 uint32_t remaining_data
= guest_data_size
;
3658 void *cur_data
= argptr
;
3659 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
3660 int vers_size
= thunk_type_size(arg_type
, 0);
3663 uint32_t next
= vers
->next
;
3665 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
3667 if (remaining_data
< vers
->next
) {
3668 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
3671 thunk_convert(cur_data
, vers
, arg_type
, THUNK_TARGET
);
3672 strcpy(cur_data
+ vers_size
, vers
->name
);
3673 cur_data
+= vers
->next
;
3674 remaining_data
-= vers
->next
;
3678 vers
= (void*)vers
+ next
;
3683 ret
= -TARGET_EINVAL
;
3686 unlock_user(argptr
, guest_data
, guest_data_size
);
3688 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3690 ret
= -TARGET_EFAULT
;
3693 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
3694 unlock_user(argptr
, arg
, target_size
);
3701 static abi_long
do_ioctl_blkpg(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
3702 abi_long cmd
, abi_long arg
)
3706 const argtype
*arg_type
= ie
->arg_type
;
3707 const argtype part_arg_type
[] = { MK_STRUCT(STRUCT_blkpg_partition
) };
3710 struct blkpg_ioctl_arg
*host_blkpg
= (void*)buf_temp
;
3711 struct blkpg_partition host_part
;
3713 /* Read and convert blkpg */
3715 target_size
= thunk_type_size(arg_type
, 0);
3716 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3718 ret
= -TARGET_EFAULT
;
3721 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3722 unlock_user(argptr
, arg
, 0);
3724 switch (host_blkpg
->op
) {
3725 case BLKPG_ADD_PARTITION
:
3726 case BLKPG_DEL_PARTITION
:
3727 /* payload is struct blkpg_partition */
3730 /* Unknown opcode */
3731 ret
= -TARGET_EINVAL
;
3735 /* Read and convert blkpg->data */
3736 arg
= (abi_long
)(uintptr_t)host_blkpg
->data
;
3737 target_size
= thunk_type_size(part_arg_type
, 0);
3738 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3740 ret
= -TARGET_EFAULT
;
3743 thunk_convert(&host_part
, argptr
, part_arg_type
, THUNK_HOST
);
3744 unlock_user(argptr
, arg
, 0);
3746 /* Swizzle the data pointer to our local copy and call! */
3747 host_blkpg
->data
= &host_part
;
3748 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, host_blkpg
));
3754 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3755 int fd
, abi_long cmd
, abi_long arg
)
3757 const argtype
*arg_type
= ie
->arg_type
;
3758 const StructEntry
*se
;
3759 const argtype
*field_types
;
3760 const int *dst_offsets
, *src_offsets
;
3763 abi_ulong
*target_rt_dev_ptr
;
3764 unsigned long *host_rt_dev_ptr
;
3768 assert(ie
->access
== IOC_W
);
3769 assert(*arg_type
== TYPE_PTR
);
3771 assert(*arg_type
== TYPE_STRUCT
);
3772 target_size
= thunk_type_size(arg_type
, 0);
3773 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3775 return -TARGET_EFAULT
;
3778 assert(*arg_type
== (int)STRUCT_rtentry
);
3779 se
= struct_entries
+ *arg_type
++;
3780 assert(se
->convert
[0] == NULL
);
3781 /* convert struct here to be able to catch rt_dev string */
3782 field_types
= se
->field_types
;
3783 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
3784 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
3785 for (i
= 0; i
< se
->nb_fields
; i
++) {
3786 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
3787 assert(*field_types
== TYPE_PTRVOID
);
3788 target_rt_dev_ptr
= (abi_ulong
*)(argptr
+ src_offsets
[i
]);
3789 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
3790 if (*target_rt_dev_ptr
!= 0) {
3791 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
3792 tswapal(*target_rt_dev_ptr
));
3793 if (!*host_rt_dev_ptr
) {
3794 unlock_user(argptr
, arg
, 0);
3795 return -TARGET_EFAULT
;
3798 *host_rt_dev_ptr
= 0;
3803 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
3804 argptr
+ src_offsets
[i
],
3805 field_types
, THUNK_HOST
);
3807 unlock_user(argptr
, arg
, 0);
3809 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3810 if (*host_rt_dev_ptr
!= 0) {
3811 unlock_user((void *)*host_rt_dev_ptr
,
3812 *target_rt_dev_ptr
, 0);
3817 static abi_long
do_ioctl_kdsigaccept(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
3818 int fd
, abi_long cmd
, abi_long arg
)
3820 int sig
= target_to_host_signal(arg
);
3821 return get_errno(ioctl(fd
, ie
->host_cmd
, sig
));
3824 static IOCTLEntry ioctl_entries
[] = {
3825 #define IOCTL(cmd, access, ...) \
3826 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
3827 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
3828 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
3833 /* ??? Implement proper locking for ioctls. */
3834 /* do_ioctl() Must return target values and target errnos. */
3835 static abi_long
do_ioctl(int fd
, abi_long cmd
, abi_long arg
)
3837 const IOCTLEntry
*ie
;
3838 const argtype
*arg_type
;
3840 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
3846 if (ie
->target_cmd
== 0) {
3847 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
3848 return -TARGET_ENOSYS
;
3850 if (ie
->target_cmd
== cmd
)
3854 arg_type
= ie
->arg_type
;
3856 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd
, ie
->name
);
3859 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
3862 switch(arg_type
[0]) {
3865 ret
= get_errno(ioctl(fd
, ie
->host_cmd
));
3870 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, arg
));
3874 target_size
= thunk_type_size(arg_type
, 0);
3875 switch(ie
->access
) {
3877 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3878 if (!is_error(ret
)) {
3879 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3881 return -TARGET_EFAULT
;
3882 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
3883 unlock_user(argptr
, arg
, target_size
);
3887 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3889 return -TARGET_EFAULT
;
3890 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3891 unlock_user(argptr
, arg
, 0);
3892 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3896 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
3898 return -TARGET_EFAULT
;
3899 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
3900 unlock_user(argptr
, arg
, 0);
3901 ret
= get_errno(ioctl(fd
, ie
->host_cmd
, buf_temp
));
3902 if (!is_error(ret
)) {
3903 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
3905 return -TARGET_EFAULT
;
3906 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
3907 unlock_user(argptr
, arg
, target_size
);
3913 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
3914 (long)cmd
, arg_type
[0]);
3915 ret
= -TARGET_ENOSYS
;
3921 static const bitmask_transtbl iflag_tbl
[] = {
3922 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
3923 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
3924 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
3925 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
3926 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
3927 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
3928 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
3929 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
3930 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
3931 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
3932 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
3933 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
3934 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
3935 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
3939 static const bitmask_transtbl oflag_tbl
[] = {
3940 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
3941 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
3942 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
3943 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
3944 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
3945 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
3946 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
3947 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
3948 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
3949 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
3950 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
3951 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
3952 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
3953 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
3954 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
3955 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
3956 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
3957 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
3958 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
3959 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
3960 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
3961 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
3962 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
3963 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
3967 static const bitmask_transtbl cflag_tbl
[] = {
3968 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
3969 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
3970 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
3971 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
3972 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
3973 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
3974 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
3975 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
3976 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
3977 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
3978 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
3979 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
3980 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
3981 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
3982 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
3983 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
3984 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
3985 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
3986 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
3987 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
3988 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
3989 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
3990 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
3991 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
3992 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
3993 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
3994 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
3995 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
3996 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
3997 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
3998 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
4002 static const bitmask_transtbl lflag_tbl
[] = {
4003 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
4004 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
4005 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
4006 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
4007 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
4008 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
4009 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
4010 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
4011 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
4012 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
4013 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
4014 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
4015 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
4016 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
4017 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
4021 static void target_to_host_termios (void *dst
, const void *src
)
4023 struct host_termios
*host
= dst
;
4024 const struct target_termios
*target
= src
;
4027 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
4029 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
4031 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
4033 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
4034 host
->c_line
= target
->c_line
;
4036 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
4037 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
4038 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
4039 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
4040 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
4041 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
4042 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
4043 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
4044 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
4045 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
4046 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
4047 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
4048 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
4049 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
4050 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
4051 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
4052 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
4053 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
4056 static void host_to_target_termios (void *dst
, const void *src
)
4058 struct target_termios
*target
= dst
;
4059 const struct host_termios
*host
= src
;
4062 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
4064 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
4066 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
4068 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
4069 target
->c_line
= host
->c_line
;
4071 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
4072 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
4073 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
4074 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
4075 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
4076 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
4077 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
4078 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
4079 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
4080 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
4081 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
4082 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
4083 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
4084 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
4085 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
4086 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
4087 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
4088 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
4091 static const StructEntry struct_termios_def
= {
4092 .convert
= { host_to_target_termios
, target_to_host_termios
},
4093 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
4094 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
4097 static bitmask_transtbl mmap_flags_tbl
[] = {
4098 { TARGET_MAP_SHARED
, TARGET_MAP_SHARED
, MAP_SHARED
, MAP_SHARED
},
4099 { TARGET_MAP_PRIVATE
, TARGET_MAP_PRIVATE
, MAP_PRIVATE
, MAP_PRIVATE
},
4100 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
4101 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
, MAP_ANONYMOUS
, MAP_ANONYMOUS
},
4102 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
, MAP_GROWSDOWN
, MAP_GROWSDOWN
},
4103 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
, MAP_DENYWRITE
, MAP_DENYWRITE
},
4104 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
, MAP_EXECUTABLE
, MAP_EXECUTABLE
},
4105 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
4106 { TARGET_MAP_NORESERVE
, TARGET_MAP_NORESERVE
, MAP_NORESERVE
,
4111 #if defined(TARGET_I386)
4113 /* NOTE: there is really one LDT for all the threads */
4114 static uint8_t *ldt_table
;
4116 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
4123 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
4124 if (size
> bytecount
)
4126 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
4128 return -TARGET_EFAULT
;
4129 /* ??? Should this by byteswapped? */
4130 memcpy(p
, ldt_table
, size
);
4131 unlock_user(p
, ptr
, size
);
4135 /* XXX: add locking support */
4136 static abi_long
write_ldt(CPUX86State
*env
,
4137 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
4139 struct target_modify_ldt_ldt_s ldt_info
;
4140 struct target_modify_ldt_ldt_s
*target_ldt_info
;
4141 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
4142 int seg_not_present
, useable
, lm
;
4143 uint32_t *lp
, entry_1
, entry_2
;
4145 if (bytecount
!= sizeof(ldt_info
))
4146 return -TARGET_EINVAL
;
4147 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
4148 return -TARGET_EFAULT
;
4149 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
4150 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
4151 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
4152 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
4153 unlock_user_struct(target_ldt_info
, ptr
, 0);
4155 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
4156 return -TARGET_EINVAL
;
4157 seg_32bit
= ldt_info
.flags
& 1;
4158 contents
= (ldt_info
.flags
>> 1) & 3;
4159 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
4160 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
4161 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
4162 useable
= (ldt_info
.flags
>> 6) & 1;
4166 lm
= (ldt_info
.flags
>> 7) & 1;
4168 if (contents
== 3) {
4170 return -TARGET_EINVAL
;
4171 if (seg_not_present
== 0)
4172 return -TARGET_EINVAL
;
4174 /* allocate the LDT */
4176 env
->ldt
.base
= target_mmap(0,
4177 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
4178 PROT_READ
|PROT_WRITE
,
4179 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4180 if (env
->ldt
.base
== -1)
4181 return -TARGET_ENOMEM
;
4182 memset(g2h(env
->ldt
.base
), 0,
4183 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
4184 env
->ldt
.limit
= 0xffff;
4185 ldt_table
= g2h(env
->ldt
.base
);
4188 /* NOTE: same code as Linux kernel */
4189 /* Allow LDTs to be cleared by the user. */
4190 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
4193 read_exec_only
== 1 &&
4195 limit_in_pages
== 0 &&
4196 seg_not_present
== 1 &&
4204 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
4205 (ldt_info
.limit
& 0x0ffff);
4206 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
4207 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
4208 (ldt_info
.limit
& 0xf0000) |
4209 ((read_exec_only
^ 1) << 9) |
4211 ((seg_not_present
^ 1) << 15) |
4213 (limit_in_pages
<< 23) |
4217 entry_2
|= (useable
<< 20);
4219 /* Install the new entry ... */
4221 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
4222 lp
[0] = tswap32(entry_1
);
4223 lp
[1] = tswap32(entry_2
);
4227 /* specific and weird i386 syscalls */
4228 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
4229 unsigned long bytecount
)
4235 ret
= read_ldt(ptr
, bytecount
);
4238 ret
= write_ldt(env
, ptr
, bytecount
, 1);
4241 ret
= write_ldt(env
, ptr
, bytecount
, 0);
4244 ret
= -TARGET_ENOSYS
;
4250 #if defined(TARGET_I386) && defined(TARGET_ABI32)
4251 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
4253 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
4254 struct target_modify_ldt_ldt_s ldt_info
;
4255 struct target_modify_ldt_ldt_s
*target_ldt_info
;
4256 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
4257 int seg_not_present
, useable
, lm
;
4258 uint32_t *lp
, entry_1
, entry_2
;
4261 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
4262 if (!target_ldt_info
)
4263 return -TARGET_EFAULT
;
4264 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
4265 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
4266 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
4267 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
4268 if (ldt_info
.entry_number
== -1) {
4269 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
4270 if (gdt_table
[i
] == 0) {
4271 ldt_info
.entry_number
= i
;
4272 target_ldt_info
->entry_number
= tswap32(i
);
4277 unlock_user_struct(target_ldt_info
, ptr
, 1);
4279 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
4280 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
4281 return -TARGET_EINVAL
;
4282 seg_32bit
= ldt_info
.flags
& 1;
4283 contents
= (ldt_info
.flags
>> 1) & 3;
4284 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
4285 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
4286 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
4287 useable
= (ldt_info
.flags
>> 6) & 1;
4291 lm
= (ldt_info
.flags
>> 7) & 1;
4294 if (contents
== 3) {
4295 if (seg_not_present
== 0)
4296 return -TARGET_EINVAL
;
4299 /* NOTE: same code as Linux kernel */
4300 /* Allow LDTs to be cleared by the user. */
4301 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
4302 if ((contents
== 0 &&
4303 read_exec_only
== 1 &&
4305 limit_in_pages
== 0 &&
4306 seg_not_present
== 1 &&
4314 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
4315 (ldt_info
.limit
& 0x0ffff);
4316 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
4317 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
4318 (ldt_info
.limit
& 0xf0000) |
4319 ((read_exec_only
^ 1) << 9) |
4321 ((seg_not_present
^ 1) << 15) |
4323 (limit_in_pages
<< 23) |
4328 /* Install the new entry ... */
4330 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
4331 lp
[0] = tswap32(entry_1
);
4332 lp
[1] = tswap32(entry_2
);
4336 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
4338 struct target_modify_ldt_ldt_s
*target_ldt_info
;
4339 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
4340 uint32_t base_addr
, limit
, flags
;
4341 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
4342 int seg_not_present
, useable
, lm
;
4343 uint32_t *lp
, entry_1
, entry_2
;
4345 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
4346 if (!target_ldt_info
)
4347 return -TARGET_EFAULT
;
4348 idx
= tswap32(target_ldt_info
->entry_number
);
4349 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
4350 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
4351 unlock_user_struct(target_ldt_info
, ptr
, 1);
4352 return -TARGET_EINVAL
;
4354 lp
= (uint32_t *)(gdt_table
+ idx
);
4355 entry_1
= tswap32(lp
[0]);
4356 entry_2
= tswap32(lp
[1]);
4358 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
4359 contents
= (entry_2
>> 10) & 3;
4360 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
4361 seg_32bit
= (entry_2
>> 22) & 1;
4362 limit_in_pages
= (entry_2
>> 23) & 1;
4363 useable
= (entry_2
>> 20) & 1;
4367 lm
= (entry_2
>> 21) & 1;
4369 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
4370 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
4371 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
4372 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
4373 base_addr
= (entry_1
>> 16) |
4374 (entry_2
& 0xff000000) |
4375 ((entry_2
& 0xff) << 16);
4376 target_ldt_info
->base_addr
= tswapal(base_addr
);
4377 target_ldt_info
->limit
= tswap32(limit
);
4378 target_ldt_info
->flags
= tswap32(flags
);
4379 unlock_user_struct(target_ldt_info
, ptr
, 1);
4382 #endif /* TARGET_I386 && TARGET_ABI32 */
4384 #ifndef TARGET_ABI32
4385 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
4392 case TARGET_ARCH_SET_GS
:
4393 case TARGET_ARCH_SET_FS
:
4394 if (code
== TARGET_ARCH_SET_GS
)
4398 cpu_x86_load_seg(env
, idx
, 0);
4399 env
->segs
[idx
].base
= addr
;
4401 case TARGET_ARCH_GET_GS
:
4402 case TARGET_ARCH_GET_FS
:
4403 if (code
== TARGET_ARCH_GET_GS
)
4407 val
= env
->segs
[idx
].base
;
4408 if (put_user(val
, addr
, abi_ulong
))
4409 ret
= -TARGET_EFAULT
;
4412 ret
= -TARGET_EINVAL
;
4419 #endif /* defined(TARGET_I386) */
4421 #define NEW_STACK_SIZE 0x40000
4424 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
4427 pthread_mutex_t mutex
;
4428 pthread_cond_t cond
;
4431 abi_ulong child_tidptr
;
4432 abi_ulong parent_tidptr
;
4436 static void *clone_func(void *arg
)
4438 new_thread_info
*info
= arg
;
4444 cpu
= ENV_GET_CPU(env
);
4446 ts
= (TaskState
*)cpu
->opaque
;
4447 info
->tid
= gettid();
4448 cpu
->host_tid
= info
->tid
;
4450 if (info
->child_tidptr
)
4451 put_user_u32(info
->tid
, info
->child_tidptr
);
4452 if (info
->parent_tidptr
)
4453 put_user_u32(info
->tid
, info
->parent_tidptr
);
4454 /* Enable signals. */
4455 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
4456 /* Signal to the parent that we're ready. */
4457 pthread_mutex_lock(&info
->mutex
);
4458 pthread_cond_broadcast(&info
->cond
);
4459 pthread_mutex_unlock(&info
->mutex
);
4460 /* Wait until the parent has finshed initializing the tls state. */
4461 pthread_mutex_lock(&clone_lock
);
4462 pthread_mutex_unlock(&clone_lock
);
4468 /* do_fork() Must return host values and target errnos (unlike most
4469 do_*() functions). */
4470 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
4471 abi_ulong parent_tidptr
, target_ulong newtls
,
4472 abi_ulong child_tidptr
)
4474 CPUState
*cpu
= ENV_GET_CPU(env
);
4478 CPUArchState
*new_env
;
4479 unsigned int nptl_flags
;
4482 /* Emulate vfork() with fork() */
4483 if (flags
& CLONE_VFORK
)
4484 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
4486 if (flags
& CLONE_VM
) {
4487 TaskState
*parent_ts
= (TaskState
*)cpu
->opaque
;
4488 new_thread_info info
;
4489 pthread_attr_t attr
;
4491 ts
= g_malloc0(sizeof(TaskState
));
4492 init_task_state(ts
);
4493 /* we create a new CPU instance. */
4494 new_env
= cpu_copy(env
);
4495 /* Init regs that differ from the parent. */
4496 cpu_clone_regs(new_env
, newsp
);
4497 new_cpu
= ENV_GET_CPU(new_env
);
4498 new_cpu
->opaque
= ts
;
4499 ts
->bprm
= parent_ts
->bprm
;
4500 ts
->info
= parent_ts
->info
;
4502 flags
&= ~CLONE_NPTL_FLAGS2
;
4504 if (nptl_flags
& CLONE_CHILD_CLEARTID
) {
4505 ts
->child_tidptr
= child_tidptr
;
4508 if (nptl_flags
& CLONE_SETTLS
)
4509 cpu_set_tls (new_env
, newtls
);
4511 /* Grab a mutex so that thread setup appears atomic. */
4512 pthread_mutex_lock(&clone_lock
);
4514 memset(&info
, 0, sizeof(info
));
4515 pthread_mutex_init(&info
.mutex
, NULL
);
4516 pthread_mutex_lock(&info
.mutex
);
4517 pthread_cond_init(&info
.cond
, NULL
);
4519 if (nptl_flags
& CLONE_CHILD_SETTID
)
4520 info
.child_tidptr
= child_tidptr
;
4521 if (nptl_flags
& CLONE_PARENT_SETTID
)
4522 info
.parent_tidptr
= parent_tidptr
;
4524 ret
= pthread_attr_init(&attr
);
4525 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
4526 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
4527 /* It is not safe to deliver signals until the child has finished
4528 initializing, so temporarily block all signals. */
4529 sigfillset(&sigmask
);
4530 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
4532 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
4533 /* TODO: Free new CPU state if thread creation failed. */
4535 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
4536 pthread_attr_destroy(&attr
);
4538 /* Wait for the child to initialize. */
4539 pthread_cond_wait(&info
.cond
, &info
.mutex
);
4541 if (flags
& CLONE_PARENT_SETTID
)
4542 put_user_u32(ret
, parent_tidptr
);
4546 pthread_mutex_unlock(&info
.mutex
);
4547 pthread_cond_destroy(&info
.cond
);
4548 pthread_mutex_destroy(&info
.mutex
);
4549 pthread_mutex_unlock(&clone_lock
);
4551 /* if no CLONE_VM, we consider it is a fork */
4552 if ((flags
& ~(CSIGNAL
| CLONE_NPTL_FLAGS2
)) != 0)
4557 /* Child Process. */
4558 cpu_clone_regs(env
, newsp
);
4560 /* There is a race condition here. The parent process could
4561 theoretically read the TID in the child process before the child
4562 tid is set. This would require using either ptrace
4563 (not implemented) or having *_tidptr to point at a shared memory
4564 mapping. We can't repeat the spinlock hack used above because
4565 the child process gets its own copy of the lock. */
4566 if (flags
& CLONE_CHILD_SETTID
)
4567 put_user_u32(gettid(), child_tidptr
);
4568 if (flags
& CLONE_PARENT_SETTID
)
4569 put_user_u32(gettid(), parent_tidptr
);
4570 ts
= (TaskState
*)cpu
->opaque
;
4571 if (flags
& CLONE_SETTLS
)
4572 cpu_set_tls (env
, newtls
);
4573 if (flags
& CLONE_CHILD_CLEARTID
)
4574 ts
->child_tidptr
= child_tidptr
;
4582 /* warning : doesn't handle linux specific flags... */
4583 static int target_to_host_fcntl_cmd(int cmd
)
4586 case TARGET_F_DUPFD
:
4587 case TARGET_F_GETFD
:
4588 case TARGET_F_SETFD
:
4589 case TARGET_F_GETFL
:
4590 case TARGET_F_SETFL
:
4592 case TARGET_F_GETLK
:
4594 case TARGET_F_SETLK
:
4596 case TARGET_F_SETLKW
:
4598 case TARGET_F_GETOWN
:
4600 case TARGET_F_SETOWN
:
4602 case TARGET_F_GETSIG
:
4604 case TARGET_F_SETSIG
:
4606 #if TARGET_ABI_BITS == 32
4607 case TARGET_F_GETLK64
:
4609 case TARGET_F_SETLK64
:
4611 case TARGET_F_SETLKW64
:
4614 case TARGET_F_SETLEASE
:
4616 case TARGET_F_GETLEASE
:
4618 #ifdef F_DUPFD_CLOEXEC
4619 case TARGET_F_DUPFD_CLOEXEC
:
4620 return F_DUPFD_CLOEXEC
;
4622 case TARGET_F_NOTIFY
:
4625 case TARGET_F_GETOWN_EX
:
4629 case TARGET_F_SETOWN_EX
:
4633 return -TARGET_EINVAL
;
4635 return -TARGET_EINVAL
;
4638 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
4639 static const bitmask_transtbl flock_tbl
[] = {
4640 TRANSTBL_CONVERT(F_RDLCK
),
4641 TRANSTBL_CONVERT(F_WRLCK
),
4642 TRANSTBL_CONVERT(F_UNLCK
),
4643 TRANSTBL_CONVERT(F_EXLCK
),
4644 TRANSTBL_CONVERT(F_SHLCK
),
4648 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
4651 struct target_flock
*target_fl
;
4652 struct flock64 fl64
;
4653 struct target_flock64
*target_fl64
;
4655 struct f_owner_ex fox
;
4656 struct target_f_owner_ex
*target_fox
;
4659 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
4661 if (host_cmd
== -TARGET_EINVAL
)
4665 case TARGET_F_GETLK
:
4666 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg
, 1))
4667 return -TARGET_EFAULT
;
4669 target_to_host_bitmask(tswap16(target_fl
->l_type
), flock_tbl
);
4670 fl
.l_whence
= tswap16(target_fl
->l_whence
);
4671 fl
.l_start
= tswapal(target_fl
->l_start
);
4672 fl
.l_len
= tswapal(target_fl
->l_len
);
4673 fl
.l_pid
= tswap32(target_fl
->l_pid
);
4674 unlock_user_struct(target_fl
, arg
, 0);
4675 ret
= get_errno(fcntl(fd
, host_cmd
, &fl
));
4677 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, arg
, 0))
4678 return -TARGET_EFAULT
;
4680 host_to_target_bitmask(tswap16(fl
.l_type
), flock_tbl
);
4681 target_fl
->l_whence
= tswap16(fl
.l_whence
);
4682 target_fl
->l_start
= tswapal(fl
.l_start
);
4683 target_fl
->l_len
= tswapal(fl
.l_len
);
4684 target_fl
->l_pid
= tswap32(fl
.l_pid
);
4685 unlock_user_struct(target_fl
, arg
, 1);
4689 case TARGET_F_SETLK
:
4690 case TARGET_F_SETLKW
:
4691 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg
, 1))
4692 return -TARGET_EFAULT
;
4694 target_to_host_bitmask(tswap16(target_fl
->l_type
), flock_tbl
);
4695 fl
.l_whence
= tswap16(target_fl
->l_whence
);
4696 fl
.l_start
= tswapal(target_fl
->l_start
);
4697 fl
.l_len
= tswapal(target_fl
->l_len
);
4698 fl
.l_pid
= tswap32(target_fl
->l_pid
);
4699 unlock_user_struct(target_fl
, arg
, 0);
4700 ret
= get_errno(fcntl(fd
, host_cmd
, &fl
));
4703 case TARGET_F_GETLK64
:
4704 if (!lock_user_struct(VERIFY_READ
, target_fl64
, arg
, 1))
4705 return -TARGET_EFAULT
;
4707 target_to_host_bitmask(tswap16(target_fl64
->l_type
), flock_tbl
) >> 1;
4708 fl64
.l_whence
= tswap16(target_fl64
->l_whence
);
4709 fl64
.l_start
= tswap64(target_fl64
->l_start
);
4710 fl64
.l_len
= tswap64(target_fl64
->l_len
);
4711 fl64
.l_pid
= tswap32(target_fl64
->l_pid
);
4712 unlock_user_struct(target_fl64
, arg
, 0);
4713 ret
= get_errno(fcntl(fd
, host_cmd
, &fl64
));
4715 if (!lock_user_struct(VERIFY_WRITE
, target_fl64
, arg
, 0))
4716 return -TARGET_EFAULT
;
4717 target_fl64
->l_type
=
4718 host_to_target_bitmask(tswap16(fl64
.l_type
), flock_tbl
) >> 1;
4719 target_fl64
->l_whence
= tswap16(fl64
.l_whence
);
4720 target_fl64
->l_start
= tswap64(fl64
.l_start
);
4721 target_fl64
->l_len
= tswap64(fl64
.l_len
);
4722 target_fl64
->l_pid
= tswap32(fl64
.l_pid
);
4723 unlock_user_struct(target_fl64
, arg
, 1);
4726 case TARGET_F_SETLK64
:
4727 case TARGET_F_SETLKW64
:
4728 if (!lock_user_struct(VERIFY_READ
, target_fl64
, arg
, 1))
4729 return -TARGET_EFAULT
;
4731 target_to_host_bitmask(tswap16(target_fl64
->l_type
), flock_tbl
) >> 1;
4732 fl64
.l_whence
= tswap16(target_fl64
->l_whence
);
4733 fl64
.l_start
= tswap64(target_fl64
->l_start
);
4734 fl64
.l_len
= tswap64(target_fl64
->l_len
);
4735 fl64
.l_pid
= tswap32(target_fl64
->l_pid
);
4736 unlock_user_struct(target_fl64
, arg
, 0);
4737 ret
= get_errno(fcntl(fd
, host_cmd
, &fl64
));
4740 case TARGET_F_GETFL
:
4741 ret
= get_errno(fcntl(fd
, host_cmd
, arg
));
4743 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
4747 case TARGET_F_SETFL
:
4748 ret
= get_errno(fcntl(fd
, host_cmd
, target_to_host_bitmask(arg
, fcntl_flags_tbl
)));
4752 case TARGET_F_GETOWN_EX
:
4753 ret
= get_errno(fcntl(fd
, host_cmd
, &fox
));
4755 if (!lock_user_struct(VERIFY_WRITE
, target_fox
, arg
, 0))
4756 return -TARGET_EFAULT
;
4757 target_fox
->type
= tswap32(fox
.type
);
4758 target_fox
->pid
= tswap32(fox
.pid
);
4759 unlock_user_struct(target_fox
, arg
, 1);
4765 case TARGET_F_SETOWN_EX
:
4766 if (!lock_user_struct(VERIFY_READ
, target_fox
, arg
, 1))
4767 return -TARGET_EFAULT
;
4768 fox
.type
= tswap32(target_fox
->type
);
4769 fox
.pid
= tswap32(target_fox
->pid
);
4770 unlock_user_struct(target_fox
, arg
, 0);
4771 ret
= get_errno(fcntl(fd
, host_cmd
, &fox
));
4775 case TARGET_F_SETOWN
:
4776 case TARGET_F_GETOWN
:
4777 case TARGET_F_SETSIG
:
4778 case TARGET_F_GETSIG
:
4779 case TARGET_F_SETLEASE
:
4780 case TARGET_F_GETLEASE
:
4781 ret
= get_errno(fcntl(fd
, host_cmd
, arg
));
4785 ret
= get_errno(fcntl(fd
, cmd
, arg
));
4793 static inline int high2lowuid(int uid
)
4801 static inline int high2lowgid(int gid
)
4809 static inline int low2highuid(int uid
)
4811 if ((int16_t)uid
== -1)
4817 static inline int low2highgid(int gid
)
4819 if ((int16_t)gid
== -1)
4824 static inline int tswapid(int id
)
4829 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
4831 #else /* !USE_UID16 */
4832 static inline int high2lowuid(int uid
)
4836 static inline int high2lowgid(int gid
)
4840 static inline int low2highuid(int uid
)
4844 static inline int low2highgid(int gid
)
4848 static inline int tswapid(int id
)
4853 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
4855 #endif /* USE_UID16 */
4857 void syscall_init(void)
4860 const argtype
*arg_type
;
4864 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
4865 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
4866 #include "syscall_types.h"
4868 #undef STRUCT_SPECIAL
4870 /* Build target_to_host_errno_table[] table from
4871 * host_to_target_errno_table[]. */
4872 for (i
= 0; i
< ERRNO_TABLE_SIZE
; i
++) {
4873 target_to_host_errno_table
[host_to_target_errno_table
[i
]] = i
;
4876 /* we patch the ioctl size if necessary. We rely on the fact that
4877 no ioctl has all the bits at '1' in the size field */
4879 while (ie
->target_cmd
!= 0) {
4880 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
4881 TARGET_IOC_SIZEMASK
) {
4882 arg_type
= ie
->arg_type
;
4883 if (arg_type
[0] != TYPE_PTR
) {
4884 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
4889 size
= thunk_type_size(arg_type
, 0);
4890 ie
->target_cmd
= (ie
->target_cmd
&
4891 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
4892 (size
<< TARGET_IOC_SIZESHIFT
);
4895 /* automatic consistency check if same arch */
4896 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
4897 (defined(__x86_64__) && defined(TARGET_X86_64))
4898 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
4899 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
4900 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
4907 #if TARGET_ABI_BITS == 32
4908 static inline uint64_t target_offset64(uint32_t word0
, uint32_t word1
)
4910 #ifdef TARGET_WORDS_BIGENDIAN
4911 return ((uint64_t)word0
<< 32) | word1
;
4913 return ((uint64_t)word1
<< 32) | word0
;
4916 #else /* TARGET_ABI_BITS == 32 */
4917 static inline uint64_t target_offset64(uint64_t word0
, uint64_t word1
)
4921 #endif /* TARGET_ABI_BITS != 32 */
4923 #ifdef TARGET_NR_truncate64
4924 static inline abi_long
target_truncate64(void *cpu_env
, const char *arg1
,
4929 if (regpairs_aligned(cpu_env
)) {
4933 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
4937 #ifdef TARGET_NR_ftruncate64
4938 static inline abi_long
target_ftruncate64(void *cpu_env
, abi_long arg1
,
4943 if (regpairs_aligned(cpu_env
)) {
4947 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
4951 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
4952 abi_ulong target_addr
)
4954 struct target_timespec
*target_ts
;
4956 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1))
4957 return -TARGET_EFAULT
;
4958 host_ts
->tv_sec
= tswapal(target_ts
->tv_sec
);
4959 host_ts
->tv_nsec
= tswapal(target_ts
->tv_nsec
);
4960 unlock_user_struct(target_ts
, target_addr
, 0);
4964 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
4965 struct timespec
*host_ts
)
4967 struct target_timespec
*target_ts
;
4969 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0))
4970 return -TARGET_EFAULT
;
4971 target_ts
->tv_sec
= tswapal(host_ts
->tv_sec
);
4972 target_ts
->tv_nsec
= tswapal(host_ts
->tv_nsec
);
4973 unlock_user_struct(target_ts
, target_addr
, 1);
4977 static inline abi_long
target_to_host_itimerspec(struct itimerspec
*host_itspec
,
4978 abi_ulong target_addr
)
4980 struct target_itimerspec
*target_itspec
;
4982 if (!lock_user_struct(VERIFY_READ
, target_itspec
, target_addr
, 1)) {
4983 return -TARGET_EFAULT
;
4986 host_itspec
->it_interval
.tv_sec
=
4987 tswapal(target_itspec
->it_interval
.tv_sec
);
4988 host_itspec
->it_interval
.tv_nsec
=
4989 tswapal(target_itspec
->it_interval
.tv_nsec
);
4990 host_itspec
->it_value
.tv_sec
= tswapal(target_itspec
->it_value
.tv_sec
);
4991 host_itspec
->it_value
.tv_nsec
= tswapal(target_itspec
->it_value
.tv_nsec
);
4993 unlock_user_struct(target_itspec
, target_addr
, 1);
4997 static inline abi_long
host_to_target_itimerspec(abi_ulong target_addr
,
4998 struct itimerspec
*host_its
)
5000 struct target_itimerspec
*target_itspec
;
5002 if (!lock_user_struct(VERIFY_WRITE
, target_itspec
, target_addr
, 0)) {
5003 return -TARGET_EFAULT
;
5006 target_itspec
->it_interval
.tv_sec
= tswapal(host_its
->it_interval
.tv_sec
);
5007 target_itspec
->it_interval
.tv_nsec
= tswapal(host_its
->it_interval
.tv_nsec
);
5009 target_itspec
->it_value
.tv_sec
= tswapal(host_its
->it_value
.tv_sec
);
5010 target_itspec
->it_value
.tv_nsec
= tswapal(host_its
->it_value
.tv_nsec
);
5012 unlock_user_struct(target_itspec
, target_addr
, 0);
5016 static inline abi_long
target_to_host_sigevent(struct sigevent
*host_sevp
,
5017 abi_ulong target_addr
)
5019 struct target_sigevent
*target_sevp
;
5021 if (!lock_user_struct(VERIFY_READ
, target_sevp
, target_addr
, 1)) {
5022 return -TARGET_EFAULT
;
5025 /* This union is awkward on 64 bit systems because it has a 32 bit
5026 * integer and a pointer in it; we follow the conversion approach
5027 * used for handling sigval types in signal.c so the guest should get
5028 * the correct value back even if we did a 64 bit byteswap and it's
5029 * using the 32 bit integer.
5031 host_sevp
->sigev_value
.sival_ptr
=
5032 (void *)(uintptr_t)tswapal(target_sevp
->sigev_value
.sival_ptr
);
5033 host_sevp
->sigev_signo
=
5034 target_to_host_signal(tswap32(target_sevp
->sigev_signo
));
5035 host_sevp
->sigev_notify
= tswap32(target_sevp
->sigev_notify
);
5036 host_sevp
->_sigev_un
._tid
= tswap32(target_sevp
->_sigev_un
._tid
);
5038 unlock_user_struct(target_sevp
, target_addr
, 1);
5042 #if defined(TARGET_NR_mlockall)
5043 static inline int target_to_host_mlockall_arg(int arg
)
5047 if (arg
& TARGET_MLOCKALL_MCL_CURRENT
) {
5048 result
|= MCL_CURRENT
;
5050 if (arg
& TARGET_MLOCKALL_MCL_FUTURE
) {
5051 result
|= MCL_FUTURE
;
5057 #if defined(TARGET_NR_stat64) || defined(TARGET_NR_newfstatat)
5058 static inline abi_long
host_to_target_stat64(void *cpu_env
,
5059 abi_ulong target_addr
,
5060 struct stat
*host_st
)
5062 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
5063 if (((CPUARMState
*)cpu_env
)->eabi
) {
5064 struct target_eabi_stat64
*target_st
;
5066 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
5067 return -TARGET_EFAULT
;
5068 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
5069 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
5070 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
5071 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
5072 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
5074 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
5075 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
5076 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
5077 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
5078 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
5079 __put_user(host_st
->st_size
, &target_st
->st_size
);
5080 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
5081 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
5082 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
5083 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
5084 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
5085 unlock_user_struct(target_st
, target_addr
, 1);
5089 #if defined(TARGET_HAS_STRUCT_STAT64)
5090 struct target_stat64
*target_st
;
5092 struct target_stat
*target_st
;
5095 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
5096 return -TARGET_EFAULT
;
5097 memset(target_st
, 0, sizeof(*target_st
));
5098 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
5099 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
5100 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
5101 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
5103 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
5104 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
5105 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
5106 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
5107 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
5108 /* XXX: better use of kernel struct */
5109 __put_user(host_st
->st_size
, &target_st
->st_size
);
5110 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
5111 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
5112 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
5113 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
5114 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
5115 unlock_user_struct(target_st
, target_addr
, 1);
5122 /* ??? Using host futex calls even when target atomic operations
5123 are not really atomic probably breaks things. However implementing
5124 futexes locally would make futexes shared between multiple processes
5125 tricky. However they're probably useless because guest atomic
5126 operations won't work either. */
5127 static int do_futex(target_ulong uaddr
, int op
, int val
, target_ulong timeout
,
5128 target_ulong uaddr2
, int val3
)
5130 struct timespec ts
, *pts
;
5133 /* ??? We assume FUTEX_* constants are the same on both host
5135 #ifdef FUTEX_CMD_MASK
5136 base_op
= op
& FUTEX_CMD_MASK
;
5142 case FUTEX_WAIT_BITSET
:
5145 target_to_host_timespec(pts
, timeout
);
5149 return get_errno(sys_futex(g2h(uaddr
), op
, tswap32(val
),
5152 return get_errno(sys_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
5154 return get_errno(sys_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
5156 case FUTEX_CMP_REQUEUE
:
5158 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
5159 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
5160 But the prototype takes a `struct timespec *'; insert casts
5161 to satisfy the compiler. We do not need to tswap TIMEOUT
5162 since it's not compared to guest memory. */
5163 pts
= (struct timespec
*)(uintptr_t) timeout
;
5164 return get_errno(sys_futex(g2h(uaddr
), op
, val
, pts
,
5166 (base_op
== FUTEX_CMP_REQUEUE
5170 return -TARGET_ENOSYS
;
5174 /* Map host to target signal numbers for the wait family of syscalls.
5175 Assume all other status bits are the same. */
5176 int host_to_target_waitstatus(int status
)
5178 if (WIFSIGNALED(status
)) {
5179 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
5181 if (WIFSTOPPED(status
)) {
5182 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
5188 static int open_self_cmdline(void *cpu_env
, int fd
)
5191 bool word_skipped
= false;
5193 fd_orig
= open("/proc/self/cmdline", O_RDONLY
);
5203 nb_read
= read(fd_orig
, buf
, sizeof(buf
));
5205 fd_orig
= close(fd_orig
);
5207 } else if (nb_read
== 0) {
5211 if (!word_skipped
) {
5212 /* Skip the first string, which is the path to qemu-*-static
5213 instead of the actual command. */
5214 cp_buf
= memchr(buf
, 0, sizeof(buf
));
5216 /* Null byte found, skip one string */
5218 nb_read
-= cp_buf
- buf
;
5219 word_skipped
= true;
5224 if (write(fd
, cp_buf
, nb_read
) != nb_read
) {
5231 return close(fd_orig
);
5234 static int open_self_maps(void *cpu_env
, int fd
)
5236 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
5237 TaskState
*ts
= cpu
->opaque
;
5243 fp
= fopen("/proc/self/maps", "r");
5248 while ((read
= getline(&line
, &len
, fp
)) != -1) {
5249 int fields
, dev_maj
, dev_min
, inode
;
5250 uint64_t min
, max
, offset
;
5251 char flag_r
, flag_w
, flag_x
, flag_p
;
5252 char path
[512] = "";
5253 fields
= sscanf(line
, "%"PRIx64
"-%"PRIx64
" %c%c%c%c %"PRIx64
" %x:%x %d"
5254 " %512s", &min
, &max
, &flag_r
, &flag_w
, &flag_x
,
5255 &flag_p
, &offset
, &dev_maj
, &dev_min
, &inode
, path
);
5257 if ((fields
< 10) || (fields
> 11)) {
5260 if (h2g_valid(min
)) {
5261 int flags
= page_get_flags(h2g(min
));
5262 max
= h2g_valid(max
- 1) ? max
: (uintptr_t)g2h(GUEST_ADDR_MAX
);
5263 if (page_check_range(h2g(min
), max
- min
, flags
) == -1) {
5266 if (h2g(min
) == ts
->info
->stack_limit
) {
5267 pstrcpy(path
, sizeof(path
), " [stack]");
5269 dprintf(fd
, TARGET_ABI_FMT_lx
"-" TARGET_ABI_FMT_lx
5270 " %c%c%c%c %08" PRIx64
" %02x:%02x %d %s%s\n",
5271 h2g(min
), h2g(max
- 1) + 1, flag_r
, flag_w
,
5272 flag_x
, flag_p
, offset
, dev_maj
, dev_min
, inode
,
5273 path
[0] ? " " : "", path
);
5283 static int open_self_stat(void *cpu_env
, int fd
)
5285 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
5286 TaskState
*ts
= cpu
->opaque
;
5287 abi_ulong start_stack
= ts
->info
->start_stack
;
5290 for (i
= 0; i
< 44; i
++) {
5298 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
5299 } else if (i
== 1) {
5301 snprintf(buf
, sizeof(buf
), "(%s) ", ts
->bprm
->argv
[0]);
5302 } else if (i
== 27) {
5305 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
5307 /* for the rest, there is MasterCard */
5308 snprintf(buf
, sizeof(buf
), "0%c", i
== 43 ? '\n' : ' ');
5312 if (write(fd
, buf
, len
) != len
) {
5320 static int open_self_auxv(void *cpu_env
, int fd
)
5322 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
5323 TaskState
*ts
= cpu
->opaque
;
5324 abi_ulong auxv
= ts
->info
->saved_auxv
;
5325 abi_ulong len
= ts
->info
->auxv_len
;
5329 * Auxiliary vector is stored in target process stack.
5330 * read in whole auxv vector and copy it to file
5332 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
5336 r
= write(fd
, ptr
, len
);
5343 lseek(fd
, 0, SEEK_SET
);
5344 unlock_user(ptr
, auxv
, len
);
5350 static int is_proc_myself(const char *filename
, const char *entry
)
5352 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
5353 filename
+= strlen("/proc/");
5354 if (!strncmp(filename
, "self/", strlen("self/"))) {
5355 filename
+= strlen("self/");
5356 } else if (*filename
>= '1' && *filename
<= '9') {
5358 snprintf(myself
, sizeof(myself
), "%d/", getpid());
5359 if (!strncmp(filename
, myself
, strlen(myself
))) {
5360 filename
+= strlen(myself
);
5367 if (!strcmp(filename
, entry
)) {
5374 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
5375 static int is_proc(const char *filename
, const char *entry
)
5377 return strcmp(filename
, entry
) == 0;
5380 static int open_net_route(void *cpu_env
, int fd
)
5387 fp
= fopen("/proc/net/route", "r");
5394 read
= getline(&line
, &len
, fp
);
5395 dprintf(fd
, "%s", line
);
5399 while ((read
= getline(&line
, &len
, fp
)) != -1) {
5401 uint32_t dest
, gw
, mask
;
5402 unsigned int flags
, refcnt
, use
, metric
, mtu
, window
, irtt
;
5403 sscanf(line
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
5404 iface
, &dest
, &gw
, &flags
, &refcnt
, &use
, &metric
,
5405 &mask
, &mtu
, &window
, &irtt
);
5406 dprintf(fd
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
5407 iface
, tswap32(dest
), tswap32(gw
), flags
, refcnt
, use
,
5408 metric
, tswap32(mask
), mtu
, window
, irtt
);
5418 static int do_openat(void *cpu_env
, int dirfd
, const char *pathname
, int flags
, mode_t mode
)
5421 const char *filename
;
5422 int (*fill
)(void *cpu_env
, int fd
);
5423 int (*cmp
)(const char *s1
, const char *s2
);
5425 const struct fake_open
*fake_open
;
5426 static const struct fake_open fakes
[] = {
5427 { "maps", open_self_maps
, is_proc_myself
},
5428 { "stat", open_self_stat
, is_proc_myself
},
5429 { "auxv", open_self_auxv
, is_proc_myself
},
5430 { "cmdline", open_self_cmdline
, is_proc_myself
},
5431 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
5432 { "/proc/net/route", open_net_route
, is_proc
},
5434 { NULL
, NULL
, NULL
}
5437 if (is_proc_myself(pathname
, "exe")) {
5438 int execfd
= qemu_getauxval(AT_EXECFD
);
5439 return execfd
? execfd
: get_errno(sys_openat(dirfd
, exec_path
, flags
, mode
));
5442 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
5443 if (fake_open
->cmp(pathname
, fake_open
->filename
)) {
5448 if (fake_open
->filename
) {
5450 char filename
[PATH_MAX
];
5453 /* create temporary file to map stat to */
5454 tmpdir
= getenv("TMPDIR");
5457 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
5458 fd
= mkstemp(filename
);
5464 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
5468 lseek(fd
, 0, SEEK_SET
);
5473 return get_errno(sys_openat(dirfd
, path(pathname
), flags
, mode
));
5476 #define TIMER_MAGIC 0x0caf0000
5477 #define TIMER_MAGIC_MASK 0xffff0000
5479 /* Convert QEMU provided timer ID back to internal 16bit index format */
5480 static target_timer_t
get_timer_id(abi_long arg
)
5482 target_timer_t timerid
= arg
;
5484 if ((timerid
& TIMER_MAGIC_MASK
) != TIMER_MAGIC
) {
5485 return -TARGET_EINVAL
;
5490 if (timerid
>= ARRAY_SIZE(g_posix_timers
)) {
5491 return -TARGET_EINVAL
;
5497 /* do_syscall() should always have a single exit point at the end so
5498 that actions, such as logging of syscall results, can be performed.
5499 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
5500 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
5501 abi_long arg2
, abi_long arg3
, abi_long arg4
,
5502 abi_long arg5
, abi_long arg6
, abi_long arg7
,
5505 CPUState
*cpu
= ENV_GET_CPU(cpu_env
);
5512 gemu_log("syscall %d", num
);
5515 print_syscall(num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
5518 case TARGET_NR_exit
:
5519 /* In old applications this may be used to implement _exit(2).
5520 However in threaded applictions it is used for thread termination,
5521 and _exit_group is used for application termination.
5522 Do thread termination if we have more then one thread. */
5523 /* FIXME: This probably breaks if a signal arrives. We should probably
5524 be disabling signals. */
5525 if (CPU_NEXT(first_cpu
)) {
5529 /* Remove the CPU from the list. */
5530 QTAILQ_REMOVE(&cpus
, cpu
, node
);
5533 if (ts
->child_tidptr
) {
5534 put_user_u32(0, ts
->child_tidptr
);
5535 sys_futex(g2h(ts
->child_tidptr
), FUTEX_WAKE
, INT_MAX
,
5539 object_unref(OBJECT(cpu
));
5546 gdb_exit(cpu_env
, arg1
);
5548 ret
= 0; /* avoid warning */
5550 case TARGET_NR_read
:
5554 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
5556 ret
= get_errno(read(arg1
, p
, arg3
));
5557 unlock_user(p
, arg2
, ret
);
5560 case TARGET_NR_write
:
5561 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
5563 ret
= get_errno(write(arg1
, p
, arg3
));
5564 unlock_user(p
, arg2
, 0);
5566 case TARGET_NR_open
:
5567 if (!(p
= lock_user_string(arg1
)))
5569 ret
= get_errno(do_openat(cpu_env
, AT_FDCWD
, p
,
5570 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
5572 unlock_user(p
, arg1
, 0);
5574 case TARGET_NR_openat
:
5575 if (!(p
= lock_user_string(arg2
)))
5577 ret
= get_errno(do_openat(cpu_env
, arg1
, p
,
5578 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
5580 unlock_user(p
, arg2
, 0);
5582 case TARGET_NR_close
:
5583 ret
= get_errno(close(arg1
));
5588 case TARGET_NR_fork
:
5589 ret
= get_errno(do_fork(cpu_env
, SIGCHLD
, 0, 0, 0, 0));
5591 #ifdef TARGET_NR_waitpid
5592 case TARGET_NR_waitpid
:
5595 ret
= get_errno(waitpid(arg1
, &status
, arg3
));
5596 if (!is_error(ret
) && arg2
&& ret
5597 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
5602 #ifdef TARGET_NR_waitid
5603 case TARGET_NR_waitid
:
5607 ret
= get_errno(waitid(arg1
, arg2
, &info
, arg4
));
5608 if (!is_error(ret
) && arg3
&& info
.si_pid
!= 0) {
5609 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_siginfo_t
), 0)))
5611 host_to_target_siginfo(p
, &info
);
5612 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
5617 #ifdef TARGET_NR_creat /* not on alpha */
5618 case TARGET_NR_creat
:
5619 if (!(p
= lock_user_string(arg1
)))
5621 ret
= get_errno(creat(p
, arg2
));
5622 unlock_user(p
, arg1
, 0);
5625 case TARGET_NR_link
:
5628 p
= lock_user_string(arg1
);
5629 p2
= lock_user_string(arg2
);
5631 ret
= -TARGET_EFAULT
;
5633 ret
= get_errno(link(p
, p2
));
5634 unlock_user(p2
, arg2
, 0);
5635 unlock_user(p
, arg1
, 0);
5638 #if defined(TARGET_NR_linkat)
5639 case TARGET_NR_linkat
:
5644 p
= lock_user_string(arg2
);
5645 p2
= lock_user_string(arg4
);
5647 ret
= -TARGET_EFAULT
;
5649 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
5650 unlock_user(p
, arg2
, 0);
5651 unlock_user(p2
, arg4
, 0);
5655 case TARGET_NR_unlink
:
5656 if (!(p
= lock_user_string(arg1
)))
5658 ret
= get_errno(unlink(p
));
5659 unlock_user(p
, arg1
, 0);
5661 #if defined(TARGET_NR_unlinkat)
5662 case TARGET_NR_unlinkat
:
5663 if (!(p
= lock_user_string(arg2
)))
5665 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
5666 unlock_user(p
, arg2
, 0);
5669 case TARGET_NR_execve
:
5671 char **argp
, **envp
;
5674 abi_ulong guest_argp
;
5675 abi_ulong guest_envp
;
5682 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
5683 if (get_user_ual(addr
, gp
))
5691 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
5692 if (get_user_ual(addr
, gp
))
5699 argp
= alloca((argc
+ 1) * sizeof(void *));
5700 envp
= alloca((envc
+ 1) * sizeof(void *));
5702 for (gp
= guest_argp
, q
= argp
; gp
;
5703 gp
+= sizeof(abi_ulong
), q
++) {
5704 if (get_user_ual(addr
, gp
))
5708 if (!(*q
= lock_user_string(addr
)))
5710 total_size
+= strlen(*q
) + 1;
5714 for (gp
= guest_envp
, q
= envp
; gp
;
5715 gp
+= sizeof(abi_ulong
), q
++) {
5716 if (get_user_ual(addr
, gp
))
5720 if (!(*q
= lock_user_string(addr
)))
5722 total_size
+= strlen(*q
) + 1;
5726 /* This case will not be caught by the host's execve() if its
5727 page size is bigger than the target's. */
5728 if (total_size
> MAX_ARG_PAGES
* TARGET_PAGE_SIZE
) {
5729 ret
= -TARGET_E2BIG
;
5732 if (!(p
= lock_user_string(arg1
)))
5734 ret
= get_errno(execve(p
, argp
, envp
));
5735 unlock_user(p
, arg1
, 0);
5740 ret
= -TARGET_EFAULT
;
5743 for (gp
= guest_argp
, q
= argp
; *q
;
5744 gp
+= sizeof(abi_ulong
), q
++) {
5745 if (get_user_ual(addr
, gp
)
5748 unlock_user(*q
, addr
, 0);
5750 for (gp
= guest_envp
, q
= envp
; *q
;
5751 gp
+= sizeof(abi_ulong
), q
++) {
5752 if (get_user_ual(addr
, gp
)
5755 unlock_user(*q
, addr
, 0);
5759 case TARGET_NR_chdir
:
5760 if (!(p
= lock_user_string(arg1
)))
5762 ret
= get_errno(chdir(p
));
5763 unlock_user(p
, arg1
, 0);
5765 #ifdef TARGET_NR_time
5766 case TARGET_NR_time
:
5769 ret
= get_errno(time(&host_time
));
5772 && put_user_sal(host_time
, arg1
))
5777 case TARGET_NR_mknod
:
5778 if (!(p
= lock_user_string(arg1
)))
5780 ret
= get_errno(mknod(p
, arg2
, arg3
));
5781 unlock_user(p
, arg1
, 0);
5783 #if defined(TARGET_NR_mknodat)
5784 case TARGET_NR_mknodat
:
5785 if (!(p
= lock_user_string(arg2
)))
5787 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
5788 unlock_user(p
, arg2
, 0);
5791 case TARGET_NR_chmod
:
5792 if (!(p
= lock_user_string(arg1
)))
5794 ret
= get_errno(chmod(p
, arg2
));
5795 unlock_user(p
, arg1
, 0);
5797 #ifdef TARGET_NR_break
5798 case TARGET_NR_break
:
5801 #ifdef TARGET_NR_oldstat
5802 case TARGET_NR_oldstat
:
5805 case TARGET_NR_lseek
:
5806 ret
= get_errno(lseek(arg1
, arg2
, arg3
));
5808 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
5809 /* Alpha specific */
5810 case TARGET_NR_getxpid
:
5811 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = getppid();
5812 ret
= get_errno(getpid());
5815 #ifdef TARGET_NR_getpid
5816 case TARGET_NR_getpid
:
5817 ret
= get_errno(getpid());
5820 case TARGET_NR_mount
:
5822 /* need to look at the data field */
5826 p
= lock_user_string(arg1
);
5834 p2
= lock_user_string(arg2
);
5837 unlock_user(p
, arg1
, 0);
5843 p3
= lock_user_string(arg3
);
5846 unlock_user(p
, arg1
, 0);
5848 unlock_user(p2
, arg2
, 0);
5855 /* FIXME - arg5 should be locked, but it isn't clear how to
5856 * do that since it's not guaranteed to be a NULL-terminated
5860 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
);
5862 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(arg5
));
5864 ret
= get_errno(ret
);
5867 unlock_user(p
, arg1
, 0);
5869 unlock_user(p2
, arg2
, 0);
5871 unlock_user(p3
, arg3
, 0);
5875 #ifdef TARGET_NR_umount
5876 case TARGET_NR_umount
:
5877 if (!(p
= lock_user_string(arg1
)))
5879 ret
= get_errno(umount(p
));
5880 unlock_user(p
, arg1
, 0);
5883 #ifdef TARGET_NR_stime /* not on alpha */
5884 case TARGET_NR_stime
:
5887 if (get_user_sal(host_time
, arg1
))
5889 ret
= get_errno(stime(&host_time
));
5893 case TARGET_NR_ptrace
:
5895 #ifdef TARGET_NR_alarm /* not on alpha */
5896 case TARGET_NR_alarm
:
5900 #ifdef TARGET_NR_oldfstat
5901 case TARGET_NR_oldfstat
:
5904 #ifdef TARGET_NR_pause /* not on alpha */
5905 case TARGET_NR_pause
:
5906 ret
= get_errno(pause());
5909 #ifdef TARGET_NR_utime
5910 case TARGET_NR_utime
:
5912 struct utimbuf tbuf
, *host_tbuf
;
5913 struct target_utimbuf
*target_tbuf
;
5915 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
5917 tbuf
.actime
= tswapal(target_tbuf
->actime
);
5918 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
5919 unlock_user_struct(target_tbuf
, arg2
, 0);
5924 if (!(p
= lock_user_string(arg1
)))
5926 ret
= get_errno(utime(p
, host_tbuf
));
5927 unlock_user(p
, arg1
, 0);
5931 case TARGET_NR_utimes
:
5933 struct timeval
*tvp
, tv
[2];
5935 if (copy_from_user_timeval(&tv
[0], arg2
)
5936 || copy_from_user_timeval(&tv
[1],
5937 arg2
+ sizeof(struct target_timeval
)))
5943 if (!(p
= lock_user_string(arg1
)))
5945 ret
= get_errno(utimes(p
, tvp
));
5946 unlock_user(p
, arg1
, 0);
5949 #if defined(TARGET_NR_futimesat)
5950 case TARGET_NR_futimesat
:
5952 struct timeval
*tvp
, tv
[2];
5954 if (copy_from_user_timeval(&tv
[0], arg3
)
5955 || copy_from_user_timeval(&tv
[1],
5956 arg3
+ sizeof(struct target_timeval
)))
5962 if (!(p
= lock_user_string(arg2
)))
5964 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
5965 unlock_user(p
, arg2
, 0);
5969 #ifdef TARGET_NR_stty
5970 case TARGET_NR_stty
:
5973 #ifdef TARGET_NR_gtty
5974 case TARGET_NR_gtty
:
5977 case TARGET_NR_access
:
5978 if (!(p
= lock_user_string(arg1
)))
5980 ret
= get_errno(access(path(p
), arg2
));
5981 unlock_user(p
, arg1
, 0);
5983 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
5984 case TARGET_NR_faccessat
:
5985 if (!(p
= lock_user_string(arg2
)))
5987 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
5988 unlock_user(p
, arg2
, 0);
5991 #ifdef TARGET_NR_nice /* not on alpha */
5992 case TARGET_NR_nice
:
5993 ret
= get_errno(nice(arg1
));
5996 #ifdef TARGET_NR_ftime
5997 case TARGET_NR_ftime
:
6000 case TARGET_NR_sync
:
6004 case TARGET_NR_kill
:
6005 ret
= get_errno(kill(arg1
, target_to_host_signal(arg2
)));
6007 case TARGET_NR_rename
:
6010 p
= lock_user_string(arg1
);
6011 p2
= lock_user_string(arg2
);
6013 ret
= -TARGET_EFAULT
;
6015 ret
= get_errno(rename(p
, p2
));
6016 unlock_user(p2
, arg2
, 0);
6017 unlock_user(p
, arg1
, 0);
6020 #if defined(TARGET_NR_renameat)
6021 case TARGET_NR_renameat
:
6024 p
= lock_user_string(arg2
);
6025 p2
= lock_user_string(arg4
);
6027 ret
= -TARGET_EFAULT
;
6029 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
6030 unlock_user(p2
, arg4
, 0);
6031 unlock_user(p
, arg2
, 0);
6035 case TARGET_NR_mkdir
:
6036 if (!(p
= lock_user_string(arg1
)))
6038 ret
= get_errno(mkdir(p
, arg2
));
6039 unlock_user(p
, arg1
, 0);
6041 #if defined(TARGET_NR_mkdirat)
6042 case TARGET_NR_mkdirat
:
6043 if (!(p
= lock_user_string(arg2
)))
6045 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
6046 unlock_user(p
, arg2
, 0);
6049 case TARGET_NR_rmdir
:
6050 if (!(p
= lock_user_string(arg1
)))
6052 ret
= get_errno(rmdir(p
));
6053 unlock_user(p
, arg1
, 0);
6056 ret
= get_errno(dup(arg1
));
6058 case TARGET_NR_pipe
:
6059 ret
= do_pipe(cpu_env
, arg1
, 0, 0);
6061 #ifdef TARGET_NR_pipe2
6062 case TARGET_NR_pipe2
:
6063 ret
= do_pipe(cpu_env
, arg1
,
6064 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
6067 case TARGET_NR_times
:
6069 struct target_tms
*tmsp
;
6071 ret
= get_errno(times(&tms
));
6073 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
6076 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
6077 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
6078 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
6079 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
6082 ret
= host_to_target_clock_t(ret
);
6085 #ifdef TARGET_NR_prof
6086 case TARGET_NR_prof
:
6089 #ifdef TARGET_NR_signal
6090 case TARGET_NR_signal
:
6093 case TARGET_NR_acct
:
6095 ret
= get_errno(acct(NULL
));
6097 if (!(p
= lock_user_string(arg1
)))
6099 ret
= get_errno(acct(path(p
)));
6100 unlock_user(p
, arg1
, 0);
6103 #ifdef TARGET_NR_umount2
6104 case TARGET_NR_umount2
:
6105 if (!(p
= lock_user_string(arg1
)))
6107 ret
= get_errno(umount2(p
, arg2
));
6108 unlock_user(p
, arg1
, 0);
6111 #ifdef TARGET_NR_lock
6112 case TARGET_NR_lock
:
6115 case TARGET_NR_ioctl
:
6116 ret
= do_ioctl(arg1
, arg2
, arg3
);
6118 case TARGET_NR_fcntl
:
6119 ret
= do_fcntl(arg1
, arg2
, arg3
);
6121 #ifdef TARGET_NR_mpx
6125 case TARGET_NR_setpgid
:
6126 ret
= get_errno(setpgid(arg1
, arg2
));
6128 #ifdef TARGET_NR_ulimit
6129 case TARGET_NR_ulimit
:
6132 #ifdef TARGET_NR_oldolduname
6133 case TARGET_NR_oldolduname
:
6136 case TARGET_NR_umask
:
6137 ret
= get_errno(umask(arg1
));
6139 case TARGET_NR_chroot
:
6140 if (!(p
= lock_user_string(arg1
)))
6142 ret
= get_errno(chroot(p
));
6143 unlock_user(p
, arg1
, 0);
6145 case TARGET_NR_ustat
:
6147 case TARGET_NR_dup2
:
6148 ret
= get_errno(dup2(arg1
, arg2
));
6150 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
6151 case TARGET_NR_dup3
:
6152 ret
= get_errno(dup3(arg1
, arg2
, arg3
));
6155 #ifdef TARGET_NR_getppid /* not on alpha */
6156 case TARGET_NR_getppid
:
6157 ret
= get_errno(getppid());
6160 case TARGET_NR_getpgrp
:
6161 ret
= get_errno(getpgrp());
6163 case TARGET_NR_setsid
:
6164 ret
= get_errno(setsid());
6166 #ifdef TARGET_NR_sigaction
6167 case TARGET_NR_sigaction
:
6169 #if defined(TARGET_ALPHA)
6170 struct target_sigaction act
, oact
, *pact
= 0;
6171 struct target_old_sigaction
*old_act
;
6173 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
6175 act
._sa_handler
= old_act
->_sa_handler
;
6176 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
6177 act
.sa_flags
= old_act
->sa_flags
;
6178 act
.sa_restorer
= 0;
6179 unlock_user_struct(old_act
, arg2
, 0);
6182 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
6183 if (!is_error(ret
) && arg3
) {
6184 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
6186 old_act
->_sa_handler
= oact
._sa_handler
;
6187 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
6188 old_act
->sa_flags
= oact
.sa_flags
;
6189 unlock_user_struct(old_act
, arg3
, 1);
6191 #elif defined(TARGET_MIPS)
6192 struct target_sigaction act
, oact
, *pact
, *old_act
;
6195 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
6197 act
._sa_handler
= old_act
->_sa_handler
;
6198 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
6199 act
.sa_flags
= old_act
->sa_flags
;
6200 unlock_user_struct(old_act
, arg2
, 0);
6206 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
6208 if (!is_error(ret
) && arg3
) {
6209 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
6211 old_act
->_sa_handler
= oact
._sa_handler
;
6212 old_act
->sa_flags
= oact
.sa_flags
;
6213 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
6214 old_act
->sa_mask
.sig
[1] = 0;
6215 old_act
->sa_mask
.sig
[2] = 0;
6216 old_act
->sa_mask
.sig
[3] = 0;
6217 unlock_user_struct(old_act
, arg3
, 1);
6220 struct target_old_sigaction
*old_act
;
6221 struct target_sigaction act
, oact
, *pact
;
6223 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
6225 act
._sa_handler
= old_act
->_sa_handler
;
6226 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
6227 act
.sa_flags
= old_act
->sa_flags
;
6228 act
.sa_restorer
= old_act
->sa_restorer
;
6229 unlock_user_struct(old_act
, arg2
, 0);
6234 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
6235 if (!is_error(ret
) && arg3
) {
6236 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
6238 old_act
->_sa_handler
= oact
._sa_handler
;
6239 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
6240 old_act
->sa_flags
= oact
.sa_flags
;
6241 old_act
->sa_restorer
= oact
.sa_restorer
;
6242 unlock_user_struct(old_act
, arg3
, 1);
6248 case TARGET_NR_rt_sigaction
:
6250 #if defined(TARGET_ALPHA)
6251 struct target_sigaction act
, oact
, *pact
= 0;
6252 struct target_rt_sigaction
*rt_act
;
6253 /* ??? arg4 == sizeof(sigset_t). */
6255 if (!lock_user_struct(VERIFY_READ
, rt_act
, arg2
, 1))
6257 act
._sa_handler
= rt_act
->_sa_handler
;
6258 act
.sa_mask
= rt_act
->sa_mask
;
6259 act
.sa_flags
= rt_act
->sa_flags
;
6260 act
.sa_restorer
= arg5
;
6261 unlock_user_struct(rt_act
, arg2
, 0);
6264 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
6265 if (!is_error(ret
) && arg3
) {
6266 if (!lock_user_struct(VERIFY_WRITE
, rt_act
, arg3
, 0))
6268 rt_act
->_sa_handler
= oact
._sa_handler
;
6269 rt_act
->sa_mask
= oact
.sa_mask
;
6270 rt_act
->sa_flags
= oact
.sa_flags
;
6271 unlock_user_struct(rt_act
, arg3
, 1);
6274 struct target_sigaction
*act
;
6275 struct target_sigaction
*oact
;
6278 if (!lock_user_struct(VERIFY_READ
, act
, arg2
, 1))
6283 if (!lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
6284 ret
= -TARGET_EFAULT
;
6285 goto rt_sigaction_fail
;
6289 ret
= get_errno(do_sigaction(arg1
, act
, oact
));
6292 unlock_user_struct(act
, arg2
, 0);
6294 unlock_user_struct(oact
, arg3
, 1);
6298 #ifdef TARGET_NR_sgetmask /* not on alpha */
6299 case TARGET_NR_sgetmask
:
6302 abi_ulong target_set
;
6303 do_sigprocmask(0, NULL
, &cur_set
);
6304 host_to_target_old_sigset(&target_set
, &cur_set
);
6309 #ifdef TARGET_NR_ssetmask /* not on alpha */
6310 case TARGET_NR_ssetmask
:
6312 sigset_t set
, oset
, cur_set
;
6313 abi_ulong target_set
= arg1
;
6314 do_sigprocmask(0, NULL
, &cur_set
);
6315 target_to_host_old_sigset(&set
, &target_set
);
6316 sigorset(&set
, &set
, &cur_set
);
6317 do_sigprocmask(SIG_SETMASK
, &set
, &oset
);
6318 host_to_target_old_sigset(&target_set
, &oset
);
6323 #ifdef TARGET_NR_sigprocmask
6324 case TARGET_NR_sigprocmask
:
6326 #if defined(TARGET_ALPHA)
6327 sigset_t set
, oldset
;
6332 case TARGET_SIG_BLOCK
:
6335 case TARGET_SIG_UNBLOCK
:
6338 case TARGET_SIG_SETMASK
:
6342 ret
= -TARGET_EINVAL
;
6346 target_to_host_old_sigset(&set
, &mask
);
6348 ret
= get_errno(do_sigprocmask(how
, &set
, &oldset
));
6349 if (!is_error(ret
)) {
6350 host_to_target_old_sigset(&mask
, &oldset
);
6352 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0; /* force no error */
6355 sigset_t set
, oldset
, *set_ptr
;
6360 case TARGET_SIG_BLOCK
:
6363 case TARGET_SIG_UNBLOCK
:
6366 case TARGET_SIG_SETMASK
:
6370 ret
= -TARGET_EINVAL
;
6373 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
6375 target_to_host_old_sigset(&set
, p
);
6376 unlock_user(p
, arg2
, 0);
6382 ret
= get_errno(do_sigprocmask(how
, set_ptr
, &oldset
));
6383 if (!is_error(ret
) && arg3
) {
6384 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
6386 host_to_target_old_sigset(p
, &oldset
);
6387 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
6393 case TARGET_NR_rt_sigprocmask
:
6396 sigset_t set
, oldset
, *set_ptr
;
6400 case TARGET_SIG_BLOCK
:
6403 case TARGET_SIG_UNBLOCK
:
6406 case TARGET_SIG_SETMASK
:
6410 ret
= -TARGET_EINVAL
;
6413 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
6415 target_to_host_sigset(&set
, p
);
6416 unlock_user(p
, arg2
, 0);
6422 ret
= get_errno(do_sigprocmask(how
, set_ptr
, &oldset
));
6423 if (!is_error(ret
) && arg3
) {
6424 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
6426 host_to_target_sigset(p
, &oldset
);
6427 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
6431 #ifdef TARGET_NR_sigpending
6432 case TARGET_NR_sigpending
:
6435 ret
= get_errno(sigpending(&set
));
6436 if (!is_error(ret
)) {
6437 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
6439 host_to_target_old_sigset(p
, &set
);
6440 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
6445 case TARGET_NR_rt_sigpending
:
6448 ret
= get_errno(sigpending(&set
));
6449 if (!is_error(ret
)) {
6450 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
6452 host_to_target_sigset(p
, &set
);
6453 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
6457 #ifdef TARGET_NR_sigsuspend
6458 case TARGET_NR_sigsuspend
:
6461 #if defined(TARGET_ALPHA)
6462 abi_ulong mask
= arg1
;
6463 target_to_host_old_sigset(&set
, &mask
);
6465 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
6467 target_to_host_old_sigset(&set
, p
);
6468 unlock_user(p
, arg1
, 0);
6470 ret
= get_errno(sigsuspend(&set
));
6474 case TARGET_NR_rt_sigsuspend
:
6477 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
6479 target_to_host_sigset(&set
, p
);
6480 unlock_user(p
, arg1
, 0);
6481 ret
= get_errno(sigsuspend(&set
));
6484 case TARGET_NR_rt_sigtimedwait
:
6487 struct timespec uts
, *puts
;
6490 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
6492 target_to_host_sigset(&set
, p
);
6493 unlock_user(p
, arg1
, 0);
6496 target_to_host_timespec(puts
, arg3
);
6500 ret
= get_errno(sigtimedwait(&set
, &uinfo
, puts
));
6501 if (!is_error(ret
)) {
6503 p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
),
6508 host_to_target_siginfo(p
, &uinfo
);
6509 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
6511 ret
= host_to_target_signal(ret
);
6515 case TARGET_NR_rt_sigqueueinfo
:
6518 if (!(p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_sigset_t
), 1)))
6520 target_to_host_siginfo(&uinfo
, p
);
6521 unlock_user(p
, arg1
, 0);
6522 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, arg2
, &uinfo
));
6525 #ifdef TARGET_NR_sigreturn
6526 case TARGET_NR_sigreturn
:
6527 /* NOTE: ret is eax, so not transcoding must be done */
6528 ret
= do_sigreturn(cpu_env
);
6531 case TARGET_NR_rt_sigreturn
:
6532 /* NOTE: ret is eax, so not transcoding must be done */
6533 ret
= do_rt_sigreturn(cpu_env
);
6535 case TARGET_NR_sethostname
:
6536 if (!(p
= lock_user_string(arg1
)))
6538 ret
= get_errno(sethostname(p
, arg2
));
6539 unlock_user(p
, arg1
, 0);
6541 case TARGET_NR_setrlimit
:
6543 int resource
= target_to_host_resource(arg1
);
6544 struct target_rlimit
*target_rlim
;
6546 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
6548 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
6549 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
6550 unlock_user_struct(target_rlim
, arg2
, 0);
6551 ret
= get_errno(setrlimit(resource
, &rlim
));
6554 case TARGET_NR_getrlimit
:
6556 int resource
= target_to_host_resource(arg1
);
6557 struct target_rlimit
*target_rlim
;
6560 ret
= get_errno(getrlimit(resource
, &rlim
));
6561 if (!is_error(ret
)) {
6562 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
6564 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
6565 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
6566 unlock_user_struct(target_rlim
, arg2
, 1);
6570 case TARGET_NR_getrusage
:
6572 struct rusage rusage
;
6573 ret
= get_errno(getrusage(arg1
, &rusage
));
6574 if (!is_error(ret
)) {
6575 ret
= host_to_target_rusage(arg2
, &rusage
);
6579 case TARGET_NR_gettimeofday
:
6582 ret
= get_errno(gettimeofday(&tv
, NULL
));
6583 if (!is_error(ret
)) {
6584 if (copy_to_user_timeval(arg1
, &tv
))
6589 case TARGET_NR_settimeofday
:
6591 struct timeval tv
, *ptv
= NULL
;
6592 struct timezone tz
, *ptz
= NULL
;
6595 if (copy_from_user_timeval(&tv
, arg1
)) {
6602 if (copy_from_user_timezone(&tz
, arg2
)) {
6608 ret
= get_errno(settimeofday(ptv
, ptz
));
6611 #if defined(TARGET_NR_select)
6612 case TARGET_NR_select
:
6613 #if defined(TARGET_S390X) || defined(TARGET_ALPHA)
6614 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
6617 struct target_sel_arg_struct
*sel
;
6618 abi_ulong inp
, outp
, exp
, tvp
;
6621 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1))
6623 nsel
= tswapal(sel
->n
);
6624 inp
= tswapal(sel
->inp
);
6625 outp
= tswapal(sel
->outp
);
6626 exp
= tswapal(sel
->exp
);
6627 tvp
= tswapal(sel
->tvp
);
6628 unlock_user_struct(sel
, arg1
, 0);
6629 ret
= do_select(nsel
, inp
, outp
, exp
, tvp
);
6634 #ifdef TARGET_NR_pselect6
6635 case TARGET_NR_pselect6
:
6637 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
6638 fd_set rfds
, wfds
, efds
;
6639 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
6640 struct timespec ts
, *ts_ptr
;
6643 * The 6th arg is actually two args smashed together,
6644 * so we cannot use the C library.
6652 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
6653 target_sigset_t
*target_sigset
;
6661 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
6665 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
6669 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
6675 * This takes a timespec, and not a timeval, so we cannot
6676 * use the do_select() helper ...
6679 if (target_to_host_timespec(&ts
, ts_addr
)) {
6687 /* Extract the two packed args for the sigset */
6690 sig
.size
= _NSIG
/ 8;
6692 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
6696 arg_sigset
= tswapal(arg7
[0]);
6697 arg_sigsize
= tswapal(arg7
[1]);
6698 unlock_user(arg7
, arg6
, 0);
6702 if (arg_sigsize
!= sizeof(*target_sigset
)) {
6703 /* Like the kernel, we enforce correct size sigsets */
6704 ret
= -TARGET_EINVAL
;
6707 target_sigset
= lock_user(VERIFY_READ
, arg_sigset
,
6708 sizeof(*target_sigset
), 1);
6709 if (!target_sigset
) {
6712 target_to_host_sigset(&set
, target_sigset
);
6713 unlock_user(target_sigset
, arg_sigset
, 0);
6721 ret
= get_errno(sys_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
6724 if (!is_error(ret
)) {
6725 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
6727 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
6729 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
6732 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
))
6738 case TARGET_NR_symlink
:
6741 p
= lock_user_string(arg1
);
6742 p2
= lock_user_string(arg2
);
6744 ret
= -TARGET_EFAULT
;
6746 ret
= get_errno(symlink(p
, p2
));
6747 unlock_user(p2
, arg2
, 0);
6748 unlock_user(p
, arg1
, 0);
6751 #if defined(TARGET_NR_symlinkat)
6752 case TARGET_NR_symlinkat
:
6755 p
= lock_user_string(arg1
);
6756 p2
= lock_user_string(arg3
);
6758 ret
= -TARGET_EFAULT
;
6760 ret
= get_errno(symlinkat(p
, arg2
, p2
));
6761 unlock_user(p2
, arg3
, 0);
6762 unlock_user(p
, arg1
, 0);
6766 #ifdef TARGET_NR_oldlstat
6767 case TARGET_NR_oldlstat
:
6770 case TARGET_NR_readlink
:
6773 p
= lock_user_string(arg1
);
6774 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
6776 ret
= -TARGET_EFAULT
;
6778 /* Short circuit this for the magic exe check. */
6779 ret
= -TARGET_EINVAL
;
6780 } else if (is_proc_myself((const char *)p
, "exe")) {
6781 char real
[PATH_MAX
], *temp
;
6782 temp
= realpath(exec_path
, real
);
6783 /* Return value is # of bytes that we wrote to the buffer. */
6785 ret
= get_errno(-1);
6787 /* Don't worry about sign mismatch as earlier mapping
6788 * logic would have thrown a bad address error. */
6789 ret
= MIN(strlen(real
), arg3
);
6790 /* We cannot NUL terminate the string. */
6791 memcpy(p2
, real
, ret
);
6794 ret
= get_errno(readlink(path(p
), p2
, arg3
));
6796 unlock_user(p2
, arg2
, ret
);
6797 unlock_user(p
, arg1
, 0);
6800 #if defined(TARGET_NR_readlinkat)
6801 case TARGET_NR_readlinkat
:
6804 p
= lock_user_string(arg2
);
6805 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
6807 ret
= -TARGET_EFAULT
;
6808 } else if (is_proc_myself((const char *)p
, "exe")) {
6809 char real
[PATH_MAX
], *temp
;
6810 temp
= realpath(exec_path
, real
);
6811 ret
= temp
== NULL
? get_errno(-1) : strlen(real
) ;
6812 snprintf((char *)p2
, arg4
, "%s", real
);
6814 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
6816 unlock_user(p2
, arg3
, ret
);
6817 unlock_user(p
, arg2
, 0);
6821 #ifdef TARGET_NR_uselib
6822 case TARGET_NR_uselib
:
6825 #ifdef TARGET_NR_swapon
6826 case TARGET_NR_swapon
:
6827 if (!(p
= lock_user_string(arg1
)))
6829 ret
= get_errno(swapon(p
, arg2
));
6830 unlock_user(p
, arg1
, 0);
6833 case TARGET_NR_reboot
:
6834 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
6835 /* arg4 must be ignored in all other cases */
6836 p
= lock_user_string(arg4
);
6840 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
6841 unlock_user(p
, arg4
, 0);
6843 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
6846 #ifdef TARGET_NR_readdir
6847 case TARGET_NR_readdir
:
6850 #ifdef TARGET_NR_mmap
6851 case TARGET_NR_mmap
:
6852 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6853 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
6854 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
6855 || defined(TARGET_S390X)
6858 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
6859 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
6867 unlock_user(v
, arg1
, 0);
6868 ret
= get_errno(target_mmap(v1
, v2
, v3
,
6869 target_to_host_bitmask(v4
, mmap_flags_tbl
),
6873 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
6874 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
6880 #ifdef TARGET_NR_mmap2
6881 case TARGET_NR_mmap2
:
6883 #define MMAP_SHIFT 12
6885 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
6886 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
6888 arg6
<< MMAP_SHIFT
));
6891 case TARGET_NR_munmap
:
6892 ret
= get_errno(target_munmap(arg1
, arg2
));
6894 case TARGET_NR_mprotect
:
6896 TaskState
*ts
= cpu
->opaque
;
6897 /* Special hack to detect libc making the stack executable. */
6898 if ((arg3
& PROT_GROWSDOWN
)
6899 && arg1
>= ts
->info
->stack_limit
6900 && arg1
<= ts
->info
->start_stack
) {
6901 arg3
&= ~PROT_GROWSDOWN
;
6902 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
6903 arg1
= ts
->info
->stack_limit
;
6906 ret
= get_errno(target_mprotect(arg1
, arg2
, arg3
));
6908 #ifdef TARGET_NR_mremap
6909 case TARGET_NR_mremap
:
6910 ret
= get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
6913 /* ??? msync/mlock/munlock are broken for softmmu. */
6914 #ifdef TARGET_NR_msync
6915 case TARGET_NR_msync
:
6916 ret
= get_errno(msync(g2h(arg1
), arg2
, arg3
));
6919 #ifdef TARGET_NR_mlock
6920 case TARGET_NR_mlock
:
6921 ret
= get_errno(mlock(g2h(arg1
), arg2
));
6924 #ifdef TARGET_NR_munlock
6925 case TARGET_NR_munlock
:
6926 ret
= get_errno(munlock(g2h(arg1
), arg2
));
6929 #ifdef TARGET_NR_mlockall
6930 case TARGET_NR_mlockall
:
6931 ret
= get_errno(mlockall(target_to_host_mlockall_arg(arg1
)));
6934 #ifdef TARGET_NR_munlockall
6935 case TARGET_NR_munlockall
:
6936 ret
= get_errno(munlockall());
6939 case TARGET_NR_truncate
:
6940 if (!(p
= lock_user_string(arg1
)))
6942 ret
= get_errno(truncate(p
, arg2
));
6943 unlock_user(p
, arg1
, 0);
6945 case TARGET_NR_ftruncate
:
6946 ret
= get_errno(ftruncate(arg1
, arg2
));
6948 case TARGET_NR_fchmod
:
6949 ret
= get_errno(fchmod(arg1
, arg2
));
6951 #if defined(TARGET_NR_fchmodat)
6952 case TARGET_NR_fchmodat
:
6953 if (!(p
= lock_user_string(arg2
)))
6955 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
6956 unlock_user(p
, arg2
, 0);
6959 case TARGET_NR_getpriority
:
6960 /* Note that negative values are valid for getpriority, so we must
6961 differentiate based on errno settings. */
6963 ret
= getpriority(arg1
, arg2
);
6964 if (ret
== -1 && errno
!= 0) {
6965 ret
= -host_to_target_errno(errno
);
6969 /* Return value is the unbiased priority. Signal no error. */
6970 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0;
6972 /* Return value is a biased priority to avoid negative numbers. */
6976 case TARGET_NR_setpriority
:
6977 ret
= get_errno(setpriority(arg1
, arg2
, arg3
));
6979 #ifdef TARGET_NR_profil
6980 case TARGET_NR_profil
:
6983 case TARGET_NR_statfs
:
6984 if (!(p
= lock_user_string(arg1
)))
6986 ret
= get_errno(statfs(path(p
), &stfs
));
6987 unlock_user(p
, arg1
, 0);
6989 if (!is_error(ret
)) {
6990 struct target_statfs
*target_stfs
;
6992 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
6994 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
6995 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
6996 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
6997 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
6998 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
6999 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
7000 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
7001 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
7002 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
7003 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
7004 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
7005 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
7006 unlock_user_struct(target_stfs
, arg2
, 1);
7009 case TARGET_NR_fstatfs
:
7010 ret
= get_errno(fstatfs(arg1
, &stfs
));
7011 goto convert_statfs
;
7012 #ifdef TARGET_NR_statfs64
7013 case TARGET_NR_statfs64
:
7014 if (!(p
= lock_user_string(arg1
)))
7016 ret
= get_errno(statfs(path(p
), &stfs
));
7017 unlock_user(p
, arg1
, 0);
7019 if (!is_error(ret
)) {
7020 struct target_statfs64
*target_stfs
;
7022 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
7024 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
7025 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
7026 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
7027 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
7028 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
7029 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
7030 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
7031 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
7032 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
7033 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
7034 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
7035 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
7036 unlock_user_struct(target_stfs
, arg3
, 1);
7039 case TARGET_NR_fstatfs64
:
7040 ret
= get_errno(fstatfs(arg1
, &stfs
));
7041 goto convert_statfs64
;
7043 #ifdef TARGET_NR_ioperm
7044 case TARGET_NR_ioperm
:
7047 #ifdef TARGET_NR_socketcall
7048 case TARGET_NR_socketcall
:
7049 ret
= do_socketcall(arg1
, arg2
);
7052 #ifdef TARGET_NR_accept
7053 case TARGET_NR_accept
:
7054 ret
= do_accept4(arg1
, arg2
, arg3
, 0);
7057 #ifdef TARGET_NR_accept4
7058 case TARGET_NR_accept4
:
7059 #ifdef CONFIG_ACCEPT4
7060 ret
= do_accept4(arg1
, arg2
, arg3
, arg4
);
7066 #ifdef TARGET_NR_bind
7067 case TARGET_NR_bind
:
7068 ret
= do_bind(arg1
, arg2
, arg3
);
7071 #ifdef TARGET_NR_connect
7072 case TARGET_NR_connect
:
7073 ret
= do_connect(arg1
, arg2
, arg3
);
7076 #ifdef TARGET_NR_getpeername
7077 case TARGET_NR_getpeername
:
7078 ret
= do_getpeername(arg1
, arg2
, arg3
);
7081 #ifdef TARGET_NR_getsockname
7082 case TARGET_NR_getsockname
:
7083 ret
= do_getsockname(arg1
, arg2
, arg3
);
7086 #ifdef TARGET_NR_getsockopt
7087 case TARGET_NR_getsockopt
:
7088 ret
= do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
7091 #ifdef TARGET_NR_listen
7092 case TARGET_NR_listen
:
7093 ret
= get_errno(listen(arg1
, arg2
));
7096 #ifdef TARGET_NR_recv
7097 case TARGET_NR_recv
:
7098 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
7101 #ifdef TARGET_NR_recvfrom
7102 case TARGET_NR_recvfrom
:
7103 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
7106 #ifdef TARGET_NR_recvmsg
7107 case TARGET_NR_recvmsg
:
7108 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
7111 #ifdef TARGET_NR_send
7112 case TARGET_NR_send
:
7113 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
7116 #ifdef TARGET_NR_sendmsg
7117 case TARGET_NR_sendmsg
:
7118 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
7121 #ifdef TARGET_NR_sendmmsg
7122 case TARGET_NR_sendmmsg
:
7123 ret
= do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 1);
7125 case TARGET_NR_recvmmsg
:
7126 ret
= do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 0);
7129 #ifdef TARGET_NR_sendto
7130 case TARGET_NR_sendto
:
7131 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
7134 #ifdef TARGET_NR_shutdown
7135 case TARGET_NR_shutdown
:
7136 ret
= get_errno(shutdown(arg1
, arg2
));
7139 #ifdef TARGET_NR_socket
7140 case TARGET_NR_socket
:
7141 ret
= do_socket(arg1
, arg2
, arg3
);
7144 #ifdef TARGET_NR_socketpair
7145 case TARGET_NR_socketpair
:
7146 ret
= do_socketpair(arg1
, arg2
, arg3
, arg4
);
7149 #ifdef TARGET_NR_setsockopt
7150 case TARGET_NR_setsockopt
:
7151 ret
= do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
7155 case TARGET_NR_syslog
:
7156 if (!(p
= lock_user_string(arg2
)))
7158 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
7159 unlock_user(p
, arg2
, 0);
7162 case TARGET_NR_setitimer
:
7164 struct itimerval value
, ovalue
, *pvalue
;
7168 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
7169 || copy_from_user_timeval(&pvalue
->it_value
,
7170 arg2
+ sizeof(struct target_timeval
)))
7175 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
7176 if (!is_error(ret
) && arg3
) {
7177 if (copy_to_user_timeval(arg3
,
7178 &ovalue
.it_interval
)
7179 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
7185 case TARGET_NR_getitimer
:
7187 struct itimerval value
;
7189 ret
= get_errno(getitimer(arg1
, &value
));
7190 if (!is_error(ret
) && arg2
) {
7191 if (copy_to_user_timeval(arg2
,
7193 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
7199 case TARGET_NR_stat
:
7200 if (!(p
= lock_user_string(arg1
)))
7202 ret
= get_errno(stat(path(p
), &st
));
7203 unlock_user(p
, arg1
, 0);
7205 case TARGET_NR_lstat
:
7206 if (!(p
= lock_user_string(arg1
)))
7208 ret
= get_errno(lstat(path(p
), &st
));
7209 unlock_user(p
, arg1
, 0);
7211 case TARGET_NR_fstat
:
7213 ret
= get_errno(fstat(arg1
, &st
));
7215 if (!is_error(ret
)) {
7216 struct target_stat
*target_st
;
7218 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
7220 memset(target_st
, 0, sizeof(*target_st
));
7221 __put_user(st
.st_dev
, &target_st
->st_dev
);
7222 __put_user(st
.st_ino
, &target_st
->st_ino
);
7223 __put_user(st
.st_mode
, &target_st
->st_mode
);
7224 __put_user(st
.st_uid
, &target_st
->st_uid
);
7225 __put_user(st
.st_gid
, &target_st
->st_gid
);
7226 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
7227 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
7228 __put_user(st
.st_size
, &target_st
->st_size
);
7229 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
7230 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
7231 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
7232 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
7233 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
7234 unlock_user_struct(target_st
, arg2
, 1);
7238 #ifdef TARGET_NR_olduname
7239 case TARGET_NR_olduname
:
7242 #ifdef TARGET_NR_iopl
7243 case TARGET_NR_iopl
:
7246 case TARGET_NR_vhangup
:
7247 ret
= get_errno(vhangup());
7249 #ifdef TARGET_NR_idle
7250 case TARGET_NR_idle
:
7253 #ifdef TARGET_NR_syscall
7254 case TARGET_NR_syscall
:
7255 ret
= do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
7256 arg6
, arg7
, arg8
, 0);
7259 case TARGET_NR_wait4
:
7262 abi_long status_ptr
= arg2
;
7263 struct rusage rusage
, *rusage_ptr
;
7264 abi_ulong target_rusage
= arg4
;
7265 abi_long rusage_err
;
7267 rusage_ptr
= &rusage
;
7270 ret
= get_errno(wait4(arg1
, &status
, arg3
, rusage_ptr
));
7271 if (!is_error(ret
)) {
7272 if (status_ptr
&& ret
) {
7273 status
= host_to_target_waitstatus(status
);
7274 if (put_user_s32(status
, status_ptr
))
7277 if (target_rusage
) {
7278 rusage_err
= host_to_target_rusage(target_rusage
, &rusage
);
7286 #ifdef TARGET_NR_swapoff
7287 case TARGET_NR_swapoff
:
7288 if (!(p
= lock_user_string(arg1
)))
7290 ret
= get_errno(swapoff(p
));
7291 unlock_user(p
, arg1
, 0);
7294 case TARGET_NR_sysinfo
:
7296 struct target_sysinfo
*target_value
;
7297 struct sysinfo value
;
7298 ret
= get_errno(sysinfo(&value
));
7299 if (!is_error(ret
) && arg1
)
7301 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
7303 __put_user(value
.uptime
, &target_value
->uptime
);
7304 __put_user(value
.loads
[0], &target_value
->loads
[0]);
7305 __put_user(value
.loads
[1], &target_value
->loads
[1]);
7306 __put_user(value
.loads
[2], &target_value
->loads
[2]);
7307 __put_user(value
.totalram
, &target_value
->totalram
);
7308 __put_user(value
.freeram
, &target_value
->freeram
);
7309 __put_user(value
.sharedram
, &target_value
->sharedram
);
7310 __put_user(value
.bufferram
, &target_value
->bufferram
);
7311 __put_user(value
.totalswap
, &target_value
->totalswap
);
7312 __put_user(value
.freeswap
, &target_value
->freeswap
);
7313 __put_user(value
.procs
, &target_value
->procs
);
7314 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
7315 __put_user(value
.freehigh
, &target_value
->freehigh
);
7316 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
7317 unlock_user_struct(target_value
, arg1
, 1);
7321 #ifdef TARGET_NR_ipc
7323 ret
= do_ipc(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
7326 #ifdef TARGET_NR_semget
7327 case TARGET_NR_semget
:
7328 ret
= get_errno(semget(arg1
, arg2
, arg3
));
7331 #ifdef TARGET_NR_semop
7332 case TARGET_NR_semop
:
7333 ret
= do_semop(arg1
, arg2
, arg3
);
7336 #ifdef TARGET_NR_semctl
7337 case TARGET_NR_semctl
:
7338 ret
= do_semctl(arg1
, arg2
, arg3
, (union target_semun
)(abi_ulong
)arg4
);
7341 #ifdef TARGET_NR_msgctl
7342 case TARGET_NR_msgctl
:
7343 ret
= do_msgctl(arg1
, arg2
, arg3
);
7346 #ifdef TARGET_NR_msgget
7347 case TARGET_NR_msgget
:
7348 ret
= get_errno(msgget(arg1
, arg2
));
7351 #ifdef TARGET_NR_msgrcv
7352 case TARGET_NR_msgrcv
:
7353 ret
= do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
7356 #ifdef TARGET_NR_msgsnd
7357 case TARGET_NR_msgsnd
:
7358 ret
= do_msgsnd(arg1
, arg2
, arg3
, arg4
);
7361 #ifdef TARGET_NR_shmget
7362 case TARGET_NR_shmget
:
7363 ret
= get_errno(shmget(arg1
, arg2
, arg3
));
7366 #ifdef TARGET_NR_shmctl
7367 case TARGET_NR_shmctl
:
7368 ret
= do_shmctl(arg1
, arg2
, arg3
);
7371 #ifdef TARGET_NR_shmat
7372 case TARGET_NR_shmat
:
7373 ret
= do_shmat(arg1
, arg2
, arg3
);
7376 #ifdef TARGET_NR_shmdt
7377 case TARGET_NR_shmdt
:
7378 ret
= do_shmdt(arg1
);
7381 case TARGET_NR_fsync
:
7382 ret
= get_errno(fsync(arg1
));
7384 case TARGET_NR_clone
:
7385 /* Linux manages to have three different orderings for its
7386 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
7387 * match the kernel's CONFIG_CLONE_* settings.
7388 * Microblaze is further special in that it uses a sixth
7389 * implicit argument to clone for the TLS pointer.
7391 #if defined(TARGET_MICROBLAZE)
7392 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
7393 #elif defined(TARGET_CLONE_BACKWARDS)
7394 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
7395 #elif defined(TARGET_CLONE_BACKWARDS2)
7396 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
7398 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
7401 #ifdef __NR_exit_group
7402 /* new thread calls */
7403 case TARGET_NR_exit_group
:
7407 gdb_exit(cpu_env
, arg1
);
7408 ret
= get_errno(exit_group(arg1
));
7411 case TARGET_NR_setdomainname
:
7412 if (!(p
= lock_user_string(arg1
)))
7414 ret
= get_errno(setdomainname(p
, arg2
));
7415 unlock_user(p
, arg1
, 0);
7417 case TARGET_NR_uname
:
7418 /* no need to transcode because we use the linux syscall */
7420 struct new_utsname
* buf
;
7422 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
7424 ret
= get_errno(sys_uname(buf
));
7425 if (!is_error(ret
)) {
7426 /* Overrite the native machine name with whatever is being
7428 strcpy (buf
->machine
, cpu_to_uname_machine(cpu_env
));
7429 /* Allow the user to override the reported release. */
7430 if (qemu_uname_release
&& *qemu_uname_release
)
7431 strcpy (buf
->release
, qemu_uname_release
);
7433 unlock_user_struct(buf
, arg1
, 1);
7437 case TARGET_NR_modify_ldt
:
7438 ret
= do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
7440 #if !defined(TARGET_X86_64)
7441 case TARGET_NR_vm86old
:
7443 case TARGET_NR_vm86
:
7444 ret
= do_vm86(cpu_env
, arg1
, arg2
);
7448 case TARGET_NR_adjtimex
:
7450 #ifdef TARGET_NR_create_module
7451 case TARGET_NR_create_module
:
7453 case TARGET_NR_init_module
:
7454 case TARGET_NR_delete_module
:
7455 #ifdef TARGET_NR_get_kernel_syms
7456 case TARGET_NR_get_kernel_syms
:
7459 case TARGET_NR_quotactl
:
7461 case TARGET_NR_getpgid
:
7462 ret
= get_errno(getpgid(arg1
));
7464 case TARGET_NR_fchdir
:
7465 ret
= get_errno(fchdir(arg1
));
7467 #ifdef TARGET_NR_bdflush /* not on x86_64 */
7468 case TARGET_NR_bdflush
:
7471 #ifdef TARGET_NR_sysfs
7472 case TARGET_NR_sysfs
:
7475 case TARGET_NR_personality
:
7476 ret
= get_errno(personality(arg1
));
7478 #ifdef TARGET_NR_afs_syscall
7479 case TARGET_NR_afs_syscall
:
7482 #ifdef TARGET_NR__llseek /* Not on alpha */
7483 case TARGET_NR__llseek
:
7486 #if !defined(__NR_llseek)
7487 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | arg3
, arg5
);
7489 ret
= get_errno(res
);
7494 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
7496 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
7502 case TARGET_NR_getdents
:
7503 #ifdef __NR_getdents
7504 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
7506 struct target_dirent
*target_dirp
;
7507 struct linux_dirent
*dirp
;
7508 abi_long count
= arg3
;
7510 dirp
= malloc(count
);
7512 ret
= -TARGET_ENOMEM
;
7516 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
7517 if (!is_error(ret
)) {
7518 struct linux_dirent
*de
;
7519 struct target_dirent
*tde
;
7521 int reclen
, treclen
;
7522 int count1
, tnamelen
;
7526 if (!(target_dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
7530 reclen
= de
->d_reclen
;
7531 tnamelen
= reclen
- offsetof(struct linux_dirent
, d_name
);
7532 assert(tnamelen
>= 0);
7533 treclen
= tnamelen
+ offsetof(struct target_dirent
, d_name
);
7534 assert(count1
+ treclen
<= count
);
7535 tde
->d_reclen
= tswap16(treclen
);
7536 tde
->d_ino
= tswapal(de
->d_ino
);
7537 tde
->d_off
= tswapal(de
->d_off
);
7538 memcpy(tde
->d_name
, de
->d_name
, tnamelen
);
7539 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
7541 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
7545 unlock_user(target_dirp
, arg2
, ret
);
7551 struct linux_dirent
*dirp
;
7552 abi_long count
= arg3
;
7554 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
7556 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
7557 if (!is_error(ret
)) {
7558 struct linux_dirent
*de
;
7563 reclen
= de
->d_reclen
;
7566 de
->d_reclen
= tswap16(reclen
);
7567 tswapls(&de
->d_ino
);
7568 tswapls(&de
->d_off
);
7569 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
7573 unlock_user(dirp
, arg2
, ret
);
7577 /* Implement getdents in terms of getdents64 */
7579 struct linux_dirent64
*dirp
;
7580 abi_long count
= arg3
;
7582 dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
7586 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
7587 if (!is_error(ret
)) {
7588 /* Convert the dirent64 structs to target dirent. We do this
7589 * in-place, since we can guarantee that a target_dirent is no
7590 * larger than a dirent64; however this means we have to be
7591 * careful to read everything before writing in the new format.
7593 struct linux_dirent64
*de
;
7594 struct target_dirent
*tde
;
7599 tde
= (struct target_dirent
*)dirp
;
7601 int namelen
, treclen
;
7602 int reclen
= de
->d_reclen
;
7603 uint64_t ino
= de
->d_ino
;
7604 int64_t off
= de
->d_off
;
7605 uint8_t type
= de
->d_type
;
7607 namelen
= strlen(de
->d_name
);
7608 treclen
= offsetof(struct target_dirent
, d_name
)
7610 treclen
= QEMU_ALIGN_UP(treclen
, sizeof(abi_long
));
7612 memmove(tde
->d_name
, de
->d_name
, namelen
+ 1);
7613 tde
->d_ino
= tswapal(ino
);
7614 tde
->d_off
= tswapal(off
);
7615 tde
->d_reclen
= tswap16(treclen
);
7616 /* The target_dirent type is in what was formerly a padding
7617 * byte at the end of the structure:
7619 *(((char *)tde
) + treclen
- 1) = type
;
7621 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
7622 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
7628 unlock_user(dirp
, arg2
, ret
);
7632 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
7633 case TARGET_NR_getdents64
:
7635 struct linux_dirent64
*dirp
;
7636 abi_long count
= arg3
;
7637 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
7639 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
7640 if (!is_error(ret
)) {
7641 struct linux_dirent64
*de
;
7646 reclen
= de
->d_reclen
;
7649 de
->d_reclen
= tswap16(reclen
);
7650 tswap64s((uint64_t *)&de
->d_ino
);
7651 tswap64s((uint64_t *)&de
->d_off
);
7652 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
7656 unlock_user(dirp
, arg2
, ret
);
7659 #endif /* TARGET_NR_getdents64 */
7660 #if defined(TARGET_NR__newselect)
7661 case TARGET_NR__newselect
:
7662 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
7665 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
7666 # ifdef TARGET_NR_poll
7667 case TARGET_NR_poll
:
7669 # ifdef TARGET_NR_ppoll
7670 case TARGET_NR_ppoll
:
7673 struct target_pollfd
*target_pfd
;
7674 unsigned int nfds
= arg2
;
7679 target_pfd
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_pollfd
) * nfds
, 1);
7683 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
7684 for(i
= 0; i
< nfds
; i
++) {
7685 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
7686 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
7689 # ifdef TARGET_NR_ppoll
7690 if (num
== TARGET_NR_ppoll
) {
7691 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
7692 target_sigset_t
*target_set
;
7693 sigset_t _set
, *set
= &_set
;
7696 if (target_to_host_timespec(timeout_ts
, arg3
)) {
7697 unlock_user(target_pfd
, arg1
, 0);
7705 target_set
= lock_user(VERIFY_READ
, arg4
, sizeof(target_sigset_t
), 1);
7707 unlock_user(target_pfd
, arg1
, 0);
7710 target_to_host_sigset(set
, target_set
);
7715 ret
= get_errno(sys_ppoll(pfd
, nfds
, timeout_ts
, set
, _NSIG
/8));
7717 if (!is_error(ret
) && arg3
) {
7718 host_to_target_timespec(arg3
, timeout_ts
);
7721 unlock_user(target_set
, arg4
, 0);
7725 ret
= get_errno(poll(pfd
, nfds
, timeout
));
7727 if (!is_error(ret
)) {
7728 for(i
= 0; i
< nfds
; i
++) {
7729 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
7732 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
7736 case TARGET_NR_flock
:
7737 /* NOTE: the flock constant seems to be the same for every
7739 ret
= get_errno(flock(arg1
, arg2
));
7741 case TARGET_NR_readv
:
7743 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
7745 ret
= get_errno(readv(arg1
, vec
, arg3
));
7746 unlock_iovec(vec
, arg2
, arg3
, 1);
7748 ret
= -host_to_target_errno(errno
);
7752 case TARGET_NR_writev
:
7754 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
7756 ret
= get_errno(writev(arg1
, vec
, arg3
));
7757 unlock_iovec(vec
, arg2
, arg3
, 0);
7759 ret
= -host_to_target_errno(errno
);
7763 case TARGET_NR_getsid
:
7764 ret
= get_errno(getsid(arg1
));
7766 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
7767 case TARGET_NR_fdatasync
:
7768 ret
= get_errno(fdatasync(arg1
));
7771 case TARGET_NR__sysctl
:
7772 /* We don't implement this, but ENOTDIR is always a safe
7774 ret
= -TARGET_ENOTDIR
;
7776 case TARGET_NR_sched_getaffinity
:
7778 unsigned int mask_size
;
7779 unsigned long *mask
;
7782 * sched_getaffinity needs multiples of ulong, so need to take
7783 * care of mismatches between target ulong and host ulong sizes.
7785 if (arg2
& (sizeof(abi_ulong
) - 1)) {
7786 ret
= -TARGET_EINVAL
;
7789 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
7791 mask
= alloca(mask_size
);
7792 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
7794 if (!is_error(ret
)) {
7796 /* More data returned than the caller's buffer will fit.
7797 * This only happens if sizeof(abi_long) < sizeof(long)
7798 * and the caller passed us a buffer holding an odd number
7799 * of abi_longs. If the host kernel is actually using the
7800 * extra 4 bytes then fail EINVAL; otherwise we can just
7801 * ignore them and only copy the interesting part.
7803 int numcpus
= sysconf(_SC_NPROCESSORS_CONF
);
7804 if (numcpus
> arg2
* 8) {
7805 ret
= -TARGET_EINVAL
;
7811 if (copy_to_user(arg3
, mask
, ret
)) {
7817 case TARGET_NR_sched_setaffinity
:
7819 unsigned int mask_size
;
7820 unsigned long *mask
;
7823 * sched_setaffinity needs multiples of ulong, so need to take
7824 * care of mismatches between target ulong and host ulong sizes.
7826 if (arg2
& (sizeof(abi_ulong
) - 1)) {
7827 ret
= -TARGET_EINVAL
;
7830 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
7832 mask
= alloca(mask_size
);
7833 if (!lock_user_struct(VERIFY_READ
, p
, arg3
, 1)) {
7836 memcpy(mask
, p
, arg2
);
7837 unlock_user_struct(p
, arg2
, 0);
7839 ret
= get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
7842 case TARGET_NR_sched_setparam
:
7844 struct sched_param
*target_schp
;
7845 struct sched_param schp
;
7848 return -TARGET_EINVAL
;
7850 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1))
7852 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
7853 unlock_user_struct(target_schp
, arg2
, 0);
7854 ret
= get_errno(sched_setparam(arg1
, &schp
));
7857 case TARGET_NR_sched_getparam
:
7859 struct sched_param
*target_schp
;
7860 struct sched_param schp
;
7863 return -TARGET_EINVAL
;
7865 ret
= get_errno(sched_getparam(arg1
, &schp
));
7866 if (!is_error(ret
)) {
7867 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0))
7869 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
7870 unlock_user_struct(target_schp
, arg2
, 1);
7874 case TARGET_NR_sched_setscheduler
:
7876 struct sched_param
*target_schp
;
7877 struct sched_param schp
;
7879 return -TARGET_EINVAL
;
7881 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1))
7883 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
7884 unlock_user_struct(target_schp
, arg3
, 0);
7885 ret
= get_errno(sched_setscheduler(arg1
, arg2
, &schp
));
7888 case TARGET_NR_sched_getscheduler
:
7889 ret
= get_errno(sched_getscheduler(arg1
));
7891 case TARGET_NR_sched_yield
:
7892 ret
= get_errno(sched_yield());
7894 case TARGET_NR_sched_get_priority_max
:
7895 ret
= get_errno(sched_get_priority_max(arg1
));
7897 case TARGET_NR_sched_get_priority_min
:
7898 ret
= get_errno(sched_get_priority_min(arg1
));
7900 case TARGET_NR_sched_rr_get_interval
:
7903 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
7904 if (!is_error(ret
)) {
7905 ret
= host_to_target_timespec(arg2
, &ts
);
7909 case TARGET_NR_nanosleep
:
7911 struct timespec req
, rem
;
7912 target_to_host_timespec(&req
, arg1
);
7913 ret
= get_errno(nanosleep(&req
, &rem
));
7914 if (is_error(ret
) && arg2
) {
7915 host_to_target_timespec(arg2
, &rem
);
7919 #ifdef TARGET_NR_query_module
7920 case TARGET_NR_query_module
:
7923 #ifdef TARGET_NR_nfsservctl
7924 case TARGET_NR_nfsservctl
:
7927 case TARGET_NR_prctl
:
7929 case PR_GET_PDEATHSIG
:
7932 ret
= get_errno(prctl(arg1
, &deathsig
, arg3
, arg4
, arg5
));
7933 if (!is_error(ret
) && arg2
7934 && put_user_ual(deathsig
, arg2
)) {
7942 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
7946 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
7948 unlock_user(name
, arg2
, 16);
7953 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
7957 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
7959 unlock_user(name
, arg2
, 0);
7964 /* Most prctl options have no pointer arguments */
7965 ret
= get_errno(prctl(arg1
, arg2
, arg3
, arg4
, arg5
));
7969 #ifdef TARGET_NR_arch_prctl
7970 case TARGET_NR_arch_prctl
:
7971 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
7972 ret
= do_arch_prctl(cpu_env
, arg1
, arg2
);
7978 #ifdef TARGET_NR_pread64
7979 case TARGET_NR_pread64
:
7980 if (regpairs_aligned(cpu_env
)) {
7984 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
7986 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
7987 unlock_user(p
, arg2
, ret
);
7989 case TARGET_NR_pwrite64
:
7990 if (regpairs_aligned(cpu_env
)) {
7994 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
7996 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
7997 unlock_user(p
, arg2
, 0);
8000 case TARGET_NR_getcwd
:
8001 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
8003 ret
= get_errno(sys_getcwd1(p
, arg2
));
8004 unlock_user(p
, arg1
, ret
);
8006 case TARGET_NR_capget
:
8007 case TARGET_NR_capset
:
8009 struct target_user_cap_header
*target_header
;
8010 struct target_user_cap_data
*target_data
= NULL
;
8011 struct __user_cap_header_struct header
;
8012 struct __user_cap_data_struct data
[2];
8013 struct __user_cap_data_struct
*dataptr
= NULL
;
8014 int i
, target_datalen
;
8017 if (!lock_user_struct(VERIFY_WRITE
, target_header
, arg1
, 1)) {
8020 header
.version
= tswap32(target_header
->version
);
8021 header
.pid
= tswap32(target_header
->pid
);
8023 if (header
.version
!= _LINUX_CAPABILITY_VERSION
) {
8024 /* Version 2 and up takes pointer to two user_data structs */
8028 target_datalen
= sizeof(*target_data
) * data_items
;
8031 if (num
== TARGET_NR_capget
) {
8032 target_data
= lock_user(VERIFY_WRITE
, arg2
, target_datalen
, 0);
8034 target_data
= lock_user(VERIFY_READ
, arg2
, target_datalen
, 1);
8037 unlock_user_struct(target_header
, arg1
, 0);
8041 if (num
== TARGET_NR_capset
) {
8042 for (i
= 0; i
< data_items
; i
++) {
8043 data
[i
].effective
= tswap32(target_data
[i
].effective
);
8044 data
[i
].permitted
= tswap32(target_data
[i
].permitted
);
8045 data
[i
].inheritable
= tswap32(target_data
[i
].inheritable
);
8052 if (num
== TARGET_NR_capget
) {
8053 ret
= get_errno(capget(&header
, dataptr
));
8055 ret
= get_errno(capset(&header
, dataptr
));
8058 /* The kernel always updates version for both capget and capset */
8059 target_header
->version
= tswap32(header
.version
);
8060 unlock_user_struct(target_header
, arg1
, 1);
8063 if (num
== TARGET_NR_capget
) {
8064 for (i
= 0; i
< data_items
; i
++) {
8065 target_data
[i
].effective
= tswap32(data
[i
].effective
);
8066 target_data
[i
].permitted
= tswap32(data
[i
].permitted
);
8067 target_data
[i
].inheritable
= tswap32(data
[i
].inheritable
);
8069 unlock_user(target_data
, arg2
, target_datalen
);
8071 unlock_user(target_data
, arg2
, 0);
8076 case TARGET_NR_sigaltstack
:
8077 #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \
8078 defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \
8079 defined(TARGET_M68K) || defined(TARGET_S390X) || defined(TARGET_OPENRISC)
8080 ret
= do_sigaltstack(arg1
, arg2
, get_sp_from_cpustate((CPUArchState
*)cpu_env
));
8086 #ifdef CONFIG_SENDFILE
8087 case TARGET_NR_sendfile
:
8092 ret
= get_user_sal(off
, arg3
);
8093 if (is_error(ret
)) {
8098 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
8099 if (!is_error(ret
) && arg3
) {
8100 abi_long ret2
= put_user_sal(off
, arg3
);
8101 if (is_error(ret2
)) {
8107 #ifdef TARGET_NR_sendfile64
8108 case TARGET_NR_sendfile64
:
8113 ret
= get_user_s64(off
, arg3
);
8114 if (is_error(ret
)) {
8119 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
8120 if (!is_error(ret
) && arg3
) {
8121 abi_long ret2
= put_user_s64(off
, arg3
);
8122 if (is_error(ret2
)) {
8130 case TARGET_NR_sendfile
:
8131 #ifdef TARGET_NR_sendfile64
8132 case TARGET_NR_sendfile64
:
8137 #ifdef TARGET_NR_getpmsg
8138 case TARGET_NR_getpmsg
:
8141 #ifdef TARGET_NR_putpmsg
8142 case TARGET_NR_putpmsg
:
8145 #ifdef TARGET_NR_vfork
8146 case TARGET_NR_vfork
:
8147 ret
= get_errno(do_fork(cpu_env
, CLONE_VFORK
| CLONE_VM
| SIGCHLD
,
8151 #ifdef TARGET_NR_ugetrlimit
8152 case TARGET_NR_ugetrlimit
:
8155 int resource
= target_to_host_resource(arg1
);
8156 ret
= get_errno(getrlimit(resource
, &rlim
));
8157 if (!is_error(ret
)) {
8158 struct target_rlimit
*target_rlim
;
8159 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
8161 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
8162 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
8163 unlock_user_struct(target_rlim
, arg2
, 1);
8168 #ifdef TARGET_NR_truncate64
8169 case TARGET_NR_truncate64
:
8170 if (!(p
= lock_user_string(arg1
)))
8172 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
8173 unlock_user(p
, arg1
, 0);
8176 #ifdef TARGET_NR_ftruncate64
8177 case TARGET_NR_ftruncate64
:
8178 ret
= target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
8181 #ifdef TARGET_NR_stat64
8182 case TARGET_NR_stat64
:
8183 if (!(p
= lock_user_string(arg1
)))
8185 ret
= get_errno(stat(path(p
), &st
));
8186 unlock_user(p
, arg1
, 0);
8188 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
8191 #ifdef TARGET_NR_lstat64
8192 case TARGET_NR_lstat64
:
8193 if (!(p
= lock_user_string(arg1
)))
8195 ret
= get_errno(lstat(path(p
), &st
));
8196 unlock_user(p
, arg1
, 0);
8198 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
8201 #ifdef TARGET_NR_fstat64
8202 case TARGET_NR_fstat64
:
8203 ret
= get_errno(fstat(arg1
, &st
));
8205 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
8208 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
8209 #ifdef TARGET_NR_fstatat64
8210 case TARGET_NR_fstatat64
:
8212 #ifdef TARGET_NR_newfstatat
8213 case TARGET_NR_newfstatat
:
8215 if (!(p
= lock_user_string(arg2
)))
8217 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
8219 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
8222 case TARGET_NR_lchown
:
8223 if (!(p
= lock_user_string(arg1
)))
8225 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
8226 unlock_user(p
, arg1
, 0);
8228 #ifdef TARGET_NR_getuid
8229 case TARGET_NR_getuid
:
8230 ret
= get_errno(high2lowuid(getuid()));
8233 #ifdef TARGET_NR_getgid
8234 case TARGET_NR_getgid
:
8235 ret
= get_errno(high2lowgid(getgid()));
8238 #ifdef TARGET_NR_geteuid
8239 case TARGET_NR_geteuid
:
8240 ret
= get_errno(high2lowuid(geteuid()));
8243 #ifdef TARGET_NR_getegid
8244 case TARGET_NR_getegid
:
8245 ret
= get_errno(high2lowgid(getegid()));
8248 case TARGET_NR_setreuid
:
8249 ret
= get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
8251 case TARGET_NR_setregid
:
8252 ret
= get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
8254 case TARGET_NR_getgroups
:
8256 int gidsetsize
= arg1
;
8257 target_id
*target_grouplist
;
8261 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8262 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
8263 if (gidsetsize
== 0)
8265 if (!is_error(ret
)) {
8266 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* sizeof(target_id
), 0);
8267 if (!target_grouplist
)
8269 for(i
= 0;i
< ret
; i
++)
8270 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
8271 unlock_user(target_grouplist
, arg2
, gidsetsize
* sizeof(target_id
));
8275 case TARGET_NR_setgroups
:
8277 int gidsetsize
= arg1
;
8278 target_id
*target_grouplist
;
8279 gid_t
*grouplist
= NULL
;
8282 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8283 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* sizeof(target_id
), 1);
8284 if (!target_grouplist
) {
8285 ret
= -TARGET_EFAULT
;
8288 for (i
= 0; i
< gidsetsize
; i
++) {
8289 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
8291 unlock_user(target_grouplist
, arg2
, 0);
8293 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
8296 case TARGET_NR_fchown
:
8297 ret
= get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
8299 #if defined(TARGET_NR_fchownat)
8300 case TARGET_NR_fchownat
:
8301 if (!(p
= lock_user_string(arg2
)))
8303 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
8304 low2highgid(arg4
), arg5
));
8305 unlock_user(p
, arg2
, 0);
8308 #ifdef TARGET_NR_setresuid
8309 case TARGET_NR_setresuid
:
8310 ret
= get_errno(setresuid(low2highuid(arg1
),
8312 low2highuid(arg3
)));
8315 #ifdef TARGET_NR_getresuid
8316 case TARGET_NR_getresuid
:
8318 uid_t ruid
, euid
, suid
;
8319 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
8320 if (!is_error(ret
)) {
8321 if (put_user_id(high2lowuid(ruid
), arg1
)
8322 || put_user_id(high2lowuid(euid
), arg2
)
8323 || put_user_id(high2lowuid(suid
), arg3
))
8329 #ifdef TARGET_NR_getresgid
8330 case TARGET_NR_setresgid
:
8331 ret
= get_errno(setresgid(low2highgid(arg1
),
8333 low2highgid(arg3
)));
8336 #ifdef TARGET_NR_getresgid
8337 case TARGET_NR_getresgid
:
8339 gid_t rgid
, egid
, sgid
;
8340 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
8341 if (!is_error(ret
)) {
8342 if (put_user_id(high2lowgid(rgid
), arg1
)
8343 || put_user_id(high2lowgid(egid
), arg2
)
8344 || put_user_id(high2lowgid(sgid
), arg3
))
8350 case TARGET_NR_chown
:
8351 if (!(p
= lock_user_string(arg1
)))
8353 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
8354 unlock_user(p
, arg1
, 0);
8356 case TARGET_NR_setuid
:
8357 ret
= get_errno(setuid(low2highuid(arg1
)));
8359 case TARGET_NR_setgid
:
8360 ret
= get_errno(setgid(low2highgid(arg1
)));
8362 case TARGET_NR_setfsuid
:
8363 ret
= get_errno(setfsuid(arg1
));
8365 case TARGET_NR_setfsgid
:
8366 ret
= get_errno(setfsgid(arg1
));
8369 #ifdef TARGET_NR_lchown32
8370 case TARGET_NR_lchown32
:
8371 if (!(p
= lock_user_string(arg1
)))
8373 ret
= get_errno(lchown(p
, arg2
, arg3
));
8374 unlock_user(p
, arg1
, 0);
8377 #ifdef TARGET_NR_getuid32
8378 case TARGET_NR_getuid32
:
8379 ret
= get_errno(getuid());
8383 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
8384 /* Alpha specific */
8385 case TARGET_NR_getxuid
:
8389 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=euid
;
8391 ret
= get_errno(getuid());
8394 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
8395 /* Alpha specific */
8396 case TARGET_NR_getxgid
:
8400 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=egid
;
8402 ret
= get_errno(getgid());
8405 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
8406 /* Alpha specific */
8407 case TARGET_NR_osf_getsysinfo
:
8408 ret
= -TARGET_EOPNOTSUPP
;
8410 case TARGET_GSI_IEEE_FP_CONTROL
:
8412 uint64_t swcr
, fpcr
= cpu_alpha_load_fpcr (cpu_env
);
8414 /* Copied from linux ieee_fpcr_to_swcr. */
8415 swcr
= (fpcr
>> 35) & SWCR_STATUS_MASK
;
8416 swcr
|= (fpcr
>> 36) & SWCR_MAP_DMZ
;
8417 swcr
|= (~fpcr
>> 48) & (SWCR_TRAP_ENABLE_INV
8418 | SWCR_TRAP_ENABLE_DZE
8419 | SWCR_TRAP_ENABLE_OVF
);
8420 swcr
|= (~fpcr
>> 57) & (SWCR_TRAP_ENABLE_UNF
8421 | SWCR_TRAP_ENABLE_INE
);
8422 swcr
|= (fpcr
>> 47) & SWCR_MAP_UMZ
;
8423 swcr
|= (~fpcr
>> 41) & SWCR_TRAP_ENABLE_DNO
;
8425 if (put_user_u64 (swcr
, arg2
))
8431 /* case GSI_IEEE_STATE_AT_SIGNAL:
8432 -- Not implemented in linux kernel.
8434 -- Retrieves current unaligned access state; not much used.
8436 -- Retrieves implver information; surely not used.
8438 -- Grabs a copy of the HWRPB; surely not used.
8443 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
8444 /* Alpha specific */
8445 case TARGET_NR_osf_setsysinfo
:
8446 ret
= -TARGET_EOPNOTSUPP
;
8448 case TARGET_SSI_IEEE_FP_CONTROL
:
8450 uint64_t swcr
, fpcr
, orig_fpcr
;
8452 if (get_user_u64 (swcr
, arg2
)) {
8455 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
8456 fpcr
= orig_fpcr
& FPCR_DYN_MASK
;
8458 /* Copied from linux ieee_swcr_to_fpcr. */
8459 fpcr
|= (swcr
& SWCR_STATUS_MASK
) << 35;
8460 fpcr
|= (swcr
& SWCR_MAP_DMZ
) << 36;
8461 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_INV
8462 | SWCR_TRAP_ENABLE_DZE
8463 | SWCR_TRAP_ENABLE_OVF
)) << 48;
8464 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_UNF
8465 | SWCR_TRAP_ENABLE_INE
)) << 57;
8466 fpcr
|= (swcr
& SWCR_MAP_UMZ
? FPCR_UNDZ
| FPCR_UNFD
: 0);
8467 fpcr
|= (~swcr
& SWCR_TRAP_ENABLE_DNO
) << 41;
8469 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
8474 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
8476 uint64_t exc
, fpcr
, orig_fpcr
;
8479 if (get_user_u64(exc
, arg2
)) {
8483 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
8485 /* We only add to the exception status here. */
8486 fpcr
= orig_fpcr
| ((exc
& SWCR_STATUS_MASK
) << 35);
8488 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
8491 /* Old exceptions are not signaled. */
8492 fpcr
&= ~(orig_fpcr
& FPCR_STATUS_MASK
);
8494 /* If any exceptions set by this call,
8495 and are unmasked, send a signal. */
8497 if ((fpcr
& (FPCR_INE
| FPCR_INED
)) == FPCR_INE
) {
8498 si_code
= TARGET_FPE_FLTRES
;
8500 if ((fpcr
& (FPCR_UNF
| FPCR_UNFD
)) == FPCR_UNF
) {
8501 si_code
= TARGET_FPE_FLTUND
;
8503 if ((fpcr
& (FPCR_OVF
| FPCR_OVFD
)) == FPCR_OVF
) {
8504 si_code
= TARGET_FPE_FLTOVF
;
8506 if ((fpcr
& (FPCR_DZE
| FPCR_DZED
)) == FPCR_DZE
) {
8507 si_code
= TARGET_FPE_FLTDIV
;
8509 if ((fpcr
& (FPCR_INV
| FPCR_INVD
)) == FPCR_INV
) {
8510 si_code
= TARGET_FPE_FLTINV
;
8513 target_siginfo_t info
;
8514 info
.si_signo
= SIGFPE
;
8516 info
.si_code
= si_code
;
8517 info
._sifields
._sigfault
._addr
8518 = ((CPUArchState
*)cpu_env
)->pc
;
8519 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
, &info
);
8524 /* case SSI_NVPAIRS:
8525 -- Used with SSIN_UACPROC to enable unaligned accesses.
8526 case SSI_IEEE_STATE_AT_SIGNAL:
8527 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
8528 -- Not implemented in linux kernel
8533 #ifdef TARGET_NR_osf_sigprocmask
8534 /* Alpha specific. */
8535 case TARGET_NR_osf_sigprocmask
:
8539 sigset_t set
, oldset
;
8542 case TARGET_SIG_BLOCK
:
8545 case TARGET_SIG_UNBLOCK
:
8548 case TARGET_SIG_SETMASK
:
8552 ret
= -TARGET_EINVAL
;
8556 target_to_host_old_sigset(&set
, &mask
);
8557 do_sigprocmask(how
, &set
, &oldset
);
8558 host_to_target_old_sigset(&mask
, &oldset
);
8564 #ifdef TARGET_NR_getgid32
8565 case TARGET_NR_getgid32
:
8566 ret
= get_errno(getgid());
8569 #ifdef TARGET_NR_geteuid32
8570 case TARGET_NR_geteuid32
:
8571 ret
= get_errno(geteuid());
8574 #ifdef TARGET_NR_getegid32
8575 case TARGET_NR_getegid32
:
8576 ret
= get_errno(getegid());
8579 #ifdef TARGET_NR_setreuid32
8580 case TARGET_NR_setreuid32
:
8581 ret
= get_errno(setreuid(arg1
, arg2
));
8584 #ifdef TARGET_NR_setregid32
8585 case TARGET_NR_setregid32
:
8586 ret
= get_errno(setregid(arg1
, arg2
));
8589 #ifdef TARGET_NR_getgroups32
8590 case TARGET_NR_getgroups32
:
8592 int gidsetsize
= arg1
;
8593 uint32_t *target_grouplist
;
8597 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8598 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
8599 if (gidsetsize
== 0)
8601 if (!is_error(ret
)) {
8602 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* 4, 0);
8603 if (!target_grouplist
) {
8604 ret
= -TARGET_EFAULT
;
8607 for(i
= 0;i
< ret
; i
++)
8608 target_grouplist
[i
] = tswap32(grouplist
[i
]);
8609 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
8614 #ifdef TARGET_NR_setgroups32
8615 case TARGET_NR_setgroups32
:
8617 int gidsetsize
= arg1
;
8618 uint32_t *target_grouplist
;
8622 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
8623 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* 4, 1);
8624 if (!target_grouplist
) {
8625 ret
= -TARGET_EFAULT
;
8628 for(i
= 0;i
< gidsetsize
; i
++)
8629 grouplist
[i
] = tswap32(target_grouplist
[i
]);
8630 unlock_user(target_grouplist
, arg2
, 0);
8631 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
8635 #ifdef TARGET_NR_fchown32
8636 case TARGET_NR_fchown32
:
8637 ret
= get_errno(fchown(arg1
, arg2
, arg3
));
8640 #ifdef TARGET_NR_setresuid32
8641 case TARGET_NR_setresuid32
:
8642 ret
= get_errno(setresuid(arg1
, arg2
, arg3
));
8645 #ifdef TARGET_NR_getresuid32
8646 case TARGET_NR_getresuid32
:
8648 uid_t ruid
, euid
, suid
;
8649 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
8650 if (!is_error(ret
)) {
8651 if (put_user_u32(ruid
, arg1
)
8652 || put_user_u32(euid
, arg2
)
8653 || put_user_u32(suid
, arg3
))
8659 #ifdef TARGET_NR_setresgid32
8660 case TARGET_NR_setresgid32
:
8661 ret
= get_errno(setresgid(arg1
, arg2
, arg3
));
8664 #ifdef TARGET_NR_getresgid32
8665 case TARGET_NR_getresgid32
:
8667 gid_t rgid
, egid
, sgid
;
8668 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
8669 if (!is_error(ret
)) {
8670 if (put_user_u32(rgid
, arg1
)
8671 || put_user_u32(egid
, arg2
)
8672 || put_user_u32(sgid
, arg3
))
8678 #ifdef TARGET_NR_chown32
8679 case TARGET_NR_chown32
:
8680 if (!(p
= lock_user_string(arg1
)))
8682 ret
= get_errno(chown(p
, arg2
, arg3
));
8683 unlock_user(p
, arg1
, 0);
8686 #ifdef TARGET_NR_setuid32
8687 case TARGET_NR_setuid32
:
8688 ret
= get_errno(setuid(arg1
));
8691 #ifdef TARGET_NR_setgid32
8692 case TARGET_NR_setgid32
:
8693 ret
= get_errno(setgid(arg1
));
8696 #ifdef TARGET_NR_setfsuid32
8697 case TARGET_NR_setfsuid32
:
8698 ret
= get_errno(setfsuid(arg1
));
8701 #ifdef TARGET_NR_setfsgid32
8702 case TARGET_NR_setfsgid32
:
8703 ret
= get_errno(setfsgid(arg1
));
8707 case TARGET_NR_pivot_root
:
8709 #ifdef TARGET_NR_mincore
8710 case TARGET_NR_mincore
:
8713 ret
= -TARGET_EFAULT
;
8714 if (!(a
= lock_user(VERIFY_READ
, arg1
,arg2
, 0)))
8716 if (!(p
= lock_user_string(arg3
)))
8718 ret
= get_errno(mincore(a
, arg2
, p
));
8719 unlock_user(p
, arg3
, ret
);
8721 unlock_user(a
, arg1
, 0);
8725 #ifdef TARGET_NR_arm_fadvise64_64
8726 case TARGET_NR_arm_fadvise64_64
:
8729 * arm_fadvise64_64 looks like fadvise64_64 but
8730 * with different argument order
8738 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64)
8739 #ifdef TARGET_NR_fadvise64_64
8740 case TARGET_NR_fadvise64_64
:
8742 #ifdef TARGET_NR_fadvise64
8743 case TARGET_NR_fadvise64
:
8747 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
8748 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
8749 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
8750 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
8754 ret
= -posix_fadvise(arg1
, arg2
, arg3
, arg4
);
8757 #ifdef TARGET_NR_madvise
8758 case TARGET_NR_madvise
:
8759 /* A straight passthrough may not be safe because qemu sometimes
8760 turns private file-backed mappings into anonymous mappings.
8761 This will break MADV_DONTNEED.
8762 This is a hint, so ignoring and returning success is ok. */
8766 #if TARGET_ABI_BITS == 32
8767 case TARGET_NR_fcntl64
:
8771 struct target_flock64
*target_fl
;
8773 struct target_eabi_flock64
*target_efl
;
8776 cmd
= target_to_host_fcntl_cmd(arg2
);
8777 if (cmd
== -TARGET_EINVAL
) {
8783 case TARGET_F_GETLK64
:
8785 if (((CPUARMState
*)cpu_env
)->eabi
) {
8786 if (!lock_user_struct(VERIFY_READ
, target_efl
, arg3
, 1))
8788 fl
.l_type
= tswap16(target_efl
->l_type
);
8789 fl
.l_whence
= tswap16(target_efl
->l_whence
);
8790 fl
.l_start
= tswap64(target_efl
->l_start
);
8791 fl
.l_len
= tswap64(target_efl
->l_len
);
8792 fl
.l_pid
= tswap32(target_efl
->l_pid
);
8793 unlock_user_struct(target_efl
, arg3
, 0);
8797 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg3
, 1))
8799 fl
.l_type
= tswap16(target_fl
->l_type
);
8800 fl
.l_whence
= tswap16(target_fl
->l_whence
);
8801 fl
.l_start
= tswap64(target_fl
->l_start
);
8802 fl
.l_len
= tswap64(target_fl
->l_len
);
8803 fl
.l_pid
= tswap32(target_fl
->l_pid
);
8804 unlock_user_struct(target_fl
, arg3
, 0);
8806 ret
= get_errno(fcntl(arg1
, cmd
, &fl
));
8809 if (((CPUARMState
*)cpu_env
)->eabi
) {
8810 if (!lock_user_struct(VERIFY_WRITE
, target_efl
, arg3
, 0))
8812 target_efl
->l_type
= tswap16(fl
.l_type
);
8813 target_efl
->l_whence
= tswap16(fl
.l_whence
);
8814 target_efl
->l_start
= tswap64(fl
.l_start
);
8815 target_efl
->l_len
= tswap64(fl
.l_len
);
8816 target_efl
->l_pid
= tswap32(fl
.l_pid
);
8817 unlock_user_struct(target_efl
, arg3
, 1);
8821 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, arg3
, 0))
8823 target_fl
->l_type
= tswap16(fl
.l_type
);
8824 target_fl
->l_whence
= tswap16(fl
.l_whence
);
8825 target_fl
->l_start
= tswap64(fl
.l_start
);
8826 target_fl
->l_len
= tswap64(fl
.l_len
);
8827 target_fl
->l_pid
= tswap32(fl
.l_pid
);
8828 unlock_user_struct(target_fl
, arg3
, 1);
8833 case TARGET_F_SETLK64
:
8834 case TARGET_F_SETLKW64
:
8836 if (((CPUARMState
*)cpu_env
)->eabi
) {
8837 if (!lock_user_struct(VERIFY_READ
, target_efl
, arg3
, 1))
8839 fl
.l_type
= tswap16(target_efl
->l_type
);
8840 fl
.l_whence
= tswap16(target_efl
->l_whence
);
8841 fl
.l_start
= tswap64(target_efl
->l_start
);
8842 fl
.l_len
= tswap64(target_efl
->l_len
);
8843 fl
.l_pid
= tswap32(target_efl
->l_pid
);
8844 unlock_user_struct(target_efl
, arg3
, 0);
8848 if (!lock_user_struct(VERIFY_READ
, target_fl
, arg3
, 1))
8850 fl
.l_type
= tswap16(target_fl
->l_type
);
8851 fl
.l_whence
= tswap16(target_fl
->l_whence
);
8852 fl
.l_start
= tswap64(target_fl
->l_start
);
8853 fl
.l_len
= tswap64(target_fl
->l_len
);
8854 fl
.l_pid
= tswap32(target_fl
->l_pid
);
8855 unlock_user_struct(target_fl
, arg3
, 0);
8857 ret
= get_errno(fcntl(arg1
, cmd
, &fl
));
8860 ret
= do_fcntl(arg1
, arg2
, arg3
);
8866 #ifdef TARGET_NR_cacheflush
8867 case TARGET_NR_cacheflush
:
8868 /* self-modifying code is handled automatically, so nothing needed */
8872 #ifdef TARGET_NR_security
8873 case TARGET_NR_security
:
8876 #ifdef TARGET_NR_getpagesize
8877 case TARGET_NR_getpagesize
:
8878 ret
= TARGET_PAGE_SIZE
;
8881 case TARGET_NR_gettid
:
8882 ret
= get_errno(gettid());
8884 #ifdef TARGET_NR_readahead
8885 case TARGET_NR_readahead
:
8886 #if TARGET_ABI_BITS == 32
8887 if (regpairs_aligned(cpu_env
)) {
8892 ret
= get_errno(readahead(arg1
, ((off64_t
)arg3
<< 32) | arg2
, arg4
));
8894 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
8899 #ifdef TARGET_NR_setxattr
8900 case TARGET_NR_listxattr
:
8901 case TARGET_NR_llistxattr
:
8905 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
8907 ret
= -TARGET_EFAULT
;
8911 p
= lock_user_string(arg1
);
8913 if (num
== TARGET_NR_listxattr
) {
8914 ret
= get_errno(listxattr(p
, b
, arg3
));
8916 ret
= get_errno(llistxattr(p
, b
, arg3
));
8919 ret
= -TARGET_EFAULT
;
8921 unlock_user(p
, arg1
, 0);
8922 unlock_user(b
, arg2
, arg3
);
8925 case TARGET_NR_flistxattr
:
8929 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
8931 ret
= -TARGET_EFAULT
;
8935 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
8936 unlock_user(b
, arg2
, arg3
);
8939 case TARGET_NR_setxattr
:
8940 case TARGET_NR_lsetxattr
:
8942 void *p
, *n
, *v
= 0;
8944 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
8946 ret
= -TARGET_EFAULT
;
8950 p
= lock_user_string(arg1
);
8951 n
= lock_user_string(arg2
);
8953 if (num
== TARGET_NR_setxattr
) {
8954 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
8956 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
8959 ret
= -TARGET_EFAULT
;
8961 unlock_user(p
, arg1
, 0);
8962 unlock_user(n
, arg2
, 0);
8963 unlock_user(v
, arg3
, 0);
8966 case TARGET_NR_fsetxattr
:
8970 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
8972 ret
= -TARGET_EFAULT
;
8976 n
= lock_user_string(arg2
);
8978 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
8980 ret
= -TARGET_EFAULT
;
8982 unlock_user(n
, arg2
, 0);
8983 unlock_user(v
, arg3
, 0);
8986 case TARGET_NR_getxattr
:
8987 case TARGET_NR_lgetxattr
:
8989 void *p
, *n
, *v
= 0;
8991 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
8993 ret
= -TARGET_EFAULT
;
8997 p
= lock_user_string(arg1
);
8998 n
= lock_user_string(arg2
);
9000 if (num
== TARGET_NR_getxattr
) {
9001 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
9003 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
9006 ret
= -TARGET_EFAULT
;
9008 unlock_user(p
, arg1
, 0);
9009 unlock_user(n
, arg2
, 0);
9010 unlock_user(v
, arg3
, arg4
);
9013 case TARGET_NR_fgetxattr
:
9017 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
9019 ret
= -TARGET_EFAULT
;
9023 n
= lock_user_string(arg2
);
9025 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
9027 ret
= -TARGET_EFAULT
;
9029 unlock_user(n
, arg2
, 0);
9030 unlock_user(v
, arg3
, arg4
);
9033 case TARGET_NR_removexattr
:
9034 case TARGET_NR_lremovexattr
:
9037 p
= lock_user_string(arg1
);
9038 n
= lock_user_string(arg2
);
9040 if (num
== TARGET_NR_removexattr
) {
9041 ret
= get_errno(removexattr(p
, n
));
9043 ret
= get_errno(lremovexattr(p
, n
));
9046 ret
= -TARGET_EFAULT
;
9048 unlock_user(p
, arg1
, 0);
9049 unlock_user(n
, arg2
, 0);
9052 case TARGET_NR_fremovexattr
:
9055 n
= lock_user_string(arg2
);
9057 ret
= get_errno(fremovexattr(arg1
, n
));
9059 ret
= -TARGET_EFAULT
;
9061 unlock_user(n
, arg2
, 0);
9065 #endif /* CONFIG_ATTR */
9066 #ifdef TARGET_NR_set_thread_area
9067 case TARGET_NR_set_thread_area
:
9068 #if defined(TARGET_MIPS)
9069 ((CPUMIPSState
*) cpu_env
)->active_tc
.CP0_UserLocal
= arg1
;
9072 #elif defined(TARGET_CRIS)
9074 ret
= -TARGET_EINVAL
;
9076 ((CPUCRISState
*) cpu_env
)->pregs
[PR_PID
] = arg1
;
9080 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
9081 ret
= do_set_thread_area(cpu_env
, arg1
);
9083 #elif defined(TARGET_M68K)
9085 TaskState
*ts
= cpu
->opaque
;
9086 ts
->tp_value
= arg1
;
9091 goto unimplemented_nowarn
;
9094 #ifdef TARGET_NR_get_thread_area
9095 case TARGET_NR_get_thread_area
:
9096 #if defined(TARGET_I386) && defined(TARGET_ABI32)
9097 ret
= do_get_thread_area(cpu_env
, arg1
);
9099 #elif defined(TARGET_M68K)
9101 TaskState
*ts
= cpu
->opaque
;
9106 goto unimplemented_nowarn
;
9109 #ifdef TARGET_NR_getdomainname
9110 case TARGET_NR_getdomainname
:
9111 goto unimplemented_nowarn
;
9114 #ifdef TARGET_NR_clock_gettime
9115 case TARGET_NR_clock_gettime
:
9118 ret
= get_errno(clock_gettime(arg1
, &ts
));
9119 if (!is_error(ret
)) {
9120 host_to_target_timespec(arg2
, &ts
);
9125 #ifdef TARGET_NR_clock_getres
9126 case TARGET_NR_clock_getres
:
9129 ret
= get_errno(clock_getres(arg1
, &ts
));
9130 if (!is_error(ret
)) {
9131 host_to_target_timespec(arg2
, &ts
);
9136 #ifdef TARGET_NR_clock_nanosleep
9137 case TARGET_NR_clock_nanosleep
:
9140 target_to_host_timespec(&ts
, arg3
);
9141 ret
= get_errno(clock_nanosleep(arg1
, arg2
, &ts
, arg4
? &ts
: NULL
));
9143 host_to_target_timespec(arg4
, &ts
);
9145 #if defined(TARGET_PPC)
9146 /* clock_nanosleep is odd in that it returns positive errno values.
9147 * On PPC, CR0 bit 3 should be set in such a situation. */
9149 ((CPUPPCState
*)cpu_env
)->crf
[0] |= 1;
9156 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
9157 case TARGET_NR_set_tid_address
:
9158 ret
= get_errno(set_tid_address((int *)g2h(arg1
)));
9162 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
9163 case TARGET_NR_tkill
:
9164 ret
= get_errno(sys_tkill((int)arg1
, target_to_host_signal(arg2
)));
9168 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
9169 case TARGET_NR_tgkill
:
9170 ret
= get_errno(sys_tgkill((int)arg1
, (int)arg2
,
9171 target_to_host_signal(arg3
)));
9175 #ifdef TARGET_NR_set_robust_list
9176 case TARGET_NR_set_robust_list
:
9177 case TARGET_NR_get_robust_list
:
9178 /* The ABI for supporting robust futexes has userspace pass
9179 * the kernel a pointer to a linked list which is updated by
9180 * userspace after the syscall; the list is walked by the kernel
9181 * when the thread exits. Since the linked list in QEMU guest
9182 * memory isn't a valid linked list for the host and we have
9183 * no way to reliably intercept the thread-death event, we can't
9184 * support these. Silently return ENOSYS so that guest userspace
9185 * falls back to a non-robust futex implementation (which should
9186 * be OK except in the corner case of the guest crashing while
9187 * holding a mutex that is shared with another process via
9190 goto unimplemented_nowarn
;
9193 #if defined(TARGET_NR_utimensat)
9194 case TARGET_NR_utimensat
:
9196 struct timespec
*tsp
, ts
[2];
9200 target_to_host_timespec(ts
, arg3
);
9201 target_to_host_timespec(ts
+1, arg3
+sizeof(struct target_timespec
));
9205 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
9207 if (!(p
= lock_user_string(arg2
))) {
9208 ret
= -TARGET_EFAULT
;
9211 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
9212 unlock_user(p
, arg2
, 0);
9217 case TARGET_NR_futex
:
9218 ret
= do_futex(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
9220 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
9221 case TARGET_NR_inotify_init
:
9222 ret
= get_errno(sys_inotify_init());
9225 #ifdef CONFIG_INOTIFY1
9226 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
9227 case TARGET_NR_inotify_init1
:
9228 ret
= get_errno(sys_inotify_init1(arg1
));
9232 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
9233 case TARGET_NR_inotify_add_watch
:
9234 p
= lock_user_string(arg2
);
9235 ret
= get_errno(sys_inotify_add_watch(arg1
, path(p
), arg3
));
9236 unlock_user(p
, arg2
, 0);
9239 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
9240 case TARGET_NR_inotify_rm_watch
:
9241 ret
= get_errno(sys_inotify_rm_watch(arg1
, arg2
));
9245 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
9246 case TARGET_NR_mq_open
:
9248 struct mq_attr posix_mq_attr
, *attrp
;
9250 p
= lock_user_string(arg1
- 1);
9252 copy_from_user_mq_attr (&posix_mq_attr
, arg4
);
9253 attrp
= &posix_mq_attr
;
9257 ret
= get_errno(mq_open(p
, arg2
, arg3
, attrp
));
9258 unlock_user (p
, arg1
, 0);
9262 case TARGET_NR_mq_unlink
:
9263 p
= lock_user_string(arg1
- 1);
9264 ret
= get_errno(mq_unlink(p
));
9265 unlock_user (p
, arg1
, 0);
9268 case TARGET_NR_mq_timedsend
:
9272 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
9274 target_to_host_timespec(&ts
, arg5
);
9275 ret
= get_errno(mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
9276 host_to_target_timespec(arg5
, &ts
);
9279 ret
= get_errno(mq_send(arg1
, p
, arg3
, arg4
));
9280 unlock_user (p
, arg2
, arg3
);
9284 case TARGET_NR_mq_timedreceive
:
9289 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
9291 target_to_host_timespec(&ts
, arg5
);
9292 ret
= get_errno(mq_timedreceive(arg1
, p
, arg3
, &prio
, &ts
));
9293 host_to_target_timespec(arg5
, &ts
);
9296 ret
= get_errno(mq_receive(arg1
, p
, arg3
, &prio
));
9297 unlock_user (p
, arg2
, arg3
);
9299 put_user_u32(prio
, arg4
);
9303 /* Not implemented for now... */
9304 /* case TARGET_NR_mq_notify: */
9307 case TARGET_NR_mq_getsetattr
:
9309 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
9312 ret
= mq_getattr(arg1
, &posix_mq_attr_out
);
9313 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
9316 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
9317 ret
|= mq_setattr(arg1
, &posix_mq_attr_in
, &posix_mq_attr_out
);
9324 #ifdef CONFIG_SPLICE
9325 #ifdef TARGET_NR_tee
9328 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
9332 #ifdef TARGET_NR_splice
9333 case TARGET_NR_splice
:
9335 loff_t loff_in
, loff_out
;
9336 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
9338 get_user_u64(loff_in
, arg2
);
9339 ploff_in
= &loff_in
;
9342 get_user_u64(loff_out
, arg2
);
9343 ploff_out
= &loff_out
;
9345 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
9349 #ifdef TARGET_NR_vmsplice
9350 case TARGET_NR_vmsplice
:
9352 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
9354 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
9355 unlock_iovec(vec
, arg2
, arg3
, 0);
9357 ret
= -host_to_target_errno(errno
);
9362 #endif /* CONFIG_SPLICE */
9363 #ifdef CONFIG_EVENTFD
9364 #if defined(TARGET_NR_eventfd)
9365 case TARGET_NR_eventfd
:
9366 ret
= get_errno(eventfd(arg1
, 0));
9369 #if defined(TARGET_NR_eventfd2)
9370 case TARGET_NR_eventfd2
:
9372 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK
| TARGET_O_CLOEXEC
));
9373 if (arg2
& TARGET_O_NONBLOCK
) {
9374 host_flags
|= O_NONBLOCK
;
9376 if (arg2
& TARGET_O_CLOEXEC
) {
9377 host_flags
|= O_CLOEXEC
;
9379 ret
= get_errno(eventfd(arg1
, host_flags
));
9383 #endif /* CONFIG_EVENTFD */
9384 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
9385 case TARGET_NR_fallocate
:
9386 #if TARGET_ABI_BITS == 32
9387 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
9388 target_offset64(arg5
, arg6
)));
9390 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
9394 #if defined(CONFIG_SYNC_FILE_RANGE)
9395 #if defined(TARGET_NR_sync_file_range)
9396 case TARGET_NR_sync_file_range
:
9397 #if TARGET_ABI_BITS == 32
9398 #if defined(TARGET_MIPS)
9399 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
9400 target_offset64(arg5
, arg6
), arg7
));
9402 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
9403 target_offset64(arg4
, arg5
), arg6
));
9404 #endif /* !TARGET_MIPS */
9406 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
9410 #if defined(TARGET_NR_sync_file_range2)
9411 case TARGET_NR_sync_file_range2
:
9412 /* This is like sync_file_range but the arguments are reordered */
9413 #if TARGET_ABI_BITS == 32
9414 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
9415 target_offset64(arg5
, arg6
), arg2
));
9417 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
9422 #if defined(CONFIG_EPOLL)
9423 #if defined(TARGET_NR_epoll_create)
9424 case TARGET_NR_epoll_create
:
9425 ret
= get_errno(epoll_create(arg1
));
9428 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
9429 case TARGET_NR_epoll_create1
:
9430 ret
= get_errno(epoll_create1(arg1
));
9433 #if defined(TARGET_NR_epoll_ctl)
9434 case TARGET_NR_epoll_ctl
:
9436 struct epoll_event ep
;
9437 struct epoll_event
*epp
= 0;
9439 struct target_epoll_event
*target_ep
;
9440 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
9443 ep
.events
= tswap32(target_ep
->events
);
9444 /* The epoll_data_t union is just opaque data to the kernel,
9445 * so we transfer all 64 bits across and need not worry what
9446 * actual data type it is.
9448 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
9449 unlock_user_struct(target_ep
, arg4
, 0);
9452 ret
= get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
9457 #if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT)
9458 #define IMPLEMENT_EPOLL_PWAIT
9460 #if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT)
9461 #if defined(TARGET_NR_epoll_wait)
9462 case TARGET_NR_epoll_wait
:
9464 #if defined(IMPLEMENT_EPOLL_PWAIT)
9465 case TARGET_NR_epoll_pwait
:
9468 struct target_epoll_event
*target_ep
;
9469 struct epoll_event
*ep
;
9471 int maxevents
= arg3
;
9474 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
9475 maxevents
* sizeof(struct target_epoll_event
), 1);
9480 ep
= alloca(maxevents
* sizeof(struct epoll_event
));
9483 #if defined(IMPLEMENT_EPOLL_PWAIT)
9484 case TARGET_NR_epoll_pwait
:
9486 target_sigset_t
*target_set
;
9487 sigset_t _set
, *set
= &_set
;
9490 target_set
= lock_user(VERIFY_READ
, arg5
,
9491 sizeof(target_sigset_t
), 1);
9493 unlock_user(target_ep
, arg2
, 0);
9496 target_to_host_sigset(set
, target_set
);
9497 unlock_user(target_set
, arg5
, 0);
9502 ret
= get_errno(epoll_pwait(epfd
, ep
, maxevents
, timeout
, set
));
9506 #if defined(TARGET_NR_epoll_wait)
9507 case TARGET_NR_epoll_wait
:
9508 ret
= get_errno(epoll_wait(epfd
, ep
, maxevents
, timeout
));
9512 ret
= -TARGET_ENOSYS
;
9514 if (!is_error(ret
)) {
9516 for (i
= 0; i
< ret
; i
++) {
9517 target_ep
[i
].events
= tswap32(ep
[i
].events
);
9518 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
9521 unlock_user(target_ep
, arg2
, ret
* sizeof(struct target_epoll_event
));
9526 #ifdef TARGET_NR_prlimit64
9527 case TARGET_NR_prlimit64
:
9529 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
9530 struct target_rlimit64
*target_rnew
, *target_rold
;
9531 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
9533 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
9536 rnew
.rlim_cur
= tswap64(target_rnew
->rlim_cur
);
9537 rnew
.rlim_max
= tswap64(target_rnew
->rlim_max
);
9538 unlock_user_struct(target_rnew
, arg3
, 0);
9542 ret
= get_errno(sys_prlimit64(arg1
, arg2
, rnewp
, arg4
? &rold
: 0));
9543 if (!is_error(ret
) && arg4
) {
9544 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
9547 target_rold
->rlim_cur
= tswap64(rold
.rlim_cur
);
9548 target_rold
->rlim_max
= tswap64(rold
.rlim_max
);
9549 unlock_user_struct(target_rold
, arg4
, 1);
9554 #ifdef TARGET_NR_gethostname
9555 case TARGET_NR_gethostname
:
9557 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
9559 ret
= get_errno(gethostname(name
, arg2
));
9560 unlock_user(name
, arg1
, arg2
);
9562 ret
= -TARGET_EFAULT
;
9567 #ifdef TARGET_NR_atomic_cmpxchg_32
9568 case TARGET_NR_atomic_cmpxchg_32
:
9570 /* should use start_exclusive from main.c */
9571 abi_ulong mem_value
;
9572 if (get_user_u32(mem_value
, arg6
)) {
9573 target_siginfo_t info
;
9574 info
.si_signo
= SIGSEGV
;
9576 info
.si_code
= TARGET_SEGV_MAPERR
;
9577 info
._sifields
._sigfault
._addr
= arg6
;
9578 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
, &info
);
9582 if (mem_value
== arg2
)
9583 put_user_u32(arg1
, arg6
);
9588 #ifdef TARGET_NR_atomic_barrier
9589 case TARGET_NR_atomic_barrier
:
9591 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
9597 #ifdef TARGET_NR_timer_create
9598 case TARGET_NR_timer_create
:
9600 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
9602 struct sigevent host_sevp
= { {0}, }, *phost_sevp
= NULL
;
9605 int timer_index
= next_free_host_timer();
9607 if (timer_index
< 0) {
9608 ret
= -TARGET_EAGAIN
;
9610 timer_t
*phtimer
= g_posix_timers
+ timer_index
;
9613 phost_sevp
= &host_sevp
;
9614 ret
= target_to_host_sigevent(phost_sevp
, arg2
);
9620 ret
= get_errno(timer_create(clkid
, phost_sevp
, phtimer
));
9624 if (put_user(TIMER_MAGIC
| timer_index
, arg3
, target_timer_t
)) {
9633 #ifdef TARGET_NR_timer_settime
9634 case TARGET_NR_timer_settime
:
9636 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
9637 * struct itimerspec * old_value */
9638 target_timer_t timerid
= get_timer_id(arg1
);
9642 } else if (arg3
== 0) {
9643 ret
= -TARGET_EINVAL
;
9645 timer_t htimer
= g_posix_timers
[timerid
];
9646 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
9648 target_to_host_itimerspec(&hspec_new
, arg3
);
9650 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
9651 host_to_target_itimerspec(arg2
, &hspec_old
);
9657 #ifdef TARGET_NR_timer_gettime
9658 case TARGET_NR_timer_gettime
:
9660 /* args: timer_t timerid, struct itimerspec *curr_value */
9661 target_timer_t timerid
= get_timer_id(arg1
);
9666 ret
= -TARGET_EFAULT
;
9668 timer_t htimer
= g_posix_timers
[timerid
];
9669 struct itimerspec hspec
;
9670 ret
= get_errno(timer_gettime(htimer
, &hspec
));
9672 if (host_to_target_itimerspec(arg2
, &hspec
)) {
9673 ret
= -TARGET_EFAULT
;
9680 #ifdef TARGET_NR_timer_getoverrun
9681 case TARGET_NR_timer_getoverrun
:
9683 /* args: timer_t timerid */
9684 target_timer_t timerid
= get_timer_id(arg1
);
9689 timer_t htimer
= g_posix_timers
[timerid
];
9690 ret
= get_errno(timer_getoverrun(htimer
));
9696 #ifdef TARGET_NR_timer_delete
9697 case TARGET_NR_timer_delete
:
9699 /* args: timer_t timerid */
9700 target_timer_t timerid
= get_timer_id(arg1
);
9705 timer_t htimer
= g_posix_timers
[timerid
];
9706 ret
= get_errno(timer_delete(htimer
));
9707 g_posix_timers
[timerid
] = 0;
9713 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
9714 case TARGET_NR_timerfd_create
:
9715 ret
= get_errno(timerfd_create(arg1
,
9716 target_to_host_bitmask(arg2
, fcntl_flags_tbl
)));
9720 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
9721 case TARGET_NR_timerfd_gettime
:
9723 struct itimerspec its_curr
;
9725 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
9727 if (arg2
&& host_to_target_itimerspec(arg2
, &its_curr
)) {
9734 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
9735 case TARGET_NR_timerfd_settime
:
9737 struct itimerspec its_new
, its_old
, *p_new
;
9740 if (target_to_host_itimerspec(&its_new
, arg3
)) {
9748 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
9750 if (arg4
&& host_to_target_itimerspec(arg4
, &its_old
)) {
9757 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
9758 case TARGET_NR_ioprio_get
:
9759 ret
= get_errno(ioprio_get(arg1
, arg2
));
9763 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
9764 case TARGET_NR_ioprio_set
:
9765 ret
= get_errno(ioprio_set(arg1
, arg2
, arg3
));
9769 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
9770 case TARGET_NR_setns
:
9771 ret
= get_errno(setns(arg1
, arg2
));
9774 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
9775 case TARGET_NR_unshare
:
9776 ret
= get_errno(unshare(arg1
));
9782 gemu_log("qemu: Unsupported syscall: %d\n", num
);
9783 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
9784 unimplemented_nowarn
:
9786 ret
= -TARGET_ENOSYS
;
9791 gemu_log(" = " TARGET_ABI_FMT_ld
"\n", ret
);
9794 print_syscall_ret(num
, ret
);
9797 ret
= -TARGET_EFAULT
;